linux/drivers/media/dvb/frontends/drxd_hard.c
<<
>>
Prefs
   1/*
   2 * drxd_hard.c: DVB-T Demodulator Micronas DRX3975D-A2,DRX397xD-B1
   3 *
   4 * Copyright (C) 2003-2007 Micronas
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * version 2 only, as published by the Free Software Foundation.
   9 *
  10 *
  11 * This program is distributed in the hope that it will be useful,
  12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  14 * GNU General Public License for more details.
  15 *
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20 * 02110-1301, USA
  21 * Or, point your browser to http://www.gnu.org/copyleft/gpl.html
  22 */
  23
  24#include <linux/kernel.h>
  25#include <linux/module.h>
  26#include <linux/moduleparam.h>
  27#include <linux/init.h>
  28#include <linux/delay.h>
  29#include <linux/firmware.h>
  30#include <linux/i2c.h>
  31#include <asm/div64.h>
  32
  33#include "dvb_frontend.h"
  34#include "drxd.h"
  35#include "drxd_firm.h"
  36
  37#define DRX_FW_FILENAME_A2 "drxd-a2-1.1.fw"
  38#define DRX_FW_FILENAME_B1 "drxd-b1-1.1.fw"
  39
  40#define CHUNK_SIZE 48
  41
  42#define DRX_I2C_RMW           0x10
  43#define DRX_I2C_BROADCAST     0x20
  44#define DRX_I2C_CLEARCRC      0x80
  45#define DRX_I2C_SINGLE_MASTER 0xC0
  46#define DRX_I2C_MODEFLAGS     0xC0
  47#define DRX_I2C_FLAGS         0xF0
  48
  49#ifndef SIZEOF_ARRAY
  50#define SIZEOF_ARRAY(array) (sizeof((array))/sizeof((array)[0]))
  51#endif
  52
  53#define DEFAULT_LOCK_TIMEOUT    1100
  54
  55#define DRX_CHANNEL_AUTO 0
  56#define DRX_CHANNEL_HIGH 1
  57#define DRX_CHANNEL_LOW  2
  58
  59#define DRX_LOCK_MPEG  1
  60#define DRX_LOCK_FEC   2
  61#define DRX_LOCK_DEMOD 4
  62
  63/****************************************************************************/
  64
  65enum CSCDState {
  66        CSCD_INIT = 0,
  67        CSCD_SET,
  68        CSCD_SAVED
  69};
  70
  71enum CDrxdState {
  72        DRXD_UNINITIALIZED = 0,
  73        DRXD_STOPPED,
  74        DRXD_STARTED
  75};
  76
  77enum AGC_CTRL_MODE {
  78        AGC_CTRL_AUTO = 0,
  79        AGC_CTRL_USER,
  80        AGC_CTRL_OFF
  81};
  82
  83enum OperationMode {
  84        OM_Default,
  85        OM_DVBT_Diversity_Front,
  86        OM_DVBT_Diversity_End
  87};
  88
  89struct SCfgAgc {
  90        enum AGC_CTRL_MODE ctrlMode;
  91        u16 outputLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
  92        u16 settleLevel;        /* range [0, ... , 1023], 1/n of fullscale range */
  93        u16 minOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
  94        u16 maxOutputLevel;     /* range [0, ... , 1023], 1/n of fullscale range */
  95        u16 speed;              /* range [0, ... , 1023], 1/n of fullscale range */
  96
  97        u16 R1;
  98        u16 R2;
  99        u16 R3;
 100};
 101
 102struct SNoiseCal {
 103        int cpOpt;
 104        u16 cpNexpOfs;
 105        u16 tdCal2k;
 106        u16 tdCal8k;
 107};
 108
 109enum app_env {
 110        APPENV_STATIC = 0,
 111        APPENV_PORTABLE = 1,
 112        APPENV_MOBILE = 2
 113};
 114
 115enum EIFFilter {
 116        IFFILTER_SAW = 0,
 117        IFFILTER_DISCRETE = 1
 118};
 119
 120struct drxd_state {
 121        struct dvb_frontend frontend;
 122        struct dvb_frontend_ops ops;
 123        struct dvb_frontend_parameters param;
 124
 125        const struct firmware *fw;
 126        struct device *dev;
 127
 128        struct i2c_adapter *i2c;
 129        void *priv;
 130        struct drxd_config config;
 131
 132        int i2c_access;
 133        int init_done;
 134        struct mutex mutex;
 135
 136        u8 chip_adr;
 137        u16 hi_cfg_timing_div;
 138        u16 hi_cfg_bridge_delay;
 139        u16 hi_cfg_wakeup_key;
 140        u16 hi_cfg_ctrl;
 141
 142        u16 intermediate_freq;
 143        u16 osc_clock_freq;
 144
 145        enum CSCDState cscd_state;
 146        enum CDrxdState drxd_state;
 147
 148        u16 sys_clock_freq;
 149        s16 osc_clock_deviation;
 150        u16 expected_sys_clock_freq;
 151
 152        u16 insert_rs_byte;
 153        u16 enable_parallel;
 154
 155        int operation_mode;
 156
 157        struct SCfgAgc if_agc_cfg;
 158        struct SCfgAgc rf_agc_cfg;
 159
 160        struct SNoiseCal noise_cal;
 161
 162        u32 fe_fs_add_incr;
 163        u32 org_fe_fs_add_incr;
 164        u16 current_fe_if_incr;
 165
 166        u16 m_FeAgRegAgPwd;
 167        u16 m_FeAgRegAgAgcSio;
 168
 169        u16 m_EcOcRegOcModeLop;
 170        u16 m_EcOcRegSncSncLvl;
 171        u8 *m_InitAtomicRead;
 172        u8 *m_HiI2cPatch;
 173
 174        u8 *m_ResetCEFR;
 175        u8 *m_InitFE_1;
 176        u8 *m_InitFE_2;
 177        u8 *m_InitCP;
 178        u8 *m_InitCE;
 179        u8 *m_InitEQ;
 180        u8 *m_InitSC;
 181        u8 *m_InitEC;
 182        u8 *m_ResetECRAM;
 183        u8 *m_InitDiversityFront;
 184        u8 *m_InitDiversityEnd;
 185        u8 *m_DisableDiversity;
 186        u8 *m_StartDiversityFront;
 187        u8 *m_StartDiversityEnd;
 188
 189        u8 *m_DiversityDelay8MHZ;
 190        u8 *m_DiversityDelay6MHZ;
 191
 192        u8 *microcode;
 193        u32 microcode_length;
 194
 195        int type_A;
 196        int PGA;
 197        int diversity;
 198        int tuner_mirrors;
 199
 200        enum app_env app_env_default;
 201        enum app_env app_env_diversity;
 202
 203};
 204
 205/****************************************************************************/
 206/* I2C **********************************************************************/
 207/****************************************************************************/
 208
 209static int i2c_write(struct i2c_adapter *adap, u8 adr, u8 * data, int len)
 210{
 211        struct i2c_msg msg = {.addr = adr, .flags = 0, .buf = data, .len = len };
 212
 213        if (i2c_transfer(adap, &msg, 1) != 1)
 214                return -1;
 215        return 0;
 216}
 217
 218static int i2c_read(struct i2c_adapter *adap,
 219                    u8 adr, u8 *msg, int len, u8 *answ, int alen)
 220{
 221        struct i2c_msg msgs[2] = {
 222                {
 223                        .addr = adr, .flags = 0,
 224                        .buf = msg, .len = len
 225                }, {
 226                        .addr = adr, .flags = I2C_M_RD,
 227                        .buf = answ, .len = alen
 228                }
 229        };
 230        if (i2c_transfer(adap, msgs, 2) != 2)
 231                return -1;
 232        return 0;
 233}
 234
 235static inline u32 MulDiv32(u32 a, u32 b, u32 c)
 236{
 237        u64 tmp64;
 238
 239        tmp64 = (u64)a * (u64)b;
 240        do_div(tmp64, c);
 241
 242        return (u32) tmp64;
 243}
 244
 245static int Read16(struct drxd_state *state, u32 reg, u16 *data, u8 flags)
 246{
 247        u8 adr = state->config.demod_address;
 248        u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 249                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 250        };
 251        u8 mm2[2];
 252        if (i2c_read(state->i2c, adr, mm1, 4, mm2, 2) < 0)
 253                return -1;
 254        if (data)
 255                *data = mm2[0] | (mm2[1] << 8);
 256        return mm2[0] | (mm2[1] << 8);
 257}
 258
 259static int Read32(struct drxd_state *state, u32 reg, u32 *data, u8 flags)
 260{
 261        u8 adr = state->config.demod_address;
 262        u8 mm1[4] = { reg & 0xff, (reg >> 16) & 0xff,
 263                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 264        };
 265        u8 mm2[4];
 266
 267        if (i2c_read(state->i2c, adr, mm1, 4, mm2, 4) < 0)
 268                return -1;
 269        if (data)
 270                *data =
 271                    mm2[0] | (mm2[1] << 8) | (mm2[2] << 16) | (mm2[3] << 24);
 272        return 0;
 273}
 274
 275static int Write16(struct drxd_state *state, u32 reg, u16 data, u8 flags)
 276{
 277        u8 adr = state->config.demod_address;
 278        u8 mm[6] = { reg & 0xff, (reg >> 16) & 0xff,
 279                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 280                data & 0xff, (data >> 8) & 0xff
 281        };
 282
 283        if (i2c_write(state->i2c, adr, mm, 6) < 0)
 284                return -1;
 285        return 0;
 286}
 287
 288static int Write32(struct drxd_state *state, u32 reg, u32 data, u8 flags)
 289{
 290        u8 adr = state->config.demod_address;
 291        u8 mm[8] = { reg & 0xff, (reg >> 16) & 0xff,
 292                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff,
 293                data & 0xff, (data >> 8) & 0xff,
 294                (data >> 16) & 0xff, (data >> 24) & 0xff
 295        };
 296
 297        if (i2c_write(state->i2c, adr, mm, 8) < 0)
 298                return -1;
 299        return 0;
 300}
 301
 302static int write_chunk(struct drxd_state *state,
 303                       u32 reg, u8 *data, u32 len, u8 flags)
 304{
 305        u8 adr = state->config.demod_address;
 306        u8 mm[CHUNK_SIZE + 4] = { reg & 0xff, (reg >> 16) & 0xff,
 307                flags | ((reg >> 24) & 0xff), (reg >> 8) & 0xff
 308        };
 309        int i;
 310
 311        for (i = 0; i < len; i++)
 312                mm[4 + i] = data[i];
 313        if (i2c_write(state->i2c, adr, mm, 4 + len) < 0) {
 314                printk(KERN_ERR "error in write_chunk\n");
 315                return -1;
 316        }
 317        return 0;
 318}
 319
 320static int WriteBlock(struct drxd_state *state,
 321                      u32 Address, u16 BlockSize, u8 *pBlock, u8 Flags)
 322{
 323        while (BlockSize > 0) {
 324                u16 Chunk = BlockSize > CHUNK_SIZE ? CHUNK_SIZE : BlockSize;
 325
 326                if (write_chunk(state, Address, pBlock, Chunk, Flags) < 0)
 327                        return -1;
 328                pBlock += Chunk;
 329                Address += (Chunk >> 1);
 330                BlockSize -= Chunk;
 331        }
 332        return 0;
 333}
 334
 335static int WriteTable(struct drxd_state *state, u8 * pTable)
 336{
 337        int status = 0;
 338
 339        if (pTable == NULL)
 340                return 0;
 341
 342        while (!status) {
 343                u16 Length;
 344                u32 Address = pTable[0] | (pTable[1] << 8) |
 345                    (pTable[2] << 16) | (pTable[3] << 24);
 346
 347                if (Address == 0xFFFFFFFF)
 348                        break;
 349                pTable += sizeof(u32);
 350
 351                Length = pTable[0] | (pTable[1] << 8);
 352                pTable += sizeof(u16);
 353                if (!Length)
 354                        break;
 355                status = WriteBlock(state, Address, Length * 2, pTable, 0);
 356                pTable += (Length * 2);
 357        }
 358        return status;
 359}
 360
 361/****************************************************************************/
 362/****************************************************************************/
 363/****************************************************************************/
 364
 365static int ResetCEFR(struct drxd_state *state)
 366{
 367        return WriteTable(state, state->m_ResetCEFR);
 368}
 369
 370static int InitCP(struct drxd_state *state)
 371{
 372        return WriteTable(state, state->m_InitCP);
 373}
 374
 375static int InitCE(struct drxd_state *state)
 376{
 377        int status;
 378        enum app_env AppEnv = state->app_env_default;
 379
 380        do {
 381                status = WriteTable(state, state->m_InitCE);
 382                if (status < 0)
 383                        break;
 384
 385                if (state->operation_mode == OM_DVBT_Diversity_Front ||
 386                    state->operation_mode == OM_DVBT_Diversity_End) {
 387                        AppEnv = state->app_env_diversity;
 388                }
 389                if (AppEnv == APPENV_STATIC) {
 390                        status = Write16(state, CE_REG_TAPSET__A, 0x0000, 0);
 391                        if (status < 0)
 392                                break;
 393                } else if (AppEnv == APPENV_PORTABLE) {
 394                        status = Write16(state, CE_REG_TAPSET__A, 0x0001, 0);
 395                        if (status < 0)
 396                                break;
 397                } else if (AppEnv == APPENV_MOBILE && state->type_A) {
 398                        status = Write16(state, CE_REG_TAPSET__A, 0x0002, 0);
 399                        if (status < 0)
 400                                break;
 401                } else if (AppEnv == APPENV_MOBILE && !state->type_A) {
 402                        status = Write16(state, CE_REG_TAPSET__A, 0x0006, 0);
 403                        if (status < 0)
 404                                break;
 405                }
 406
 407                /* start ce */
 408                status = Write16(state, B_CE_REG_COMM_EXEC__A, 0x0001, 0);
 409                if (status < 0)
 410                        break;
 411        } while (0);
 412        return status;
 413}
 414
 415static int StopOC(struct drxd_state *state)
 416{
 417        int status = 0;
 418        u16 ocSyncLvl = 0;
 419        u16 ocModeLop = state->m_EcOcRegOcModeLop;
 420        u16 dtoIncLop = 0;
 421        u16 dtoIncHip = 0;
 422
 423        do {
 424                /* Store output configuration */
 425                status = Read16(state, EC_OC_REG_SNC_ISC_LVL__A, &ocSyncLvl, 0);
 426                if (status < 0)
 427                        break;
 428                /* CHK_ERROR(Read16(EC_OC_REG_OC_MODE_LOP__A, &ocModeLop)); */
 429                state->m_EcOcRegSncSncLvl = ocSyncLvl;
 430                /* m_EcOcRegOcModeLop = ocModeLop; */
 431
 432                /* Flush FIFO (byte-boundary) at fixed rate */
 433                status = Read16(state, EC_OC_REG_RCN_MAP_LOP__A, &dtoIncLop, 0);
 434                if (status < 0)
 435                        break;
 436                status = Read16(state, EC_OC_REG_RCN_MAP_HIP__A, &dtoIncHip, 0);
 437                if (status < 0)
 438                        break;
 439                status = Write16(state, EC_OC_REG_DTO_INC_LOP__A, dtoIncLop, 0);
 440                if (status < 0)
 441                        break;
 442                status = Write16(state, EC_OC_REG_DTO_INC_HIP__A, dtoIncHip, 0);
 443                if (status < 0)
 444                        break;
 445                ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC__M);
 446                ocModeLop |= EC_OC_REG_OC_MODE_LOP_DTO_CTR_SRC_STATIC;
 447                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 448                if (status < 0)
 449                        break;
 450                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 451                if (status < 0)
 452                        break;
 453
 454                msleep(1);
 455                /* Output pins to '0' */
 456                status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS__M, 0);
 457                if (status < 0)
 458                        break;
 459
 460                /* Force the OC out of sync */
 461                ocSyncLvl &= ~(EC_OC_REG_SNC_ISC_LVL_OSC__M);
 462                status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, ocSyncLvl, 0);
 463                if (status < 0)
 464                        break;
 465                ocModeLop &= ~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M);
 466                ocModeLop |= EC_OC_REG_OC_MODE_LOP_PAR_ENA_ENABLE;
 467                ocModeLop |= 0x2;       /* Magically-out-of-sync */
 468                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, ocModeLop, 0);
 469                if (status < 0)
 470                        break;
 471                status = Write16(state, EC_OC_REG_COMM_INT_STA__A, 0x0, 0);
 472                if (status < 0)
 473                        break;
 474                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 475                if (status < 0)
 476                        break;
 477        } while (0);
 478
 479        return status;
 480}
 481
 482static int StartOC(struct drxd_state *state)
 483{
 484        int status = 0;
 485
 486        do {
 487                /* Stop OC */
 488                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_HOLD, 0);
 489                if (status < 0)
 490                        break;
 491
 492                /* Restore output configuration */
 493                status = Write16(state, EC_OC_REG_SNC_ISC_LVL__A, state->m_EcOcRegSncSncLvl, 0);
 494                if (status < 0)
 495                        break;
 496                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, state->m_EcOcRegOcModeLop, 0);
 497                if (status < 0)
 498                        break;
 499
 500                /* Output pins active again */
 501                status = Write16(state, EC_OC_REG_OCR_MPG_UOS__A, EC_OC_REG_OCR_MPG_UOS_INIT, 0);
 502                if (status < 0)
 503                        break;
 504
 505                /* Start OC */
 506                status = Write16(state, EC_OC_REG_COMM_EXEC__A, EC_OC_REG_COMM_EXEC_CTL_ACTIVE, 0);
 507                if (status < 0)
 508                        break;
 509        } while (0);
 510        return status;
 511}
 512
 513static int InitEQ(struct drxd_state *state)
 514{
 515        return WriteTable(state, state->m_InitEQ);
 516}
 517
 518static int InitEC(struct drxd_state *state)
 519{
 520        return WriteTable(state, state->m_InitEC);
 521}
 522
 523static int InitSC(struct drxd_state *state)
 524{
 525        return WriteTable(state, state->m_InitSC);
 526}
 527
 528static int InitAtomicRead(struct drxd_state *state)
 529{
 530        return WriteTable(state, state->m_InitAtomicRead);
 531}
 532
 533static int CorrectSysClockDeviation(struct drxd_state *state);
 534
 535static int DRX_GetLockStatus(struct drxd_state *state, u32 * pLockStatus)
 536{
 537        u16 ScRaRamLock = 0;
 538        const u16 mpeg_lock_mask = (SC_RA_RAM_LOCK_MPEG__M |
 539                                    SC_RA_RAM_LOCK_FEC__M |
 540                                    SC_RA_RAM_LOCK_DEMOD__M);
 541        const u16 fec_lock_mask = (SC_RA_RAM_LOCK_FEC__M |
 542                                   SC_RA_RAM_LOCK_DEMOD__M);
 543        const u16 demod_lock_mask = SC_RA_RAM_LOCK_DEMOD__M;
 544
 545        int status;
 546
 547        *pLockStatus = 0;
 548
 549        status = Read16(state, SC_RA_RAM_LOCK__A, &ScRaRamLock, 0x0000);
 550        if (status < 0) {
 551                printk(KERN_ERR "Can't read SC_RA_RAM_LOCK__A status = %08x\n", status);
 552                return status;
 553        }
 554
 555        if (state->drxd_state != DRXD_STARTED)
 556                return 0;
 557
 558        if ((ScRaRamLock & mpeg_lock_mask) == mpeg_lock_mask) {
 559                *pLockStatus |= DRX_LOCK_MPEG;
 560                CorrectSysClockDeviation(state);
 561        }
 562
 563        if ((ScRaRamLock & fec_lock_mask) == fec_lock_mask)
 564                *pLockStatus |= DRX_LOCK_FEC;
 565
 566        if ((ScRaRamLock & demod_lock_mask) == demod_lock_mask)
 567                *pLockStatus |= DRX_LOCK_DEMOD;
 568        return 0;
 569}
 570
 571/****************************************************************************/
 572
 573static int SetCfgIfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 574{
 575        int status;
 576
 577        if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 578                return -1;
 579
 580        if (cfg->ctrlMode == AGC_CTRL_USER) {
 581                do {
 582                        u16 FeAgRegPm1AgcWri;
 583                        u16 FeAgRegAgModeLop;
 584
 585                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 586                        if (status < 0)
 587                                break;
 588                        FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 589                        FeAgRegAgModeLop |= FE_AG_REG_AG_MODE_LOP_MODE_4_STATIC;
 590                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 591                        if (status < 0)
 592                                break;
 593
 594                        FeAgRegPm1AgcWri = (u16) (cfg->outputLevel &
 595                                                  FE_AG_REG_PM1_AGC_WRI__M);
 596                        status = Write16(state, FE_AG_REG_PM1_AGC_WRI__A, FeAgRegPm1AgcWri, 0);
 597                        if (status < 0)
 598                                break;
 599                } while (0);
 600        } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 601                if (((cfg->maxOutputLevel) < (cfg->minOutputLevel)) ||
 602                    ((cfg->maxOutputLevel) > DRXD_FE_CTRL_MAX) ||
 603                    ((cfg->speed) > DRXD_FE_CTRL_MAX) ||
 604                    ((cfg->settleLevel) > DRXD_FE_CTRL_MAX)
 605                    )
 606                        return -1;
 607                do {
 608                        u16 FeAgRegAgModeLop;
 609                        u16 FeAgRegEgcSetLvl;
 610                        u16 slope, offset;
 611
 612                        /* == Mode == */
 613
 614                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &FeAgRegAgModeLop, 0);
 615                        if (status < 0)
 616                                break;
 617                        FeAgRegAgModeLop &= (~FE_AG_REG_AG_MODE_LOP_MODE_4__M);
 618                        FeAgRegAgModeLop |=
 619                            FE_AG_REG_AG_MODE_LOP_MODE_4_DYNAMIC;
 620                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, FeAgRegAgModeLop, 0);
 621                        if (status < 0)
 622                                break;
 623
 624                        /* == Settle level == */
 625
 626                        FeAgRegEgcSetLvl = (u16) ((cfg->settleLevel >> 1) &
 627                                                  FE_AG_REG_EGC_SET_LVL__M);
 628                        status = Write16(state, FE_AG_REG_EGC_SET_LVL__A, FeAgRegEgcSetLvl, 0);
 629                        if (status < 0)
 630                                break;
 631
 632                        /* == Min/Max == */
 633
 634                        slope = (u16) ((cfg->maxOutputLevel -
 635                                        cfg->minOutputLevel) / 2);
 636                        offset = (u16) ((cfg->maxOutputLevel +
 637                                         cfg->minOutputLevel) / 2 - 511);
 638
 639                        status = Write16(state, FE_AG_REG_GC1_AGC_RIC__A, slope, 0);
 640                        if (status < 0)
 641                                break;
 642                        status = Write16(state, FE_AG_REG_GC1_AGC_OFF__A, offset, 0);
 643                        if (status < 0)
 644                                break;
 645
 646                        /* == Speed == */
 647                        {
 648                                const u16 maxRur = 8;
 649                                const u16 slowIncrDecLUT[] = { 3, 4, 4, 5, 6 };
 650                                const u16 fastIncrDecLUT[] = { 14, 15, 15, 16,
 651                                        17, 18, 18, 19,
 652                                        20, 21, 22, 23,
 653                                        24, 26, 27, 28,
 654                                        29, 31
 655                                };
 656
 657                                u16 fineSteps = (DRXD_FE_CTRL_MAX + 1) /
 658                                    (maxRur + 1);
 659                                u16 fineSpeed = (u16) (cfg->speed -
 660                                                       ((cfg->speed /
 661                                                         fineSteps) *
 662                                                        fineSteps));
 663                                u16 invRurCount = (u16) (cfg->speed /
 664                                                         fineSteps);
 665                                u16 rurCount;
 666                                if (invRurCount > maxRur) {
 667                                        rurCount = 0;
 668                                        fineSpeed += fineSteps;
 669                                } else {
 670                                        rurCount = maxRur - invRurCount;
 671                                }
 672
 673                                /*
 674                                   fastInc = default *
 675                                   (2^(fineSpeed/fineSteps))
 676                                   => range[default...2*default>
 677                                   slowInc = default *
 678                                   (2^(fineSpeed/fineSteps))
 679                                 */
 680                                {
 681                                        u16 fastIncrDec =
 682                                            fastIncrDecLUT[fineSpeed /
 683                                                           ((fineSteps /
 684                                                             (14 + 1)) + 1)];
 685                                        u16 slowIncrDec =
 686                                            slowIncrDecLUT[fineSpeed /
 687                                                           (fineSteps /
 688                                                            (3 + 1))];
 689
 690                                        status = Write16(state, FE_AG_REG_EGC_RUR_CNT__A, rurCount, 0);
 691                                        if (status < 0)
 692                                                break;
 693                                        status = Write16(state, FE_AG_REG_EGC_FAS_INC__A, fastIncrDec, 0);
 694                                        if (status < 0)
 695                                                break;
 696                                        status = Write16(state, FE_AG_REG_EGC_FAS_DEC__A, fastIncrDec, 0);
 697                                        if (status < 0)
 698                                                break;
 699                                        status = Write16(state, FE_AG_REG_EGC_SLO_INC__A, slowIncrDec, 0);
 700                                        if (status < 0)
 701                                                break;
 702                                        status = Write16(state, FE_AG_REG_EGC_SLO_DEC__A, slowIncrDec, 0);
 703                                        if (status < 0)
 704                                                break;
 705                                }
 706                        }
 707                } while (0);
 708
 709        } else {
 710                /* No OFF mode for IF control */
 711                return -1;
 712        }
 713        return status;
 714}
 715
 716static int SetCfgRfAgc(struct drxd_state *state, struct SCfgAgc *cfg)
 717{
 718        int status = 0;
 719
 720        if (cfg->outputLevel > DRXD_FE_CTRL_MAX)
 721                return -1;
 722
 723        if (cfg->ctrlMode == AGC_CTRL_USER) {
 724                do {
 725                        u16 AgModeLop = 0;
 726                        u16 level = (cfg->outputLevel);
 727
 728                        if (level == DRXD_FE_CTRL_MAX)
 729                                level++;
 730
 731                        status = Write16(state, FE_AG_REG_PM2_AGC_WRI__A, level, 0x0000);
 732                        if (status < 0)
 733                                break;
 734
 735                        /*==== Mode ====*/
 736
 737                        /* Powerdown PD2, WRI source */
 738                        state->m_FeAgRegAgPwd &= ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 739                        state->m_FeAgRegAgPwd |=
 740                            FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 741                        status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
 742                        if (status < 0)
 743                                break;
 744
 745                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 746                        if (status < 0)
 747                                break;
 748                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 749                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 750                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 751                                      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 752                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 753                        if (status < 0)
 754                                break;
 755
 756                        /* enable AGC2 pin */
 757                        {
 758                                u16 FeAgRegAgAgcSio = 0;
 759                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 760                                if (status < 0)
 761                                        break;
 762                                FeAgRegAgAgcSio &=
 763                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 764                                FeAgRegAgAgcSio |=
 765                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 766                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 767                                if (status < 0)
 768                                        break;
 769                        }
 770
 771                } while (0);
 772        } else if (cfg->ctrlMode == AGC_CTRL_AUTO) {
 773                u16 AgModeLop = 0;
 774
 775                do {
 776                        u16 level;
 777                        /* Automatic control */
 778                        /* Powerup PD2, AGC2 as output, TGC source */
 779                        (state->m_FeAgRegAgPwd) &=
 780                            ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 781                        (state->m_FeAgRegAgPwd) |=
 782                            FE_AG_REG_AG_PWD_PWD_PD2_DISABLE;
 783                        status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 784                        if (status < 0)
 785                                break;
 786
 787                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 788                        if (status < 0)
 789                                break;
 790                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 791                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 792                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 793                                      FE_AG_REG_AG_MODE_LOP_MODE_E_DYNAMIC);
 794                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 795                        if (status < 0)
 796                                break;
 797                        /* Settle level */
 798                        level = (((cfg->settleLevel) >> 4) &
 799                                 FE_AG_REG_TGC_SET_LVL__M);
 800                        status = Write16(state, FE_AG_REG_TGC_SET_LVL__A, level, 0x0000);
 801                        if (status < 0)
 802                                break;
 803
 804                        /* Min/max: don't care */
 805
 806                        /* Speed: TODO */
 807
 808                        /* enable AGC2 pin */
 809                        {
 810                                u16 FeAgRegAgAgcSio = 0;
 811                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 812                                if (status < 0)
 813                                        break;
 814                                FeAgRegAgAgcSio &=
 815                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 816                                FeAgRegAgAgcSio |=
 817                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_OUTPUT;
 818                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 819                                if (status < 0)
 820                                        break;
 821                        }
 822
 823                } while (0);
 824        } else {
 825                u16 AgModeLop = 0;
 826
 827                do {
 828                        /* No RF AGC control */
 829                        /* Powerdown PD2, AGC2 as output, WRI source */
 830                        (state->m_FeAgRegAgPwd) &=
 831                            ~(FE_AG_REG_AG_PWD_PWD_PD2__M);
 832                        (state->m_FeAgRegAgPwd) |=
 833                            FE_AG_REG_AG_PWD_PWD_PD2_ENABLE;
 834                        status = Write16(state, FE_AG_REG_AG_PWD__A, (state->m_FeAgRegAgPwd), 0x0000);
 835                        if (status < 0)
 836                                break;
 837
 838                        status = Read16(state, FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
 839                        if (status < 0)
 840                                break;
 841                        AgModeLop &= (~(FE_AG_REG_AG_MODE_LOP_MODE_5__M |
 842                                        FE_AG_REG_AG_MODE_LOP_MODE_E__M));
 843                        AgModeLop |= (FE_AG_REG_AG_MODE_LOP_MODE_5_STATIC |
 844                                      FE_AG_REG_AG_MODE_LOP_MODE_E_STATIC);
 845                        status = Write16(state, FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
 846                        if (status < 0)
 847                                break;
 848
 849                        /* set FeAgRegAgAgcSio AGC2 (RF) as input */
 850                        {
 851                                u16 FeAgRegAgAgcSio = 0;
 852                                status = Read16(state, FE_AG_REG_AG_AGC_SIO__A, &FeAgRegAgAgcSio, 0x0000);
 853                                if (status < 0)
 854                                        break;
 855                                FeAgRegAgAgcSio &=
 856                                    ~(FE_AG_REG_AG_AGC_SIO_AGC_SIO_2__M);
 857                                FeAgRegAgAgcSio |=
 858                                    FE_AG_REG_AG_AGC_SIO_AGC_SIO_2_INPUT;
 859                                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, FeAgRegAgAgcSio, 0x0000);
 860                                if (status < 0)
 861                                        break;
 862                        }
 863                } while (0);
 864        }
 865        return status;
 866}
 867
 868static int ReadIFAgc(struct drxd_state *state, u32 * pValue)
 869{
 870        int status = 0;
 871
 872        *pValue = 0;
 873        if (state->if_agc_cfg.ctrlMode != AGC_CTRL_OFF) {
 874                u16 Value;
 875                status = Read16(state, FE_AG_REG_GC1_AGC_DAT__A, &Value, 0);
 876                Value &= FE_AG_REG_GC1_AGC_DAT__M;
 877                if (status >= 0) {
 878                        /*           3.3V
 879                           |
 880                           R1
 881                           |
 882                           Vin - R3 - * -- Vout
 883                           |
 884                           R2
 885                           |
 886                           GND
 887                         */
 888                        u32 R1 = state->if_agc_cfg.R1;
 889                        u32 R2 = state->if_agc_cfg.R2;
 890                        u32 R3 = state->if_agc_cfg.R3;
 891
 892                        u32 Vmax = (3300 * R2) / (R1 + R2);
 893                        u32 Rpar = (R2 * R3) / (R3 + R2);
 894                        u32 Vmin = (3300 * Rpar) / (R1 + Rpar);
 895                        u32 Vout = Vmin + ((Vmax - Vmin) * Value) / 1024;
 896
 897                        *pValue = Vout;
 898                }
 899        }
 900        return status;
 901}
 902
 903static int load_firmware(struct drxd_state *state, const char *fw_name)
 904{
 905        const struct firmware *fw;
 906
 907        if (request_firmware(&fw, fw_name, state->dev) < 0) {
 908                printk(KERN_ERR "drxd: firmware load failure [%s]\n", fw_name);
 909                return -EIO;
 910        }
 911
 912        state->microcode = kmalloc(fw->size, GFP_KERNEL);
 913        if (state->microcode == NULL) {
 914                release_firmware(fw);
 915                printk(KERN_ERR "drxd: firmware load failure: no memory\n");
 916                return -ENOMEM;
 917        }
 918
 919        memcpy(state->microcode, fw->data, fw->size);
 920        state->microcode_length = fw->size;
 921        release_firmware(fw);
 922        return 0;
 923}
 924
 925static int DownloadMicrocode(struct drxd_state *state,
 926                             const u8 *pMCImage, u32 Length)
 927{
 928        u8 *pSrc;
 929        u16 Flags;
 930        u32 Address;
 931        u16 nBlocks;
 932        u16 BlockSize;
 933        u16 BlockCRC;
 934        u32 offset = 0;
 935        int i, status = 0;
 936
 937        pSrc = (u8 *) pMCImage;
 938        Flags = (pSrc[0] << 8) | pSrc[1];
 939        pSrc += sizeof(u16);
 940        offset += sizeof(u16);
 941        nBlocks = (pSrc[0] << 8) | pSrc[1];
 942        pSrc += sizeof(u16);
 943        offset += sizeof(u16);
 944
 945        for (i = 0; i < nBlocks; i++) {
 946                Address = (pSrc[0] << 24) | (pSrc[1] << 16) |
 947                    (pSrc[2] << 8) | pSrc[3];
 948                pSrc += sizeof(u32);
 949                offset += sizeof(u32);
 950
 951                BlockSize = ((pSrc[0] << 8) | pSrc[1]) * sizeof(u16);
 952                pSrc += sizeof(u16);
 953                offset += sizeof(u16);
 954
 955                Flags = (pSrc[0] << 8) | pSrc[1];
 956                pSrc += sizeof(u16);
 957                offset += sizeof(u16);
 958
 959                BlockCRC = (pSrc[0] << 8) | pSrc[1];
 960                pSrc += sizeof(u16);
 961                offset += sizeof(u16);
 962
 963                status = WriteBlock(state, Address, BlockSize,
 964                                    pSrc, DRX_I2C_CLEARCRC);
 965                if (status < 0)
 966                        break;
 967                pSrc += BlockSize;
 968                offset += BlockSize;
 969        }
 970
 971        return status;
 972}
 973
 974static int HI_Command(struct drxd_state *state, u16 cmd, u16 * pResult)
 975{
 976        u32 nrRetries = 0;
 977        u16 waitCmd;
 978        int status;
 979
 980        status = Write16(state, HI_RA_RAM_SRV_CMD__A, cmd, 0);
 981        if (status < 0)
 982                return status;
 983
 984        do {
 985                nrRetries += 1;
 986                if (nrRetries > DRXD_MAX_RETRIES) {
 987                        status = -1;
 988                        break;
 989                };
 990                status = Read16(state, HI_RA_RAM_SRV_CMD__A, &waitCmd, 0);
 991        } while (waitCmd != 0);
 992
 993        if (status >= 0)
 994                status = Read16(state, HI_RA_RAM_SRV_RES__A, pResult, 0);
 995        return status;
 996}
 997
 998static int HI_CfgCommand(struct drxd_state *state)
 999{
1000        int status = 0;
1001
1002        mutex_lock(&state->mutex);
1003        Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1004        Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, state->hi_cfg_timing_div, 0);
1005        Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, state->hi_cfg_bridge_delay, 0);
1006        Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, state->hi_cfg_wakeup_key, 0);
1007        Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, state->hi_cfg_ctrl, 0);
1008
1009        Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1010
1011        if ((state->hi_cfg_ctrl & HI_RA_RAM_SRV_CFG_ACT_PWD_EXE) ==
1012            HI_RA_RAM_SRV_CFG_ACT_PWD_EXE)
1013                status = Write16(state, HI_RA_RAM_SRV_CMD__A,
1014                                 HI_RA_RAM_SRV_CMD_CONFIG, 0);
1015        else
1016                status = HI_Command(state, HI_RA_RAM_SRV_CMD_CONFIG, 0);
1017        mutex_unlock(&state->mutex);
1018        return status;
1019}
1020
1021static int InitHI(struct drxd_state *state)
1022{
1023        state->hi_cfg_wakeup_key = (state->chip_adr);
1024        /* port/bridge/power down ctrl */
1025        state->hi_cfg_ctrl = HI_RA_RAM_SRV_CFG_ACT_SLV0_ON;
1026        return HI_CfgCommand(state);
1027}
1028
1029static int HI_ResetCommand(struct drxd_state *state)
1030{
1031        int status;
1032
1033        mutex_lock(&state->mutex);
1034        status = Write16(state, HI_RA_RAM_SRV_RST_KEY__A,
1035                         HI_RA_RAM_SRV_RST_KEY_ACT, 0);
1036        if (status == 0)
1037                status = HI_Command(state, HI_RA_RAM_SRV_CMD_RESET, 0);
1038        mutex_unlock(&state->mutex);
1039        msleep(1);
1040        return status;
1041}
1042
1043static int DRX_ConfigureI2CBridge(struct drxd_state *state, int bEnableBridge)
1044{
1045        state->hi_cfg_ctrl &= (~HI_RA_RAM_SRV_CFG_ACT_BRD__M);
1046        if (bEnableBridge)
1047                state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_ON;
1048        else
1049                state->hi_cfg_ctrl |= HI_RA_RAM_SRV_CFG_ACT_BRD_OFF;
1050
1051        return HI_CfgCommand(state);
1052}
1053
1054#define HI_TR_WRITE      0x9
1055#define HI_TR_READ       0xA
1056#define HI_TR_READ_WRITE 0xB
1057#define HI_TR_BROADCAST  0x4
1058
1059#if 0
1060static int AtomicReadBlock(struct drxd_state *state,
1061                           u32 Addr, u16 DataSize, u8 *pData, u8 Flags)
1062{
1063        int status;
1064        int i = 0;
1065
1066        /* Parameter check */
1067        if ((!pData) || ((DataSize & 1) != 0))
1068                return -1;
1069
1070        mutex_lock(&state->mutex);
1071
1072        do {
1073                /* Instruct HI to read n bytes */
1074                /* TODO use proper names forthese egisters */
1075                status = Write16(state, HI_RA_RAM_SRV_CFG_KEY__A, (HI_TR_FUNC_ADDR & 0xFFFF), 0);
1076                if (status < 0)
1077                        break;
1078                status = Write16(state, HI_RA_RAM_SRV_CFG_DIV__A, (u16) (Addr >> 16), 0);
1079                if (status < 0)
1080                        break;
1081                status = Write16(state, HI_RA_RAM_SRV_CFG_BDL__A, (u16) (Addr & 0xFFFF), 0);
1082                if (status < 0)
1083                        break;
1084                status = Write16(state, HI_RA_RAM_SRV_CFG_WUP__A, (u16) ((DataSize / 2) - 1), 0);
1085                if (status < 0)
1086                        break;
1087                status = Write16(state, HI_RA_RAM_SRV_CFG_ACT__A, HI_TR_READ, 0);
1088                if (status < 0)
1089                        break;
1090
1091                status = HI_Command(state, HI_RA_RAM_SRV_CMD_EXECUTE, 0);
1092                if (status < 0)
1093                        break;
1094
1095        } while (0);
1096
1097        if (status >= 0) {
1098                for (i = 0; i < (DataSize / 2); i += 1) {
1099                        u16 word;
1100
1101                        status = Read16(state, (HI_RA_RAM_USR_BEGIN__A + i),
1102                                        &word, 0);
1103                        if (status < 0)
1104                                break;
1105                        pData[2 * i] = (u8) (word & 0xFF);
1106                        pData[(2 * i) + 1] = (u8) (word >> 8);
1107                }
1108        }
1109        mutex_unlock(&state->mutex);
1110        return status;
1111}
1112
1113static int AtomicReadReg32(struct drxd_state *state,
1114                           u32 Addr, u32 *pData, u8 Flags)
1115{
1116        u8 buf[sizeof(u32)];
1117        int status;
1118
1119        if (!pData)
1120                return -1;
1121        status = AtomicReadBlock(state, Addr, sizeof(u32), buf, Flags);
1122        *pData = (((u32) buf[0]) << 0) +
1123            (((u32) buf[1]) << 8) +
1124            (((u32) buf[2]) << 16) + (((u32) buf[3]) << 24);
1125        return status;
1126}
1127#endif
1128
1129static int StopAllProcessors(struct drxd_state *state)
1130{
1131        return Write16(state, HI_COMM_EXEC__A,
1132                       SC_COMM_EXEC_CTL_STOP, DRX_I2C_BROADCAST);
1133}
1134
1135static int EnableAndResetMB(struct drxd_state *state)
1136{
1137        if (state->type_A) {
1138                /* disable? monitor bus observe @ EC_OC */
1139                Write16(state, EC_OC_REG_OC_MON_SIO__A, 0x0000, 0x0000);
1140        }
1141
1142        /* do inverse broadcast, followed by explicit write to HI */
1143        Write16(state, HI_COMM_MB__A, 0x0000, DRX_I2C_BROADCAST);
1144        Write16(state, HI_COMM_MB__A, 0x0000, 0x0000);
1145        return 0;
1146}
1147
1148static int InitCC(struct drxd_state *state)
1149{
1150        if (state->osc_clock_freq == 0 ||
1151            state->osc_clock_freq > 20000 ||
1152            (state->osc_clock_freq % 4000) != 0) {
1153                printk(KERN_ERR "invalid osc frequency %d\n", state->osc_clock_freq);
1154                return -1;
1155        }
1156
1157        Write16(state, CC_REG_OSC_MODE__A, CC_REG_OSC_MODE_M20, 0);
1158        Write16(state, CC_REG_PLL_MODE__A, CC_REG_PLL_MODE_BYPASS_PLL |
1159                CC_REG_PLL_MODE_PUMP_CUR_12, 0);
1160        Write16(state, CC_REG_REF_DIVIDE__A, state->osc_clock_freq / 4000, 0);
1161        Write16(state, CC_REG_PWD_MODE__A, CC_REG_PWD_MODE_DOWN_PLL, 0);
1162        Write16(state, CC_REG_UPDATE__A, CC_REG_UPDATE_KEY, 0);
1163
1164        return 0;
1165}
1166
1167static int ResetECOD(struct drxd_state *state)
1168{
1169        int status = 0;
1170
1171        if (state->type_A)
1172                status = Write16(state, EC_OD_REG_SYNC__A, 0x0664, 0);
1173        else
1174                status = Write16(state, B_EC_OD_REG_SYNC__A, 0x0664, 0);
1175
1176        if (!(status < 0))
1177                status = WriteTable(state, state->m_ResetECRAM);
1178        if (!(status < 0))
1179                status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0001, 0);
1180        return status;
1181}
1182
1183/* Configure PGA switch */
1184
1185static int SetCfgPga(struct drxd_state *state, int pgaSwitch)
1186{
1187        int status;
1188        u16 AgModeLop = 0;
1189        u16 AgModeHip = 0;
1190        do {
1191                if (pgaSwitch) {
1192                        /* PGA on */
1193                        /* fine gain */
1194                        status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1195                        if (status < 0)
1196                                break;
1197                        AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1198                        AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_DYNAMIC;
1199                        status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1200                        if (status < 0)
1201                                break;
1202
1203                        /* coarse gain */
1204                        status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1205                        if (status < 0)
1206                                break;
1207                        AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1208                        AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_DYNAMIC;
1209                        status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1210                        if (status < 0)
1211                                break;
1212
1213                        /* enable fine and coarse gain, enable AAF,
1214                           no ext resistor */
1215                        status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFY_PCY_AFY_REN, 0x0000);
1216                        if (status < 0)
1217                                break;
1218                } else {
1219                        /* PGA off, bypass */
1220
1221                        /* fine gain */
1222                        status = Read16(state, B_FE_AG_REG_AG_MODE_LOP__A, &AgModeLop, 0x0000);
1223                        if (status < 0)
1224                                break;
1225                        AgModeLop &= (~(B_FE_AG_REG_AG_MODE_LOP_MODE_C__M));
1226                        AgModeLop |= B_FE_AG_REG_AG_MODE_LOP_MODE_C_STATIC;
1227                        status = Write16(state, B_FE_AG_REG_AG_MODE_LOP__A, AgModeLop, 0x0000);
1228                        if (status < 0)
1229                                break;
1230
1231                        /* coarse gain */
1232                        status = Read16(state, B_FE_AG_REG_AG_MODE_HIP__A, &AgModeHip, 0x0000);
1233                        if (status < 0)
1234                                break;
1235                        AgModeHip &= (~(B_FE_AG_REG_AG_MODE_HIP_MODE_J__M));
1236                        AgModeHip |= B_FE_AG_REG_AG_MODE_HIP_MODE_J_STATIC;
1237                        status = Write16(state, B_FE_AG_REG_AG_MODE_HIP__A, AgModeHip, 0x0000);
1238                        if (status < 0)
1239                                break;
1240
1241                        /* disable fine and coarse gain, enable AAF,
1242                           no ext resistor */
1243                        status = Write16(state, B_FE_AG_REG_AG_PGA_MODE__A, B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN, 0x0000);
1244                        if (status < 0)
1245                                break;
1246                }
1247        } while (0);
1248        return status;
1249}
1250
1251static int InitFE(struct drxd_state *state)
1252{
1253        int status;
1254
1255        do {
1256                status = WriteTable(state, state->m_InitFE_1);
1257                if (status < 0)
1258                        break;
1259
1260                if (state->type_A) {
1261                        status = Write16(state, FE_AG_REG_AG_PGA_MODE__A,
1262                                         FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1263                                         0);
1264                } else {
1265                        if (state->PGA)
1266                                status = SetCfgPga(state, 0);
1267                        else
1268                                status =
1269                                    Write16(state, B_FE_AG_REG_AG_PGA_MODE__A,
1270                                            B_FE_AG_REG_AG_PGA_MODE_PFN_PCN_AFY_REN,
1271                                            0);
1272                }
1273
1274                if (status < 0)
1275                        break;
1276                status = Write16(state, FE_AG_REG_AG_AGC_SIO__A, state->m_FeAgRegAgAgcSio, 0x0000);
1277                if (status < 0)
1278                        break;
1279                status = Write16(state, FE_AG_REG_AG_PWD__A, state->m_FeAgRegAgPwd, 0x0000);
1280                if (status < 0)
1281                        break;
1282
1283                status = WriteTable(state, state->m_InitFE_2);
1284                if (status < 0)
1285                        break;
1286
1287        } while (0);
1288
1289        return status;
1290}
1291
1292static int InitFT(struct drxd_state *state)
1293{
1294        /*
1295           norm OFFSET,  MB says =2 voor 8K en =3 voor 2K waarschijnlijk
1296           SC stuff
1297         */
1298        return Write16(state, FT_REG_COMM_EXEC__A, 0x0001, 0x0000);
1299}
1300
1301static int SC_WaitForReady(struct drxd_state *state)
1302{
1303        u16 curCmd;
1304        int i;
1305
1306        for (i = 0; i < DRXD_MAX_RETRIES; i += 1) {
1307                int status = Read16(state, SC_RA_RAM_CMD__A, &curCmd, 0);
1308                if (status == 0 || curCmd == 0)
1309                        return status;
1310        }
1311        return -1;
1312}
1313
1314static int SC_SendCommand(struct drxd_state *state, u16 cmd)
1315{
1316        int status = 0;
1317        u16 errCode;
1318
1319        Write16(state, SC_RA_RAM_CMD__A, cmd, 0);
1320        SC_WaitForReady(state);
1321
1322        Read16(state, SC_RA_RAM_CMD_ADDR__A, &errCode, 0);
1323
1324        if (errCode == 0xFFFF) {
1325                printk(KERN_ERR "Command Error\n");
1326                status = -1;
1327        }
1328
1329        return status;
1330}
1331
1332static int SC_ProcStartCommand(struct drxd_state *state,
1333                               u16 subCmd, u16 param0, u16 param1)
1334{
1335        int status = 0;
1336        u16 scExec;
1337
1338        mutex_lock(&state->mutex);
1339        do {
1340                Read16(state, SC_COMM_EXEC__A, &scExec, 0);
1341                if (scExec != 1) {
1342                        status = -1;
1343                        break;
1344                }
1345                SC_WaitForReady(state);
1346                Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1347                Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1348                Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1349
1350                SC_SendCommand(state, SC_RA_RAM_CMD_PROC_START);
1351        } while (0);
1352        mutex_unlock(&state->mutex);
1353        return status;
1354}
1355
1356static int SC_SetPrefParamCommand(struct drxd_state *state,
1357                                  u16 subCmd, u16 param0, u16 param1)
1358{
1359        int status;
1360
1361        mutex_lock(&state->mutex);
1362        do {
1363                status = SC_WaitForReady(state);
1364                if (status < 0)
1365                        break;
1366                status = Write16(state, SC_RA_RAM_CMD_ADDR__A, subCmd, 0);
1367                if (status < 0)
1368                        break;
1369                status = Write16(state, SC_RA_RAM_PARAM1__A, param1, 0);
1370                if (status < 0)
1371                        break;
1372                status = Write16(state, SC_RA_RAM_PARAM0__A, param0, 0);
1373                if (status < 0)
1374                        break;
1375
1376                status = SC_SendCommand(state, SC_RA_RAM_CMD_SET_PREF_PARAM);
1377                if (status < 0)
1378                        break;
1379        } while (0);
1380        mutex_unlock(&state->mutex);
1381        return status;
1382}
1383
1384#if 0
1385static int SC_GetOpParamCommand(struct drxd_state *state, u16 * result)
1386{
1387        int status = 0;
1388
1389        mutex_lock(&state->mutex);
1390        do {
1391                status = SC_WaitForReady(state);
1392                if (status < 0)
1393                        break;
1394                status = SC_SendCommand(state, SC_RA_RAM_CMD_GET_OP_PARAM);
1395                if (status < 0)
1396                        break;
1397                status = Read16(state, SC_RA_RAM_PARAM0__A, result, 0);
1398                if (status < 0)
1399                        break;
1400        } while (0);
1401        mutex_unlock(&state->mutex);
1402        return status;
1403}
1404#endif
1405
1406static int ConfigureMPEGOutput(struct drxd_state *state, int bEnableOutput)
1407{
1408        int status;
1409
1410        do {
1411                u16 EcOcRegIprInvMpg = 0;
1412                u16 EcOcRegOcModeLop = 0;
1413                u16 EcOcRegOcModeHip = 0;
1414                u16 EcOcRegOcMpgSio = 0;
1415
1416                /*CHK_ERROR(Read16(state, EC_OC_REG_OC_MODE_LOP__A, &EcOcRegOcModeLop, 0)); */
1417
1418                if (state->operation_mode == OM_DVBT_Diversity_Front) {
1419                        if (bEnableOutput) {
1420                                EcOcRegOcModeHip |=
1421                                    B_EC_OC_REG_OC_MODE_HIP_MPG_BUS_SRC_MONITOR;
1422                        } else
1423                                EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1424                        EcOcRegOcModeLop |=
1425                            EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1426                } else {
1427                        EcOcRegOcModeLop = state->m_EcOcRegOcModeLop;
1428
1429                        if (bEnableOutput)
1430                                EcOcRegOcMpgSio &= (~(EC_OC_REG_OC_MPG_SIO__M));
1431                        else
1432                                EcOcRegOcMpgSio |= EC_OC_REG_OC_MPG_SIO__M;
1433
1434                        /* Don't Insert RS Byte */
1435                        if (state->insert_rs_byte) {
1436                                EcOcRegOcModeLop &=
1437                                    (~(EC_OC_REG_OC_MODE_LOP_PAR_ENA__M));
1438                                EcOcRegOcModeHip &=
1439                                    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1440                                EcOcRegOcModeHip |=
1441                                    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_ENABLE;
1442                        } else {
1443                                EcOcRegOcModeLop |=
1444                                    EC_OC_REG_OC_MODE_LOP_PAR_ENA_DISABLE;
1445                                EcOcRegOcModeHip &=
1446                                    (~EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL__M);
1447                                EcOcRegOcModeHip |=
1448                                    EC_OC_REG_OC_MODE_HIP_MPG_PAR_VAL_DISABLE;
1449                        }
1450
1451                        /* Mode = Parallel */
1452                        if (state->enable_parallel)
1453                                EcOcRegOcModeLop &=
1454                                    (~(EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE__M));
1455                        else
1456                                EcOcRegOcModeLop |=
1457                                    EC_OC_REG_OC_MODE_LOP_MPG_TRM_MDE_SERIAL;
1458                }
1459                /* Invert Data */
1460                /* EcOcRegIprInvMpg |= 0x00FF; */
1461                EcOcRegIprInvMpg &= (~(0x00FF));
1462
1463                /* Invert Error ( we don't use the pin ) */
1464                /*  EcOcRegIprInvMpg |= 0x0100; */
1465                EcOcRegIprInvMpg &= (~(0x0100));
1466
1467                /* Invert Start ( we don't use the pin ) */
1468                /* EcOcRegIprInvMpg |= 0x0200; */
1469                EcOcRegIprInvMpg &= (~(0x0200));
1470
1471                /* Invert Valid ( we don't use the pin ) */
1472                /* EcOcRegIprInvMpg |= 0x0400; */
1473                EcOcRegIprInvMpg &= (~(0x0400));
1474
1475                /* Invert Clock */
1476                /* EcOcRegIprInvMpg |= 0x0800; */
1477                EcOcRegIprInvMpg &= (~(0x0800));
1478
1479                /* EcOcRegOcModeLop =0x05; */
1480                status = Write16(state, EC_OC_REG_IPR_INV_MPG__A, EcOcRegIprInvMpg, 0);
1481                if (status < 0)
1482                        break;
1483                status = Write16(state, EC_OC_REG_OC_MODE_LOP__A, EcOcRegOcModeLop, 0);
1484                if (status < 0)
1485                        break;
1486                status = Write16(state, EC_OC_REG_OC_MODE_HIP__A, EcOcRegOcModeHip, 0x0000);
1487                if (status < 0)
1488                        break;
1489                status = Write16(state, EC_OC_REG_OC_MPG_SIO__A, EcOcRegOcMpgSio, 0);
1490                if (status < 0)
1491                        break;
1492        } while (0);
1493        return status;
1494}
1495
1496static int SetDeviceTypeId(struct drxd_state *state)
1497{
1498        int status = 0;
1499        u16 deviceId = 0;
1500
1501        do {
1502                status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1503                if (status < 0)
1504                        break;
1505                /* TODO: why twice? */
1506                status = Read16(state, CC_REG_JTAGID_L__A, &deviceId, 0);
1507                if (status < 0)
1508                        break;
1509                printk(KERN_INFO "drxd: deviceId = %04x\n", deviceId);
1510
1511                state->type_A = 0;
1512                state->PGA = 0;
1513                state->diversity = 0;
1514                if (deviceId == 0) {    /* on A2 only 3975 available */
1515                        state->type_A = 1;
1516                        printk(KERN_INFO "DRX3975D-A2\n");
1517                } else {
1518                        deviceId >>= 12;
1519                        printk(KERN_INFO "DRX397%dD-B1\n", deviceId);
1520                        switch (deviceId) {
1521                        case 4:
1522                                state->diversity = 1;
1523                        case 3:
1524                        case 7:
1525                                state->PGA = 1;
1526                                break;
1527                        case 6:
1528                                state->diversity = 1;
1529                        case 5:
1530                        case 8:
1531                                break;
1532                        default:
1533                                status = -1;
1534                                break;
1535                        }
1536                }
1537        } while (0);
1538
1539        if (status < 0)
1540                return status;
1541
1542        /* Init Table selection */
1543        state->m_InitAtomicRead = DRXD_InitAtomicRead;
1544        state->m_InitSC = DRXD_InitSC;
1545        state->m_ResetECRAM = DRXD_ResetECRAM;
1546        if (state->type_A) {
1547                state->m_ResetCEFR = DRXD_ResetCEFR;
1548                state->m_InitFE_1 = DRXD_InitFEA2_1;
1549                state->m_InitFE_2 = DRXD_InitFEA2_2;
1550                state->m_InitCP = DRXD_InitCPA2;
1551                state->m_InitCE = DRXD_InitCEA2;
1552                state->m_InitEQ = DRXD_InitEQA2;
1553                state->m_InitEC = DRXD_InitECA2;
1554                if (load_firmware(state, DRX_FW_FILENAME_A2))
1555                        return -EIO;
1556        } else {
1557                state->m_ResetCEFR = NULL;
1558                state->m_InitFE_1 = DRXD_InitFEB1_1;
1559                state->m_InitFE_2 = DRXD_InitFEB1_2;
1560                state->m_InitCP = DRXD_InitCPB1;
1561                state->m_InitCE = DRXD_InitCEB1;
1562                state->m_InitEQ = DRXD_InitEQB1;
1563                state->m_InitEC = DRXD_InitECB1;
1564                if (load_firmware(state, DRX_FW_FILENAME_B1))
1565                        return -EIO;
1566        }
1567        if (state->diversity) {
1568                state->m_InitDiversityFront = DRXD_InitDiversityFront;
1569                state->m_InitDiversityEnd = DRXD_InitDiversityEnd;
1570                state->m_DisableDiversity = DRXD_DisableDiversity;
1571                state->m_StartDiversityFront = DRXD_StartDiversityFront;
1572                state->m_StartDiversityEnd = DRXD_StartDiversityEnd;
1573                state->m_DiversityDelay8MHZ = DRXD_DiversityDelay8MHZ;
1574                state->m_DiversityDelay6MHZ = DRXD_DiversityDelay6MHZ;
1575        } else {
1576                state->m_InitDiversityFront = NULL;
1577                state->m_InitDiversityEnd = NULL;
1578                state->m_DisableDiversity = NULL;
1579                state->m_StartDiversityFront = NULL;
1580                state->m_StartDiversityEnd = NULL;
1581                state->m_DiversityDelay8MHZ = NULL;
1582                state->m_DiversityDelay6MHZ = NULL;
1583        }
1584
1585        return status;
1586}
1587
1588static int CorrectSysClockDeviation(struct drxd_state *state)
1589{
1590        int status;
1591        s32 incr = 0;
1592        s32 nomincr = 0;
1593        u32 bandwidth = 0;
1594        u32 sysClockInHz = 0;
1595        u32 sysClockFreq = 0;   /* in kHz */
1596        s16 oscClockDeviation;
1597        s16 Diff;
1598
1599        do {
1600                /* Retrieve bandwidth and incr, sanity check */
1601
1602                /* These accesses should be AtomicReadReg32, but that
1603                   causes trouble (at least for diversity */
1604                status = Read32(state, LC_RA_RAM_IFINCR_NOM_L__A, ((u32 *) &nomincr), 0);
1605                if (status < 0)
1606                        break;
1607                status = Read32(state, FE_IF_REG_INCR0__A, (u32 *) &incr, 0);
1608                if (status < 0)
1609                        break;
1610
1611                if (state->type_A) {
1612                        if ((nomincr - incr < -500) || (nomincr - incr > 500))
1613                                break;
1614                } else {
1615                        if ((nomincr - incr < -2000) || (nomincr - incr > 2000))
1616                                break;
1617                }
1618
1619                switch (state->param.u.ofdm.bandwidth) {
1620                case BANDWIDTH_8_MHZ:
1621                        bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
1622                        break;
1623                case BANDWIDTH_7_MHZ:
1624                        bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
1625                        break;
1626                case BANDWIDTH_6_MHZ:
1627                        bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
1628                        break;
1629                default:
1630                        return -1;
1631                        break;
1632                }
1633
1634                /* Compute new sysclock value
1635                   sysClockFreq = (((incr + 2^23)*bandwidth)/2^21)/1000 */
1636                incr += (1 << 23);
1637                sysClockInHz = MulDiv32(incr, bandwidth, 1 << 21);
1638                sysClockFreq = (u32) (sysClockInHz / 1000);
1639                /* rounding */
1640                if ((sysClockInHz % 1000) > 500)
1641                        sysClockFreq++;
1642
1643                /* Compute clock deviation in ppm */
1644                oscClockDeviation = (u16) ((((s32) (sysClockFreq) -
1645                                             (s32)
1646                                             (state->expected_sys_clock_freq)) *
1647                                            1000000L) /
1648                                           (s32)
1649                                           (state->expected_sys_clock_freq));
1650
1651                Diff = oscClockDeviation - state->osc_clock_deviation;
1652                /*printk(KERN_INFO "sysclockdiff=%d\n", Diff); */
1653                if (Diff >= -200 && Diff <= 200) {
1654                        state->sys_clock_freq = (u16) sysClockFreq;
1655                        if (oscClockDeviation != state->osc_clock_deviation) {
1656                                if (state->config.osc_deviation) {
1657                                        state->config.osc_deviation(state->priv,
1658                                                                    oscClockDeviation,
1659                                                                    1);
1660                                        state->osc_clock_deviation =
1661                                            oscClockDeviation;
1662                                }
1663                        }
1664                        /* switch OFF SRMM scan in SC */
1665                        status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DONT_SCAN, 0);
1666                        if (status < 0)
1667                                break;
1668                        /* overrule FE_IF internal value for
1669                           proper re-locking */
1670                        status = Write16(state, SC_RA_RAM_IF_SAVE__AX, state->current_fe_if_incr, 0);
1671                        if (status < 0)
1672                                break;
1673                        state->cscd_state = CSCD_SAVED;
1674                }
1675        } while (0);
1676
1677        return status;
1678}
1679
1680static int DRX_Stop(struct drxd_state *state)
1681{
1682        int status;
1683
1684        if (state->drxd_state != DRXD_STARTED)
1685                return 0;
1686
1687        do {
1688                if (state->cscd_state != CSCD_SAVED) {
1689                        u32 lock;
1690                        status = DRX_GetLockStatus(state, &lock);
1691                        if (status < 0)
1692                                break;
1693                }
1694
1695                status = StopOC(state);
1696                if (status < 0)
1697                        break;
1698
1699                state->drxd_state = DRXD_STOPPED;
1700
1701                status = ConfigureMPEGOutput(state, 0);
1702                if (status < 0)
1703                        break;
1704
1705                if (state->type_A) {
1706                        /* Stop relevant processors off the device */
1707                        status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0x0000);
1708                        if (status < 0)
1709                                break;
1710
1711                        status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1712                        if (status < 0)
1713                                break;
1714                        status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1715                        if (status < 0)
1716                                break;
1717                } else {
1718                        /* Stop all processors except HI & CC & FE */
1719                        status = Write16(state, B_SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1720                        if (status < 0)
1721                                break;
1722                        status = Write16(state, B_LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1723                        if (status < 0)
1724                                break;
1725                        status = Write16(state, B_FT_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1726                        if (status < 0)
1727                                break;
1728                        status = Write16(state, B_CP_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1729                        if (status < 0)
1730                                break;
1731                        status = Write16(state, B_CE_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1732                        if (status < 0)
1733                                break;
1734                        status = Write16(state, B_EQ_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
1735                        if (status < 0)
1736                                break;
1737                        status = Write16(state, EC_OD_REG_COMM_EXEC__A, 0x0000, 0);
1738                        if (status < 0)
1739                                break;
1740                }
1741
1742        } while (0);
1743        return status;
1744}
1745
1746int SetOperationMode(struct drxd_state *state, int oMode)
1747{
1748        int status;
1749
1750        do {
1751                if (state->drxd_state != DRXD_STOPPED) {
1752                        status = -1;
1753                        break;
1754                }
1755
1756                if (oMode == state->operation_mode) {
1757                        status = 0;
1758                        break;
1759                }
1760
1761                if (oMode != OM_Default && !state->diversity) {
1762                        status = -1;
1763                        break;
1764                }
1765
1766                switch (oMode) {
1767                case OM_DVBT_Diversity_Front:
1768                        status = WriteTable(state, state->m_InitDiversityFront);
1769                        break;
1770                case OM_DVBT_Diversity_End:
1771                        status = WriteTable(state, state->m_InitDiversityEnd);
1772                        break;
1773                case OM_Default:
1774                        /* We need to check how to
1775                           get DRXD out of diversity */
1776                default:
1777                        status = WriteTable(state, state->m_DisableDiversity);
1778                        break;
1779                }
1780        } while (0);
1781
1782        if (!status)
1783                state->operation_mode = oMode;
1784        return status;
1785}
1786
1787static int StartDiversity(struct drxd_state *state)
1788{
1789        int status = 0;
1790        u16 rcControl;
1791
1792        do {
1793                if (state->operation_mode == OM_DVBT_Diversity_Front) {
1794                        status = WriteTable(state, state->m_StartDiversityFront);
1795                        if (status < 0)
1796                                break;
1797                } else if (state->operation_mode == OM_DVBT_Diversity_End) {
1798                        status = WriteTable(state, state->m_StartDiversityEnd);
1799                        if (status < 0)
1800                                break;
1801                        if (state->param.u.ofdm.bandwidth == BANDWIDTH_8_MHZ) {
1802                                status = WriteTable(state, state->m_DiversityDelay8MHZ);
1803                                if (status < 0)
1804                                        break;
1805                        } else {
1806                                status = WriteTable(state, state->m_DiversityDelay6MHZ);
1807                                if (status < 0)
1808                                        break;
1809                        }
1810
1811                        status = Read16(state, B_EQ_REG_RC_SEL_CAR__A, &rcControl, 0);
1812                        if (status < 0)
1813                                break;
1814                        rcControl &= ~(B_EQ_REG_RC_SEL_CAR_FFTMODE__M);
1815                        rcControl |= B_EQ_REG_RC_SEL_CAR_DIV_ON |
1816                            /*  combining enabled */
1817                            B_EQ_REG_RC_SEL_CAR_MEAS_A_CC |
1818                            B_EQ_REG_RC_SEL_CAR_PASS_A_CC |
1819                            B_EQ_REG_RC_SEL_CAR_LOCAL_A_CC;
1820                        status = Write16(state, B_EQ_REG_RC_SEL_CAR__A, rcControl, 0);
1821                        if (status < 0)
1822                                break;
1823                }
1824        } while (0);
1825        return status;
1826}
1827
1828static int SetFrequencyShift(struct drxd_state *state,
1829                             u32 offsetFreq, int channelMirrored)
1830{
1831        int negativeShift = (state->tuner_mirrors == channelMirrored);
1832
1833        /* Handle all mirroring
1834         *
1835         * Note: ADC mirroring (aliasing) is implictly handled by limiting
1836         * feFsRegAddInc to 28 bits below
1837         * (if the result before masking is more than 28 bits, this means
1838         *  that the ADC is mirroring.
1839         * The masking is in fact the aliasing of the ADC)
1840         *
1841         */
1842
1843        /* Compute register value, unsigned computation */
1844        state->fe_fs_add_incr = MulDiv32(state->intermediate_freq +
1845                                         offsetFreq,
1846                                         1 << 28, state->sys_clock_freq);
1847        /* Remove integer part */
1848        state->fe_fs_add_incr &= 0x0FFFFFFFL;
1849        if (negativeShift)
1850                state->fe_fs_add_incr = ((1 << 28) - state->fe_fs_add_incr);
1851
1852        /* Save the frequency shift without tunerOffset compensation
1853           for CtrlGetChannel. */
1854        state->org_fe_fs_add_incr = MulDiv32(state->intermediate_freq,
1855                                             1 << 28, state->sys_clock_freq);
1856        /* Remove integer part */
1857        state->org_fe_fs_add_incr &= 0x0FFFFFFFL;
1858        if (negativeShift)
1859                state->org_fe_fs_add_incr = ((1L << 28) -
1860                                             state->org_fe_fs_add_incr);
1861
1862        return Write32(state, FE_FS_REG_ADD_INC_LOP__A,
1863                       state->fe_fs_add_incr, 0);
1864}
1865
1866static int SetCfgNoiseCalibration(struct drxd_state *state,
1867                                  struct SNoiseCal *noiseCal)
1868{
1869        u16 beOptEna;
1870        int status = 0;
1871
1872        do {
1873                status = Read16(state, SC_RA_RAM_BE_OPT_ENA__A, &beOptEna, 0);
1874                if (status < 0)
1875                        break;
1876                if (noiseCal->cpOpt) {
1877                        beOptEna |= (1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1878                } else {
1879                        beOptEna &= ~(1 << SC_RA_RAM_BE_OPT_ENA_CP_OPT);
1880                        status = Write16(state, CP_REG_AC_NEXP_OFFS__A, noiseCal->cpNexpOfs, 0);
1881                        if (status < 0)
1882                                break;
1883                }
1884                status = Write16(state, SC_RA_RAM_BE_OPT_ENA__A, beOptEna, 0);
1885                if (status < 0)
1886                        break;
1887
1888                if (!state->type_A) {
1889                        status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_2K__A, noiseCal->tdCal2k, 0);
1890                        if (status < 0)
1891                                break;
1892                        status = Write16(state, B_SC_RA_RAM_CO_TD_CAL_8K__A, noiseCal->tdCal8k, 0);
1893                        if (status < 0)
1894                                break;
1895                }
1896        } while (0);
1897
1898        return status;
1899}
1900
1901static int DRX_Start(struct drxd_state *state, s32 off)
1902{
1903        struct dvb_ofdm_parameters *p = &state->param.u.ofdm;
1904        int status;
1905
1906        u16 transmissionParams = 0;
1907        u16 operationMode = 0;
1908        u16 qpskTdTpsPwr = 0;
1909        u16 qam16TdTpsPwr = 0;
1910        u16 qam64TdTpsPwr = 0;
1911        u32 feIfIncr = 0;
1912        u32 bandwidth = 0;
1913        int mirrorFreqSpect;
1914
1915        u16 qpskSnCeGain = 0;
1916        u16 qam16SnCeGain = 0;
1917        u16 qam64SnCeGain = 0;
1918        u16 qpskIsGainMan = 0;
1919        u16 qam16IsGainMan = 0;
1920        u16 qam64IsGainMan = 0;
1921        u16 qpskIsGainExp = 0;
1922        u16 qam16IsGainExp = 0;
1923        u16 qam64IsGainExp = 0;
1924        u16 bandwidthParam = 0;
1925
1926        if (off < 0)
1927                off = (off - 500) / 1000;
1928        else
1929                off = (off + 500) / 1000;
1930
1931        do {
1932                if (state->drxd_state != DRXD_STOPPED)
1933                        return -1;
1934                status = ResetECOD(state);
1935                if (status < 0)
1936                        break;
1937                if (state->type_A) {
1938                        status = InitSC(state);
1939                        if (status < 0)
1940                                break;
1941                } else {
1942                        status = InitFT(state);
1943                        if (status < 0)
1944                                break;
1945                        status = InitCP(state);
1946                        if (status < 0)
1947                                break;
1948                        status = InitCE(state);
1949                        if (status < 0)
1950                                break;
1951                        status = InitEQ(state);
1952                        if (status < 0)
1953                                break;
1954                        status = InitSC(state);
1955                        if (status < 0)
1956                                break;
1957                }
1958
1959                /* Restore current IF & RF AGC settings */
1960
1961                status = SetCfgIfAgc(state, &state->if_agc_cfg);
1962                if (status < 0)
1963                        break;
1964                status = SetCfgRfAgc(state, &state->rf_agc_cfg);
1965                if (status < 0)
1966                        break;
1967
1968                mirrorFreqSpect = (state->param.inversion == INVERSION_ON);
1969
1970                switch (p->transmission_mode) {
1971                default:        /* Not set, detect it automatically */
1972                        operationMode |= SC_RA_RAM_OP_AUTO_MODE__M;
1973                        /* fall through , try first guess DRX_FFTMODE_8K */
1974                case TRANSMISSION_MODE_8K:
1975                        transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_8K;
1976                        if (state->type_A) {
1977                                status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_8K, 0x0000);
1978                                if (status < 0)
1979                                        break;
1980                                qpskSnCeGain = 99;
1981                                qam16SnCeGain = 83;
1982                                qam64SnCeGain = 67;
1983                        }
1984                        break;
1985                case TRANSMISSION_MODE_2K:
1986                        transmissionParams |= SC_RA_RAM_OP_PARAM_MODE_2K;
1987                        if (state->type_A) {
1988                                status = Write16(state, EC_SB_REG_TR_MODE__A, EC_SB_REG_TR_MODE_2K, 0x0000);
1989                                if (status < 0)
1990                                        break;
1991                                qpskSnCeGain = 97;
1992                                qam16SnCeGain = 71;
1993                                qam64SnCeGain = 65;
1994                        }
1995                        break;
1996                }
1997
1998                switch (p->guard_interval) {
1999                case GUARD_INTERVAL_1_4:
2000                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2001                        break;
2002                case GUARD_INTERVAL_1_8:
2003                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_8;
2004                        break;
2005                case GUARD_INTERVAL_1_16:
2006                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_16;
2007                        break;
2008                case GUARD_INTERVAL_1_32:
2009                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_32;
2010                        break;
2011                default:        /* Not set, detect it automatically */
2012                        operationMode |= SC_RA_RAM_OP_AUTO_GUARD__M;
2013                        /* try first guess 1/4 */
2014                        transmissionParams |= SC_RA_RAM_OP_PARAM_GUARD_4;
2015                        break;
2016                }
2017
2018                switch (p->hierarchy_information) {
2019                case HIERARCHY_1:
2020                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A1;
2021                        if (state->type_A) {
2022                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0001, 0x0000);
2023                                if (status < 0)
2024                                        break;
2025                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0001, 0x0000);
2026                                if (status < 0)
2027                                        break;
2028
2029                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2030                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA1;
2031                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA1;
2032
2033                                qpskIsGainMan =
2034                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2035                                qam16IsGainMan =
2036                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2037                                qam64IsGainMan =
2038                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2039
2040                                qpskIsGainExp =
2041                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2042                                qam16IsGainExp =
2043                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2044                                qam64IsGainExp =
2045                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2046                        }
2047                        break;
2048
2049                case HIERARCHY_2:
2050                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A2;
2051                        if (state->type_A) {
2052                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0002, 0x0000);
2053                                if (status < 0)
2054                                        break;
2055                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0002, 0x0000);
2056                                if (status < 0)
2057                                        break;
2058
2059                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2060                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA2;
2061                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA2;
2062
2063                                qpskIsGainMan =
2064                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2065                                qam16IsGainMan =
2066                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_MAN__PRE;
2067                                qam64IsGainMan =
2068                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_MAN__PRE;
2069
2070                                qpskIsGainExp =
2071                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2072                                qam16IsGainExp =
2073                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A2_EXP__PRE;
2074                                qam64IsGainExp =
2075                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A2_EXP__PRE;
2076                        }
2077                        break;
2078                case HIERARCHY_4:
2079                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_A4;
2080                        if (state->type_A) {
2081                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0003, 0x0000);
2082                                if (status < 0)
2083                                        break;
2084                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0003, 0x0000);
2085                                if (status < 0)
2086                                        break;
2087
2088                                qpskTdTpsPwr = EQ_TD_TPS_PWR_UNKNOWN;
2089                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHA4;
2090                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHA4;
2091
2092                                qpskIsGainMan =
2093                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_MAN__PRE;
2094                                qam16IsGainMan =
2095                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_MAN__PRE;
2096                                qam64IsGainMan =
2097                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_MAN__PRE;
2098
2099                                qpskIsGainExp =
2100                                    SC_RA_RAM_EQ_IS_GAIN_UNKNOWN_EXP__PRE;
2101                                qam16IsGainExp =
2102                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_A4_EXP__PRE;
2103                                qam64IsGainExp =
2104                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_A4_EXP__PRE;
2105                        }
2106                        break;
2107                case HIERARCHY_AUTO:
2108                default:
2109                        /* Not set, detect it automatically, start with none */
2110                        operationMode |= SC_RA_RAM_OP_AUTO_HIER__M;
2111                        transmissionParams |= SC_RA_RAM_OP_PARAM_HIER_NO;
2112                        if (state->type_A) {
2113                                status = Write16(state, EQ_REG_OT_ALPHA__A, 0x0000, 0x0000);
2114                                if (status < 0)
2115                                        break;
2116                                status = Write16(state, EC_SB_REG_ALPHA__A, 0x0000, 0x0000);
2117                                if (status < 0)
2118                                        break;
2119
2120                                qpskTdTpsPwr = EQ_TD_TPS_PWR_QPSK;
2121                                qam16TdTpsPwr = EQ_TD_TPS_PWR_QAM16_ALPHAN;
2122                                qam64TdTpsPwr = EQ_TD_TPS_PWR_QAM64_ALPHAN;
2123
2124                                qpskIsGainMan =
2125                                    SC_RA_RAM_EQ_IS_GAIN_QPSK_MAN__PRE;
2126                                qam16IsGainMan =
2127                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_MAN__PRE;
2128                                qam64IsGainMan =
2129                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_MAN__PRE;
2130
2131                                qpskIsGainExp =
2132                                    SC_RA_RAM_EQ_IS_GAIN_QPSK_EXP__PRE;
2133                                qam16IsGainExp =
2134                                    SC_RA_RAM_EQ_IS_GAIN_16QAM_EXP__PRE;
2135                                qam64IsGainExp =
2136                                    SC_RA_RAM_EQ_IS_GAIN_64QAM_EXP__PRE;
2137                        }
2138                        break;
2139                }
2140                status = status;
2141                if (status < 0)
2142                        break;
2143
2144                switch (p->constellation) {
2145                default:
2146                        operationMode |= SC_RA_RAM_OP_AUTO_CONST__M;
2147                        /* fall through , try first guess
2148                           DRX_CONSTELLATION_QAM64 */
2149                case QAM_64:
2150                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM64;
2151                        if (state->type_A) {
2152                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0002, 0x0000);
2153                                if (status < 0)
2154                                        break;
2155                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_64QAM, 0x0000);
2156                                if (status < 0)
2157                                        break;
2158                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0020, 0x0000);
2159                                if (status < 0)
2160                                        break;
2161                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0008, 0x0000);
2162                                if (status < 0)
2163                                        break;
2164                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0002, 0x0000);
2165                                if (status < 0)
2166                                        break;
2167
2168                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam64TdTpsPwr, 0x0000);
2169                                if (status < 0)
2170                                        break;
2171                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qam64SnCeGain, 0x0000);
2172                                if (status < 0)
2173                                        break;
2174                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam64IsGainMan, 0x0000);
2175                                if (status < 0)
2176                                        break;
2177                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam64IsGainExp, 0x0000);
2178                                if (status < 0)
2179                                        break;
2180                        }
2181                        break;
2182                case QPSK:
2183                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QPSK;
2184                        if (state->type_A) {
2185                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0000, 0x0000);
2186                                if (status < 0)
2187                                        break;
2188                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_QPSK, 0x0000);
2189                                if (status < 0)
2190                                        break;
2191                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2192                                if (status < 0)
2193                                        break;
2194                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0000, 0x0000);
2195                                if (status < 0)
2196                                        break;
2197                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2198                                if (status < 0)
2199                                        break;
2200
2201                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qpskTdTpsPwr, 0x0000);
2202                                if (status < 0)
2203                                        break;
2204                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qpskSnCeGain, 0x0000);
2205                                if (status < 0)
2206                                        break;
2207                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qpskIsGainMan, 0x0000);
2208                                if (status < 0)
2209                                        break;
2210                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qpskIsGainExp, 0x0000);
2211                                if (status < 0)
2212                                        break;
2213                        }
2214                        break;
2215
2216                case QAM_16:
2217                        transmissionParams |= SC_RA_RAM_OP_PARAM_CONST_QAM16;
2218                        if (state->type_A) {
2219                                status = Write16(state, EQ_REG_OT_CONST__A, 0x0001, 0x0000);
2220                                if (status < 0)
2221                                        break;
2222                                status = Write16(state, EC_SB_REG_CONST__A, EC_SB_REG_CONST_16QAM, 0x0000);
2223                                if (status < 0)
2224                                        break;
2225                                status = Write16(state, EC_SB_REG_SCALE_MSB__A, 0x0010, 0x0000);
2226                                if (status < 0)
2227                                        break;
2228                                status = Write16(state, EC_SB_REG_SCALE_BIT2__A, 0x0004, 0x0000);
2229                                if (status < 0)
2230                                        break;
2231                                status = Write16(state, EC_SB_REG_SCALE_LSB__A, 0x0000, 0x0000);
2232                                if (status < 0)
2233                                        break;
2234
2235                                status = Write16(state, EQ_REG_TD_TPS_PWR_OFS__A, qam16TdTpsPwr, 0x0000);
2236                                if (status < 0)
2237                                        break;
2238                                status = Write16(state, EQ_REG_SN_CEGAIN__A, qam16SnCeGain, 0x0000);
2239                                if (status < 0)
2240                                        break;
2241                                status = Write16(state, EQ_REG_IS_GAIN_MAN__A, qam16IsGainMan, 0x0000);
2242                                if (status < 0)
2243                                        break;
2244                                status = Write16(state, EQ_REG_IS_GAIN_EXP__A, qam16IsGainExp, 0x0000);
2245                                if (status < 0)
2246                                        break;
2247                        }
2248                        break;
2249
2250                }
2251                status = status;
2252                if (status < 0)
2253                        break;
2254
2255                switch (DRX_CHANNEL_HIGH) {
2256                default:
2257                case DRX_CHANNEL_AUTO:
2258                case DRX_CHANNEL_LOW:
2259                        transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_LO;
2260                        status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_LO, 0x0000);
2261                        if (status < 0)
2262                                break;
2263                        break;
2264                case DRX_CHANNEL_HIGH:
2265                        transmissionParams |= SC_RA_RAM_OP_PARAM_PRIO_HI;
2266                        status = Write16(state, EC_SB_REG_PRIOR__A, EC_SB_REG_PRIOR_HI, 0x0000);
2267                        if (status < 0)
2268                                break;
2269                        break;
2270
2271                }
2272
2273                switch (p->code_rate_HP) {
2274                case FEC_1_2:
2275                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_1_2;
2276                        if (state->type_A) {
2277                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C1_2, 0x0000);
2278                                if (status < 0)
2279                                        break;
2280                        }
2281                        break;
2282                default:
2283                        operationMode |= SC_RA_RAM_OP_AUTO_RATE__M;
2284                case FEC_2_3:
2285                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_2_3;
2286                        if (state->type_A) {
2287                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C2_3, 0x0000);
2288                                if (status < 0)
2289                                        break;
2290                        }
2291                        break;
2292                case FEC_3_4:
2293                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_3_4;
2294                        if (state->type_A) {
2295                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C3_4, 0x0000);
2296                                if (status < 0)
2297                                        break;
2298                        }
2299                        break;
2300                case FEC_5_6:
2301                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_5_6;
2302                        if (state->type_A) {
2303                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C5_6, 0x0000);
2304                                if (status < 0)
2305                                        break;
2306                        }
2307                        break;
2308                case FEC_7_8:
2309                        transmissionParams |= SC_RA_RAM_OP_PARAM_RATE_7_8;
2310                        if (state->type_A) {
2311                                status = Write16(state, EC_VD_REG_SET_CODERATE__A, EC_VD_REG_SET_CODERATE_C7_8, 0x0000);
2312                                if (status < 0)
2313                                        break;
2314                        }
2315                        break;
2316                }
2317                status = status;
2318                if (status < 0)
2319                        break;
2320
2321                /* First determine real bandwidth (Hz) */
2322                /* Also set delay for impulse noise cruncher (only A2) */
2323                /* Also set parameters for EC_OC fix, note
2324                   EC_OC_REG_TMD_HIL_MAR is changed
2325                   by SC for fix for some 8K,1/8 guard but is restored by
2326                   InitEC and ResetEC
2327                   functions */
2328                switch (p->bandwidth) {
2329                case BANDWIDTH_AUTO:
2330                case BANDWIDTH_8_MHZ:
2331                        /* (64/7)*(8/8)*1000000 */
2332                        bandwidth = DRXD_BANDWIDTH_8MHZ_IN_HZ;
2333
2334                        bandwidthParam = 0;
2335                        status = Write16(state,
2336                                         FE_AG_REG_IND_DEL__A, 50, 0x0000);
2337                        break;
2338                case BANDWIDTH_7_MHZ:
2339                        /* (64/7)*(7/8)*1000000 */
2340                        bandwidth = DRXD_BANDWIDTH_7MHZ_IN_HZ;
2341                        bandwidthParam = 0x4807;        /*binary:0100 1000 0000 0111 */
2342                        status = Write16(state,
2343                                         FE_AG_REG_IND_DEL__A, 59, 0x0000);
2344                        break;
2345                case BANDWIDTH_6_MHZ:
2346                        /* (64/7)*(6/8)*1000000 */
2347                        bandwidth = DRXD_BANDWIDTH_6MHZ_IN_HZ;
2348                        bandwidthParam = 0x0F07;        /*binary: 0000 1111 0000 0111 */
2349                        status = Write16(state,
2350                                         FE_AG_REG_IND_DEL__A, 71, 0x0000);
2351                        break;
2352                default:
2353                        status = -EINVAL;
2354                }
2355                if (status < 0)
2356                        break;
2357
2358                status = Write16(state, SC_RA_RAM_BAND__A, bandwidthParam, 0x0000);
2359                if (status < 0)
2360                        break;
2361
2362                {
2363                        u16 sc_config;
2364                        status = Read16(state, SC_RA_RAM_CONFIG__A, &sc_config, 0);
2365                        if (status < 0)
2366                                break;
2367
2368                        /* enable SLAVE mode in 2k 1/32 to
2369                           prevent timing change glitches */
2370                        if ((p->transmission_mode == TRANSMISSION_MODE_2K) &&
2371                            (p->guard_interval == GUARD_INTERVAL_1_32)) {
2372                                /* enable slave */
2373                                sc_config |= SC_RA_RAM_CONFIG_SLAVE__M;
2374                        } else {
2375                                /* disable slave */
2376                                sc_config &= ~SC_RA_RAM_CONFIG_SLAVE__M;
2377                        }
2378                        status = Write16(state, SC_RA_RAM_CONFIG__A, sc_config, 0);
2379                        if (status < 0)
2380                                break;
2381                }
2382
2383                status = SetCfgNoiseCalibration(state, &state->noise_cal);
2384                if (status < 0)
2385                        break;
2386
2387                if (state->cscd_state == CSCD_INIT) {
2388                        /* switch on SRMM scan in SC */
2389                        status = Write16(state, SC_RA_RAM_SAMPLE_RATE_COUNT__A, DRXD_OSCDEV_DO_SCAN, 0x0000);
2390                        if (status < 0)
2391                                break;
2392/*            CHK_ERROR(Write16(SC_RA_RAM_SAMPLE_RATE_STEP__A, DRXD_OSCDEV_STEP, 0x0000));*/
2393                        state->cscd_state = CSCD_SET;
2394                }
2395
2396                /* Now compute FE_IF_REG_INCR */
2397                /*((( SysFreq/BandWidth)/2)/2) -1) * 2^23) =>
2398                   ((SysFreq / BandWidth) * (2^21) ) - (2^23) */
2399                feIfIncr = MulDiv32(state->sys_clock_freq * 1000,
2400                                    (1ULL << 21), bandwidth) - (1 << 23);
2401                status = Write16(state, FE_IF_REG_INCR0__A, (u16) (feIfIncr & FE_IF_REG_INCR0__M), 0x0000);
2402                if (status < 0)
2403                        break;
2404                status = Write16(state, FE_IF_REG_INCR1__A, (u16) ((feIfIncr >> FE_IF_REG_INCR0__W) & FE_IF_REG_INCR1__M), 0x0000);
2405                if (status < 0)
2406                        break;
2407                /* Bandwidth setting done */
2408
2409                /* Mirror & frequency offset */
2410                SetFrequencyShift(state, off, mirrorFreqSpect);
2411
2412                /* Start SC, write channel settings to SC */
2413
2414                /* Enable SC after setting all other parameters */
2415                status = Write16(state, SC_COMM_STATE__A, 0, 0x0000);
2416                if (status < 0)
2417                        break;
2418                status = Write16(state, SC_COMM_EXEC__A, 1, 0x0000);
2419                if (status < 0)
2420                        break;
2421
2422                /* Write SC parameter registers, operation mode */
2423#if 1
2424                operationMode = (SC_RA_RAM_OP_AUTO_MODE__M |
2425                                 SC_RA_RAM_OP_AUTO_GUARD__M |
2426                                 SC_RA_RAM_OP_AUTO_CONST__M |
2427                                 SC_RA_RAM_OP_AUTO_HIER__M |
2428                                 SC_RA_RAM_OP_AUTO_RATE__M);
2429#endif
2430                status = SC_SetPrefParamCommand(state, 0x0000, transmissionParams, operationMode);
2431                if (status < 0)
2432                        break;
2433
2434                /* Start correct processes to get in lock */
2435                status = SC_ProcStartCommand(state, SC_RA_RAM_PROC_LOCKTRACK, SC_RA_RAM_SW_EVENT_RUN_NMASK__M, SC_RA_RAM_LOCKTRACK_MIN);
2436                if (status < 0)
2437                        break;
2438
2439                status = StartOC(state);
2440                if (status < 0)
2441                        break;
2442
2443                if (state->operation_mode != OM_Default) {
2444                        status = StartDiversity(state);
2445                        if (status < 0)
2446                                break;
2447                }
2448
2449                state->drxd_state = DRXD_STARTED;
2450        } while (0);
2451
2452        return status;
2453}
2454
2455static int CDRXD(struct drxd_state *state, u32 IntermediateFrequency)
2456{
2457        u32 ulRfAgcOutputLevel = 0xffffffff;
2458        u32 ulRfAgcSettleLevel = 528;   /* Optimum value for MT2060 */
2459        u32 ulRfAgcMinLevel = 0;        /* Currently unused */
2460        u32 ulRfAgcMaxLevel = DRXD_FE_CTRL_MAX; /* Currently unused */
2461        u32 ulRfAgcSpeed = 0;   /* Currently unused */
2462        u32 ulRfAgcMode = 0;    /*2;   Off */
2463        u32 ulRfAgcR1 = 820;
2464        u32 ulRfAgcR2 = 2200;
2465        u32 ulRfAgcR3 = 150;
2466        u32 ulIfAgcMode = 0;    /* Auto */
2467        u32 ulIfAgcOutputLevel = 0xffffffff;
2468        u32 ulIfAgcSettleLevel = 0xffffffff;
2469        u32 ulIfAgcMinLevel = 0xffffffff;
2470        u32 ulIfAgcMaxLevel = 0xffffffff;
2471        u32 ulIfAgcSpeed = 0xffffffff;
2472        u32 ulIfAgcR1 = 820;
2473        u32 ulIfAgcR2 = 2200;
2474        u32 ulIfAgcR3 = 150;
2475        u32 ulClock = state->config.clock;
2476        u32 ulSerialMode = 0;
2477        u32 ulEcOcRegOcModeLop = 4;     /* Dynamic DTO source */
2478        u32 ulHiI2cDelay = HI_I2C_DELAY;
2479        u32 ulHiI2cBridgeDelay = HI_I2C_BRIDGE_DELAY;
2480        u32 ulHiI2cPatch = 0;
2481        u32 ulEnvironment = APPENV_PORTABLE;
2482        u32 ulEnvironmentDiversity = APPENV_MOBILE;
2483        u32 ulIFFilter = IFFILTER_SAW;
2484
2485        state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2486        state->if_agc_cfg.outputLevel = 0;
2487        state->if_agc_cfg.settleLevel = 140;
2488        state->if_agc_cfg.minOutputLevel = 0;
2489        state->if_agc_cfg.maxOutputLevel = 1023;
2490        state->if_agc_cfg.speed = 904;
2491
2492        if (ulIfAgcMode == 1 && ulIfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2493                state->if_agc_cfg.ctrlMode = AGC_CTRL_USER;
2494                state->if_agc_cfg.outputLevel = (u16) (ulIfAgcOutputLevel);
2495        }
2496
2497        if (ulIfAgcMode == 0 &&
2498            ulIfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2499            ulIfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2500            ulIfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2501            ulIfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2502                state->if_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2503                state->if_agc_cfg.settleLevel = (u16) (ulIfAgcSettleLevel);
2504                state->if_agc_cfg.minOutputLevel = (u16) (ulIfAgcMinLevel);
2505                state->if_agc_cfg.maxOutputLevel = (u16) (ulIfAgcMaxLevel);
2506                state->if_agc_cfg.speed = (u16) (ulIfAgcSpeed);
2507        }
2508
2509        state->if_agc_cfg.R1 = (u16) (ulIfAgcR1);
2510        state->if_agc_cfg.R2 = (u16) (ulIfAgcR2);
2511        state->if_agc_cfg.R3 = (u16) (ulIfAgcR3);
2512
2513        state->rf_agc_cfg.R1 = (u16) (ulRfAgcR1);
2514        state->rf_agc_cfg.R2 = (u16) (ulRfAgcR2);
2515        state->rf_agc_cfg.R3 = (u16) (ulRfAgcR3);
2516
2517        state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2518        /* rest of the RFAgcCfg structure currently unused */
2519        if (ulRfAgcMode == 1 && ulRfAgcOutputLevel <= DRXD_FE_CTRL_MAX) {
2520                state->rf_agc_cfg.ctrlMode = AGC_CTRL_USER;
2521                state->rf_agc_cfg.outputLevel = (u16) (ulRfAgcOutputLevel);
2522        }
2523
2524        if (ulRfAgcMode == 0 &&
2525            ulRfAgcSettleLevel <= DRXD_FE_CTRL_MAX &&
2526            ulRfAgcMinLevel <= DRXD_FE_CTRL_MAX &&
2527            ulRfAgcMaxLevel <= DRXD_FE_CTRL_MAX &&
2528            ulRfAgcSpeed <= DRXD_FE_CTRL_MAX) {
2529                state->rf_agc_cfg.ctrlMode = AGC_CTRL_AUTO;
2530                state->rf_agc_cfg.settleLevel = (u16) (ulRfAgcSettleLevel);
2531                state->rf_agc_cfg.minOutputLevel = (u16) (ulRfAgcMinLevel);
2532                state->rf_agc_cfg.maxOutputLevel = (u16) (ulRfAgcMaxLevel);
2533                state->rf_agc_cfg.speed = (u16) (ulRfAgcSpeed);
2534        }
2535
2536        if (ulRfAgcMode == 2)
2537                state->rf_agc_cfg.ctrlMode = AGC_CTRL_OFF;
2538
2539        if (ulEnvironment <= 2)
2540                state->app_env_default = (enum app_env)
2541                    (ulEnvironment);
2542        if (ulEnvironmentDiversity <= 2)
2543                state->app_env_diversity = (enum app_env)
2544                    (ulEnvironmentDiversity);
2545
2546        if (ulIFFilter == IFFILTER_DISCRETE) {
2547                /* discrete filter */
2548                state->noise_cal.cpOpt = 0;
2549                state->noise_cal.cpNexpOfs = 40;
2550                state->noise_cal.tdCal2k = -40;
2551                state->noise_cal.tdCal8k = -24;
2552        } else {
2553                /* SAW filter */
2554                state->noise_cal.cpOpt = 1;
2555                state->noise_cal.cpNexpOfs = 0;
2556                state->noise_cal.tdCal2k = -21;
2557                state->noise_cal.tdCal8k = -24;
2558        }
2559        state->m_EcOcRegOcModeLop = (u16) (ulEcOcRegOcModeLop);
2560
2561        state->chip_adr = (state->config.demod_address << 1) | 1;
2562        switch (ulHiI2cPatch) {
2563        case 1:
2564                state->m_HiI2cPatch = DRXD_HiI2cPatch_1;
2565                break;
2566        case 3:
2567                state->m_HiI2cPatch = DRXD_HiI2cPatch_3;
2568                break;
2569        default:
2570                state->m_HiI2cPatch = NULL;
2571        }
2572
2573        /* modify tuner and clock attributes */
2574        state->intermediate_freq = (u16) (IntermediateFrequency / 1000);
2575        /* expected system clock frequency in kHz */
2576        state->expected_sys_clock_freq = 48000;
2577        /* real system clock frequency in kHz */
2578        state->sys_clock_freq = 48000;
2579        state->osc_clock_freq = (u16) ulClock;
2580        state->osc_clock_deviation = 0;
2581        state->cscd_state = CSCD_INIT;
2582        state->drxd_state = DRXD_UNINITIALIZED;
2583
2584        state->PGA = 0;
2585        state->type_A = 0;
2586        state->tuner_mirrors = 0;
2587
2588        /* modify MPEG output attributes */
2589        state->insert_rs_byte = state->config.insert_rs_byte;
2590        state->enable_parallel = (ulSerialMode != 1);
2591
2592        /* Timing div, 250ns/Psys */
2593        /* Timing div, = ( delay (nano seconds) * sysclk (kHz) )/ 1000 */
2594
2595        state->hi_cfg_timing_div = (u16) ((state->sys_clock_freq / 1000) *
2596                                          ulHiI2cDelay) / 1000;
2597        /* Bridge delay, uses oscilator clock */
2598        /* Delay = ( delay (nano seconds) * oscclk (kHz) )/ 1000 */
2599        state->hi_cfg_bridge_delay = (u16) ((state->osc_clock_freq / 1000) *
2600                                            ulHiI2cBridgeDelay) / 1000;
2601
2602        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2603        /* state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO; */
2604        state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2605        return 0;
2606}
2607
2608int DRXD_init(struct drxd_state *state, const u8 * fw, u32 fw_size)
2609{
2610        int status = 0;
2611        u32 driverVersion;
2612
2613        if (state->init_done)
2614                return 0;
2615
2616        CDRXD(state, state->config.IF ? state->config.IF : 36000000);
2617
2618        do {
2619                state->operation_mode = OM_Default;
2620
2621                status = SetDeviceTypeId(state);
2622                if (status < 0)
2623                        break;
2624
2625                /* Apply I2c address patch to B1 */
2626                if (!state->type_A && state->m_HiI2cPatch != NULL)
2627                        status = WriteTable(state, state->m_HiI2cPatch);
2628                        if (status < 0)
2629                                break;
2630
2631                if (state->type_A) {
2632                        /* HI firmware patch for UIO readout,
2633                           avoid clearing of result register */
2634                        status = Write16(state, 0x43012D, 0x047f, 0);
2635                        if (status < 0)
2636                                break;
2637                }
2638
2639                status = HI_ResetCommand(state);
2640                if (status < 0)
2641                        break;
2642
2643                status = StopAllProcessors(state);
2644                if (status < 0)
2645                        break;
2646                status = InitCC(state);
2647                if (status < 0)
2648                        break;
2649
2650                state->osc_clock_deviation = 0;
2651
2652                if (state->config.osc_deviation)
2653                        state->osc_clock_deviation =
2654                            state->config.osc_deviation(state->priv, 0, 0);
2655                {
2656                        /* Handle clock deviation */
2657                        s32 devB;
2658                        s32 devA = (s32) (state->osc_clock_deviation) *
2659                            (s32) (state->expected_sys_clock_freq);
2660                        /* deviation in kHz */
2661                        s32 deviation = (devA / (1000000L));
2662                        /* rounding, signed */
2663                        if (devA > 0)
2664                                devB = (2);
2665                        else
2666                                devB = (-2);
2667                        if ((devB * (devA % 1000000L) > 1000000L)) {
2668                                /* add +1 or -1 */
2669                                deviation += (devB / 2);
2670                        }
2671
2672                        state->sys_clock_freq =
2673                            (u16) ((state->expected_sys_clock_freq) +
2674                                   deviation);
2675                }
2676                status = InitHI(state);
2677                if (status < 0)
2678                        break;
2679                status = InitAtomicRead(state);
2680                if (status < 0)
2681                        break;
2682
2683                status = EnableAndResetMB(state);
2684                if (status < 0)
2685                        break;
2686                if (state->type_A)
2687                        status = ResetCEFR(state);
2688                        if (status < 0)
2689                                break;
2690
2691                if (fw) {
2692                        status = DownloadMicrocode(state, fw, fw_size);
2693                        if (status < 0)
2694                                break;
2695                } else {
2696                        status = DownloadMicrocode(state, state->microcode, state->microcode_length);
2697                        if (status < 0)
2698                                break;
2699                }
2700
2701                if (state->PGA) {
2702                        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_PRO;
2703                        SetCfgPga(state, 0);    /* PGA = 0 dB */
2704                } else {
2705                        state->m_FeAgRegAgPwd = DRXD_DEF_AG_PWD_CONSUMER;
2706                }
2707
2708                state->m_FeAgRegAgAgcSio = DRXD_DEF_AG_AGC_SIO;
2709
2710                status = InitFE(state);
2711                if (status < 0)
2712                        break;
2713                status = InitFT(state);
2714                if (status < 0)
2715                        break;
2716                status = InitCP(state);
2717                if (status < 0)
2718                        break;
2719                status = InitCE(state);
2720                if (status < 0)
2721                        break;
2722                status = InitEQ(state);
2723                if (status < 0)
2724                        break;
2725                status = InitEC(state);
2726                if (status < 0)
2727                        break;
2728                status = InitSC(state);
2729                if (status < 0)
2730                        break;
2731
2732                status = SetCfgIfAgc(state, &state->if_agc_cfg);
2733                if (status < 0)
2734                        break;
2735                status = SetCfgRfAgc(state, &state->rf_agc_cfg);
2736                if (status < 0)
2737                        break;
2738
2739                state->cscd_state = CSCD_INIT;
2740                status = Write16(state, SC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2741                if (status < 0)
2742                        break;
2743                status = Write16(state, LC_COMM_EXEC__A, SC_COMM_EXEC_CTL_STOP, 0);
2744                if (status < 0)
2745                        break;
2746
2747                driverVersion = (((VERSION_MAJOR / 10) << 4) +
2748                                 (VERSION_MAJOR % 10)) << 24;
2749                driverVersion += (((VERSION_MINOR / 10) << 4) +
2750                                  (VERSION_MINOR % 10)) << 16;
2751                driverVersion += ((VERSION_PATCH / 1000) << 12) +
2752                    ((VERSION_PATCH / 100) << 8) +
2753                    ((VERSION_PATCH / 10) << 4) + (VERSION_PATCH % 10);
2754
2755                status = Write32(state, SC_RA_RAM_DRIVER_VERSION__AX, driverVersion, 0);
2756                if (status < 0)
2757                        break;
2758
2759                status = StopOC(state);
2760                if (status < 0)
2761                        break;
2762
2763                state->drxd_state = DRXD_STOPPED;
2764                state->init_done = 1;
2765                status = 0;
2766        } while (0);
2767        return status;
2768}
2769
2770int DRXD_status(struct drxd_state *state, u32 * pLockStatus)
2771{
2772        DRX_GetLockStatus(state, pLockStatus);
2773
2774        /*if (*pLockStatus&DRX_LOCK_MPEG) */
2775        if (*pLockStatus & DRX_LOCK_FEC) {
2776                ConfigureMPEGOutput(state, 1);
2777                /* Get status again, in case we have MPEG lock now */
2778                /*DRX_GetLockStatus(state, pLockStatus); */
2779        }
2780
2781        return 0;
2782}
2783
2784/****************************************************************************/
2785/****************************************************************************/
2786/****************************************************************************/
2787
2788static int drxd_read_signal_strength(struct dvb_frontend *fe, u16 * strength)
2789{
2790        struct drxd_state *state = fe->demodulator_priv;
2791        u32 value;
2792        int res;
2793
2794        res = ReadIFAgc(state, &value);
2795        if (res < 0)
2796                *strength = 0;
2797        else
2798                *strength = 0xffff - (value << 4);
2799        return 0;
2800}
2801
2802static int drxd_read_status(struct dvb_frontend *fe, fe_status_t * status)
2803{
2804        struct drxd_state *state = fe->demodulator_priv;
2805        u32 lock;
2806
2807        DRXD_status(state, &lock);
2808        *status = 0;
2809        /* No MPEG lock in V255 firmware, bug ? */
2810#if 1
2811        if (lock & DRX_LOCK_MPEG)
2812                *status |= FE_HAS_LOCK;
2813#else
2814        if (lock & DRX_LOCK_FEC)
2815                *status |= FE_HAS_LOCK;
2816#endif
2817        if (lock & DRX_LOCK_FEC)
2818                *status |= FE_HAS_VITERBI | FE_HAS_SYNC;
2819        if (lock & DRX_LOCK_DEMOD)
2820                *status |= FE_HAS_CARRIER | FE_HAS_SIGNAL;
2821
2822        return 0;
2823}
2824
2825static int drxd_init(struct dvb_frontend *fe)
2826{
2827        struct drxd_state *state = fe->demodulator_priv;
2828        int err = 0;
2829
2830/*      if (request_firmware(&state->fw, "drxd.fw", state->dev)<0) */
2831        return DRXD_init(state, 0, 0);
2832
2833        err = DRXD_init(state, state->fw->data, state->fw->size);
2834        release_firmware(state->fw);
2835        return err;
2836}
2837
2838int drxd_config_i2c(struct dvb_frontend *fe, int onoff)
2839{
2840        struct drxd_state *state = fe->demodulator_priv;
2841
2842        if (state->config.disable_i2c_gate_ctrl == 1)
2843                return 0;
2844
2845        return DRX_ConfigureI2CBridge(state, onoff);
2846}
2847EXPORT_SYMBOL(drxd_config_i2c);
2848
2849static int drxd_get_tune_settings(struct dvb_frontend *fe,
2850                                  struct dvb_frontend_tune_settings *sets)
2851{
2852        sets->min_delay_ms = 10000;
2853        sets->max_drift = 0;
2854        sets->step_size = 0;
2855        return 0;
2856}
2857
2858static int drxd_read_ber(struct dvb_frontend *fe, u32 * ber)
2859{
2860        *ber = 0;
2861        return 0;
2862}
2863
2864static int drxd_read_snr(struct dvb_frontend *fe, u16 * snr)
2865{
2866        *snr = 0;
2867        return 0;
2868}
2869
2870static int drxd_read_ucblocks(struct dvb_frontend *fe, u32 * ucblocks)
2871{
2872        *ucblocks = 0;
2873        return 0;
2874}
2875
2876static int drxd_sleep(struct dvb_frontend *fe)
2877{
2878        struct drxd_state *state = fe->demodulator_priv;
2879
2880        ConfigureMPEGOutput(state, 0);
2881        return 0;
2882}
2883
2884static int drxd_get_frontend(struct dvb_frontend *fe,
2885                             struct dvb_frontend_parameters *param)
2886{
2887        return 0;
2888}
2889
2890static int drxd_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
2891{
2892        return drxd_config_i2c(fe, enable);
2893}
2894
2895static int drxd_set_frontend(struct dvb_frontend *fe,
2896                             struct dvb_frontend_parameters *param)
2897{
2898        struct drxd_state *state = fe->demodulator_priv;
2899        s32 off = 0;
2900
2901        state->param = *param;
2902        DRX_Stop(state);
2903
2904        if (fe->ops.tuner_ops.set_params) {
2905                fe->ops.tuner_ops.set_params(fe, param);
2906                if (fe->ops.i2c_gate_ctrl)
2907                        fe->ops.i2c_gate_ctrl(fe, 0);
2908        }
2909
2910        /* FIXME: move PLL drivers */
2911        if (state->config.pll_set &&
2912            state->config.pll_set(state->priv, param,
2913                                  state->config.pll_address,
2914                                  state->config.demoda_address, &off) < 0) {
2915                printk(KERN_ERR "Error in pll_set\n");
2916                return -1;
2917        }
2918
2919        msleep(200);
2920
2921        return DRX_Start(state, off);
2922}
2923
2924static void drxd_release(struct dvb_frontend *fe)
2925{
2926        struct drxd_state *state = fe->demodulator_priv;
2927
2928        kfree(state);
2929}
2930
2931static struct dvb_frontend_ops drxd_ops = {
2932
2933        .info = {
2934                 .name = "Micronas DRXD DVB-T",
2935                 .type = FE_OFDM,
2936                 .frequency_min = 47125000,
2937                 .frequency_max = 855250000,
2938                 .frequency_stepsize = 166667,
2939                 .frequency_tolerance = 0,
2940                 .caps = FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 |
2941                 FE_CAN_FEC_3_4 | FE_CAN_FEC_5_6 | FE_CAN_FEC_7_8 |
2942                 FE_CAN_FEC_AUTO |
2943                 FE_CAN_QAM_16 | FE_CAN_QAM_64 |
2944                 FE_CAN_QAM_AUTO |
2945                 FE_CAN_TRANSMISSION_MODE_AUTO |
2946                 FE_CAN_GUARD_INTERVAL_AUTO |
2947                 FE_CAN_HIERARCHY_AUTO | FE_CAN_RECOVER | FE_CAN_MUTE_TS},
2948
2949        .release = drxd_release,
2950        .init = drxd_init,
2951        .sleep = drxd_sleep,
2952        .i2c_gate_ctrl = drxd_i2c_gate_ctrl,
2953
2954        .set_frontend = drxd_set_frontend,
2955        .get_frontend = drxd_get_frontend,
2956        .get_tune_settings = drxd_get_tune_settings,
2957
2958        .read_status = drxd_read_status,
2959        .read_ber = drxd_read_ber,
2960        .read_signal_strength = drxd_read_signal_strength,
2961        .read_snr = drxd_read_snr,
2962        .read_ucblocks = drxd_read_ucblocks,
2963};
2964
2965struct dvb_frontend *drxd_attach(const struct drxd_config *config,
2966                                 void *priv, struct i2c_adapter *i2c,
2967                                 struct device *dev)
2968{
2969        struct drxd_state *state = NULL;
2970
2971        state = kmalloc(sizeof(struct drxd_state), GFP_KERNEL);
2972        if (!state)
2973                return NULL;
2974        memset(state, 0, sizeof(*state));
2975
2976        memcpy(&state->ops, &drxd_ops, sizeof(struct dvb_frontend_ops));
2977        state->dev = dev;
2978        state->config = *config;
2979        state->i2c = i2c;
2980        state->priv = priv;
2981
2982        mutex_init(&state->mutex);
2983
2984        if (Read16(state, 0, 0, 0) < 0)
2985                goto error;
2986
2987        memcpy(&state->frontend.ops, &drxd_ops,
2988               sizeof(struct dvb_frontend_ops));
2989        state->frontend.demodulator_priv = state;
2990        ConfigureMPEGOutput(state, 0);
2991        return &state->frontend;
2992
2993error:
2994        printk(KERN_ERR "drxd: not found\n");
2995        kfree(state);
2996        return NULL;
2997}
2998EXPORT_SYMBOL(drxd_attach);
2999
3000MODULE_DESCRIPTION("DRXD driver");
3001MODULE_AUTHOR("Micronas");
3002MODULE_LICENSE("GPL");
3003