linux/drivers/mtd/nand/davinci_nand.c
<<
>>
Prefs
   1/*
   2 * davinci_nand.c - NAND Flash Driver for DaVinci family chips
   3 *
   4 * Copyright © 2006 Texas Instruments.
   5 *
   6 * Port to 2.6.23 Copyright © 2008 by:
   7 *   Sander Huijsen <Shuijsen@optelecom-nkf.com>
   8 *   Troy Kisky <troy.kisky@boundarydevices.com>
   9 *   Dirk Behme <Dirk.Behme@gmail.com>
  10 *
  11 * This program is free software; you can redistribute it and/or modify
  12 * it under the terms of the GNU General Public License as published by
  13 * the Free Software Foundation; either version 2 of the License, or
  14 * (at your option) any later version.
  15 *
  16 * This program is distributed in the hope that it will be useful,
  17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  19 * GNU General Public License for more details.
  20 *
  21 * You should have received a copy of the GNU General Public License
  22 * along with this program; if not, write to the Free Software
  23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  24 */
  25
  26#include <linux/kernel.h>
  27#include <linux/init.h>
  28#include <linux/module.h>
  29#include <linux/platform_device.h>
  30#include <linux/err.h>
  31#include <linux/clk.h>
  32#include <linux/io.h>
  33#include <linux/mtd/nand.h>
  34#include <linux/mtd/partitions.h>
  35#include <linux/slab.h>
  36
  37#include <mach/nand.h>
  38#include <mach/aemif.h>
  39
  40/*
  41 * This is a device driver for the NAND flash controller found on the
  42 * various DaVinci family chips.  It handles up to four SoC chipselects,
  43 * and some flavors of secondary chipselect (e.g. based on A12) as used
  44 * with multichip packages.
  45 *
  46 * The 1-bit ECC hardware is supported, as well as the newer 4-bit ECC
  47 * available on chips like the DM355 and OMAP-L137 and needed with the
  48 * more error-prone MLC NAND chips.
  49 *
  50 * This driver assumes EM_WAIT connects all the NAND devices' RDY/nBUSY
  51 * outputs in a "wire-AND" configuration, with no per-chip signals.
  52 */
  53struct davinci_nand_info {
  54        struct mtd_info         mtd;
  55        struct nand_chip        chip;
  56        struct nand_ecclayout   ecclayout;
  57
  58        struct device           *dev;
  59        struct clk              *clk;
  60        bool                    partitioned;
  61
  62        bool                    is_readmode;
  63
  64        void __iomem            *base;
  65        void __iomem            *vaddr;
  66
  67        uint32_t                ioaddr;
  68        uint32_t                current_cs;
  69
  70        uint32_t                mask_chipsel;
  71        uint32_t                mask_ale;
  72        uint32_t                mask_cle;
  73
  74        uint32_t                core_chipsel;
  75
  76        struct davinci_aemif_timing     *timing;
  77};
  78
  79static DEFINE_SPINLOCK(davinci_nand_lock);
  80static bool ecc4_busy;
  81
  82#define to_davinci_nand(m) container_of(m, struct davinci_nand_info, mtd)
  83
  84
  85static inline unsigned int davinci_nand_readl(struct davinci_nand_info *info,
  86                int offset)
  87{
  88        return __raw_readl(info->base + offset);
  89}
  90
  91static inline void davinci_nand_writel(struct davinci_nand_info *info,
  92                int offset, unsigned long value)
  93{
  94        __raw_writel(value, info->base + offset);
  95}
  96
  97/*----------------------------------------------------------------------*/
  98
  99/*
 100 * Access to hardware control lines:  ALE, CLE, secondary chipselect.
 101 */
 102
 103static void nand_davinci_hwcontrol(struct mtd_info *mtd, int cmd,
 104                                   unsigned int ctrl)
 105{
 106        struct davinci_nand_info        *info = to_davinci_nand(mtd);
 107        uint32_t                        addr = info->current_cs;
 108        struct nand_chip                *nand = mtd->priv;
 109
 110        /* Did the control lines change? */
 111        if (ctrl & NAND_CTRL_CHANGE) {
 112                if ((ctrl & NAND_CTRL_CLE) == NAND_CTRL_CLE)
 113                        addr |= info->mask_cle;
 114                else if ((ctrl & NAND_CTRL_ALE) == NAND_CTRL_ALE)
 115                        addr |= info->mask_ale;
 116
 117                nand->IO_ADDR_W = (void __iomem __force *)addr;
 118        }
 119
 120        if (cmd != NAND_CMD_NONE)
 121                iowrite8(cmd, nand->IO_ADDR_W);
 122}
 123
 124static void nand_davinci_select_chip(struct mtd_info *mtd, int chip)
 125{
 126        struct davinci_nand_info        *info = to_davinci_nand(mtd);
 127        uint32_t                        addr = info->ioaddr;
 128
 129        /* maybe kick in a second chipselect */
 130        if (chip > 0)
 131                addr |= info->mask_chipsel;
 132        info->current_cs = addr;
 133
 134        info->chip.IO_ADDR_W = (void __iomem __force *)addr;
 135        info->chip.IO_ADDR_R = info->chip.IO_ADDR_W;
 136}
 137
 138/*----------------------------------------------------------------------*/
 139
 140/*
 141 * 1-bit hardware ECC ... context maintained for each core chipselect
 142 */
 143
 144static inline uint32_t nand_davinci_readecc_1bit(struct mtd_info *mtd)
 145{
 146        struct davinci_nand_info *info = to_davinci_nand(mtd);
 147
 148        return davinci_nand_readl(info, NANDF1ECC_OFFSET
 149                        + 4 * info->core_chipsel);
 150}
 151
 152static void nand_davinci_hwctl_1bit(struct mtd_info *mtd, int mode)
 153{
 154        struct davinci_nand_info *info;
 155        uint32_t nandcfr;
 156        unsigned long flags;
 157
 158        info = to_davinci_nand(mtd);
 159
 160        /* Reset ECC hardware */
 161        nand_davinci_readecc_1bit(mtd);
 162
 163        spin_lock_irqsave(&davinci_nand_lock, flags);
 164
 165        /* Restart ECC hardware */
 166        nandcfr = davinci_nand_readl(info, NANDFCR_OFFSET);
 167        nandcfr |= BIT(8 + info->core_chipsel);
 168        davinci_nand_writel(info, NANDFCR_OFFSET, nandcfr);
 169
 170        spin_unlock_irqrestore(&davinci_nand_lock, flags);
 171}
 172
 173/*
 174 * Read hardware ECC value and pack into three bytes
 175 */
 176static int nand_davinci_calculate_1bit(struct mtd_info *mtd,
 177                                      const u_char *dat, u_char *ecc_code)
 178{
 179        unsigned int ecc_val = nand_davinci_readecc_1bit(mtd);
 180        unsigned int ecc24 = (ecc_val & 0x0fff) | ((ecc_val & 0x0fff0000) >> 4);
 181
 182        /* invert so that erased block ecc is correct */
 183        ecc24 = ~ecc24;
 184        ecc_code[0] = (u_char)(ecc24);
 185        ecc_code[1] = (u_char)(ecc24 >> 8);
 186        ecc_code[2] = (u_char)(ecc24 >> 16);
 187
 188        return 0;
 189}
 190
 191static int nand_davinci_correct_1bit(struct mtd_info *mtd, u_char *dat,
 192                                     u_char *read_ecc, u_char *calc_ecc)
 193{
 194        struct nand_chip *chip = mtd->priv;
 195        uint32_t eccNand = read_ecc[0] | (read_ecc[1] << 8) |
 196                                          (read_ecc[2] << 16);
 197        uint32_t eccCalc = calc_ecc[0] | (calc_ecc[1] << 8) |
 198                                          (calc_ecc[2] << 16);
 199        uint32_t diff = eccCalc ^ eccNand;
 200
 201        if (diff) {
 202                if ((((diff >> 12) ^ diff) & 0xfff) == 0xfff) {
 203                        /* Correctable error */
 204                        if ((diff >> (12 + 3)) < chip->ecc.size) {
 205                                dat[diff >> (12 + 3)] ^= BIT((diff >> 12) & 7);
 206                                return 1;
 207                        } else {
 208                                return -1;
 209                        }
 210                } else if (!(diff & (diff - 1))) {
 211                        /* Single bit ECC error in the ECC itself,
 212                         * nothing to fix */
 213                        return 1;
 214                } else {
 215                        /* Uncorrectable error */
 216                        return -1;
 217                }
 218
 219        }
 220        return 0;
 221}
 222
 223/*----------------------------------------------------------------------*/
 224
 225/*
 226 * 4-bit hardware ECC ... context maintained over entire AEMIF
 227 *
 228 * This is a syndrome engine, but we avoid NAND_ECC_HW_SYNDROME
 229 * since that forces use of a problematic "infix OOB" layout.
 230 * Among other things, it trashes manufacturer bad block markers.
 231 * Also, and specific to this hardware, it ECC-protects the "prepad"
 232 * in the OOB ... while having ECC protection for parts of OOB would
 233 * seem useful, the current MTD stack sometimes wants to update the
 234 * OOB without recomputing ECC.
 235 */
 236
 237static void nand_davinci_hwctl_4bit(struct mtd_info *mtd, int mode)
 238{
 239        struct davinci_nand_info *info = to_davinci_nand(mtd);
 240        unsigned long flags;
 241        u32 val;
 242
 243        spin_lock_irqsave(&davinci_nand_lock, flags);
 244
 245        /* Start 4-bit ECC calculation for read/write */
 246        val = davinci_nand_readl(info, NANDFCR_OFFSET);
 247        val &= ~(0x03 << 4);
 248        val |= (info->core_chipsel << 4) | BIT(12);
 249        davinci_nand_writel(info, NANDFCR_OFFSET, val);
 250
 251        info->is_readmode = (mode == NAND_ECC_READ);
 252
 253        spin_unlock_irqrestore(&davinci_nand_lock, flags);
 254}
 255
 256/* Read raw ECC code after writing to NAND. */
 257static void
 258nand_davinci_readecc_4bit(struct davinci_nand_info *info, u32 code[4])
 259{
 260        const u32 mask = 0x03ff03ff;
 261
 262        code[0] = davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET) & mask;
 263        code[1] = davinci_nand_readl(info, NAND_4BIT_ECC2_OFFSET) & mask;
 264        code[2] = davinci_nand_readl(info, NAND_4BIT_ECC3_OFFSET) & mask;
 265        code[3] = davinci_nand_readl(info, NAND_4BIT_ECC4_OFFSET) & mask;
 266}
 267
 268/* Terminate read ECC; or return ECC (as bytes) of data written to NAND. */
 269static int nand_davinci_calculate_4bit(struct mtd_info *mtd,
 270                const u_char *dat, u_char *ecc_code)
 271{
 272        struct davinci_nand_info *info = to_davinci_nand(mtd);
 273        u32 raw_ecc[4], *p;
 274        unsigned i;
 275
 276        /* After a read, terminate ECC calculation by a dummy read
 277         * of some 4-bit ECC register.  ECC covers everything that
 278         * was read; correct() just uses the hardware state, so
 279         * ecc_code is not needed.
 280         */
 281        if (info->is_readmode) {
 282                davinci_nand_readl(info, NAND_4BIT_ECC1_OFFSET);
 283                return 0;
 284        }
 285
 286        /* Pack eight raw 10-bit ecc values into ten bytes, making
 287         * two passes which each convert four values (in upper and
 288         * lower halves of two 32-bit words) into five bytes.  The
 289         * ROM boot loader uses this same packing scheme.
 290         */
 291        nand_davinci_readecc_4bit(info, raw_ecc);
 292        for (i = 0, p = raw_ecc; i < 2; i++, p += 2) {
 293                *ecc_code++ =   p[0]        & 0xff;
 294                *ecc_code++ = ((p[0] >>  8) & 0x03) | ((p[0] >> 14) & 0xfc);
 295                *ecc_code++ = ((p[0] >> 22) & 0x0f) | ((p[1] <<  4) & 0xf0);
 296                *ecc_code++ = ((p[1] >>  4) & 0x3f) | ((p[1] >> 10) & 0xc0);
 297                *ecc_code++ =  (p[1] >> 18) & 0xff;
 298        }
 299
 300        return 0;
 301}
 302
 303/* Correct up to 4 bits in data we just read, using state left in the
 304 * hardware plus the ecc_code computed when it was first written.
 305 */
 306static int nand_davinci_correct_4bit(struct mtd_info *mtd,
 307                u_char *data, u_char *ecc_code, u_char *null)
 308{
 309        int i;
 310        struct davinci_nand_info *info = to_davinci_nand(mtd);
 311        unsigned short ecc10[8];
 312        unsigned short *ecc16;
 313        u32 syndrome[4];
 314        u32 ecc_state;
 315        unsigned num_errors, corrected;
 316        unsigned long timeo;
 317
 318        /* All bytes 0xff?  It's an erased page; ignore its ECC. */
 319        for (i = 0; i < 10; i++) {
 320                if (ecc_code[i] != 0xff)
 321                        goto compare;
 322        }
 323        return 0;
 324
 325compare:
 326        /* Unpack ten bytes into eight 10 bit values.  We know we're
 327         * little-endian, and use type punning for less shifting/masking.
 328         */
 329        if (WARN_ON(0x01 & (unsigned) ecc_code))
 330                return -EINVAL;
 331        ecc16 = (unsigned short *)ecc_code;
 332
 333        ecc10[0] =  (ecc16[0] >>  0) & 0x3ff;
 334        ecc10[1] = ((ecc16[0] >> 10) & 0x3f) | ((ecc16[1] << 6) & 0x3c0);
 335        ecc10[2] =  (ecc16[1] >>  4) & 0x3ff;
 336        ecc10[3] = ((ecc16[1] >> 14) & 0x3)  | ((ecc16[2] << 2) & 0x3fc);
 337        ecc10[4] =  (ecc16[2] >>  8)         | ((ecc16[3] << 8) & 0x300);
 338        ecc10[5] =  (ecc16[3] >>  2) & 0x3ff;
 339        ecc10[6] = ((ecc16[3] >> 12) & 0xf)  | ((ecc16[4] << 4) & 0x3f0);
 340        ecc10[7] =  (ecc16[4] >>  6) & 0x3ff;
 341
 342        /* Tell ECC controller about the expected ECC codes. */
 343        for (i = 7; i >= 0; i--)
 344                davinci_nand_writel(info, NAND_4BIT_ECC_LOAD_OFFSET, ecc10[i]);
 345
 346        /* Allow time for syndrome calculation ... then read it.
 347         * A syndrome of all zeroes 0 means no detected errors.
 348         */
 349        davinci_nand_readl(info, NANDFSR_OFFSET);
 350        nand_davinci_readecc_4bit(info, syndrome);
 351        if (!(syndrome[0] | syndrome[1] | syndrome[2] | syndrome[3]))
 352                return 0;
 353
 354        /*
 355         * Clear any previous address calculation by doing a dummy read of an
 356         * error address register.
 357         */
 358        davinci_nand_readl(info, NAND_ERR_ADD1_OFFSET);
 359
 360        /* Start address calculation, and wait for it to complete.
 361         * We _could_ start reading more data while this is working,
 362         * to speed up the overall page read.
 363         */
 364        davinci_nand_writel(info, NANDFCR_OFFSET,
 365                        davinci_nand_readl(info, NANDFCR_OFFSET) | BIT(13));
 366
 367        /*
 368         * ECC_STATE field reads 0x3 (Error correction complete) immediately
 369         * after setting the 4BITECC_ADD_CALC_START bit. So if you immediately
 370         * begin trying to poll for the state, you may fall right out of your
 371         * loop without any of the correction calculations having taken place.
 372         * The recommendation from the hardware team is to initially delay as
 373         * long as ECC_STATE reads less than 4. After that, ECC HW has entered
 374         * correction state.
 375         */
 376        timeo = jiffies + usecs_to_jiffies(100);
 377        do {
 378                ecc_state = (davinci_nand_readl(info,
 379                                NANDFSR_OFFSET) >> 8) & 0x0f;
 380                cpu_relax();
 381        } while ((ecc_state < 4) && time_before(jiffies, timeo));
 382
 383        for (;;) {
 384                u32     fsr = davinci_nand_readl(info, NANDFSR_OFFSET);
 385
 386                switch ((fsr >> 8) & 0x0f) {
 387                case 0:         /* no error, should not happen */
 388                        davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
 389                        return 0;
 390                case 1:         /* five or more errors detected */
 391                        davinci_nand_readl(info, NAND_ERR_ERRVAL1_OFFSET);
 392                        return -EIO;
 393                case 2:         /* error addresses computed */
 394                case 3:
 395                        num_errors = 1 + ((fsr >> 16) & 0x03);
 396                        goto correct;
 397                default:        /* still working on it */
 398                        cpu_relax();
 399                        continue;
 400                }
 401        }
 402
 403correct:
 404        /* correct each error */
 405        for (i = 0, corrected = 0; i < num_errors; i++) {
 406                int error_address, error_value;
 407
 408                if (i > 1) {
 409                        error_address = davinci_nand_readl(info,
 410                                                NAND_ERR_ADD2_OFFSET);
 411                        error_value = davinci_nand_readl(info,
 412                                                NAND_ERR_ERRVAL2_OFFSET);
 413                } else {
 414                        error_address = davinci_nand_readl(info,
 415                                                NAND_ERR_ADD1_OFFSET);
 416                        error_value = davinci_nand_readl(info,
 417                                                NAND_ERR_ERRVAL1_OFFSET);
 418                }
 419
 420                if (i & 1) {
 421                        error_address >>= 16;
 422                        error_value >>= 16;
 423                }
 424                error_address &= 0x3ff;
 425                error_address = (512 + 7) - error_address;
 426
 427                if (error_address < 512) {
 428                        data[error_address] ^= error_value;
 429                        corrected++;
 430                }
 431        }
 432
 433        return corrected;
 434}
 435
 436/*----------------------------------------------------------------------*/
 437
 438/*
 439 * NOTE:  NAND boot requires ALE == EM_A[1], CLE == EM_A[2], so that's
 440 * how these chips are normally wired.  This translates to both 8 and 16
 441 * bit busses using ALE == BIT(3) in byte addresses, and CLE == BIT(4).
 442 *
 443 * For now we assume that configuration, or any other one which ignores
 444 * the two LSBs for NAND access ... so we can issue 32-bit reads/writes
 445 * and have that transparently morphed into multiple NAND operations.
 446 */
 447static void nand_davinci_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 448{
 449        struct nand_chip *chip = mtd->priv;
 450
 451        if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
 452                ioread32_rep(chip->IO_ADDR_R, buf, len >> 2);
 453        else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
 454                ioread16_rep(chip->IO_ADDR_R, buf, len >> 1);
 455        else
 456                ioread8_rep(chip->IO_ADDR_R, buf, len);
 457}
 458
 459static void nand_davinci_write_buf(struct mtd_info *mtd,
 460                const uint8_t *buf, int len)
 461{
 462        struct nand_chip *chip = mtd->priv;
 463
 464        if ((0x03 & ((unsigned)buf)) == 0 && (0x03 & len) == 0)
 465                iowrite32_rep(chip->IO_ADDR_R, buf, len >> 2);
 466        else if ((0x01 & ((unsigned)buf)) == 0 && (0x01 & len) == 0)
 467                iowrite16_rep(chip->IO_ADDR_R, buf, len >> 1);
 468        else
 469                iowrite8_rep(chip->IO_ADDR_R, buf, len);
 470}
 471
 472/*
 473 * Check hardware register for wait status. Returns 1 if device is ready,
 474 * 0 if it is still busy.
 475 */
 476static int nand_davinci_dev_ready(struct mtd_info *mtd)
 477{
 478        struct davinci_nand_info *info = to_davinci_nand(mtd);
 479
 480        return davinci_nand_readl(info, NANDFSR_OFFSET) & BIT(0);
 481}
 482
 483/*----------------------------------------------------------------------*/
 484
 485/* An ECC layout for using 4-bit ECC with small-page flash, storing
 486 * ten ECC bytes plus the manufacturer's bad block marker byte, and
 487 * and not overlapping the default BBT markers.
 488 */
 489static struct nand_ecclayout hwecc4_small __initconst = {
 490        .eccbytes = 10,
 491        .eccpos = { 0, 1, 2, 3, 4,
 492                /* offset 5 holds the badblock marker */
 493                6, 7,
 494                13, 14, 15, },
 495        .oobfree = {
 496                {.offset = 8, .length = 5, },
 497                {.offset = 16, },
 498        },
 499};
 500
 501/* An ECC layout for using 4-bit ECC with large-page (2048bytes) flash,
 502 * storing ten ECC bytes plus the manufacturer's bad block marker byte,
 503 * and not overlapping the default BBT markers.
 504 */
 505static struct nand_ecclayout hwecc4_2048 __initconst = {
 506        .eccbytes = 40,
 507        .eccpos = {
 508                /* at the end of spare sector */
 509                24, 25, 26, 27, 28, 29, 30, 31, 32, 33,
 510                34, 35, 36, 37, 38, 39, 40, 41, 42, 43,
 511                44, 45, 46, 47, 48, 49, 50, 51, 52, 53,
 512                54, 55, 56, 57, 58, 59, 60, 61, 62, 63,
 513                },
 514        .oobfree = {
 515                /* 2 bytes at offset 0 hold manufacturer badblock markers */
 516                {.offset = 2, .length = 22, },
 517                /* 5 bytes at offset 8 hold BBT markers */
 518                /* 8 bytes at offset 16 hold JFFS2 clean markers */
 519        },
 520};
 521
 522static int __init nand_davinci_probe(struct platform_device *pdev)
 523{
 524        struct davinci_nand_pdata       *pdata = pdev->dev.platform_data;
 525        struct davinci_nand_info        *info;
 526        struct resource                 *res1;
 527        struct resource                 *res2;
 528        void __iomem                    *vaddr;
 529        void __iomem                    *base;
 530        int                             ret;
 531        uint32_t                        val;
 532        nand_ecc_modes_t                ecc_mode;
 533        struct mtd_partition            *mtd_parts = NULL;
 534        int                             mtd_parts_nb = 0;
 535
 536        /* insist on board-specific configuration */
 537        if (!pdata)
 538                return -ENODEV;
 539
 540        /* which external chipselect will we be managing? */
 541        if (pdev->id < 0 || pdev->id > 3)
 542                return -ENODEV;
 543
 544        info = kzalloc(sizeof(*info), GFP_KERNEL);
 545        if (!info) {
 546                dev_err(&pdev->dev, "unable to allocate memory\n");
 547                ret = -ENOMEM;
 548                goto err_nomem;
 549        }
 550
 551        platform_set_drvdata(pdev, info);
 552
 553        res1 = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 554        res2 = platform_get_resource(pdev, IORESOURCE_MEM, 1);
 555        if (!res1 || !res2) {
 556                dev_err(&pdev->dev, "resource missing\n");
 557                ret = -EINVAL;
 558                goto err_nomem;
 559        }
 560
 561        vaddr = ioremap(res1->start, resource_size(res1));
 562        base = ioremap(res2->start, resource_size(res2));
 563        if (!vaddr || !base) {
 564                dev_err(&pdev->dev, "ioremap failed\n");
 565                ret = -EINVAL;
 566                goto err_ioremap;
 567        }
 568
 569        info->dev               = &pdev->dev;
 570        info->base              = base;
 571        info->vaddr             = vaddr;
 572
 573        info->mtd.priv          = &info->chip;
 574        info->mtd.name          = dev_name(&pdev->dev);
 575        info->mtd.owner         = THIS_MODULE;
 576
 577        info->mtd.dev.parent    = &pdev->dev;
 578
 579        info->chip.IO_ADDR_R    = vaddr;
 580        info->chip.IO_ADDR_W    = vaddr;
 581        info->chip.chip_delay   = 0;
 582        info->chip.select_chip  = nand_davinci_select_chip;
 583
 584        /* options such as NAND_USE_FLASH_BBT or 16-bit widths */
 585        info->chip.options      = pdata->options;
 586        info->chip.bbt_td       = pdata->bbt_td;
 587        info->chip.bbt_md       = pdata->bbt_md;
 588        info->timing            = pdata->timing;
 589
 590        info->ioaddr            = (uint32_t __force) vaddr;
 591
 592        info->current_cs        = info->ioaddr;
 593        info->core_chipsel      = pdev->id;
 594        info->mask_chipsel      = pdata->mask_chipsel;
 595
 596        /* use nandboot-capable ALE/CLE masks by default */
 597        info->mask_ale          = pdata->mask_ale ? : MASK_ALE;
 598        info->mask_cle          = pdata->mask_cle ? : MASK_CLE;
 599
 600        /* Set address of hardware control function */
 601        info->chip.cmd_ctrl     = nand_davinci_hwcontrol;
 602        info->chip.dev_ready    = nand_davinci_dev_ready;
 603
 604        /* Speed up buffer I/O */
 605        info->chip.read_buf     = nand_davinci_read_buf;
 606        info->chip.write_buf    = nand_davinci_write_buf;
 607
 608        /* Use board-specific ECC config */
 609        ecc_mode                = pdata->ecc_mode;
 610
 611        ret = -EINVAL;
 612        switch (ecc_mode) {
 613        case NAND_ECC_NONE:
 614        case NAND_ECC_SOFT:
 615                pdata->ecc_bits = 0;
 616                break;
 617        case NAND_ECC_HW:
 618                if (pdata->ecc_bits == 4) {
 619                        /* No sanity checks:  CPUs must support this,
 620                         * and the chips may not use NAND_BUSWIDTH_16.
 621                         */
 622
 623                        /* No sharing 4-bit hardware between chipselects yet */
 624                        spin_lock_irq(&davinci_nand_lock);
 625                        if (ecc4_busy)
 626                                ret = -EBUSY;
 627                        else
 628                                ecc4_busy = true;
 629                        spin_unlock_irq(&davinci_nand_lock);
 630
 631                        if (ret == -EBUSY)
 632                                goto err_ecc;
 633
 634                        info->chip.ecc.calculate = nand_davinci_calculate_4bit;
 635                        info->chip.ecc.correct = nand_davinci_correct_4bit;
 636                        info->chip.ecc.hwctl = nand_davinci_hwctl_4bit;
 637                        info->chip.ecc.bytes = 10;
 638                } else {
 639                        info->chip.ecc.calculate = nand_davinci_calculate_1bit;
 640                        info->chip.ecc.correct = nand_davinci_correct_1bit;
 641                        info->chip.ecc.hwctl = nand_davinci_hwctl_1bit;
 642                        info->chip.ecc.bytes = 3;
 643                }
 644                info->chip.ecc.size = 512;
 645                break;
 646        default:
 647                ret = -EINVAL;
 648                goto err_ecc;
 649        }
 650        info->chip.ecc.mode = ecc_mode;
 651
 652        info->clk = clk_get(&pdev->dev, "aemif");
 653        if (IS_ERR(info->clk)) {
 654                ret = PTR_ERR(info->clk);
 655                dev_dbg(&pdev->dev, "unable to get AEMIF clock, err %d\n", ret);
 656                goto err_clk;
 657        }
 658
 659        ret = clk_enable(info->clk);
 660        if (ret < 0) {
 661                dev_dbg(&pdev->dev, "unable to enable AEMIF clock, err %d\n",
 662                        ret);
 663                goto err_clk_enable;
 664        }
 665
 666        /*
 667         * Setup Async configuration register in case we did not boot from
 668         * NAND and so bootloader did not bother to set it up.
 669         */
 670        val = davinci_nand_readl(info, A1CR_OFFSET + info->core_chipsel * 4);
 671
 672        /* Extended Wait is not valid and Select Strobe mode is not used */
 673        val &= ~(ACR_ASIZE_MASK | ACR_EW_MASK | ACR_SS_MASK);
 674        if (info->chip.options & NAND_BUSWIDTH_16)
 675                val |= 0x1;
 676
 677        davinci_nand_writel(info, A1CR_OFFSET + info->core_chipsel * 4, val);
 678
 679        ret = davinci_aemif_setup_timing(info->timing, info->base,
 680                                                        info->core_chipsel);
 681        if (ret < 0) {
 682                dev_dbg(&pdev->dev, "NAND timing values setup fail\n");
 683                goto err_timing;
 684        }
 685
 686        spin_lock_irq(&davinci_nand_lock);
 687
 688        /* put CSxNAND into NAND mode */
 689        val = davinci_nand_readl(info, NANDFCR_OFFSET);
 690        val |= BIT(info->core_chipsel);
 691        davinci_nand_writel(info, NANDFCR_OFFSET, val);
 692
 693        spin_unlock_irq(&davinci_nand_lock);
 694
 695        /* Scan to find existence of the device(s) */
 696        ret = nand_scan_ident(&info->mtd, pdata->mask_chipsel ? 2 : 1, NULL);
 697        if (ret < 0) {
 698                dev_dbg(&pdev->dev, "no NAND chip(s) found\n");
 699                goto err_scan;
 700        }
 701
 702        /* Update ECC layout if needed ... for 1-bit HW ECC, the default
 703         * is OK, but it allocates 6 bytes when only 3 are needed (for
 704         * each 512 bytes).  For the 4-bit HW ECC, that default is not
 705         * usable:  10 bytes are needed, not 6.
 706         */
 707        if (pdata->ecc_bits == 4) {
 708                int     chunks = info->mtd.writesize / 512;
 709
 710                if (!chunks || info->mtd.oobsize < 16) {
 711                        dev_dbg(&pdev->dev, "too small\n");
 712                        ret = -EINVAL;
 713                        goto err_scan;
 714                }
 715
 716                /* For small page chips, preserve the manufacturer's
 717                 * badblock marking data ... and make sure a flash BBT
 718                 * table marker fits in the free bytes.
 719                 */
 720                if (chunks == 1) {
 721                        info->ecclayout = hwecc4_small;
 722                        info->ecclayout.oobfree[1].length =
 723                                info->mtd.oobsize - 16;
 724                        goto syndrome_done;
 725                }
 726                if (chunks == 4) {
 727                        info->ecclayout = hwecc4_2048;
 728                        info->chip.ecc.mode = NAND_ECC_HW_OOB_FIRST;
 729                        goto syndrome_done;
 730                }
 731
 732                /* 4KiB page chips are not yet supported. The eccpos from
 733                 * nand_ecclayout cannot hold 80 bytes and change to eccpos[]
 734                 * breaks userspace ioctl interface with mtd-utils. Once we
 735                 * resolve this issue, NAND_ECC_HW_OOB_FIRST mode can be used
 736                 * for the 4KiB page chips.
 737                 *
 738                 * TODO: Note that nand_ecclayout has now been expanded and can
 739                 *  hold plenty of OOB entries.
 740                 */
 741                dev_warn(&pdev->dev, "no 4-bit ECC support yet "
 742                                "for 4KiB-page NAND\n");
 743                ret = -EIO;
 744                goto err_scan;
 745
 746syndrome_done:
 747                info->chip.ecc.layout = &info->ecclayout;
 748        }
 749
 750        ret = nand_scan_tail(&info->mtd);
 751        if (ret < 0)
 752                goto err_scan;
 753
 754        if (mtd_has_cmdlinepart()) {
 755                static const char *probes[] __initconst = {
 756                        "cmdlinepart", NULL
 757                };
 758
 759                mtd_parts_nb = parse_mtd_partitions(&info->mtd, probes,
 760                                                    &mtd_parts, 0);
 761        }
 762
 763        if (mtd_parts_nb <= 0) {
 764                mtd_parts = pdata->parts;
 765                mtd_parts_nb = pdata->nr_parts;
 766        }
 767
 768        /* Register any partitions */
 769        if (mtd_parts_nb > 0) {
 770                ret = mtd_device_register(&info->mtd, mtd_parts,
 771                                          mtd_parts_nb);
 772                if (ret == 0)
 773                        info->partitioned = true;
 774        }
 775
 776        /* If there's no partition info, just package the whole chip
 777         * as a single MTD device.
 778         */
 779        if (!info->partitioned)
 780                ret = mtd_device_register(&info->mtd, NULL, 0) ? -ENODEV : 0;
 781
 782        if (ret < 0)
 783                goto err_scan;
 784
 785        val = davinci_nand_readl(info, NRCSR_OFFSET);
 786        dev_info(&pdev->dev, "controller rev. %d.%d\n",
 787               (val >> 8) & 0xff, val & 0xff);
 788
 789        return 0;
 790
 791err_scan:
 792err_timing:
 793        clk_disable(info->clk);
 794
 795err_clk_enable:
 796        clk_put(info->clk);
 797
 798        spin_lock_irq(&davinci_nand_lock);
 799        if (ecc_mode == NAND_ECC_HW_SYNDROME)
 800                ecc4_busy = false;
 801        spin_unlock_irq(&davinci_nand_lock);
 802
 803err_ecc:
 804err_clk:
 805err_ioremap:
 806        if (base)
 807                iounmap(base);
 808        if (vaddr)
 809                iounmap(vaddr);
 810
 811err_nomem:
 812        kfree(info);
 813        return ret;
 814}
 815
 816static int __exit nand_davinci_remove(struct platform_device *pdev)
 817{
 818        struct davinci_nand_info *info = platform_get_drvdata(pdev);
 819        int status;
 820
 821        status = mtd_device_unregister(&info->mtd);
 822
 823        spin_lock_irq(&davinci_nand_lock);
 824        if (info->chip.ecc.mode == NAND_ECC_HW_SYNDROME)
 825                ecc4_busy = false;
 826        spin_unlock_irq(&davinci_nand_lock);
 827
 828        iounmap(info->base);
 829        iounmap(info->vaddr);
 830
 831        nand_release(&info->mtd);
 832
 833        clk_disable(info->clk);
 834        clk_put(info->clk);
 835
 836        kfree(info);
 837
 838        return 0;
 839}
 840
 841static struct platform_driver nand_davinci_driver = {
 842        .remove         = __exit_p(nand_davinci_remove),
 843        .driver         = {
 844                .name   = "davinci_nand",
 845        },
 846};
 847MODULE_ALIAS("platform:davinci_nand");
 848
 849static int __init nand_davinci_init(void)
 850{
 851        return platform_driver_probe(&nand_davinci_driver, nand_davinci_probe);
 852}
 853module_init(nand_davinci_init);
 854
 855static void __exit nand_davinci_exit(void)
 856{
 857        platform_driver_unregister(&nand_davinci_driver);
 858}
 859module_exit(nand_davinci_exit);
 860
 861MODULE_LICENSE("GPL");
 862MODULE_AUTHOR("Texas Instruments");
 863MODULE_DESCRIPTION("Davinci NAND flash driver");
 864
 865