linux/drivers/mtd/nand/nand_base.c
<<
>>
Prefs
   1/*
   2 *  drivers/mtd/nand.c
   3 *
   4 *  Overview:
   5 *   This is the generic MTD driver for NAND flash devices. It should be
   6 *   capable of working with almost all NAND chips currently available.
   7 *   Basic support for AG-AND chips is provided.
   8 *
   9 *      Additional technical information is available on
  10 *      http://www.linux-mtd.infradead.org/doc/nand.html
  11 *
  12 *  Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
  13 *                2002-2006 Thomas Gleixner (tglx@linutronix.de)
  14 *
  15 *  Credits:
  16 *      David Woodhouse for adding multichip support
  17 *
  18 *      Aleph One Ltd. and Toby Churchill Ltd. for supporting the
  19 *      rework for 2K page size chips
  20 *
  21 *  TODO:
  22 *      Enable cached programming for 2k page size chips
  23 *      Check, if mtd->ecctype should be set to MTD_ECC_HW
  24 *      if we have HW ecc support.
  25 *      The AG-AND chips have nice features for speed improvement,
  26 *      which are not supported yet. Read / program 4 pages in one go.
  27 *      BBT table is not serialized, has to be fixed
  28 *
  29 * This program is free software; you can redistribute it and/or modify
  30 * it under the terms of the GNU General Public License version 2 as
  31 * published by the Free Software Foundation.
  32 *
  33 */
  34
  35#include <linux/module.h>
  36#include <linux/delay.h>
  37#include <linux/errno.h>
  38#include <linux/err.h>
  39#include <linux/sched.h>
  40#include <linux/slab.h>
  41#include <linux/types.h>
  42#include <linux/mtd/mtd.h>
  43#include <linux/mtd/nand.h>
  44#include <linux/mtd/nand_ecc.h>
  45#include <linux/mtd/nand_bch.h>
  46#include <linux/interrupt.h>
  47#include <linux/bitops.h>
  48#include <linux/leds.h>
  49#include <linux/io.h>
  50#include <linux/mtd/partitions.h>
  51
  52/* Define default oob placement schemes for large and small page devices */
  53static struct nand_ecclayout nand_oob_8 = {
  54        .eccbytes = 3,
  55        .eccpos = {0, 1, 2},
  56        .oobfree = {
  57                {.offset = 3,
  58                 .length = 2},
  59                {.offset = 6,
  60                 .length = 2} }
  61};
  62
  63static struct nand_ecclayout nand_oob_16 = {
  64        .eccbytes = 6,
  65        .eccpos = {0, 1, 2, 3, 6, 7},
  66        .oobfree = {
  67                {.offset = 8,
  68                 . length = 8} }
  69};
  70
  71static struct nand_ecclayout nand_oob_64 = {
  72        .eccbytes = 24,
  73        .eccpos = {
  74                   40, 41, 42, 43, 44, 45, 46, 47,
  75                   48, 49, 50, 51, 52, 53, 54, 55,
  76                   56, 57, 58, 59, 60, 61, 62, 63},
  77        .oobfree = {
  78                {.offset = 2,
  79                 .length = 38} }
  80};
  81
  82static struct nand_ecclayout nand_oob_128 = {
  83        .eccbytes = 48,
  84        .eccpos = {
  85                   80, 81, 82, 83, 84, 85, 86, 87,
  86                   88, 89, 90, 91, 92, 93, 94, 95,
  87                   96, 97, 98, 99, 100, 101, 102, 103,
  88                   104, 105, 106, 107, 108, 109, 110, 111,
  89                   112, 113, 114, 115, 116, 117, 118, 119,
  90                   120, 121, 122, 123, 124, 125, 126, 127},
  91        .oobfree = {
  92                {.offset = 2,
  93                 .length = 78} }
  94};
  95
  96static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
  97                           int new_state);
  98
  99static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
 100                             struct mtd_oob_ops *ops);
 101
 102/*
 103 * For devices which display every fart in the system on a separate LED. Is
 104 * compiled away when LED support is disabled.
 105 */
 106DEFINE_LED_TRIGGER(nand_led_trigger);
 107
 108static int check_offs_len(struct mtd_info *mtd,
 109                                        loff_t ofs, uint64_t len)
 110{
 111        struct nand_chip *chip = mtd->priv;
 112        int ret = 0;
 113
 114        /* Start address must align on block boundary */
 115        if (ofs & ((1 << chip->phys_erase_shift) - 1)) {
 116                DEBUG(MTD_DEBUG_LEVEL0, "%s: Unaligned address\n", __func__);
 117                ret = -EINVAL;
 118        }
 119
 120        /* Length must align on block boundary */
 121        if (len & ((1 << chip->phys_erase_shift) - 1)) {
 122                DEBUG(MTD_DEBUG_LEVEL0, "%s: Length not block aligned\n",
 123                                        __func__);
 124                ret = -EINVAL;
 125        }
 126
 127        /* Do not allow past end of device */
 128        if (ofs + len > mtd->size) {
 129                DEBUG(MTD_DEBUG_LEVEL0, "%s: Past end of device\n",
 130                                        __func__);
 131                ret = -EINVAL;
 132        }
 133
 134        return ret;
 135}
 136
 137/**
 138 * nand_release_device - [GENERIC] release chip
 139 * @mtd:        MTD device structure
 140 *
 141 * Deselect, release chip lock and wake up anyone waiting on the device
 142 */
 143static void nand_release_device(struct mtd_info *mtd)
 144{
 145        struct nand_chip *chip = mtd->priv;
 146
 147        /* De-select the NAND device */
 148        chip->select_chip(mtd, -1);
 149
 150        /* Release the controller and the chip */
 151        spin_lock(&chip->controller->lock);
 152        chip->controller->active = NULL;
 153        chip->state = FL_READY;
 154        wake_up(&chip->controller->wq);
 155        spin_unlock(&chip->controller->lock);
 156}
 157
 158/**
 159 * nand_read_byte - [DEFAULT] read one byte from the chip
 160 * @mtd:        MTD device structure
 161 *
 162 * Default read function for 8bit buswith
 163 */
 164static uint8_t nand_read_byte(struct mtd_info *mtd)
 165{
 166        struct nand_chip *chip = mtd->priv;
 167        return readb(chip->IO_ADDR_R);
 168}
 169
 170/**
 171 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
 172 * @mtd:        MTD device structure
 173 *
 174 * Default read function for 16bit buswith with
 175 * endianess conversion
 176 */
 177static uint8_t nand_read_byte16(struct mtd_info *mtd)
 178{
 179        struct nand_chip *chip = mtd->priv;
 180        return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
 181}
 182
 183/**
 184 * nand_read_word - [DEFAULT] read one word from the chip
 185 * @mtd:        MTD device structure
 186 *
 187 * Default read function for 16bit buswith without
 188 * endianess conversion
 189 */
 190static u16 nand_read_word(struct mtd_info *mtd)
 191{
 192        struct nand_chip *chip = mtd->priv;
 193        return readw(chip->IO_ADDR_R);
 194}
 195
 196/**
 197 * nand_select_chip - [DEFAULT] control CE line
 198 * @mtd:        MTD device structure
 199 * @chipnr:     chipnumber to select, -1 for deselect
 200 *
 201 * Default select function for 1 chip devices.
 202 */
 203static void nand_select_chip(struct mtd_info *mtd, int chipnr)
 204{
 205        struct nand_chip *chip = mtd->priv;
 206
 207        switch (chipnr) {
 208        case -1:
 209                chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
 210                break;
 211        case 0:
 212                break;
 213
 214        default:
 215                BUG();
 216        }
 217}
 218
 219/**
 220 * nand_write_buf - [DEFAULT] write buffer to chip
 221 * @mtd:        MTD device structure
 222 * @buf:        data buffer
 223 * @len:        number of bytes to write
 224 *
 225 * Default write function for 8bit buswith
 226 */
 227static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 228{
 229        int i;
 230        struct nand_chip *chip = mtd->priv;
 231
 232        for (i = 0; i < len; i++)
 233                writeb(buf[i], chip->IO_ADDR_W);
 234}
 235
 236/**
 237 * nand_read_buf - [DEFAULT] read chip data into buffer
 238 * @mtd:        MTD device structure
 239 * @buf:        buffer to store date
 240 * @len:        number of bytes to read
 241 *
 242 * Default read function for 8bit buswith
 243 */
 244static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
 245{
 246        int i;
 247        struct nand_chip *chip = mtd->priv;
 248
 249        for (i = 0; i < len; i++)
 250                buf[i] = readb(chip->IO_ADDR_R);
 251}
 252
 253/**
 254 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
 255 * @mtd:        MTD device structure
 256 * @buf:        buffer containing the data to compare
 257 * @len:        number of bytes to compare
 258 *
 259 * Default verify function for 8bit buswith
 260 */
 261static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
 262{
 263        int i;
 264        struct nand_chip *chip = mtd->priv;
 265
 266        for (i = 0; i < len; i++)
 267                if (buf[i] != readb(chip->IO_ADDR_R))
 268                        return -EFAULT;
 269        return 0;
 270}
 271
 272/**
 273 * nand_write_buf16 - [DEFAULT] write buffer to chip
 274 * @mtd:        MTD device structure
 275 * @buf:        data buffer
 276 * @len:        number of bytes to write
 277 *
 278 * Default write function for 16bit buswith
 279 */
 280static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 281{
 282        int i;
 283        struct nand_chip *chip = mtd->priv;
 284        u16 *p = (u16 *) buf;
 285        len >>= 1;
 286
 287        for (i = 0; i < len; i++)
 288                writew(p[i], chip->IO_ADDR_W);
 289
 290}
 291
 292/**
 293 * nand_read_buf16 - [DEFAULT] read chip data into buffer
 294 * @mtd:        MTD device structure
 295 * @buf:        buffer to store date
 296 * @len:        number of bytes to read
 297 *
 298 * Default read function for 16bit buswith
 299 */
 300static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
 301{
 302        int i;
 303        struct nand_chip *chip = mtd->priv;
 304        u16 *p = (u16 *) buf;
 305        len >>= 1;
 306
 307        for (i = 0; i < len; i++)
 308                p[i] = readw(chip->IO_ADDR_R);
 309}
 310
 311/**
 312 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
 313 * @mtd:        MTD device structure
 314 * @buf:        buffer containing the data to compare
 315 * @len:        number of bytes to compare
 316 *
 317 * Default verify function for 16bit buswith
 318 */
 319static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
 320{
 321        int i;
 322        struct nand_chip *chip = mtd->priv;
 323        u16 *p = (u16 *) buf;
 324        len >>= 1;
 325
 326        for (i = 0; i < len; i++)
 327                if (p[i] != readw(chip->IO_ADDR_R))
 328                        return -EFAULT;
 329
 330        return 0;
 331}
 332
 333/**
 334 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
 335 * @mtd:        MTD device structure
 336 * @ofs:        offset from device start
 337 * @getchip:    0, if the chip is already selected
 338 *
 339 * Check, if the block is bad.
 340 */
 341static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
 342{
 343        int page, chipnr, res = 0;
 344        struct nand_chip *chip = mtd->priv;
 345        u16 bad;
 346
 347        if (chip->options & NAND_BBT_SCANLASTPAGE)
 348                ofs += mtd->erasesize - mtd->writesize;
 349
 350        page = (int)(ofs >> chip->page_shift) & chip->pagemask;
 351
 352        if (getchip) {
 353                chipnr = (int)(ofs >> chip->chip_shift);
 354
 355                nand_get_device(chip, mtd, FL_READING);
 356
 357                /* Select the NAND device */
 358                chip->select_chip(mtd, chipnr);
 359        }
 360
 361        if (chip->options & NAND_BUSWIDTH_16) {
 362                chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
 363                              page);
 364                bad = cpu_to_le16(chip->read_word(mtd));
 365                if (chip->badblockpos & 0x1)
 366                        bad >>= 8;
 367                else
 368                        bad &= 0xFF;
 369        } else {
 370                chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos, page);
 371                bad = chip->read_byte(mtd);
 372        }
 373
 374        if (likely(chip->badblockbits == 8))
 375                res = bad != 0xFF;
 376        else
 377                res = hweight8(bad) < chip->badblockbits;
 378
 379        if (getchip)
 380                nand_release_device(mtd);
 381
 382        return res;
 383}
 384
 385/**
 386 * nand_default_block_markbad - [DEFAULT] mark a block bad
 387 * @mtd:        MTD device structure
 388 * @ofs:        offset from device start
 389 *
 390 * This is the default implementation, which can be overridden by
 391 * a hardware specific driver.
 392*/
 393static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
 394{
 395        struct nand_chip *chip = mtd->priv;
 396        uint8_t buf[2] = { 0, 0 };
 397        int block, ret, i = 0;
 398
 399        if (chip->options & NAND_BBT_SCANLASTPAGE)
 400                ofs += mtd->erasesize - mtd->writesize;
 401
 402        /* Get block number */
 403        block = (int)(ofs >> chip->bbt_erase_shift);
 404        if (chip->bbt)
 405                chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
 406
 407        /* Do we have a flash based bad block table ? */
 408        if (chip->options & NAND_USE_FLASH_BBT)
 409                ret = nand_update_bbt(mtd, ofs);
 410        else {
 411                nand_get_device(chip, mtd, FL_WRITING);
 412
 413                /* Write to first two pages and to byte 1 and 6 if necessary.
 414                 * If we write to more than one location, the first error
 415                 * encountered quits the procedure. We write two bytes per
 416                 * location, so we dont have to mess with 16 bit access.
 417                 */
 418                do {
 419                        chip->ops.len = chip->ops.ooblen = 2;
 420                        chip->ops.datbuf = NULL;
 421                        chip->ops.oobbuf = buf;
 422                        chip->ops.ooboffs = chip->badblockpos & ~0x01;
 423
 424                        ret = nand_do_write_oob(mtd, ofs, &chip->ops);
 425
 426                        if (!ret && (chip->options & NAND_BBT_SCANBYTE1AND6)) {
 427                                chip->ops.ooboffs = NAND_SMALL_BADBLOCK_POS
 428                                        & ~0x01;
 429                                ret = nand_do_write_oob(mtd, ofs, &chip->ops);
 430                        }
 431                        i++;
 432                        ofs += mtd->writesize;
 433                } while (!ret && (chip->options & NAND_BBT_SCAN2NDPAGE) &&
 434                                i < 2);
 435
 436                nand_release_device(mtd);
 437        }
 438        if (!ret)
 439                mtd->ecc_stats.badblocks++;
 440
 441        return ret;
 442}
 443
 444/**
 445 * nand_check_wp - [GENERIC] check if the chip is write protected
 446 * @mtd:        MTD device structure
 447 * Check, if the device is write protected
 448 *
 449 * The function expects, that the device is already selected
 450 */
 451static int nand_check_wp(struct mtd_info *mtd)
 452{
 453        struct nand_chip *chip = mtd->priv;
 454
 455        /* broken xD cards report WP despite being writable */
 456        if (chip->options & NAND_BROKEN_XD)
 457                return 0;
 458
 459        /* Check the WP bit */
 460        chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 461        return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
 462}
 463
 464/**
 465 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
 466 * @mtd:        MTD device structure
 467 * @ofs:        offset from device start
 468 * @getchip:    0, if the chip is already selected
 469 * @allowbbt:   1, if its allowed to access the bbt area
 470 *
 471 * Check, if the block is bad. Either by reading the bad block table or
 472 * calling of the scan function.
 473 */
 474static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
 475                               int allowbbt)
 476{
 477        struct nand_chip *chip = mtd->priv;
 478
 479        if (!chip->bbt)
 480                return chip->block_bad(mtd, ofs, getchip);
 481
 482        /* Return info from the table */
 483        return nand_isbad_bbt(mtd, ofs, allowbbt);
 484}
 485
 486/**
 487 * panic_nand_wait_ready - [GENERIC] Wait for the ready pin after commands.
 488 * @mtd:        MTD device structure
 489 * @timeo:      Timeout
 490 *
 491 * Helper function for nand_wait_ready used when needing to wait in interrupt
 492 * context.
 493 */
 494static void panic_nand_wait_ready(struct mtd_info *mtd, unsigned long timeo)
 495{
 496        struct nand_chip *chip = mtd->priv;
 497        int i;
 498
 499        /* Wait for the device to get ready */
 500        for (i = 0; i < timeo; i++) {
 501                if (chip->dev_ready(mtd))
 502                        break;
 503                touch_softlockup_watchdog();
 504                mdelay(1);
 505        }
 506}
 507
 508/*
 509 * Wait for the ready pin, after a command
 510 * The timeout is catched later.
 511 */
 512void nand_wait_ready(struct mtd_info *mtd)
 513{
 514        struct nand_chip *chip = mtd->priv;
 515        unsigned long timeo = jiffies + 2;
 516
 517        /* 400ms timeout */
 518        if (in_interrupt() || oops_in_progress)
 519                return panic_nand_wait_ready(mtd, 400);
 520
 521        led_trigger_event(nand_led_trigger, LED_FULL);
 522        /* wait until command is processed or timeout occures */
 523        do {
 524                if (chip->dev_ready(mtd))
 525                        break;
 526                touch_softlockup_watchdog();
 527        } while (time_before(jiffies, timeo));
 528        led_trigger_event(nand_led_trigger, LED_OFF);
 529}
 530EXPORT_SYMBOL_GPL(nand_wait_ready);
 531
 532/**
 533 * nand_command - [DEFAULT] Send command to NAND device
 534 * @mtd:        MTD device structure
 535 * @command:    the command to be sent
 536 * @column:     the column address for this command, -1 if none
 537 * @page_addr:  the page address for this command, -1 if none
 538 *
 539 * Send command to NAND device. This function is used for small page
 540 * devices (256/512 Bytes per page)
 541 */
 542static void nand_command(struct mtd_info *mtd, unsigned int command,
 543                         int column, int page_addr)
 544{
 545        register struct nand_chip *chip = mtd->priv;
 546        int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
 547
 548        /*
 549         * Write out the command to the device.
 550         */
 551        if (command == NAND_CMD_SEQIN) {
 552                int readcmd;
 553
 554                if (column >= mtd->writesize) {
 555                        /* OOB area */
 556                        column -= mtd->writesize;
 557                        readcmd = NAND_CMD_READOOB;
 558                } else if (column < 256) {
 559                        /* First 256 bytes --> READ0 */
 560                        readcmd = NAND_CMD_READ0;
 561                } else {
 562                        column -= 256;
 563                        readcmd = NAND_CMD_READ1;
 564                }
 565                chip->cmd_ctrl(mtd, readcmd, ctrl);
 566                ctrl &= ~NAND_CTRL_CHANGE;
 567        }
 568        chip->cmd_ctrl(mtd, command, ctrl);
 569
 570        /*
 571         * Address cycle, when necessary
 572         */
 573        ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
 574        /* Serially input address */
 575        if (column != -1) {
 576                /* Adjust columns for 16 bit buswidth */
 577                if (chip->options & NAND_BUSWIDTH_16)
 578                        column >>= 1;
 579                chip->cmd_ctrl(mtd, column, ctrl);
 580                ctrl &= ~NAND_CTRL_CHANGE;
 581        }
 582        if (page_addr != -1) {
 583                chip->cmd_ctrl(mtd, page_addr, ctrl);
 584                ctrl &= ~NAND_CTRL_CHANGE;
 585                chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
 586                /* One more address cycle for devices > 32MiB */
 587                if (chip->chipsize > (32 << 20))
 588                        chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
 589        }
 590        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 591
 592        /*
 593         * program and erase have their own busy handlers
 594         * status and sequential in needs no delay
 595         */
 596        switch (command) {
 597
 598        case NAND_CMD_PAGEPROG:
 599        case NAND_CMD_ERASE1:
 600        case NAND_CMD_ERASE2:
 601        case NAND_CMD_SEQIN:
 602        case NAND_CMD_STATUS:
 603                return;
 604
 605        case NAND_CMD_RESET:
 606                if (chip->dev_ready)
 607                        break;
 608                udelay(chip->chip_delay);
 609                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 610                               NAND_CTRL_CLE | NAND_CTRL_CHANGE);
 611                chip->cmd_ctrl(mtd,
 612                               NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 613                while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 614                                ;
 615                return;
 616
 617                /* This applies to read commands */
 618        default:
 619                /*
 620                 * If we don't have access to the busy pin, we apply the given
 621                 * command delay
 622                 */
 623                if (!chip->dev_ready) {
 624                        udelay(chip->chip_delay);
 625                        return;
 626                }
 627        }
 628        /* Apply this short delay always to ensure that we do wait tWB in
 629         * any case on any machine. */
 630        ndelay(100);
 631
 632        nand_wait_ready(mtd);
 633}
 634
 635/**
 636 * nand_command_lp - [DEFAULT] Send command to NAND large page device
 637 * @mtd:        MTD device structure
 638 * @command:    the command to be sent
 639 * @column:     the column address for this command, -1 if none
 640 * @page_addr:  the page address for this command, -1 if none
 641 *
 642 * Send command to NAND device. This is the version for the new large page
 643 * devices We dont have the separate regions as we have in the small page
 644 * devices.  We must emulate NAND_CMD_READOOB to keep the code compatible.
 645 */
 646static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
 647                            int column, int page_addr)
 648{
 649        register struct nand_chip *chip = mtd->priv;
 650
 651        /* Emulate NAND_CMD_READOOB */
 652        if (command == NAND_CMD_READOOB) {
 653                column += mtd->writesize;
 654                command = NAND_CMD_READ0;
 655        }
 656
 657        /* Command latch cycle */
 658        chip->cmd_ctrl(mtd, command & 0xff,
 659                       NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 660
 661        if (column != -1 || page_addr != -1) {
 662                int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
 663
 664                /* Serially input address */
 665                if (column != -1) {
 666                        /* Adjust columns for 16 bit buswidth */
 667                        if (chip->options & NAND_BUSWIDTH_16)
 668                                column >>= 1;
 669                        chip->cmd_ctrl(mtd, column, ctrl);
 670                        ctrl &= ~NAND_CTRL_CHANGE;
 671                        chip->cmd_ctrl(mtd, column >> 8, ctrl);
 672                }
 673                if (page_addr != -1) {
 674                        chip->cmd_ctrl(mtd, page_addr, ctrl);
 675                        chip->cmd_ctrl(mtd, page_addr >> 8,
 676                                       NAND_NCE | NAND_ALE);
 677                        /* One more address cycle for devices > 128MiB */
 678                        if (chip->chipsize > (128 << 20))
 679                                chip->cmd_ctrl(mtd, page_addr >> 16,
 680                                               NAND_NCE | NAND_ALE);
 681                }
 682        }
 683        chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
 684
 685        /*
 686         * program and erase have their own busy handlers
 687         * status, sequential in, and deplete1 need no delay
 688         */
 689        switch (command) {
 690
 691        case NAND_CMD_CACHEDPROG:
 692        case NAND_CMD_PAGEPROG:
 693        case NAND_CMD_ERASE1:
 694        case NAND_CMD_ERASE2:
 695        case NAND_CMD_SEQIN:
 696        case NAND_CMD_RNDIN:
 697        case NAND_CMD_STATUS:
 698        case NAND_CMD_DEPLETE1:
 699                return;
 700
 701                /*
 702                 * read error status commands require only a short delay
 703                 */
 704        case NAND_CMD_STATUS_ERROR:
 705        case NAND_CMD_STATUS_ERROR0:
 706        case NAND_CMD_STATUS_ERROR1:
 707        case NAND_CMD_STATUS_ERROR2:
 708        case NAND_CMD_STATUS_ERROR3:
 709                udelay(chip->chip_delay);
 710                return;
 711
 712        case NAND_CMD_RESET:
 713                if (chip->dev_ready)
 714                        break;
 715                udelay(chip->chip_delay);
 716                chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
 717                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 718                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 719                               NAND_NCE | NAND_CTRL_CHANGE);
 720                while (!(chip->read_byte(mtd) & NAND_STATUS_READY))
 721                                ;
 722                return;
 723
 724        case NAND_CMD_RNDOUT:
 725                /* No ready / busy check necessary */
 726                chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
 727                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 728                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 729                               NAND_NCE | NAND_CTRL_CHANGE);
 730                return;
 731
 732        case NAND_CMD_READ0:
 733                chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
 734                               NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
 735                chip->cmd_ctrl(mtd, NAND_CMD_NONE,
 736                               NAND_NCE | NAND_CTRL_CHANGE);
 737
 738                /* This applies to read commands */
 739        default:
 740                /*
 741                 * If we don't have access to the busy pin, we apply the given
 742                 * command delay
 743                 */
 744                if (!chip->dev_ready) {
 745                        udelay(chip->chip_delay);
 746                        return;
 747                }
 748        }
 749
 750        /* Apply this short delay always to ensure that we do wait tWB in
 751         * any case on any machine. */
 752        ndelay(100);
 753
 754        nand_wait_ready(mtd);
 755}
 756
 757/**
 758 * panic_nand_get_device - [GENERIC] Get chip for selected access
 759 * @chip:       the nand chip descriptor
 760 * @mtd:        MTD device structure
 761 * @new_state:  the state which is requested
 762 *
 763 * Used when in panic, no locks are taken.
 764 */
 765static void panic_nand_get_device(struct nand_chip *chip,
 766                      struct mtd_info *mtd, int new_state)
 767{
 768        /* Hardware controller shared among independend devices */
 769        chip->controller->active = chip;
 770        chip->state = new_state;
 771}
 772
 773/**
 774 * nand_get_device - [GENERIC] Get chip for selected access
 775 * @chip:       the nand chip descriptor
 776 * @mtd:        MTD device structure
 777 * @new_state:  the state which is requested
 778 *
 779 * Get the device and lock it for exclusive access
 780 */
 781static int
 782nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
 783{
 784        spinlock_t *lock = &chip->controller->lock;
 785        wait_queue_head_t *wq = &chip->controller->wq;
 786        DECLARE_WAITQUEUE(wait, current);
 787retry:
 788        spin_lock(lock);
 789
 790        /* Hardware controller shared among independent devices */
 791        if (!chip->controller->active)
 792                chip->controller->active = chip;
 793
 794        if (chip->controller->active == chip && chip->state == FL_READY) {
 795                chip->state = new_state;
 796                spin_unlock(lock);
 797                return 0;
 798        }
 799        if (new_state == FL_PM_SUSPENDED) {
 800                if (chip->controller->active->state == FL_PM_SUSPENDED) {
 801                        chip->state = FL_PM_SUSPENDED;
 802                        spin_unlock(lock);
 803                        return 0;
 804                }
 805        }
 806        set_current_state(TASK_UNINTERRUPTIBLE);
 807        add_wait_queue(wq, &wait);
 808        spin_unlock(lock);
 809        schedule();
 810        remove_wait_queue(wq, &wait);
 811        goto retry;
 812}
 813
 814/**
 815 * panic_nand_wait - [GENERIC]  wait until the command is done
 816 * @mtd:        MTD device structure
 817 * @chip:       NAND chip structure
 818 * @timeo:      Timeout
 819 *
 820 * Wait for command done. This is a helper function for nand_wait used when
 821 * we are in interrupt context. May happen when in panic and trying to write
 822 * an oops through mtdoops.
 823 */
 824static void panic_nand_wait(struct mtd_info *mtd, struct nand_chip *chip,
 825                            unsigned long timeo)
 826{
 827        int i;
 828        for (i = 0; i < timeo; i++) {
 829                if (chip->dev_ready) {
 830                        if (chip->dev_ready(mtd))
 831                                break;
 832                } else {
 833                        if (chip->read_byte(mtd) & NAND_STATUS_READY)
 834                                break;
 835                }
 836                mdelay(1);
 837        }
 838}
 839
 840/**
 841 * nand_wait - [DEFAULT]  wait until the command is done
 842 * @mtd:        MTD device structure
 843 * @chip:       NAND chip structure
 844 *
 845 * Wait for command done. This applies to erase and program only
 846 * Erase can take up to 400ms and program up to 20ms according to
 847 * general NAND and SmartMedia specs
 848 */
 849static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
 850{
 851
 852        unsigned long timeo = jiffies;
 853        int status, state = chip->state;
 854
 855        if (state == FL_ERASING)
 856                timeo += (HZ * 400) / 1000;
 857        else
 858                timeo += (HZ * 20) / 1000;
 859
 860        led_trigger_event(nand_led_trigger, LED_FULL);
 861
 862        /* Apply this short delay always to ensure that we do wait tWB in
 863         * any case on any machine. */
 864        ndelay(100);
 865
 866        if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
 867                chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
 868        else
 869                chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
 870
 871        if (in_interrupt() || oops_in_progress)
 872                panic_nand_wait(mtd, chip, timeo);
 873        else {
 874                while (time_before(jiffies, timeo)) {
 875                        if (chip->dev_ready) {
 876                                if (chip->dev_ready(mtd))
 877                                        break;
 878                        } else {
 879                                if (chip->read_byte(mtd) & NAND_STATUS_READY)
 880                                        break;
 881                        }
 882                        cond_resched();
 883                }
 884        }
 885        led_trigger_event(nand_led_trigger, LED_OFF);
 886
 887        status = (int)chip->read_byte(mtd);
 888        return status;
 889}
 890
 891/**
 892 * __nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 893 *
 894 * @mtd: mtd info
 895 * @ofs: offset to start unlock from
 896 * @len: length to unlock
 897 * @invert:   when = 0, unlock the range of blocks within the lower and
 898 *                      upper boundary address
 899 *            when = 1, unlock the range of blocks outside the boundaries
 900 *                      of the lower and upper boundary address
 901 *
 902 * return - unlock status
 903 */
 904static int __nand_unlock(struct mtd_info *mtd, loff_t ofs,
 905                                        uint64_t len, int invert)
 906{
 907        int ret = 0;
 908        int status, page;
 909        struct nand_chip *chip = mtd->priv;
 910
 911        /* Submit address of first page to unlock */
 912        page = ofs >> chip->page_shift;
 913        chip->cmdfunc(mtd, NAND_CMD_UNLOCK1, -1, page & chip->pagemask);
 914
 915        /* Submit address of last page to unlock */
 916        page = (ofs + len) >> chip->page_shift;
 917        chip->cmdfunc(mtd, NAND_CMD_UNLOCK2, -1,
 918                                (page | invert) & chip->pagemask);
 919
 920        /* Call wait ready function */
 921        status = chip->waitfunc(mtd, chip);
 922        udelay(1000);
 923        /* See if device thinks it succeeded */
 924        if (status & 0x01) {
 925                DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
 926                                        __func__, status);
 927                ret = -EIO;
 928        }
 929
 930        return ret;
 931}
 932
 933/**
 934 * nand_unlock - [REPLACEABLE] unlocks specified locked blocks
 935 *
 936 * @mtd: mtd info
 937 * @ofs: offset to start unlock from
 938 * @len: length to unlock
 939 *
 940 * return - unlock status
 941 */
 942int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 943{
 944        int ret = 0;
 945        int chipnr;
 946        struct nand_chip *chip = mtd->priv;
 947
 948        DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
 949                        __func__, (unsigned long long)ofs, len);
 950
 951        if (check_offs_len(mtd, ofs, len))
 952                ret = -EINVAL;
 953
 954        /* Align to last block address if size addresses end of the device */
 955        if (ofs + len == mtd->size)
 956                len -= mtd->erasesize;
 957
 958        nand_get_device(chip, mtd, FL_UNLOCKING);
 959
 960        /* Shift to get chip number */
 961        chipnr = ofs >> chip->chip_shift;
 962
 963        chip->select_chip(mtd, chipnr);
 964
 965        /* Check, if it is write protected */
 966        if (nand_check_wp(mtd)) {
 967                DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
 968                                        __func__);
 969                ret = -EIO;
 970                goto out;
 971        }
 972
 973        ret = __nand_unlock(mtd, ofs, len, 0);
 974
 975out:
 976        nand_release_device(mtd);
 977
 978        return ret;
 979}
 980EXPORT_SYMBOL(nand_unlock);
 981
 982/**
 983 * nand_lock - [REPLACEABLE] locks all blocks present in the device
 984 *
 985 * @mtd: mtd info
 986 * @ofs: offset to start unlock from
 987 * @len: length to unlock
 988 *
 989 * return - lock status
 990 *
 991 * This feature is not supported in many NAND parts. 'Micron' NAND parts
 992 * do have this feature, but it allows only to lock all blocks, not for
 993 * specified range for block.
 994 *
 995 * Implementing 'lock' feature by making use of 'unlock', for now.
 996 */
 997int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
 998{
 999        int ret = 0;
1000        int chipnr, status, page;
1001        struct nand_chip *chip = mtd->priv;
1002
1003        DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
1004                        __func__, (unsigned long long)ofs, len);
1005
1006        if (check_offs_len(mtd, ofs, len))
1007                ret = -EINVAL;
1008
1009        nand_get_device(chip, mtd, FL_LOCKING);
1010
1011        /* Shift to get chip number */
1012        chipnr = ofs >> chip->chip_shift;
1013
1014        chip->select_chip(mtd, chipnr);
1015
1016        /* Check, if it is write protected */
1017        if (nand_check_wp(mtd)) {
1018                DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
1019                                        __func__);
1020                status = MTD_ERASE_FAILED;
1021                ret = -EIO;
1022                goto out;
1023        }
1024
1025        /* Submit address of first page to lock */
1026        page = ofs >> chip->page_shift;
1027        chip->cmdfunc(mtd, NAND_CMD_LOCK, -1, page & chip->pagemask);
1028
1029        /* Call wait ready function */
1030        status = chip->waitfunc(mtd, chip);
1031        udelay(1000);
1032        /* See if device thinks it succeeded */
1033        if (status & 0x01) {
1034                DEBUG(MTD_DEBUG_LEVEL0, "%s: Error status = 0x%08x\n",
1035                                        __func__, status);
1036                ret = -EIO;
1037                goto out;
1038        }
1039
1040        ret = __nand_unlock(mtd, ofs, len, 0x1);
1041
1042out:
1043        nand_release_device(mtd);
1044
1045        return ret;
1046}
1047EXPORT_SYMBOL(nand_lock);
1048
1049/**
1050 * nand_read_page_raw - [Intern] read raw page data without ecc
1051 * @mtd:        mtd info structure
1052 * @chip:       nand chip info structure
1053 * @buf:        buffer to store read data
1054 * @page:       page number to read
1055 *
1056 * Not for syndrome calculating ecc controllers, which use a special oob layout
1057 */
1058static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1059                              uint8_t *buf, int page)
1060{
1061        chip->read_buf(mtd, buf, mtd->writesize);
1062        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1063        return 0;
1064}
1065
1066/**
1067 * nand_read_page_raw_syndrome - [Intern] read raw page data without ecc
1068 * @mtd:        mtd info structure
1069 * @chip:       nand chip info structure
1070 * @buf:        buffer to store read data
1071 * @page:       page number to read
1072 *
1073 * We need a special oob layout and handling even when OOB isn't used.
1074 */
1075static int nand_read_page_raw_syndrome(struct mtd_info *mtd,
1076                                        struct nand_chip *chip,
1077                                        uint8_t *buf, int page)
1078{
1079        int eccsize = chip->ecc.size;
1080        int eccbytes = chip->ecc.bytes;
1081        uint8_t *oob = chip->oob_poi;
1082        int steps, size;
1083
1084        for (steps = chip->ecc.steps; steps > 0; steps--) {
1085                chip->read_buf(mtd, buf, eccsize);
1086                buf += eccsize;
1087
1088                if (chip->ecc.prepad) {
1089                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1090                        oob += chip->ecc.prepad;
1091                }
1092
1093                chip->read_buf(mtd, oob, eccbytes);
1094                oob += eccbytes;
1095
1096                if (chip->ecc.postpad) {
1097                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1098                        oob += chip->ecc.postpad;
1099                }
1100        }
1101
1102        size = mtd->oobsize - (oob - chip->oob_poi);
1103        if (size)
1104                chip->read_buf(mtd, oob, size);
1105
1106        return 0;
1107}
1108
1109/**
1110 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
1111 * @mtd:        mtd info structure
1112 * @chip:       nand chip info structure
1113 * @buf:        buffer to store read data
1114 * @page:       page number to read
1115 */
1116static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1117                                uint8_t *buf, int page)
1118{
1119        int i, eccsize = chip->ecc.size;
1120        int eccbytes = chip->ecc.bytes;
1121        int eccsteps = chip->ecc.steps;
1122        uint8_t *p = buf;
1123        uint8_t *ecc_calc = chip->buffers->ecccalc;
1124        uint8_t *ecc_code = chip->buffers->ecccode;
1125        uint32_t *eccpos = chip->ecc.layout->eccpos;
1126
1127        chip->ecc.read_page_raw(mtd, chip, buf, page);
1128
1129        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1130                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1131
1132        for (i = 0; i < chip->ecc.total; i++)
1133                ecc_code[i] = chip->oob_poi[eccpos[i]];
1134
1135        eccsteps = chip->ecc.steps;
1136        p = buf;
1137
1138        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1139                int stat;
1140
1141                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1142                if (stat < 0)
1143                        mtd->ecc_stats.failed++;
1144                else
1145                        mtd->ecc_stats.corrected += stat;
1146        }
1147        return 0;
1148}
1149
1150/**
1151 * nand_read_subpage - [REPLACABLE] software ecc based sub-page read function
1152 * @mtd:        mtd info structure
1153 * @chip:       nand chip info structure
1154 * @data_offs:  offset of requested data within the page
1155 * @readlen:    data length
1156 * @bufpoi:     buffer to store read data
1157 */
1158static int nand_read_subpage(struct mtd_info *mtd, struct nand_chip *chip,
1159                        uint32_t data_offs, uint32_t readlen, uint8_t *bufpoi)
1160{
1161        int start_step, end_step, num_steps;
1162        uint32_t *eccpos = chip->ecc.layout->eccpos;
1163        uint8_t *p;
1164        int data_col_addr, i, gaps = 0;
1165        int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
1166        int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
1167        int index = 0;
1168
1169        /* Column address wihin the page aligned to ECC size (256bytes). */
1170        start_step = data_offs / chip->ecc.size;
1171        end_step = (data_offs + readlen - 1) / chip->ecc.size;
1172        num_steps = end_step - start_step + 1;
1173
1174        /* Data size aligned to ECC ecc.size*/
1175        datafrag_len = num_steps * chip->ecc.size;
1176        eccfrag_len = num_steps * chip->ecc.bytes;
1177
1178        data_col_addr = start_step * chip->ecc.size;
1179        /* If we read not a page aligned data */
1180        if (data_col_addr != 0)
1181                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, data_col_addr, -1);
1182
1183        p = bufpoi + data_col_addr;
1184        chip->read_buf(mtd, p, datafrag_len);
1185
1186        /* Calculate  ECC */
1187        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
1188                chip->ecc.calculate(mtd, p, &chip->buffers->ecccalc[i]);
1189
1190        /* The performance is faster if to position offsets
1191           according to ecc.pos. Let make sure here that
1192           there are no gaps in ecc positions */
1193        for (i = 0; i < eccfrag_len - 1; i++) {
1194                if (eccpos[i + start_step * chip->ecc.bytes] + 1 !=
1195                        eccpos[i + start_step * chip->ecc.bytes + 1]) {
1196                        gaps = 1;
1197                        break;
1198                }
1199        }
1200        if (gaps) {
1201                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, mtd->writesize, -1);
1202                chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1203        } else {
1204                /* send the command to read the particular ecc bytes */
1205                /* take care about buswidth alignment in read_buf */
1206                index = start_step * chip->ecc.bytes;
1207
1208                aligned_pos = eccpos[index] & ~(busw - 1);
1209                aligned_len = eccfrag_len;
1210                if (eccpos[index] & (busw - 1))
1211                        aligned_len++;
1212                if (eccpos[index + (num_steps * chip->ecc.bytes)] & (busw - 1))
1213                        aligned_len++;
1214
1215                chip->cmdfunc(mtd, NAND_CMD_RNDOUT,
1216                                        mtd->writesize + aligned_pos, -1);
1217                chip->read_buf(mtd, &chip->oob_poi[aligned_pos], aligned_len);
1218        }
1219
1220        for (i = 0; i < eccfrag_len; i++)
1221                chip->buffers->ecccode[i] = chip->oob_poi[eccpos[i + index]];
1222
1223        p = bufpoi + data_col_addr;
1224        for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
1225                int stat;
1226
1227                stat = chip->ecc.correct(mtd, p,
1228                        &chip->buffers->ecccode[i], &chip->buffers->ecccalc[i]);
1229                if (stat < 0)
1230                        mtd->ecc_stats.failed++;
1231                else
1232                        mtd->ecc_stats.corrected += stat;
1233        }
1234        return 0;
1235}
1236
1237/**
1238 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
1239 * @mtd:        mtd info structure
1240 * @chip:       nand chip info structure
1241 * @buf:        buffer to store read data
1242 * @page:       page number to read
1243 *
1244 * Not for syndrome calculating ecc controllers which need a special oob layout
1245 */
1246static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1247                                uint8_t *buf, int page)
1248{
1249        int i, eccsize = chip->ecc.size;
1250        int eccbytes = chip->ecc.bytes;
1251        int eccsteps = chip->ecc.steps;
1252        uint8_t *p = buf;
1253        uint8_t *ecc_calc = chip->buffers->ecccalc;
1254        uint8_t *ecc_code = chip->buffers->ecccode;
1255        uint32_t *eccpos = chip->ecc.layout->eccpos;
1256
1257        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1258                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1259                chip->read_buf(mtd, p, eccsize);
1260                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1261        }
1262        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1263
1264        for (i = 0; i < chip->ecc.total; i++)
1265                ecc_code[i] = chip->oob_poi[eccpos[i]];
1266
1267        eccsteps = chip->ecc.steps;
1268        p = buf;
1269
1270        for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1271                int stat;
1272
1273                stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
1274                if (stat < 0)
1275                        mtd->ecc_stats.failed++;
1276                else
1277                        mtd->ecc_stats.corrected += stat;
1278        }
1279        return 0;
1280}
1281
1282/**
1283 * nand_read_page_hwecc_oob_first - [REPLACABLE] hw ecc, read oob first
1284 * @mtd:        mtd info structure
1285 * @chip:       nand chip info structure
1286 * @buf:        buffer to store read data
1287 * @page:       page number to read
1288 *
1289 * Hardware ECC for large page chips, require OOB to be read first.
1290 * For this ECC mode, the write_page method is re-used from ECC_HW.
1291 * These methods read/write ECC from the OOB area, unlike the
1292 * ECC_HW_SYNDROME support with multiple ECC steps, follows the
1293 * "infix ECC" scheme and reads/writes ECC from the data area, by
1294 * overwriting the NAND manufacturer bad block markings.
1295 */
1296static int nand_read_page_hwecc_oob_first(struct mtd_info *mtd,
1297        struct nand_chip *chip, uint8_t *buf, int page)
1298{
1299        int i, eccsize = chip->ecc.size;
1300        int eccbytes = chip->ecc.bytes;
1301        int eccsteps = chip->ecc.steps;
1302        uint8_t *p = buf;
1303        uint8_t *ecc_code = chip->buffers->ecccode;
1304        uint32_t *eccpos = chip->ecc.layout->eccpos;
1305        uint8_t *ecc_calc = chip->buffers->ecccalc;
1306
1307        /* Read the OOB area first */
1308        chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1309        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1310        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1311
1312        for (i = 0; i < chip->ecc.total; i++)
1313                ecc_code[i] = chip->oob_poi[eccpos[i]];
1314
1315        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1316                int stat;
1317
1318                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1319                chip->read_buf(mtd, p, eccsize);
1320                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1321
1322                stat = chip->ecc.correct(mtd, p, &ecc_code[i], NULL);
1323                if (stat < 0)
1324                        mtd->ecc_stats.failed++;
1325                else
1326                        mtd->ecc_stats.corrected += stat;
1327        }
1328        return 0;
1329}
1330
1331/**
1332 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
1333 * @mtd:        mtd info structure
1334 * @chip:       nand chip info structure
1335 * @buf:        buffer to store read data
1336 * @page:       page number to read
1337 *
1338 * The hw generator calculates the error syndrome automatically. Therefor
1339 * we need a special oob layout and handling.
1340 */
1341static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1342                                   uint8_t *buf, int page)
1343{
1344        int i, eccsize = chip->ecc.size;
1345        int eccbytes = chip->ecc.bytes;
1346        int eccsteps = chip->ecc.steps;
1347        uint8_t *p = buf;
1348        uint8_t *oob = chip->oob_poi;
1349
1350        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1351                int stat;
1352
1353                chip->ecc.hwctl(mtd, NAND_ECC_READ);
1354                chip->read_buf(mtd, p, eccsize);
1355
1356                if (chip->ecc.prepad) {
1357                        chip->read_buf(mtd, oob, chip->ecc.prepad);
1358                        oob += chip->ecc.prepad;
1359                }
1360
1361                chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
1362                chip->read_buf(mtd, oob, eccbytes);
1363                stat = chip->ecc.correct(mtd, p, oob, NULL);
1364
1365                if (stat < 0)
1366                        mtd->ecc_stats.failed++;
1367                else
1368                        mtd->ecc_stats.corrected += stat;
1369
1370                oob += eccbytes;
1371
1372                if (chip->ecc.postpad) {
1373                        chip->read_buf(mtd, oob, chip->ecc.postpad);
1374                        oob += chip->ecc.postpad;
1375                }
1376        }
1377
1378        /* Calculate remaining oob bytes */
1379        i = mtd->oobsize - (oob - chip->oob_poi);
1380        if (i)
1381                chip->read_buf(mtd, oob, i);
1382
1383        return 0;
1384}
1385
1386/**
1387 * nand_transfer_oob - [Internal] Transfer oob to client buffer
1388 * @chip:       nand chip structure
1389 * @oob:        oob destination address
1390 * @ops:        oob ops structure
1391 * @len:        size of oob to transfer
1392 */
1393static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
1394                                  struct mtd_oob_ops *ops, size_t len)
1395{
1396        switch (ops->mode) {
1397
1398        case MTD_OOB_PLACE:
1399        case MTD_OOB_RAW:
1400                memcpy(oob, chip->oob_poi + ops->ooboffs, len);
1401                return oob + len;
1402
1403        case MTD_OOB_AUTO: {
1404                struct nand_oobfree *free = chip->ecc.layout->oobfree;
1405                uint32_t boffs = 0, roffs = ops->ooboffs;
1406                size_t bytes = 0;
1407
1408                for (; free->length && len; free++, len -= bytes) {
1409                        /* Read request not from offset 0 ? */
1410                        if (unlikely(roffs)) {
1411                                if (roffs >= free->length) {
1412                                        roffs -= free->length;
1413                                        continue;
1414                                }
1415                                boffs = free->offset + roffs;
1416                                bytes = min_t(size_t, len,
1417                                              (free->length - roffs));
1418                                roffs = 0;
1419                        } else {
1420                                bytes = min_t(size_t, len, free->length);
1421                                boffs = free->offset;
1422                        }
1423                        memcpy(oob, chip->oob_poi + boffs, bytes);
1424                        oob += bytes;
1425                }
1426                return oob;
1427        }
1428        default:
1429                BUG();
1430        }
1431        return NULL;
1432}
1433
1434/**
1435 * nand_do_read_ops - [Internal] Read data with ECC
1436 *
1437 * @mtd:        MTD device structure
1438 * @from:       offset to read from
1439 * @ops:        oob ops structure
1440 *
1441 * Internal function. Called with chip held.
1442 */
1443static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
1444                            struct mtd_oob_ops *ops)
1445{
1446        int chipnr, page, realpage, col, bytes, aligned;
1447        struct nand_chip *chip = mtd->priv;
1448        struct mtd_ecc_stats stats;
1449        int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1450        int sndcmd = 1;
1451        int ret = 0;
1452        uint32_t readlen = ops->len;
1453        uint32_t oobreadlen = ops->ooblen;
1454        uint32_t max_oobsize = ops->mode == MTD_OOB_AUTO ?
1455                mtd->oobavail : mtd->oobsize;
1456
1457        uint8_t *bufpoi, *oob, *buf;
1458
1459        stats = mtd->ecc_stats;
1460
1461        chipnr = (int)(from >> chip->chip_shift);
1462        chip->select_chip(mtd, chipnr);
1463
1464        realpage = (int)(from >> chip->page_shift);
1465        page = realpage & chip->pagemask;
1466
1467        col = (int)(from & (mtd->writesize - 1));
1468
1469        buf = ops->datbuf;
1470        oob = ops->oobbuf;
1471
1472        while (1) {
1473                bytes = min(mtd->writesize - col, readlen);
1474                aligned = (bytes == mtd->writesize);
1475
1476                /* Is the current page in the buffer ? */
1477                if (realpage != chip->pagebuf || oob) {
1478                        bufpoi = aligned ? buf : chip->buffers->databuf;
1479
1480                        if (likely(sndcmd)) {
1481                                chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
1482                                sndcmd = 0;
1483                        }
1484
1485                        /* Now read the page into the buffer */
1486                        if (unlikely(ops->mode == MTD_OOB_RAW))
1487                                ret = chip->ecc.read_page_raw(mtd, chip,
1488                                                              bufpoi, page);
1489                        else if (!aligned && NAND_SUBPAGE_READ(chip) && !oob)
1490                                ret = chip->ecc.read_subpage(mtd, chip,
1491                                                        col, bytes, bufpoi);
1492                        else
1493                                ret = chip->ecc.read_page(mtd, chip, bufpoi,
1494                                                          page);
1495                        if (ret < 0)
1496                                break;
1497
1498                        /* Transfer not aligned data */
1499                        if (!aligned) {
1500                                if (!NAND_SUBPAGE_READ(chip) && !oob &&
1501                                    !(mtd->ecc_stats.failed - stats.failed))
1502                                        chip->pagebuf = realpage;
1503                                memcpy(buf, chip->buffers->databuf + col, bytes);
1504                        }
1505
1506                        buf += bytes;
1507
1508                        if (unlikely(oob)) {
1509
1510                                int toread = min(oobreadlen, max_oobsize);
1511
1512                                if (toread) {
1513                                        oob = nand_transfer_oob(chip,
1514                                                oob, ops, toread);
1515                                        oobreadlen -= toread;
1516                                }
1517                        }
1518
1519                        if (!(chip->options & NAND_NO_READRDY)) {
1520                                /*
1521                                 * Apply delay or wait for ready/busy pin. Do
1522                                 * this before the AUTOINCR check, so no
1523                                 * problems arise if a chip which does auto
1524                                 * increment is marked as NOAUTOINCR by the
1525                                 * board driver.
1526                                 */
1527                                if (!chip->dev_ready)
1528                                        udelay(chip->chip_delay);
1529                                else
1530                                        nand_wait_ready(mtd);
1531                        }
1532                } else {
1533                        memcpy(buf, chip->buffers->databuf + col, bytes);
1534                        buf += bytes;
1535                }
1536
1537                readlen -= bytes;
1538
1539                if (!readlen)
1540                        break;
1541
1542                /* For subsequent reads align to page boundary. */
1543                col = 0;
1544                /* Increment page address */
1545                realpage++;
1546
1547                page = realpage & chip->pagemask;
1548                /* Check, if we cross a chip boundary */
1549                if (!page) {
1550                        chipnr++;
1551                        chip->select_chip(mtd, -1);
1552                        chip->select_chip(mtd, chipnr);
1553                }
1554
1555                /* Check, if the chip supports auto page increment
1556                 * or if we have hit a block boundary.
1557                 */
1558                if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1559                        sndcmd = 1;
1560        }
1561
1562        ops->retlen = ops->len - (size_t) readlen;
1563        if (oob)
1564                ops->oobretlen = ops->ooblen - oobreadlen;
1565
1566        if (ret)
1567                return ret;
1568
1569        if (mtd->ecc_stats.failed - stats.failed)
1570                return -EBADMSG;
1571
1572        return  mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1573}
1574
1575/**
1576 * nand_read - [MTD Interface] MTD compatibility function for nand_do_read_ecc
1577 * @mtd:        MTD device structure
1578 * @from:       offset to read from
1579 * @len:        number of bytes to read
1580 * @retlen:     pointer to variable to store the number of read bytes
1581 * @buf:        the databuffer to put data
1582 *
1583 * Get hold of the chip and call nand_do_read
1584 */
1585static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1586                     size_t *retlen, uint8_t *buf)
1587{
1588        struct nand_chip *chip = mtd->priv;
1589        int ret;
1590
1591        /* Do not allow reads past end of device */
1592        if ((from + len) > mtd->size)
1593                return -EINVAL;
1594        if (!len)
1595                return 0;
1596
1597        nand_get_device(chip, mtd, FL_READING);
1598
1599        chip->ops.len = len;
1600        chip->ops.datbuf = buf;
1601        chip->ops.oobbuf = NULL;
1602
1603        ret = nand_do_read_ops(mtd, from, &chip->ops);
1604
1605        *retlen = chip->ops.retlen;
1606
1607        nand_release_device(mtd);
1608
1609        return ret;
1610}
1611
1612/**
1613 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1614 * @mtd:        mtd info structure
1615 * @chip:       nand chip info structure
1616 * @page:       page number to read
1617 * @sndcmd:     flag whether to issue read command or not
1618 */
1619static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1620                             int page, int sndcmd)
1621{
1622        if (sndcmd) {
1623                chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1624                sndcmd = 0;
1625        }
1626        chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1627        return sndcmd;
1628}
1629
1630/**
1631 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1632 *                          with syndromes
1633 * @mtd:        mtd info structure
1634 * @chip:       nand chip info structure
1635 * @page:       page number to read
1636 * @sndcmd:     flag whether to issue read command or not
1637 */
1638static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1639                                  int page, int sndcmd)
1640{
1641        uint8_t *buf = chip->oob_poi;
1642        int length = mtd->oobsize;
1643        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1644        int eccsize = chip->ecc.size;
1645        uint8_t *bufpoi = buf;
1646        int i, toread, sndrnd = 0, pos;
1647
1648        chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1649        for (i = 0; i < chip->ecc.steps; i++) {
1650                if (sndrnd) {
1651                        pos = eccsize + i * (eccsize + chunk);
1652                        if (mtd->writesize > 512)
1653                                chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1654                        else
1655                                chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1656                } else
1657                        sndrnd = 1;
1658                toread = min_t(int, length, chunk);
1659                chip->read_buf(mtd, bufpoi, toread);
1660                bufpoi += toread;
1661                length -= toread;
1662        }
1663        if (length > 0)
1664                chip->read_buf(mtd, bufpoi, length);
1665
1666        return 1;
1667}
1668
1669/**
1670 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1671 * @mtd:        mtd info structure
1672 * @chip:       nand chip info structure
1673 * @page:       page number to write
1674 */
1675static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1676                              int page)
1677{
1678        int status = 0;
1679        const uint8_t *buf = chip->oob_poi;
1680        int length = mtd->oobsize;
1681
1682        chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1683        chip->write_buf(mtd, buf, length);
1684        /* Send command to program the OOB data */
1685        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1686
1687        status = chip->waitfunc(mtd, chip);
1688
1689        return status & NAND_STATUS_FAIL ? -EIO : 0;
1690}
1691
1692/**
1693 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1694 *                           with syndrome - only for large page flash !
1695 * @mtd:        mtd info structure
1696 * @chip:       nand chip info structure
1697 * @page:       page number to write
1698 */
1699static int nand_write_oob_syndrome(struct mtd_info *mtd,
1700                                   struct nand_chip *chip, int page)
1701{
1702        int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1703        int eccsize = chip->ecc.size, length = mtd->oobsize;
1704        int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1705        const uint8_t *bufpoi = chip->oob_poi;
1706
1707        /*
1708         * data-ecc-data-ecc ... ecc-oob
1709         * or
1710         * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1711         */
1712        if (!chip->ecc.prepad && !chip->ecc.postpad) {
1713                pos = steps * (eccsize + chunk);
1714                steps = 0;
1715        } else
1716                pos = eccsize;
1717
1718        chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1719        for (i = 0; i < steps; i++) {
1720                if (sndcmd) {
1721                        if (mtd->writesize <= 512) {
1722                                uint32_t fill = 0xFFFFFFFF;
1723
1724                                len = eccsize;
1725                                while (len > 0) {
1726                                        int num = min_t(int, len, 4);
1727                                        chip->write_buf(mtd, (uint8_t *)&fill,
1728                                                        num);
1729                                        len -= num;
1730                                }
1731                        } else {
1732                                pos = eccsize + i * (eccsize + chunk);
1733                                chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1734                        }
1735                } else
1736                        sndcmd = 1;
1737                len = min_t(int, length, chunk);
1738                chip->write_buf(mtd, bufpoi, len);
1739                bufpoi += len;
1740                length -= len;
1741        }
1742        if (length > 0)
1743                chip->write_buf(mtd, bufpoi, length);
1744
1745        chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1746        status = chip->waitfunc(mtd, chip);
1747
1748        return status & NAND_STATUS_FAIL ? -EIO : 0;
1749}
1750
1751/**
1752 * nand_do_read_oob - [Intern] NAND read out-of-band
1753 * @mtd:        MTD device structure
1754 * @from:       offset to read from
1755 * @ops:        oob operations description structure
1756 *
1757 * NAND read out-of-band data from the spare area
1758 */
1759static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1760                            struct mtd_oob_ops *ops)
1761{
1762        int page, realpage, chipnr, sndcmd = 1;
1763        struct nand_chip *chip = mtd->priv;
1764        int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1765        int readlen = ops->ooblen;
1766        int len;
1767        uint8_t *buf = ops->oobbuf;
1768
1769        DEBUG(MTD_DEBUG_LEVEL3, "%s: from = 0x%08Lx, len = %i\n",
1770                        __func__, (unsigned long long)from, readlen);
1771
1772        if (ops->mode == MTD_OOB_AUTO)
1773                len = chip->ecc.layout->oobavail;
1774        else
1775                len = mtd->oobsize;
1776
1777        if (unlikely(ops->ooboffs >= len)) {
1778                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start read "
1779                                        "outside oob\n", __func__);
1780                return -EINVAL;
1781        }
1782
1783        /* Do not allow reads past end of device */
1784        if (unlikely(from >= mtd->size ||
1785                     ops->ooboffs + readlen > ((mtd->size >> chip->page_shift) -
1786                                        (from >> chip->page_shift)) * len)) {
1787                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read beyond end "
1788                                        "of device\n", __func__);
1789                return -EINVAL;
1790        }
1791
1792        chipnr = (int)(from >> chip->chip_shift);
1793        chip->select_chip(mtd, chipnr);
1794
1795        /* Shift to get page */
1796        realpage = (int)(from >> chip->page_shift);
1797        page = realpage & chip->pagemask;
1798
1799        while (1) {
1800                sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1801
1802                len = min(len, readlen);
1803                buf = nand_transfer_oob(chip, buf, ops, len);
1804
1805                if (!(chip->options & NAND_NO_READRDY)) {
1806                        /*
1807                         * Apply delay or wait for ready/busy pin. Do this
1808                         * before the AUTOINCR check, so no problems arise if a
1809                         * chip which does auto increment is marked as
1810                         * NOAUTOINCR by the board driver.
1811                         */
1812                        if (!chip->dev_ready)
1813                                udelay(chip->chip_delay);
1814                        else
1815                                nand_wait_ready(mtd);
1816                }
1817
1818                readlen -= len;
1819                if (!readlen)
1820                        break;
1821
1822                /* Increment page address */
1823                realpage++;
1824
1825                page = realpage & chip->pagemask;
1826                /* Check, if we cross a chip boundary */
1827                if (!page) {
1828                        chipnr++;
1829                        chip->select_chip(mtd, -1);
1830                        chip->select_chip(mtd, chipnr);
1831                }
1832
1833                /* Check, if the chip supports auto page increment
1834                 * or if we have hit a block boundary.
1835                 */
1836                if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1837                        sndcmd = 1;
1838        }
1839
1840        ops->oobretlen = ops->ooblen;
1841        return 0;
1842}
1843
1844/**
1845 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1846 * @mtd:        MTD device structure
1847 * @from:       offset to read from
1848 * @ops:        oob operation description structure
1849 *
1850 * NAND read data and/or out-of-band data
1851 */
1852static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1853                         struct mtd_oob_ops *ops)
1854{
1855        struct nand_chip *chip = mtd->priv;
1856        int ret = -ENOTSUPP;
1857
1858        ops->retlen = 0;
1859
1860        /* Do not allow reads past end of device */
1861        if (ops->datbuf && (from + ops->len) > mtd->size) {
1862                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt read "
1863                                "beyond end of device\n", __func__);
1864                return -EINVAL;
1865        }
1866
1867        nand_get_device(chip, mtd, FL_READING);
1868
1869        switch (ops->mode) {
1870        case MTD_OOB_PLACE:
1871        case MTD_OOB_AUTO:
1872        case MTD_OOB_RAW:
1873                break;
1874
1875        default:
1876                goto out;
1877        }
1878
1879        if (!ops->datbuf)
1880                ret = nand_do_read_oob(mtd, from, ops);
1881        else
1882                ret = nand_do_read_ops(mtd, from, ops);
1883
1884out:
1885        nand_release_device(mtd);
1886        return ret;
1887}
1888
1889
1890/**
1891 * nand_write_page_raw - [Intern] raw page write function
1892 * @mtd:        mtd info structure
1893 * @chip:       nand chip info structure
1894 * @buf:        data buffer
1895 *
1896 * Not for syndrome calculating ecc controllers, which use a special oob layout
1897 */
1898static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1899                                const uint8_t *buf)
1900{
1901        chip->write_buf(mtd, buf, mtd->writesize);
1902        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1903}
1904
1905/**
1906 * nand_write_page_raw_syndrome - [Intern] raw page write function
1907 * @mtd:        mtd info structure
1908 * @chip:       nand chip info structure
1909 * @buf:        data buffer
1910 *
1911 * We need a special oob layout and handling even when ECC isn't checked.
1912 */
1913static void nand_write_page_raw_syndrome(struct mtd_info *mtd,
1914                                        struct nand_chip *chip,
1915                                        const uint8_t *buf)
1916{
1917        int eccsize = chip->ecc.size;
1918        int eccbytes = chip->ecc.bytes;
1919        uint8_t *oob = chip->oob_poi;
1920        int steps, size;
1921
1922        for (steps = chip->ecc.steps; steps > 0; steps--) {
1923                chip->write_buf(mtd, buf, eccsize);
1924                buf += eccsize;
1925
1926                if (chip->ecc.prepad) {
1927                        chip->write_buf(mtd, oob, chip->ecc.prepad);
1928                        oob += chip->ecc.prepad;
1929                }
1930
1931                chip->read_buf(mtd, oob, eccbytes);
1932                oob += eccbytes;
1933
1934                if (chip->ecc.postpad) {
1935                        chip->write_buf(mtd, oob, chip->ecc.postpad);
1936                        oob += chip->ecc.postpad;
1937                }
1938        }
1939
1940        size = mtd->oobsize - (oob - chip->oob_poi);
1941        if (size)
1942                chip->write_buf(mtd, oob, size);
1943}
1944/**
1945 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1946 * @mtd:        mtd info structure
1947 * @chip:       nand chip info structure
1948 * @buf:        data buffer
1949 */
1950static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1951                                  const uint8_t *buf)
1952{
1953        int i, eccsize = chip->ecc.size;
1954        int eccbytes = chip->ecc.bytes;
1955        int eccsteps = chip->ecc.steps;
1956        uint8_t *ecc_calc = chip->buffers->ecccalc;
1957        const uint8_t *p = buf;
1958        uint32_t *eccpos = chip->ecc.layout->eccpos;
1959
1960        /* Software ecc calculation */
1961        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1962                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1963
1964        for (i = 0; i < chip->ecc.total; i++)
1965                chip->oob_poi[eccpos[i]] = ecc_calc[i];
1966
1967        chip->ecc.write_page_raw(mtd, chip, buf);
1968}
1969
1970/**
1971 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1972 * @mtd:        mtd info structure
1973 * @chip:       nand chip info structure
1974 * @buf:        data buffer
1975 */
1976static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1977                                  const uint8_t *buf)
1978{
1979        int i, eccsize = chip->ecc.size;
1980        int eccbytes = chip->ecc.bytes;
1981        int eccsteps = chip->ecc.steps;
1982        uint8_t *ecc_calc = chip->buffers->ecccalc;
1983        const uint8_t *p = buf;
1984        uint32_t *eccpos = chip->ecc.layout->eccpos;
1985
1986        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1987                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1988                chip->write_buf(mtd, p, eccsize);
1989                chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1990        }
1991
1992        for (i = 0; i < chip->ecc.total; i++)
1993                chip->oob_poi[eccpos[i]] = ecc_calc[i];
1994
1995        chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1996}
1997
1998/**
1999 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
2000 * @mtd:        mtd info structure
2001 * @chip:       nand chip info structure
2002 * @buf:        data buffer
2003 *
2004 * The hw generator calculates the error syndrome automatically. Therefor
2005 * we need a special oob layout and handling.
2006 */
2007static void nand_write_page_syndrome(struct mtd_info *mtd,
2008                                    struct nand_chip *chip, const uint8_t *buf)
2009{
2010        int i, eccsize = chip->ecc.size;
2011        int eccbytes = chip->ecc.bytes;
2012        int eccsteps = chip->ecc.steps;
2013        const uint8_t *p = buf;
2014        uint8_t *oob = chip->oob_poi;
2015
2016        for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
2017
2018                chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
2019                chip->write_buf(mtd, p, eccsize);
2020
2021                if (chip->ecc.prepad) {
2022                        chip->write_buf(mtd, oob, chip->ecc.prepad);
2023                        oob += chip->ecc.prepad;
2024                }
2025
2026                chip->ecc.calculate(mtd, p, oob);
2027                chip->write_buf(mtd, oob, eccbytes);
2028                oob += eccbytes;
2029
2030                if (chip->ecc.postpad) {
2031                        chip->write_buf(mtd, oob, chip->ecc.postpad);
2032                        oob += chip->ecc.postpad;
2033                }
2034        }
2035
2036        /* Calculate remaining oob bytes */
2037        i = mtd->oobsize - (oob - chip->oob_poi);
2038        if (i)
2039                chip->write_buf(mtd, oob, i);
2040}
2041
2042/**
2043 * nand_write_page - [REPLACEABLE] write one page
2044 * @mtd:        MTD device structure
2045 * @chip:       NAND chip descriptor
2046 * @buf:        the data to write
2047 * @page:       page number to write
2048 * @cached:     cached programming
2049 * @raw:        use _raw version of write_page
2050 */
2051static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
2052                           const uint8_t *buf, int page, int cached, int raw)
2053{
2054        int status;
2055
2056        chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
2057
2058        if (unlikely(raw))
2059                chip->ecc.write_page_raw(mtd, chip, buf);
2060        else
2061                chip->ecc.write_page(mtd, chip, buf);
2062
2063        /*
2064         * Cached progamming disabled for now, Not sure if its worth the
2065         * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
2066         */
2067        cached = 0;
2068
2069        if (!cached || !(chip->options & NAND_CACHEPRG)) {
2070
2071                chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
2072                status = chip->waitfunc(mtd, chip);
2073                /*
2074                 * See if operation failed and additional status checks are
2075                 * available
2076                 */
2077                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2078                        status = chip->errstat(mtd, chip, FL_WRITING, status,
2079                                               page);
2080
2081                if (status & NAND_STATUS_FAIL)
2082                        return -EIO;
2083        } else {
2084                chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
2085                status = chip->waitfunc(mtd, chip);
2086        }
2087
2088#ifdef CONFIG_MTD_NAND_VERIFY_WRITE
2089        /* Send command to read back the data */
2090        chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
2091
2092        if (chip->verify_buf(mtd, buf, mtd->writesize))
2093                return -EIO;
2094#endif
2095        return 0;
2096}
2097
2098/**
2099 * nand_fill_oob - [Internal] Transfer client buffer to oob
2100 * @chip:       nand chip structure
2101 * @oob:        oob data buffer
2102 * @len:        oob data write length
2103 * @ops:        oob ops structure
2104 */
2105static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
2106                                                struct mtd_oob_ops *ops)
2107{
2108        switch (ops->mode) {
2109
2110        case MTD_OOB_PLACE:
2111        case MTD_OOB_RAW:
2112                memcpy(chip->oob_poi + ops->ooboffs, oob, len);
2113                return oob + len;
2114
2115        case MTD_OOB_AUTO: {
2116                struct nand_oobfree *free = chip->ecc.layout->oobfree;
2117                uint32_t boffs = 0, woffs = ops->ooboffs;
2118                size_t bytes = 0;
2119
2120                for (; free->length && len; free++, len -= bytes) {
2121                        /* Write request not from offset 0 ? */
2122                        if (unlikely(woffs)) {
2123                                if (woffs >= free->length) {
2124                                        woffs -= free->length;
2125                                        continue;
2126                                }
2127                                boffs = free->offset + woffs;
2128                                bytes = min_t(size_t, len,
2129                                              (free->length - woffs));
2130                                woffs = 0;
2131                        } else {
2132                                bytes = min_t(size_t, len, free->length);
2133                                boffs = free->offset;
2134                        }
2135                        memcpy(chip->oob_poi + boffs, oob, bytes);
2136                        oob += bytes;
2137                }
2138                return oob;
2139        }
2140        default:
2141                BUG();
2142        }
2143        return NULL;
2144}
2145
2146#define NOTALIGNED(x)   ((x & (chip->subpagesize - 1)) != 0)
2147
2148/**
2149 * nand_do_write_ops - [Internal] NAND write with ECC
2150 * @mtd:        MTD device structure
2151 * @to:         offset to write to
2152 * @ops:        oob operations description structure
2153 *
2154 * NAND write with ECC
2155 */
2156static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
2157                             struct mtd_oob_ops *ops)
2158{
2159        int chipnr, realpage, page, blockmask, column;
2160        struct nand_chip *chip = mtd->priv;
2161        uint32_t writelen = ops->len;
2162
2163        uint32_t oobwritelen = ops->ooblen;
2164        uint32_t oobmaxlen = ops->mode == MTD_OOB_AUTO ?
2165                                mtd->oobavail : mtd->oobsize;
2166
2167        uint8_t *oob = ops->oobbuf;
2168        uint8_t *buf = ops->datbuf;
2169        int ret, subpage;
2170
2171        ops->retlen = 0;
2172        if (!writelen)
2173                return 0;
2174
2175        /* reject writes, which are not page aligned */
2176        if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
2177                printk(KERN_NOTICE "%s: Attempt to write not "
2178                                "page aligned data\n", __func__);
2179                return -EINVAL;
2180        }
2181
2182        column = to & (mtd->writesize - 1);
2183        subpage = column || (writelen & (mtd->writesize - 1));
2184
2185        if (subpage && oob)
2186                return -EINVAL;
2187
2188        chipnr = (int)(to >> chip->chip_shift);
2189        chip->select_chip(mtd, chipnr);
2190
2191        /* Check, if it is write protected */
2192        if (nand_check_wp(mtd))
2193                return -EIO;
2194
2195        realpage = (int)(to >> chip->page_shift);
2196        page = realpage & chip->pagemask;
2197        blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
2198
2199        /* Invalidate the page cache, when we write to the cached page */
2200        if (to <= (chip->pagebuf << chip->page_shift) &&
2201            (chip->pagebuf << chip->page_shift) < (to + ops->len))
2202                chip->pagebuf = -1;
2203
2204        /* If we're not given explicit OOB data, let it be 0xFF */
2205        if (likely(!oob))
2206                memset(chip->oob_poi, 0xff, mtd->oobsize);
2207
2208        /* Don't allow multipage oob writes with offset */
2209        if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen))
2210                return -EINVAL;
2211
2212        while (1) {
2213                int bytes = mtd->writesize;
2214                int cached = writelen > bytes && page != blockmask;
2215                uint8_t *wbuf = buf;
2216
2217                /* Partial page write ? */
2218                if (unlikely(column || writelen < (mtd->writesize - 1))) {
2219                        cached = 0;
2220                        bytes = min_t(int, bytes - column, (int) writelen);
2221                        chip->pagebuf = -1;
2222                        memset(chip->buffers->databuf, 0xff, mtd->writesize);
2223                        memcpy(&chip->buffers->databuf[column], buf, bytes);
2224                        wbuf = chip->buffers->databuf;
2225                }
2226
2227                if (unlikely(oob)) {
2228                        size_t len = min(oobwritelen, oobmaxlen);
2229                        oob = nand_fill_oob(chip, oob, len, ops);
2230                        oobwritelen -= len;
2231                }
2232
2233                ret = chip->write_page(mtd, chip, wbuf, page, cached,
2234                                       (ops->mode == MTD_OOB_RAW));
2235                if (ret)
2236                        break;
2237
2238                writelen -= bytes;
2239                if (!writelen)
2240                        break;
2241
2242                column = 0;
2243                buf += bytes;
2244                realpage++;
2245
2246                page = realpage & chip->pagemask;
2247                /* Check, if we cross a chip boundary */
2248                if (!page) {
2249                        chipnr++;
2250                        chip->select_chip(mtd, -1);
2251                        chip->select_chip(mtd, chipnr);
2252                }
2253        }
2254
2255        ops->retlen = ops->len - writelen;
2256        if (unlikely(oob))
2257                ops->oobretlen = ops->ooblen;
2258        return ret;
2259}
2260
2261/**
2262 * panic_nand_write - [MTD Interface] NAND write with ECC
2263 * @mtd:        MTD device structure
2264 * @to:         offset to write to
2265 * @len:        number of bytes to write
2266 * @retlen:     pointer to variable to store the number of written bytes
2267 * @buf:        the data to write
2268 *
2269 * NAND write with ECC. Used when performing writes in interrupt context, this
2270 * may for example be called by mtdoops when writing an oops while in panic.
2271 */
2272static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2273                            size_t *retlen, const uint8_t *buf)
2274{
2275        struct nand_chip *chip = mtd->priv;
2276        int ret;
2277
2278        /* Do not allow reads past end of device */
2279        if ((to + len) > mtd->size)
2280                return -EINVAL;
2281        if (!len)
2282                return 0;
2283
2284        /* Wait for the device to get ready.  */
2285        panic_nand_wait(mtd, chip, 400);
2286
2287        /* Grab the device.  */
2288        panic_nand_get_device(chip, mtd, FL_WRITING);
2289
2290        chip->ops.len = len;
2291        chip->ops.datbuf = (uint8_t *)buf;
2292        chip->ops.oobbuf = NULL;
2293
2294        ret = nand_do_write_ops(mtd, to, &chip->ops);
2295
2296        *retlen = chip->ops.retlen;
2297        return ret;
2298}
2299
2300/**
2301 * nand_write - [MTD Interface] NAND write with ECC
2302 * @mtd:        MTD device structure
2303 * @to:         offset to write to
2304 * @len:        number of bytes to write
2305 * @retlen:     pointer to variable to store the number of written bytes
2306 * @buf:        the data to write
2307 *
2308 * NAND write with ECC
2309 */
2310static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
2311                          size_t *retlen, const uint8_t *buf)
2312{
2313        struct nand_chip *chip = mtd->priv;
2314        int ret;
2315
2316        /* Do not allow reads past end of device */
2317        if ((to + len) > mtd->size)
2318                return -EINVAL;
2319        if (!len)
2320                return 0;
2321
2322        nand_get_device(chip, mtd, FL_WRITING);
2323
2324        chip->ops.len = len;
2325        chip->ops.datbuf = (uint8_t *)buf;
2326        chip->ops.oobbuf = NULL;
2327
2328        ret = nand_do_write_ops(mtd, to, &chip->ops);
2329
2330        *retlen = chip->ops.retlen;
2331
2332        nand_release_device(mtd);
2333
2334        return ret;
2335}
2336
2337/**
2338 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
2339 * @mtd:        MTD device structure
2340 * @to:         offset to write to
2341 * @ops:        oob operation description structure
2342 *
2343 * NAND write out-of-band
2344 */
2345static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
2346                             struct mtd_oob_ops *ops)
2347{
2348        int chipnr, page, status, len;
2349        struct nand_chip *chip = mtd->priv;
2350
2351        DEBUG(MTD_DEBUG_LEVEL3, "%s: to = 0x%08x, len = %i\n",
2352                         __func__, (unsigned int)to, (int)ops->ooblen);
2353
2354        if (ops->mode == MTD_OOB_AUTO)
2355                len = chip->ecc.layout->oobavail;
2356        else
2357                len = mtd->oobsize;
2358
2359        /* Do not allow write past end of page */
2360        if ((ops->ooboffs + ops->ooblen) > len) {
2361                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to write "
2362                                "past end of page\n", __func__);
2363                return -EINVAL;
2364        }
2365
2366        if (unlikely(ops->ooboffs >= len)) {
2367                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt to start "
2368                                "write outside oob\n", __func__);
2369                return -EINVAL;
2370        }
2371
2372        /* Do not allow write past end of device */
2373        if (unlikely(to >= mtd->size ||
2374                     ops->ooboffs + ops->ooblen >
2375                        ((mtd->size >> chip->page_shift) -
2376                         (to >> chip->page_shift)) * len)) {
2377                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2378                                "end of device\n", __func__);
2379                return -EINVAL;
2380        }
2381
2382        chipnr = (int)(to >> chip->chip_shift);
2383        chip->select_chip(mtd, chipnr);
2384
2385        /* Shift to get page */
2386        page = (int)(to >> chip->page_shift);
2387
2388        /*
2389         * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
2390         * of my DiskOnChip 2000 test units) will clear the whole data page too
2391         * if we don't do this. I have no clue why, but I seem to have 'fixed'
2392         * it in the doc2000 driver in August 1999.  dwmw2.
2393         */
2394        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2395
2396        /* Check, if it is write protected */
2397        if (nand_check_wp(mtd))
2398                return -EROFS;
2399
2400        /* Invalidate the page cache, if we write to the cached page */
2401        if (page == chip->pagebuf)
2402                chip->pagebuf = -1;
2403
2404        memset(chip->oob_poi, 0xff, mtd->oobsize);
2405        nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
2406        status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
2407        memset(chip->oob_poi, 0xff, mtd->oobsize);
2408
2409        if (status)
2410                return status;
2411
2412        ops->oobretlen = ops->ooblen;
2413
2414        return 0;
2415}
2416
2417/**
2418 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
2419 * @mtd:        MTD device structure
2420 * @to:         offset to write to
2421 * @ops:        oob operation description structure
2422 */
2423static int nand_write_oob(struct mtd_info *mtd, loff_t to,
2424                          struct mtd_oob_ops *ops)
2425{
2426        struct nand_chip *chip = mtd->priv;
2427        int ret = -ENOTSUPP;
2428
2429        ops->retlen = 0;
2430
2431        /* Do not allow writes past end of device */
2432        if (ops->datbuf && (to + ops->len) > mtd->size) {
2433                DEBUG(MTD_DEBUG_LEVEL0, "%s: Attempt write beyond "
2434                                "end of device\n", __func__);
2435                return -EINVAL;
2436        }
2437
2438        nand_get_device(chip, mtd, FL_WRITING);
2439
2440        switch (ops->mode) {
2441        case MTD_OOB_PLACE:
2442        case MTD_OOB_AUTO:
2443        case MTD_OOB_RAW:
2444                break;
2445
2446        default:
2447                goto out;
2448        }
2449
2450        if (!ops->datbuf)
2451                ret = nand_do_write_oob(mtd, to, ops);
2452        else
2453                ret = nand_do_write_ops(mtd, to, ops);
2454
2455out:
2456        nand_release_device(mtd);
2457        return ret;
2458}
2459
2460/**
2461 * single_erease_cmd - [GENERIC] NAND standard block erase command function
2462 * @mtd:        MTD device structure
2463 * @page:       the page address of the block which will be erased
2464 *
2465 * Standard erase command for NAND chips
2466 */
2467static void single_erase_cmd(struct mtd_info *mtd, int page)
2468{
2469        struct nand_chip *chip = mtd->priv;
2470        /* Send commands to erase a block */
2471        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2472        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2473}
2474
2475/**
2476 * multi_erease_cmd - [GENERIC] AND specific block erase command function
2477 * @mtd:        MTD device structure
2478 * @page:       the page address of the block which will be erased
2479 *
2480 * AND multi block erase command function
2481 * Erase 4 consecutive blocks
2482 */
2483static void multi_erase_cmd(struct mtd_info *mtd, int page)
2484{
2485        struct nand_chip *chip = mtd->priv;
2486        /* Send commands to erase a block */
2487        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2488        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2489        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
2490        chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
2491        chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
2492}
2493
2494/**
2495 * nand_erase - [MTD Interface] erase block(s)
2496 * @mtd:        MTD device structure
2497 * @instr:      erase instruction
2498 *
2499 * Erase one ore more blocks
2500 */
2501static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
2502{
2503        return nand_erase_nand(mtd, instr, 0);
2504}
2505
2506#define BBT_PAGE_MASK   0xffffff3f
2507/**
2508 * nand_erase_nand - [Internal] erase block(s)
2509 * @mtd:        MTD device structure
2510 * @instr:      erase instruction
2511 * @allowbbt:   allow erasing the bbt area
2512 *
2513 * Erase one ore more blocks
2514 */
2515int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
2516                    int allowbbt)
2517{
2518        int page, status, pages_per_block, ret, chipnr;
2519        struct nand_chip *chip = mtd->priv;
2520        loff_t rewrite_bbt[NAND_MAX_CHIPS] = {0};
2521        unsigned int bbt_masked_page = 0xffffffff;
2522        loff_t len;
2523
2524        DEBUG(MTD_DEBUG_LEVEL3, "%s: start = 0x%012llx, len = %llu\n",
2525                                __func__, (unsigned long long)instr->addr,
2526                                (unsigned long long)instr->len);
2527
2528        if (check_offs_len(mtd, instr->addr, instr->len))
2529                return -EINVAL;
2530
2531        instr->fail_addr = MTD_FAIL_ADDR_UNKNOWN;
2532
2533        /* Grab the lock and see if the device is available */
2534        nand_get_device(chip, mtd, FL_ERASING);
2535
2536        /* Shift to get first page */
2537        page = (int)(instr->addr >> chip->page_shift);
2538        chipnr = (int)(instr->addr >> chip->chip_shift);
2539
2540        /* Calculate pages in each block */
2541        pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
2542
2543        /* Select the NAND device */
2544        chip->select_chip(mtd, chipnr);
2545
2546        /* Check, if it is write protected */
2547        if (nand_check_wp(mtd)) {
2548                DEBUG(MTD_DEBUG_LEVEL0, "%s: Device is write protected!!!\n",
2549                                        __func__);
2550                instr->state = MTD_ERASE_FAILED;
2551                goto erase_exit;
2552        }
2553
2554        /*
2555         * If BBT requires refresh, set the BBT page mask to see if the BBT
2556         * should be rewritten. Otherwise the mask is set to 0xffffffff which
2557         * can not be matched. This is also done when the bbt is actually
2558         * erased to avoid recusrsive updates
2559         */
2560        if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
2561                bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
2562
2563        /* Loop through the pages */
2564        len = instr->len;
2565
2566        instr->state = MTD_ERASING;
2567
2568        while (len) {
2569                /*
2570                 * heck if we have a bad block, we do not erase bad blocks !
2571                 */
2572                if (nand_block_checkbad(mtd, ((loff_t) page) <<
2573                                        chip->page_shift, 0, allowbbt)) {
2574                        printk(KERN_WARNING "%s: attempt to erase a bad block "
2575                                        "at page 0x%08x\n", __func__, page);
2576                        instr->state = MTD_ERASE_FAILED;
2577                        goto erase_exit;
2578                }
2579
2580                /*
2581                 * Invalidate the page cache, if we erase the block which
2582                 * contains the current cached page
2583                 */
2584                if (page <= chip->pagebuf && chip->pagebuf <
2585                    (page + pages_per_block))
2586                        chip->pagebuf = -1;
2587
2588                chip->erase_cmd(mtd, page & chip->pagemask);
2589
2590                status = chip->waitfunc(mtd, chip);
2591
2592                /*
2593                 * See if operation failed and additional status checks are
2594                 * available
2595                 */
2596                if ((status & NAND_STATUS_FAIL) && (chip->errstat))
2597                        status = chip->errstat(mtd, chip, FL_ERASING,
2598                                               status, page);
2599
2600                /* See if block erase succeeded */
2601                if (status & NAND_STATUS_FAIL) {
2602                        DEBUG(MTD_DEBUG_LEVEL0, "%s: Failed erase, "
2603                                        "page 0x%08x\n", __func__, page);
2604                        instr->state = MTD_ERASE_FAILED;
2605                        instr->fail_addr =
2606                                ((loff_t)page << chip->page_shift);
2607                        goto erase_exit;
2608                }
2609
2610                /*
2611                 * If BBT requires refresh, set the BBT rewrite flag to the
2612                 * page being erased
2613                 */
2614                if (bbt_masked_page != 0xffffffff &&
2615                    (page & BBT_PAGE_MASK) == bbt_masked_page)
2616                            rewrite_bbt[chipnr] =
2617                                        ((loff_t)page << chip->page_shift);
2618
2619                /* Increment page address and decrement length */
2620                len -= (1 << chip->phys_erase_shift);
2621                page += pages_per_block;
2622
2623                /* Check, if we cross a chip boundary */
2624                if (len && !(page & chip->pagemask)) {
2625                        chipnr++;
2626                        chip->select_chip(mtd, -1);
2627                        chip->select_chip(mtd, chipnr);
2628
2629                        /*
2630                         * If BBT requires refresh and BBT-PERCHIP, set the BBT
2631                         * page mask to see if this BBT should be rewritten
2632                         */
2633                        if (bbt_masked_page != 0xffffffff &&
2634                            (chip->bbt_td->options & NAND_BBT_PERCHIP))
2635                                bbt_masked_page = chip->bbt_td->pages[chipnr] &
2636                                        BBT_PAGE_MASK;
2637                }
2638        }
2639        instr->state = MTD_ERASE_DONE;
2640
2641erase_exit:
2642
2643        ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2644
2645        /* Deselect and wake up anyone waiting on the device */
2646        nand_release_device(mtd);
2647
2648        /* Do call back function */
2649        if (!ret)
2650                mtd_erase_callback(instr);
2651
2652        /*
2653         * If BBT requires refresh and erase was successful, rewrite any
2654         * selected bad block tables
2655         */
2656        if (bbt_masked_page == 0xffffffff || ret)
2657                return ret;
2658
2659        for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2660                if (!rewrite_bbt[chipnr])
2661                        continue;
2662                /* update the BBT for chip */
2663                DEBUG(MTD_DEBUG_LEVEL0, "%s: nand_update_bbt "
2664                        "(%d:0x%0llx 0x%0x)\n", __func__, chipnr,
2665                        rewrite_bbt[chipnr], chip->bbt_td->pages[chipnr]);
2666                nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2667        }
2668
2669        /* Return more or less happy */
2670        return ret;
2671}
2672
2673/**
2674 * nand_sync - [MTD Interface] sync
2675 * @mtd:        MTD device structure
2676 *
2677 * Sync is actually a wait for chip ready function
2678 */
2679static void nand_sync(struct mtd_info *mtd)
2680{
2681        struct nand_chip *chip = mtd->priv;
2682
2683        DEBUG(MTD_DEBUG_LEVEL3, "%s: called\n", __func__);
2684
2685        /* Grab the lock and see if the device is available */
2686        nand_get_device(chip, mtd, FL_SYNCING);
2687        /* Release it and go back */
2688        nand_release_device(mtd);
2689}
2690
2691/**
2692 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2693 * @mtd:        MTD device structure
2694 * @offs:       offset relative to mtd start
2695 */
2696static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2697{
2698        /* Check for invalid offset */
2699        if (offs > mtd->size)
2700                return -EINVAL;
2701
2702        return nand_block_checkbad(mtd, offs, 1, 0);
2703}
2704
2705/**
2706 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2707 * @mtd:        MTD device structure
2708 * @ofs:        offset relative to mtd start
2709 */
2710static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2711{
2712        struct nand_chip *chip = mtd->priv;
2713        int ret;
2714
2715        ret = nand_block_isbad(mtd, ofs);
2716        if (ret) {
2717                /* If it was bad already, return success and do nothing. */
2718                if (ret > 0)
2719                        return 0;
2720                return ret;
2721        }
2722
2723        return chip->block_markbad(mtd, ofs);
2724}
2725
2726/**
2727 * nand_suspend - [MTD Interface] Suspend the NAND flash
2728 * @mtd:        MTD device structure
2729 */
2730static int nand_suspend(struct mtd_info *mtd)
2731{
2732        struct nand_chip *chip = mtd->priv;
2733
2734        return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2735}
2736
2737/**
2738 * nand_resume - [MTD Interface] Resume the NAND flash
2739 * @mtd:        MTD device structure
2740 */
2741static void nand_resume(struct mtd_info *mtd)
2742{
2743        struct nand_chip *chip = mtd->priv;
2744
2745        if (chip->state == FL_PM_SUSPENDED)
2746                nand_release_device(mtd);
2747        else
2748                printk(KERN_ERR "%s called for a chip which is not "
2749                       "in suspended state\n", __func__);
2750}
2751
2752/*
2753 * Set default functions
2754 */
2755static void nand_set_defaults(struct nand_chip *chip, int busw)
2756{
2757        /* check for proper chip_delay setup, set 20us if not */
2758        if (!chip->chip_delay)
2759                chip->chip_delay = 20;
2760
2761        /* check, if a user supplied command function given */
2762        if (chip->cmdfunc == NULL)
2763                chip->cmdfunc = nand_command;
2764
2765        /* check, if a user supplied wait function given */
2766        if (chip->waitfunc == NULL)
2767                chip->waitfunc = nand_wait;
2768
2769        if (!chip->select_chip)
2770                chip->select_chip = nand_select_chip;
2771        if (!chip->read_byte)
2772                chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2773        if (!chip->read_word)
2774                chip->read_word = nand_read_word;
2775        if (!chip->block_bad)
2776                chip->block_bad = nand_block_bad;
2777        if (!chip->block_markbad)
2778                chip->block_markbad = nand_default_block_markbad;
2779        if (!chip->write_buf)
2780                chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2781        if (!chip->read_buf)
2782                chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2783        if (!chip->verify_buf)
2784                chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2785        if (!chip->scan_bbt)
2786                chip->scan_bbt = nand_default_bbt;
2787
2788        if (!chip->controller) {
2789                chip->controller = &chip->hwcontrol;
2790                spin_lock_init(&chip->controller->lock);
2791                init_waitqueue_head(&chip->controller->wq);
2792        }
2793
2794}
2795
2796/*
2797 * sanitize ONFI strings so we can safely print them
2798 */
2799static void sanitize_string(uint8_t *s, size_t len)
2800{
2801        ssize_t i;
2802
2803        /* null terminate */
2804        s[len - 1] = 0;
2805
2806        /* remove non printable chars */
2807        for (i = 0; i < len - 1; i++) {
2808                if (s[i] < ' ' || s[i] > 127)
2809                        s[i] = '?';
2810        }
2811
2812        /* remove trailing spaces */
2813        strim(s);
2814}
2815
2816static u16 onfi_crc16(u16 crc, u8 const *p, size_t len)
2817{
2818        int i;
2819        while (len--) {
2820                crc ^= *p++ << 8;
2821                for (i = 0; i < 8; i++)
2822                        crc = (crc << 1) ^ ((crc & 0x8000) ? 0x8005 : 0);
2823        }
2824
2825        return crc;
2826}
2827
2828/*
2829 * Check if the NAND chip is ONFI compliant, returns 1 if it is, 0 otherwise
2830 */
2831static int nand_flash_detect_onfi(struct mtd_info *mtd, struct nand_chip *chip,
2832                                        int busw)
2833{
2834        struct nand_onfi_params *p = &chip->onfi_params;
2835        int i;
2836        int val;
2837
2838        /* try ONFI for unknow chip or LP */
2839        chip->cmdfunc(mtd, NAND_CMD_READID, 0x20, -1);
2840        if (chip->read_byte(mtd) != 'O' || chip->read_byte(mtd) != 'N' ||
2841                chip->read_byte(mtd) != 'F' || chip->read_byte(mtd) != 'I')
2842                return 0;
2843
2844        printk(KERN_INFO "ONFI flash detected\n");
2845        chip->cmdfunc(mtd, NAND_CMD_PARAM, 0, -1);
2846        for (i = 0; i < 3; i++) {
2847                chip->read_buf(mtd, (uint8_t *)p, sizeof(*p));
2848                if (onfi_crc16(ONFI_CRC_BASE, (uint8_t *)p, 254) ==
2849                                le16_to_cpu(p->crc)) {
2850                        printk(KERN_INFO "ONFI param page %d valid\n", i);
2851                        break;
2852                }
2853        }
2854
2855        if (i == 3)
2856                return 0;
2857
2858        /* check version */
2859        val = le16_to_cpu(p->revision);
2860        if (val & (1 << 5))
2861                chip->onfi_version = 23;
2862        else if (val & (1 << 4))
2863                chip->onfi_version = 22;
2864        else if (val & (1 << 3))
2865                chip->onfi_version = 21;
2866        else if (val & (1 << 2))
2867                chip->onfi_version = 20;
2868        else if (val & (1 << 1))
2869                chip->onfi_version = 10;
2870        else
2871                chip->onfi_version = 0;
2872
2873        if (!chip->onfi_version) {
2874                printk(KERN_INFO "%s: unsupported ONFI version: %d\n",
2875                                                                __func__, val);
2876                return 0;
2877        }
2878
2879        sanitize_string(p->manufacturer, sizeof(p->manufacturer));
2880        sanitize_string(p->model, sizeof(p->model));
2881        if (!mtd->name)
2882                mtd->name = p->model;
2883        mtd->writesize = le32_to_cpu(p->byte_per_page);
2884        mtd->erasesize = le32_to_cpu(p->pages_per_block) * mtd->writesize;
2885        mtd->oobsize = le16_to_cpu(p->spare_bytes_per_page);
2886        chip->chipsize = (uint64_t)le32_to_cpu(p->blocks_per_lun) * mtd->erasesize;
2887        busw = 0;
2888        if (le16_to_cpu(p->features) & 1)
2889                busw = NAND_BUSWIDTH_16;
2890
2891        chip->options &= ~NAND_CHIPOPTIONS_MSK;
2892        chip->options |= (NAND_NO_READRDY |
2893                        NAND_NO_AUTOINCR) & NAND_CHIPOPTIONS_MSK;
2894
2895        return 1;
2896}
2897
2898/*
2899 * Get the flash and manufacturer id and lookup if the type is supported
2900 */
2901static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2902                                                  struct nand_chip *chip,
2903                                                  int busw,
2904                                                  int *maf_id, int *dev_id,
2905                                                  struct nand_flash_dev *type)
2906{
2907        int i, maf_idx;
2908        u8 id_data[8];
2909        int ret;
2910
2911        /* Select the device */
2912        chip->select_chip(mtd, 0);
2913
2914        /*
2915         * Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
2916         * after power-up
2917         */
2918        chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
2919
2920        /* Send the command for reading device ID */
2921        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2922
2923        /* Read manufacturer and device IDs */
2924        *maf_id = chip->read_byte(mtd);
2925        *dev_id = chip->read_byte(mtd);
2926
2927        /* Try again to make sure, as some systems the bus-hold or other
2928         * interface concerns can cause random data which looks like a
2929         * possibly credible NAND flash to appear. If the two results do
2930         * not match, ignore the device completely.
2931         */
2932
2933        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2934
2935        for (i = 0; i < 2; i++)
2936                id_data[i] = chip->read_byte(mtd);
2937
2938        if (id_data[0] != *maf_id || id_data[1] != *dev_id) {
2939                printk(KERN_INFO "%s: second ID read did not match "
2940                       "%02x,%02x against %02x,%02x\n", __func__,
2941                       *maf_id, *dev_id, id_data[0], id_data[1]);
2942                return ERR_PTR(-ENODEV);
2943        }
2944
2945        if (!type)
2946                type = nand_flash_ids;
2947
2948        for (; type->name != NULL; type++)
2949                if (*dev_id == type->id)
2950                        break;
2951
2952        chip->onfi_version = 0;
2953        if (!type->name || !type->pagesize) {
2954                /* Check is chip is ONFI compliant */
2955                ret = nand_flash_detect_onfi(mtd, chip, busw);
2956                if (ret)
2957                        goto ident_done;
2958        }
2959
2960        chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2961
2962        /* Read entire ID string */
2963
2964        for (i = 0; i < 8; i++)
2965                id_data[i] = chip->read_byte(mtd);
2966
2967        if (!type->name)
2968                return ERR_PTR(-ENODEV);
2969
2970        if (!mtd->name)
2971                mtd->name = type->name;
2972
2973        chip->chipsize = (uint64_t)type->chipsize << 20;
2974
2975        if (!type->pagesize && chip->init_size) {
2976                /* set the pagesize, oobsize, erasesize by the driver*/
2977                busw = chip->init_size(mtd, chip, id_data);
2978        } else if (!type->pagesize) {
2979                int extid;
2980                /* The 3rd id byte holds MLC / multichip data */
2981                chip->cellinfo = id_data[2];
2982                /* The 4th id byte is the important one */
2983                extid = id_data[3];
2984
2985                /*
2986                 * Field definitions are in the following datasheets:
2987                 * Old style (4,5 byte ID): Samsung K9GAG08U0M (p.32)
2988                 * New style   (6 byte ID): Samsung K9GBG08U0M (p.40)
2989                 *
2990                 * Check for wraparound + Samsung ID + nonzero 6th byte
2991                 * to decide what to do.
2992                 */
2993                if (id_data[0] == id_data[6] && id_data[1] == id_data[7] &&
2994                                id_data[0] == NAND_MFR_SAMSUNG &&
2995                                (chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
2996                                id_data[5] != 0x00) {
2997                        /* Calc pagesize */
2998                        mtd->writesize = 2048 << (extid & 0x03);
2999                        extid >>= 2;
3000                        /* Calc oobsize */
3001                        switch (extid & 0x03) {
3002                        case 1:
3003                                mtd->oobsize = 128;
3004                                break;
3005                        case 2:
3006                                mtd->oobsize = 218;
3007                                break;
3008                        case 3:
3009                                mtd->oobsize = 400;
3010                                break;
3011                        default:
3012                                mtd->oobsize = 436;
3013                                break;
3014                        }
3015                        extid >>= 2;
3016                        /* Calc blocksize */
3017                        mtd->erasesize = (128 * 1024) <<
3018                                (((extid >> 1) & 0x04) | (extid & 0x03));
3019                        busw = 0;
3020                } else {
3021                        /* Calc pagesize */
3022                        mtd->writesize = 1024 << (extid & 0x03);
3023                        extid >>= 2;
3024                        /* Calc oobsize */
3025                        mtd->oobsize = (8 << (extid & 0x01)) *
3026                                (mtd->writesize >> 9);
3027                        extid >>= 2;
3028                        /* Calc blocksize. Blocksize is multiples of 64KiB */
3029                        mtd->erasesize = (64 * 1024) << (extid & 0x03);
3030                        extid >>= 2;
3031                        /* Get buswidth information */
3032                        busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
3033                }
3034        } else {
3035                /*
3036                 * Old devices have chip data hardcoded in the device id table
3037                 */
3038                mtd->erasesize = type->erasesize;
3039                mtd->writesize = type->pagesize;
3040                mtd->oobsize = mtd->writesize / 32;
3041                busw = type->options & NAND_BUSWIDTH_16;
3042
3043                /*
3044                 * Check for Spansion/AMD ID + repeating 5th, 6th byte since
3045                 * some Spansion chips have erasesize that conflicts with size
3046                 * listed in nand_ids table
3047                 * Data sheet (5 byte ID): Spansion S30ML-P ORNAND (p.39)
3048                 */
3049                if (*maf_id == NAND_MFR_AMD && id_data[4] != 0x00 &&
3050                                id_data[5] == 0x00 && id_data[6] == 0x00 &&
3051                                id_data[7] == 0x00 && mtd->writesize == 512) {
3052                        mtd->erasesize = 128 * 1024;
3053                        mtd->erasesize <<= ((id_data[3] & 0x03) << 1);
3054                }
3055        }
3056        /* Get chip options, preserve non chip based options */
3057        chip->options &= ~NAND_CHIPOPTIONS_MSK;
3058        chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
3059
3060        /* Check if chip is a not a samsung device. Do not clear the
3061         * options for chips which are not having an extended id.
3062         */
3063        if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
3064                chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
3065ident_done:
3066
3067        /*
3068         * Set chip as a default. Board drivers can override it, if necessary
3069         */
3070        chip->options |= NAND_NO_AUTOINCR;
3071
3072        /* Try to identify manufacturer */
3073        for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
3074                if (nand_manuf_ids[maf_idx].id == *maf_id)
3075                        break;
3076        }
3077
3078        /*
3079         * Check, if buswidth is correct. Hardware drivers should set
3080         * chip correct !
3081         */
3082        if (busw != (chip->options & NAND_BUSWIDTH_16)) {
3083                printk(KERN_INFO "NAND device: Manufacturer ID:"
3084                       " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
3085                       *dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
3086                printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
3087                       (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
3088                       busw ? 16 : 8);
3089                return ERR_PTR(-EINVAL);
3090        }
3091
3092        /* Calculate the address shift from the page size */
3093        chip->page_shift = ffs(mtd->writesize) - 1;
3094        /* Convert chipsize to number of pages per chip -1. */
3095        chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
3096
3097        chip->bbt_erase_shift = chip->phys_erase_shift =
3098                ffs(mtd->erasesize) - 1;
3099        if (chip->chipsize & 0xffffffff)
3100                chip->chip_shift = ffs((unsigned)chip->chipsize) - 1;
3101        else {
3102                chip->chip_shift = ffs((unsigned)(chip->chipsize >> 32));
3103                chip->chip_shift += 32 - 1;
3104        }
3105
3106        chip->badblockbits = 8;
3107
3108        /* Set the bad block position */
3109        if (mtd->writesize > 512 || (busw & NAND_BUSWIDTH_16))
3110                chip->badblockpos = NAND_LARGE_BADBLOCK_POS;
3111        else
3112                chip->badblockpos = NAND_SMALL_BADBLOCK_POS;
3113
3114        /*
3115         * Bad block marker is stored in the last page of each block
3116         * on Samsung and Hynix MLC devices; stored in first two pages
3117         * of each block on Micron devices with 2KiB pages and on
3118         * SLC Samsung, Hynix, Toshiba and AMD/Spansion. All others scan
3119         * only the first page.
3120         */
3121        if ((chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3122                        (*maf_id == NAND_MFR_SAMSUNG ||
3123                         *maf_id == NAND_MFR_HYNIX))
3124                chip->options |= NAND_BBT_SCANLASTPAGE;
3125        else if ((!(chip->cellinfo & NAND_CI_CELLTYPE_MSK) &&
3126                                (*maf_id == NAND_MFR_SAMSUNG ||
3127                                 *maf_id == NAND_MFR_HYNIX ||
3128                                 *maf_id == NAND_MFR_TOSHIBA ||
3129                                 *maf_id == NAND_MFR_AMD)) ||
3130                        (mtd->writesize == 2048 &&
3131                         *maf_id == NAND_MFR_MICRON))
3132                chip->options |= NAND_BBT_SCAN2NDPAGE;
3133
3134        /*
3135         * Numonyx/ST 2K pages, x8 bus use BOTH byte 1 and 6
3136         */
3137        if (!(busw & NAND_BUSWIDTH_16) &&
3138                        *maf_id == NAND_MFR_STMICRO &&
3139                        mtd->writesize == 2048) {
3140                chip->options |= NAND_BBT_SCANBYTE1AND6;
3141                chip->badblockpos = 0;
3142        }
3143
3144        /* Check for AND chips with 4 page planes */
3145        if (chip->options & NAND_4PAGE_ARRAY)
3146                chip->erase_cmd = multi_erase_cmd;
3147        else
3148                chip->erase_cmd = single_erase_cmd;
3149
3150        /* Do not replace user supplied command function ! */
3151        if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
3152                chip->cmdfunc = nand_command_lp;
3153
3154        /* TODO onfi flash name */
3155        printk(KERN_INFO "NAND device: Manufacturer ID:"
3156                " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, *dev_id,
3157                nand_manuf_ids[maf_idx].name,
3158                chip->onfi_version ? chip->onfi_params.model : type->name);
3159
3160        return type;
3161}
3162
3163/**
3164 * nand_scan_ident - [NAND Interface] Scan for the NAND device
3165 * @mtd:             MTD device structure
3166 * @maxchips:        Number of chips to scan for
3167 * @table:           Alternative NAND ID table
3168 *
3169 * This is the first phase of the normal nand_scan() function. It
3170 * reads the flash ID and sets up MTD fields accordingly.
3171 *
3172 * The mtd->owner field must be set to the module of the caller.
3173 */
3174int nand_scan_ident(struct mtd_info *mtd, int maxchips,
3175                    struct nand_flash_dev *table)
3176{
3177        int i, busw, nand_maf_id, nand_dev_id;
3178        struct nand_chip *chip = mtd->priv;
3179        struct nand_flash_dev *type;
3180
3181        /* Get buswidth to select the correct functions */
3182        busw = chip->options & NAND_BUSWIDTH_16;
3183        /* Set the default functions */
3184        nand_set_defaults(chip, busw);
3185
3186        /* Read the flash type */
3187        type = nand_get_flash_type(mtd, chip, busw,
3188                                &nand_maf_id, &nand_dev_id, table);
3189
3190        if (IS_ERR(type)) {
3191                if (!(chip->options & NAND_SCAN_SILENT_NODEV))
3192                        printk(KERN_WARNING "No NAND device found.\n");
3193                chip->select_chip(mtd, -1);
3194                return PTR_ERR(type);
3195        }
3196
3197        /* Check for a chip array */
3198        for (i = 1; i < maxchips; i++) {
3199                chip->select_chip(mtd, i);
3200                /* See comment in nand_get_flash_type for reset */
3201                chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
3202                /* Send the command for reading device ID */
3203                chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
3204                /* Read manufacturer and device IDs */
3205                if (nand_maf_id != chip->read_byte(mtd) ||
3206                    nand_dev_id != chip->read_byte(mtd))
3207                        break;
3208        }
3209        if (i > 1)
3210                printk(KERN_INFO "%d NAND chips detected\n", i);
3211
3212        /* Store the number of chips and calc total size for mtd */
3213        chip->numchips = i;
3214        mtd->size = i * chip->chipsize;
3215
3216        return 0;
3217}
3218EXPORT_SYMBOL(nand_scan_ident);
3219
3220
3221/**
3222 * nand_scan_tail - [NAND Interface] Scan for the NAND device
3223 * @mtd:            MTD device structure
3224 *
3225 * This is the second phase of the normal nand_scan() function. It
3226 * fills out all the uninitialized function pointers with the defaults
3227 * and scans for a bad block table if appropriate.
3228 */
3229int nand_scan_tail(struct mtd_info *mtd)
3230{
3231        int i;
3232        struct nand_chip *chip = mtd->priv;
3233
3234        if (!(chip->options & NAND_OWN_BUFFERS))
3235                chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
3236        if (!chip->buffers)
3237                return -ENOMEM;
3238
3239        /* Set the internal oob buffer location, just after the page data */
3240        chip->oob_poi = chip->buffers->databuf + mtd->writesize;
3241
3242        /*
3243         * If no default placement scheme is given, select an appropriate one
3244         */
3245        if (!chip->ecc.layout && (chip->ecc.mode != NAND_ECC_SOFT_BCH)) {
3246                switch (mtd->oobsize) {
3247                case 8:
3248                        chip->ecc.layout = &nand_oob_8;
3249                        break;
3250                case 16:
3251                        chip->ecc.layout = &nand_oob_16;
3252                        break;
3253                case 64:
3254                        chip->ecc.layout = &nand_oob_64;
3255                        break;
3256                case 128:
3257                        chip->ecc.layout = &nand_oob_128;
3258                        break;
3259                default:
3260                        printk(KERN_WARNING "No oob scheme defined for "
3261                               "oobsize %d\n", mtd->oobsize);
3262                        BUG();
3263                }
3264        }
3265
3266        if (!chip->write_page)
3267                chip->write_page = nand_write_page;
3268
3269        /*
3270         * check ECC mode, default to software if 3byte/512byte hardware ECC is
3271         * selected and we have 256 byte pagesize fallback to software ECC
3272         */
3273
3274        switch (chip->ecc.mode) {
3275        case NAND_ECC_HW_OOB_FIRST:
3276                /* Similar to NAND_ECC_HW, but a separate read_page handle */
3277                if (!chip->ecc.calculate || !chip->ecc.correct ||
3278                     !chip->ecc.hwctl) {
3279                        printk(KERN_WARNING "No ECC functions supplied; "
3280                               "Hardware ECC not possible\n");
3281                        BUG();
3282                }
3283                if (!chip->ecc.read_page)
3284                        chip->ecc.read_page = nand_read_page_hwecc_oob_first;
3285
3286        case NAND_ECC_HW:
3287                /* Use standard hwecc read page function ? */
3288                if (!chip->ecc.read_page)
3289                        chip->ecc.read_page = nand_read_page_hwecc;
3290                if (!chip->ecc.write_page)
3291                        chip->ecc.write_page = nand_write_page_hwecc;
3292                if (!chip->ecc.read_page_raw)
3293                        chip->ecc.read_page_raw = nand_read_page_raw;
3294                if (!chip->ecc.write_page_raw)
3295                        chip->ecc.write_page_raw = nand_write_page_raw;
3296                if (!chip->ecc.read_oob)
3297                        chip->ecc.read_oob = nand_read_oob_std;
3298                if (!chip->ecc.write_oob)
3299                        chip->ecc.write_oob = nand_write_oob_std;
3300
3301        case NAND_ECC_HW_SYNDROME:
3302                if ((!chip->ecc.calculate || !chip->ecc.correct ||
3303                     !chip->ecc.hwctl) &&
3304                    (!chip->ecc.read_page ||
3305                     chip->ecc.read_page == nand_read_page_hwecc ||
3306                     !chip->ecc.write_page ||
3307                     chip->ecc.write_page == nand_write_page_hwecc)) {
3308                        printk(KERN_WARNING "No ECC functions supplied; "
3309                               "Hardware ECC not possible\n");
3310                        BUG();
3311                }
3312                /* Use standard syndrome read/write page function ? */
3313                if (!chip->ecc.read_page)
3314                        chip->ecc.read_page = nand_read_page_syndrome;
3315                if (!chip->ecc.write_page)
3316                        chip->ecc.write_page = nand_write_page_syndrome;
3317                if (!chip->ecc.read_page_raw)
3318                        chip->ecc.read_page_raw = nand_read_page_raw_syndrome;
3319                if (!chip->ecc.write_page_raw)
3320                        chip->ecc.write_page_raw = nand_write_page_raw_syndrome;
3321                if (!chip->ecc.read_oob)
3322                        chip->ecc.read_oob = nand_read_oob_syndrome;
3323                if (!chip->ecc.write_oob)
3324                        chip->ecc.write_oob = nand_write_oob_syndrome;
3325
3326                if (mtd->writesize >= chip->ecc.size)
3327                        break;
3328                printk(KERN_WARNING "%d byte HW ECC not possible on "
3329                       "%d byte page size, fallback to SW ECC\n",
3330                       chip->ecc.size, mtd->writesize);
3331                chip->ecc.mode = NAND_ECC_SOFT;
3332
3333        case NAND_ECC_SOFT:
3334                chip->ecc.calculate = nand_calculate_ecc;
3335                chip->ecc.correct = nand_correct_data;
3336                chip->ecc.read_page = nand_read_page_swecc;
3337                chip->ecc.read_subpage = nand_read_subpage;
3338                chip->ecc.write_page = nand_write_page_swecc;
3339                chip->ecc.read_page_raw = nand_read_page_raw;
3340                chip->ecc.write_page_raw = nand_write_page_raw;
3341                chip->ecc.read_oob = nand_read_oob_std;
3342                chip->ecc.write_oob = nand_write_oob_std;
3343                if (!chip->ecc.size)
3344                        chip->ecc.size = 256;
3345                chip->ecc.bytes = 3;
3346                break;
3347
3348        case NAND_ECC_SOFT_BCH:
3349                if (!mtd_nand_has_bch()) {
3350                        printk(KERN_WARNING "CONFIG_MTD_ECC_BCH not enabled\n");
3351                        BUG();
3352                }
3353                chip->ecc.calculate = nand_bch_calculate_ecc;
3354                chip->ecc.correct = nand_bch_correct_data;
3355                chip->ecc.read_page = nand_read_page_swecc;
3356                chip->ecc.read_subpage = nand_read_subpage;
3357                chip->ecc.write_page = nand_write_page_swecc;
3358                chip->ecc.read_page_raw = nand_read_page_raw;
3359                chip->ecc.write_page_raw = nand_write_page_raw;
3360                chip->ecc.read_oob = nand_read_oob_std;
3361                chip->ecc.write_oob = nand_write_oob_std;
3362                /*
3363                 * Board driver should supply ecc.size and ecc.bytes values to
3364                 * select how many bits are correctable; see nand_bch_init()
3365                 * for details.
3366                 * Otherwise, default to 4 bits for large page devices
3367                 */
3368                if (!chip->ecc.size && (mtd->oobsize >= 64)) {
3369                        chip->ecc.size = 512;
3370                        chip->ecc.bytes = 7;
3371                }
3372                chip->ecc.priv = nand_bch_init(mtd,
3373                                               chip->ecc.size,
3374                                               chip->ecc.bytes,
3375                                               &chip->ecc.layout);
3376                if (!chip->ecc.priv) {
3377                        printk(KERN_WARNING "BCH ECC initialization failed!\n");
3378                        BUG();
3379                }
3380                break;
3381
3382        case NAND_ECC_NONE:
3383                printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
3384                       "This is not recommended !!\n");
3385                chip->ecc.read_page = nand_read_page_raw;
3386                chip->ecc.write_page = nand_write_page_raw;
3387                chip->ecc.read_oob = nand_read_oob_std;
3388                chip->ecc.read_page_raw = nand_read_page_raw;
3389                chip->ecc.write_page_raw = nand_write_page_raw;
3390                chip->ecc.write_oob = nand_write_oob_std;
3391                chip->ecc.size = mtd->writesize;
3392                chip->ecc.bytes = 0;
3393                break;
3394
3395        default:
3396                printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
3397                       chip->ecc.mode);
3398                BUG();
3399        }
3400
3401        /*
3402         * The number of bytes available for a client to place data into
3403         * the out of band area
3404         */
3405        chip->ecc.layout->oobavail = 0;
3406        for (i = 0; chip->ecc.layout->oobfree[i].length
3407                        && i < ARRAY_SIZE(chip->ecc.layout->oobfree); i++)
3408                chip->ecc.layout->oobavail +=
3409                        chip->ecc.layout->oobfree[i].length;
3410        mtd->oobavail = chip->ecc.layout->oobavail;
3411
3412        /*
3413         * Set the number of read / write steps for one page depending on ECC
3414         * mode
3415         */
3416        chip->ecc.steps = mtd->writesize / chip->ecc.size;
3417        if (chip->ecc.steps * chip->ecc.size != mtd->writesize) {
3418                printk(KERN_WARNING "Invalid ecc parameters\n");
3419                BUG();
3420        }
3421        chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
3422
3423        /*
3424         * Allow subpage writes up to ecc.steps. Not possible for MLC
3425         * FLASH.
3426         */
3427        if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
3428            !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
3429                switch (chip->ecc.steps) {
3430                case 2:
3431                        mtd->subpage_sft = 1;
3432                        break;
3433                case 4:
3434                case 8:
3435                case 16:
3436                        mtd->subpage_sft = 2;
3437                        break;
3438                }
3439        }
3440        chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
3441
3442        /* Initialize state */
3443        chip->state = FL_READY;
3444
3445        /* De-select the device */
3446        chip->select_chip(mtd, -1);
3447
3448        /* Invalidate the pagebuffer reference */
3449        chip->pagebuf = -1;
3450
3451        /* Fill in remaining MTD driver data */
3452        mtd->type = MTD_NANDFLASH;
3453        mtd->flags = (chip->options & NAND_ROM) ? MTD_CAP_ROM :
3454                                                MTD_CAP_NANDFLASH;
3455        mtd->erase = nand_erase;
3456        mtd->point = NULL;
3457        mtd->unpoint = NULL;
3458        mtd->read = nand_read;
3459        mtd->write = nand_write;
3460        mtd->panic_write = panic_nand_write;
3461        mtd->read_oob = nand_read_oob;
3462        mtd->write_oob = nand_write_oob;
3463        mtd->sync = nand_sync;
3464        mtd->lock = NULL;
3465        mtd->unlock = NULL;
3466        mtd->suspend = nand_suspend;
3467        mtd->resume = nand_resume;
3468        mtd->block_isbad = nand_block_isbad;
3469        mtd->block_markbad = nand_block_markbad;
3470        mtd->writebufsize = mtd->writesize;
3471
3472        /* propagate ecc.layout to mtd_info */
3473        mtd->ecclayout = chip->ecc.layout;
3474
3475        /* Check, if we should skip the bad block table scan */
3476        if (chip->options & NAND_SKIP_BBTSCAN)
3477                return 0;
3478
3479        /* Build bad block table */
3480        return chip->scan_bbt(mtd);
3481}
3482EXPORT_SYMBOL(nand_scan_tail);
3483
3484/* is_module_text_address() isn't exported, and it's mostly a pointless
3485 * test if this is a module _anyway_ -- they'd have to try _really_ hard
3486 * to call us from in-kernel code if the core NAND support is modular. */
3487#ifdef MODULE
3488#define caller_is_module() (1)
3489#else
3490#define caller_is_module() \
3491        is_module_text_address((unsigned long)__builtin_return_address(0))
3492#endif
3493
3494/**
3495 * nand_scan - [NAND Interface] Scan for the NAND device
3496 * @mtd:        MTD device structure
3497 * @maxchips:   Number of chips to scan for
3498 *
3499 * This fills out all the uninitialized function pointers
3500 * with the defaults.
3501 * The flash ID is read and the mtd/chip structures are
3502 * filled with the appropriate values.
3503 * The mtd->owner field must be set to the module of the caller
3504 *
3505 */
3506int nand_scan(struct mtd_info *mtd, int maxchips)
3507{
3508        int ret;
3509
3510        /* Many callers got this wrong, so check for it for a while... */
3511        if (!mtd->owner && caller_is_module()) {
3512                printk(KERN_CRIT "%s called with NULL mtd->owner!\n",
3513                                __func__);
3514                BUG();
3515        }
3516
3517        ret = nand_scan_ident(mtd, maxchips, NULL);
3518        if (!ret)
3519                ret = nand_scan_tail(mtd);
3520        return ret;
3521}
3522EXPORT_SYMBOL(nand_scan);
3523
3524/**
3525 * nand_release - [NAND Interface] Free resources held by the NAND device
3526 * @mtd:        MTD device structure
3527*/
3528void nand_release(struct mtd_info *mtd)
3529{
3530        struct nand_chip *chip = mtd->priv;
3531
3532        if (chip->ecc.mode == NAND_ECC_SOFT_BCH)
3533                nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
3534
3535        mtd_device_unregister(mtd);
3536
3537        /* Free bad block table memory */
3538        kfree(chip->bbt);
3539        if (!(chip->options & NAND_OWN_BUFFERS))
3540                kfree(chip->buffers);
3541
3542        /* Free bad block descriptor memory */
3543        if (chip->badblock_pattern && chip->badblock_pattern->options
3544                        & NAND_BBT_DYNAMICSTRUCT)
3545                kfree(chip->badblock_pattern);
3546}
3547EXPORT_SYMBOL_GPL(nand_release);
3548
3549static int __init nand_base_init(void)
3550{
3551        led_trigger_register_simple("nand-disk", &nand_led_trigger);
3552        return 0;
3553}
3554
3555static void __exit nand_base_exit(void)
3556{
3557        led_trigger_unregister_simple(nand_led_trigger);
3558}
3559
3560module_init(nand_base_init);
3561module_exit(nand_base_exit);
3562
3563MODULE_LICENSE("GPL");
3564MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
3565MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
3566MODULE_DESCRIPTION("Generic NAND flash driver code");
3567