linux/drivers/mtd/nand/omap2.c
<<
>>
Prefs
   1/*
   2 * Copyright © 2004 Texas Instruments, Jian Zhang <jzhang@ti.com>
   3 * Copyright © 2004 Micron Technology Inc.
   4 * Copyright © 2004 David Brownell
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 */
  10
  11#include <linux/platform_device.h>
  12#include <linux/dma-mapping.h>
  13#include <linux/delay.h>
  14#include <linux/interrupt.h>
  15#include <linux/jiffies.h>
  16#include <linux/sched.h>
  17#include <linux/mtd/mtd.h>
  18#include <linux/mtd/nand.h>
  19#include <linux/mtd/partitions.h>
  20#include <linux/io.h>
  21#include <linux/slab.h>
  22
  23#include <plat/dma.h>
  24#include <plat/gpmc.h>
  25#include <plat/nand.h>
  26
  27#define DRIVER_NAME     "omap2-nand"
  28#define OMAP_NAND_TIMEOUT_MS    5000
  29
  30#define NAND_Ecc_P1e            (1 << 0)
  31#define NAND_Ecc_P2e            (1 << 1)
  32#define NAND_Ecc_P4e            (1 << 2)
  33#define NAND_Ecc_P8e            (1 << 3)
  34#define NAND_Ecc_P16e           (1 << 4)
  35#define NAND_Ecc_P32e           (1 << 5)
  36#define NAND_Ecc_P64e           (1 << 6)
  37#define NAND_Ecc_P128e          (1 << 7)
  38#define NAND_Ecc_P256e          (1 << 8)
  39#define NAND_Ecc_P512e          (1 << 9)
  40#define NAND_Ecc_P1024e         (1 << 10)
  41#define NAND_Ecc_P2048e         (1 << 11)
  42
  43#define NAND_Ecc_P1o            (1 << 16)
  44#define NAND_Ecc_P2o            (1 << 17)
  45#define NAND_Ecc_P4o            (1 << 18)
  46#define NAND_Ecc_P8o            (1 << 19)
  47#define NAND_Ecc_P16o           (1 << 20)
  48#define NAND_Ecc_P32o           (1 << 21)
  49#define NAND_Ecc_P64o           (1 << 22)
  50#define NAND_Ecc_P128o          (1 << 23)
  51#define NAND_Ecc_P256o          (1 << 24)
  52#define NAND_Ecc_P512o          (1 << 25)
  53#define NAND_Ecc_P1024o         (1 << 26)
  54#define NAND_Ecc_P2048o         (1 << 27)
  55
  56#define TF(value)       (value ? 1 : 0)
  57
  58#define P2048e(a)       (TF(a & NAND_Ecc_P2048e)        << 0)
  59#define P2048o(a)       (TF(a & NAND_Ecc_P2048o)        << 1)
  60#define P1e(a)          (TF(a & NAND_Ecc_P1e)           << 2)
  61#define P1o(a)          (TF(a & NAND_Ecc_P1o)           << 3)
  62#define P2e(a)          (TF(a & NAND_Ecc_P2e)           << 4)
  63#define P2o(a)          (TF(a & NAND_Ecc_P2o)           << 5)
  64#define P4e(a)          (TF(a & NAND_Ecc_P4e)           << 6)
  65#define P4o(a)          (TF(a & NAND_Ecc_P4o)           << 7)
  66
  67#define P8e(a)          (TF(a & NAND_Ecc_P8e)           << 0)
  68#define P8o(a)          (TF(a & NAND_Ecc_P8o)           << 1)
  69#define P16e(a)         (TF(a & NAND_Ecc_P16e)          << 2)
  70#define P16o(a)         (TF(a & NAND_Ecc_P16o)          << 3)
  71#define P32e(a)         (TF(a & NAND_Ecc_P32e)          << 4)
  72#define P32o(a)         (TF(a & NAND_Ecc_P32o)          << 5)
  73#define P64e(a)         (TF(a & NAND_Ecc_P64e)          << 6)
  74#define P64o(a)         (TF(a & NAND_Ecc_P64o)          << 7)
  75
  76#define P128e(a)        (TF(a & NAND_Ecc_P128e)         << 0)
  77#define P128o(a)        (TF(a & NAND_Ecc_P128o)         << 1)
  78#define P256e(a)        (TF(a & NAND_Ecc_P256e)         << 2)
  79#define P256o(a)        (TF(a & NAND_Ecc_P256o)         << 3)
  80#define P512e(a)        (TF(a & NAND_Ecc_P512e)         << 4)
  81#define P512o(a)        (TF(a & NAND_Ecc_P512o)         << 5)
  82#define P1024e(a)       (TF(a & NAND_Ecc_P1024e)        << 6)
  83#define P1024o(a)       (TF(a & NAND_Ecc_P1024o)        << 7)
  84
  85#define P8e_s(a)        (TF(a & NAND_Ecc_P8e)           << 0)
  86#define P8o_s(a)        (TF(a & NAND_Ecc_P8o)           << 1)
  87#define P16e_s(a)       (TF(a & NAND_Ecc_P16e)          << 2)
  88#define P16o_s(a)       (TF(a & NAND_Ecc_P16o)          << 3)
  89#define P1e_s(a)        (TF(a & NAND_Ecc_P1e)           << 4)
  90#define P1o_s(a)        (TF(a & NAND_Ecc_P1o)           << 5)
  91#define P2e_s(a)        (TF(a & NAND_Ecc_P2e)           << 6)
  92#define P2o_s(a)        (TF(a & NAND_Ecc_P2o)           << 7)
  93
  94#define P4e_s(a)        (TF(a & NAND_Ecc_P4e)           << 0)
  95#define P4o_s(a)        (TF(a & NAND_Ecc_P4o)           << 1)
  96
  97static const char *part_probes[] = { "cmdlinepart", NULL };
  98
  99/* oob info generated runtime depending on ecc algorithm and layout selected */
 100static struct nand_ecclayout omap_oobinfo;
 101/* Define some generic bad / good block scan pattern which are used
 102 * while scanning a device for factory marked good / bad blocks
 103 */
 104static uint8_t scan_ff_pattern[] = { 0xff };
 105static struct nand_bbt_descr bb_descrip_flashbased = {
 106        .options = NAND_BBT_SCANEMPTY | NAND_BBT_SCANALLPAGES,
 107        .offs = 0,
 108        .len = 1,
 109        .pattern = scan_ff_pattern,
 110};
 111
 112
 113struct omap_nand_info {
 114        struct nand_hw_control          controller;
 115        struct omap_nand_platform_data  *pdata;
 116        struct mtd_info                 mtd;
 117        struct mtd_partition            *parts;
 118        struct nand_chip                nand;
 119        struct platform_device          *pdev;
 120
 121        int                             gpmc_cs;
 122        unsigned long                   phys_base;
 123        struct completion               comp;
 124        int                             dma_ch;
 125        int                             gpmc_irq;
 126        enum {
 127                OMAP_NAND_IO_READ = 0,  /* read */
 128                OMAP_NAND_IO_WRITE,     /* write */
 129        } iomode;
 130        u_char                          *buf;
 131        int                                     buf_len;
 132};
 133
 134/**
 135 * omap_hwcontrol - hardware specific access to control-lines
 136 * @mtd: MTD device structure
 137 * @cmd: command to device
 138 * @ctrl:
 139 * NAND_NCE: bit 0 -> don't care
 140 * NAND_CLE: bit 1 -> Command Latch
 141 * NAND_ALE: bit 2 -> Address Latch
 142 *
 143 * NOTE: boards may use different bits for these!!
 144 */
 145static void omap_hwcontrol(struct mtd_info *mtd, int cmd, unsigned int ctrl)
 146{
 147        struct omap_nand_info *info = container_of(mtd,
 148                                        struct omap_nand_info, mtd);
 149
 150        if (cmd != NAND_CMD_NONE) {
 151                if (ctrl & NAND_CLE)
 152                        gpmc_nand_write(info->gpmc_cs, GPMC_NAND_COMMAND, cmd);
 153
 154                else if (ctrl & NAND_ALE)
 155                        gpmc_nand_write(info->gpmc_cs, GPMC_NAND_ADDRESS, cmd);
 156
 157                else /* NAND_NCE */
 158                        gpmc_nand_write(info->gpmc_cs, GPMC_NAND_DATA, cmd);
 159        }
 160}
 161
 162/**
 163 * omap_read_buf8 - read data from NAND controller into buffer
 164 * @mtd: MTD device structure
 165 * @buf: buffer to store date
 166 * @len: number of bytes to read
 167 */
 168static void omap_read_buf8(struct mtd_info *mtd, u_char *buf, int len)
 169{
 170        struct nand_chip *nand = mtd->priv;
 171
 172        ioread8_rep(nand->IO_ADDR_R, buf, len);
 173}
 174
 175/**
 176 * omap_write_buf8 - write buffer to NAND controller
 177 * @mtd: MTD device structure
 178 * @buf: data buffer
 179 * @len: number of bytes to write
 180 */
 181static void omap_write_buf8(struct mtd_info *mtd, const u_char *buf, int len)
 182{
 183        struct omap_nand_info *info = container_of(mtd,
 184                                                struct omap_nand_info, mtd);
 185        u_char *p = (u_char *)buf;
 186        u32     status = 0;
 187
 188        while (len--) {
 189                iowrite8(*p++, info->nand.IO_ADDR_W);
 190                /* wait until buffer is available for write */
 191                do {
 192                        status = gpmc_read_status(GPMC_STATUS_BUFFER);
 193                } while (!status);
 194        }
 195}
 196
 197/**
 198 * omap_read_buf16 - read data from NAND controller into buffer
 199 * @mtd: MTD device structure
 200 * @buf: buffer to store date
 201 * @len: number of bytes to read
 202 */
 203static void omap_read_buf16(struct mtd_info *mtd, u_char *buf, int len)
 204{
 205        struct nand_chip *nand = mtd->priv;
 206
 207        ioread16_rep(nand->IO_ADDR_R, buf, len / 2);
 208}
 209
 210/**
 211 * omap_write_buf16 - write buffer to NAND controller
 212 * @mtd: MTD device structure
 213 * @buf: data buffer
 214 * @len: number of bytes to write
 215 */
 216static void omap_write_buf16(struct mtd_info *mtd, const u_char * buf, int len)
 217{
 218        struct omap_nand_info *info = container_of(mtd,
 219                                                struct omap_nand_info, mtd);
 220        u16 *p = (u16 *) buf;
 221        u32     status = 0;
 222        /* FIXME try bursts of writesw() or DMA ... */
 223        len >>= 1;
 224
 225        while (len--) {
 226                iowrite16(*p++, info->nand.IO_ADDR_W);
 227                /* wait until buffer is available for write */
 228                do {
 229                        status = gpmc_read_status(GPMC_STATUS_BUFFER);
 230                } while (!status);
 231        }
 232}
 233
 234/**
 235 * omap_read_buf_pref - read data from NAND controller into buffer
 236 * @mtd: MTD device structure
 237 * @buf: buffer to store date
 238 * @len: number of bytes to read
 239 */
 240static void omap_read_buf_pref(struct mtd_info *mtd, u_char *buf, int len)
 241{
 242        struct omap_nand_info *info = container_of(mtd,
 243                                                struct omap_nand_info, mtd);
 244        uint32_t r_count = 0;
 245        int ret = 0;
 246        u32 *p = (u32 *)buf;
 247
 248        /* take care of subpage reads */
 249        if (len % 4) {
 250                if (info->nand.options & NAND_BUSWIDTH_16)
 251                        omap_read_buf16(mtd, buf, len % 4);
 252                else
 253                        omap_read_buf8(mtd, buf, len % 4);
 254                p = (u32 *) (buf + len % 4);
 255                len -= len % 4;
 256        }
 257
 258        /* configure and start prefetch transfer */
 259        ret = gpmc_prefetch_enable(info->gpmc_cs,
 260                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x0);
 261        if (ret) {
 262                /* PFPW engine is busy, use cpu copy method */
 263                if (info->nand.options & NAND_BUSWIDTH_16)
 264                        omap_read_buf16(mtd, (u_char *)p, len);
 265                else
 266                        omap_read_buf8(mtd, (u_char *)p, len);
 267        } else {
 268                do {
 269                        r_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 270                        r_count = r_count >> 2;
 271                        ioread32_rep(info->nand.IO_ADDR_R, p, r_count);
 272                        p += r_count;
 273                        len -= r_count << 2;
 274                } while (len);
 275                /* disable and stop the PFPW engine */
 276                gpmc_prefetch_reset(info->gpmc_cs);
 277        }
 278}
 279
 280/**
 281 * omap_write_buf_pref - write buffer to NAND controller
 282 * @mtd: MTD device structure
 283 * @buf: data buffer
 284 * @len: number of bytes to write
 285 */
 286static void omap_write_buf_pref(struct mtd_info *mtd,
 287                                        const u_char *buf, int len)
 288{
 289        struct omap_nand_info *info = container_of(mtd,
 290                                                struct omap_nand_info, mtd);
 291        uint32_t w_count = 0;
 292        int i = 0, ret = 0;
 293        u16 *p = (u16 *)buf;
 294        unsigned long tim, limit;
 295
 296        /* take care of subpage writes */
 297        if (len % 2 != 0) {
 298                writeb(*buf, info->nand.IO_ADDR_W);
 299                p = (u16 *)(buf + 1);
 300                len--;
 301        }
 302
 303        /*  configure and start prefetch transfer */
 304        ret = gpmc_prefetch_enable(info->gpmc_cs,
 305                        PREFETCH_FIFOTHRESHOLD_MAX, 0x0, len, 0x1);
 306        if (ret) {
 307                /* PFPW engine is busy, use cpu copy method */
 308                if (info->nand.options & NAND_BUSWIDTH_16)
 309                        omap_write_buf16(mtd, (u_char *)p, len);
 310                else
 311                        omap_write_buf8(mtd, (u_char *)p, len);
 312        } else {
 313                while (len) {
 314                        w_count = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 315                        w_count = w_count >> 1;
 316                        for (i = 0; (i < w_count) && len; i++, len -= 2)
 317                                iowrite16(*p++, info->nand.IO_ADDR_W);
 318                }
 319                /* wait for data to flushed-out before reset the prefetch */
 320                tim = 0;
 321                limit = (loops_per_jiffy *
 322                                        msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 323                while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 324                        cpu_relax();
 325
 326                /* disable and stop the PFPW engine */
 327                gpmc_prefetch_reset(info->gpmc_cs);
 328        }
 329}
 330
 331/*
 332 * omap_nand_dma_cb: callback on the completion of dma transfer
 333 * @lch: logical channel
 334 * @ch_satuts: channel status
 335 * @data: pointer to completion data structure
 336 */
 337static void omap_nand_dma_cb(int lch, u16 ch_status, void *data)
 338{
 339        complete((struct completion *) data);
 340}
 341
 342/*
 343 * omap_nand_dma_transfer: configer and start dma transfer
 344 * @mtd: MTD device structure
 345 * @addr: virtual address in RAM of source/destination
 346 * @len: number of data bytes to be transferred
 347 * @is_write: flag for read/write operation
 348 */
 349static inline int omap_nand_dma_transfer(struct mtd_info *mtd, void *addr,
 350                                        unsigned int len, int is_write)
 351{
 352        struct omap_nand_info *info = container_of(mtd,
 353                                        struct omap_nand_info, mtd);
 354        enum dma_data_direction dir = is_write ? DMA_TO_DEVICE :
 355                                                        DMA_FROM_DEVICE;
 356        dma_addr_t dma_addr;
 357        int ret;
 358        unsigned long tim, limit;
 359
 360        /* The fifo depth is 64 bytes max.
 361         * But configure the FIFO-threahold to 32 to get a sync at each frame
 362         * and frame length is 32 bytes.
 363         */
 364        int buf_len = len >> 6;
 365
 366        if (addr >= high_memory) {
 367                struct page *p1;
 368
 369                if (((size_t)addr & PAGE_MASK) !=
 370                        ((size_t)(addr + len - 1) & PAGE_MASK))
 371                        goto out_copy;
 372                p1 = vmalloc_to_page(addr);
 373                if (!p1)
 374                        goto out_copy;
 375                addr = page_address(p1) + ((size_t)addr & ~PAGE_MASK);
 376        }
 377
 378        dma_addr = dma_map_single(&info->pdev->dev, addr, len, dir);
 379        if (dma_mapping_error(&info->pdev->dev, dma_addr)) {
 380                dev_err(&info->pdev->dev,
 381                        "Couldn't DMA map a %d byte buffer\n", len);
 382                goto out_copy;
 383        }
 384
 385        if (is_write) {
 386            omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
 387                                                info->phys_base, 0, 0);
 388            omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 389                                                        dma_addr, 0, 0);
 390            omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 391                                        0x10, buf_len, OMAP_DMA_SYNC_FRAME,
 392                                        OMAP24XX_DMA_GPMC, OMAP_DMA_DST_SYNC);
 393        } else {
 394            omap_set_dma_src_params(info->dma_ch, 0, OMAP_DMA_AMODE_CONSTANT,
 395                                                info->phys_base, 0, 0);
 396            omap_set_dma_dest_params(info->dma_ch, 0, OMAP_DMA_AMODE_POST_INC,
 397                                                        dma_addr, 0, 0);
 398            omap_set_dma_transfer_params(info->dma_ch, OMAP_DMA_DATA_TYPE_S32,
 399                                        0x10, buf_len, OMAP_DMA_SYNC_FRAME,
 400                                        OMAP24XX_DMA_GPMC, OMAP_DMA_SRC_SYNC);
 401        }
 402        /*  configure and start prefetch transfer */
 403        ret = gpmc_prefetch_enable(info->gpmc_cs,
 404                        PREFETCH_FIFOTHRESHOLD_MAX, 0x1, len, is_write);
 405        if (ret)
 406                /* PFPW engine is busy, use cpu copy method */
 407                goto out_copy;
 408
 409        init_completion(&info->comp);
 410
 411        omap_start_dma(info->dma_ch);
 412
 413        /* setup and start DMA using dma_addr */
 414        wait_for_completion(&info->comp);
 415        tim = 0;
 416        limit = (loops_per_jiffy * msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 417        while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 418                cpu_relax();
 419
 420        /* disable and stop the PFPW engine */
 421        gpmc_prefetch_reset(info->gpmc_cs);
 422
 423        dma_unmap_single(&info->pdev->dev, dma_addr, len, dir);
 424        return 0;
 425
 426out_copy:
 427        if (info->nand.options & NAND_BUSWIDTH_16)
 428                is_write == 0 ? omap_read_buf16(mtd, (u_char *) addr, len)
 429                        : omap_write_buf16(mtd, (u_char *) addr, len);
 430        else
 431                is_write == 0 ? omap_read_buf8(mtd, (u_char *) addr, len)
 432                        : omap_write_buf8(mtd, (u_char *) addr, len);
 433        return 0;
 434}
 435
 436/**
 437 * omap_read_buf_dma_pref - read data from NAND controller into buffer
 438 * @mtd: MTD device structure
 439 * @buf: buffer to store date
 440 * @len: number of bytes to read
 441 */
 442static void omap_read_buf_dma_pref(struct mtd_info *mtd, u_char *buf, int len)
 443{
 444        if (len <= mtd->oobsize)
 445                omap_read_buf_pref(mtd, buf, len);
 446        else
 447                /* start transfer in DMA mode */
 448                omap_nand_dma_transfer(mtd, buf, len, 0x0);
 449}
 450
 451/**
 452 * omap_write_buf_dma_pref - write buffer to NAND controller
 453 * @mtd: MTD device structure
 454 * @buf: data buffer
 455 * @len: number of bytes to write
 456 */
 457static void omap_write_buf_dma_pref(struct mtd_info *mtd,
 458                                        const u_char *buf, int len)
 459{
 460        if (len <= mtd->oobsize)
 461                omap_write_buf_pref(mtd, buf, len);
 462        else
 463                /* start transfer in DMA mode */
 464                omap_nand_dma_transfer(mtd, (u_char *) buf, len, 0x1);
 465}
 466
 467/*
 468 * omap_nand_irq - GMPC irq handler
 469 * @this_irq: gpmc irq number
 470 * @dev: omap_nand_info structure pointer is passed here
 471 */
 472static irqreturn_t omap_nand_irq(int this_irq, void *dev)
 473{
 474        struct omap_nand_info *info = (struct omap_nand_info *) dev;
 475        u32 bytes;
 476        u32 irq_stat;
 477
 478        irq_stat = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 479        bytes = gpmc_read_status(GPMC_PREFETCH_FIFO_CNT);
 480        bytes = bytes  & 0xFFFC; /* io in multiple of 4 bytes */
 481        if (info->iomode == OMAP_NAND_IO_WRITE) { /* checks for write io */
 482                if (irq_stat & 0x2)
 483                        goto done;
 484
 485                if (info->buf_len && (info->buf_len < bytes))
 486                        bytes = info->buf_len;
 487                else if (!info->buf_len)
 488                        bytes = 0;
 489                iowrite32_rep(info->nand.IO_ADDR_W,
 490                                                (u32 *)info->buf, bytes >> 2);
 491                info->buf = info->buf + bytes;
 492                info->buf_len -= bytes;
 493
 494        } else {
 495                ioread32_rep(info->nand.IO_ADDR_R,
 496                                                (u32 *)info->buf, bytes >> 2);
 497                info->buf = info->buf + bytes;
 498
 499                if (irq_stat & 0x2)
 500                        goto done;
 501        }
 502        gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
 503
 504        return IRQ_HANDLED;
 505
 506done:
 507        complete(&info->comp);
 508        /* disable irq */
 509        gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ, 0);
 510
 511        /* clear status */
 512        gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, irq_stat);
 513
 514        return IRQ_HANDLED;
 515}
 516
 517/*
 518 * omap_read_buf_irq_pref - read data from NAND controller into buffer
 519 * @mtd: MTD device structure
 520 * @buf: buffer to store date
 521 * @len: number of bytes to read
 522 */
 523static void omap_read_buf_irq_pref(struct mtd_info *mtd, u_char *buf, int len)
 524{
 525        struct omap_nand_info *info = container_of(mtd,
 526                                                struct omap_nand_info, mtd);
 527        int ret = 0;
 528
 529        if (len <= mtd->oobsize) {
 530                omap_read_buf_pref(mtd, buf, len);
 531                return;
 532        }
 533
 534        info->iomode = OMAP_NAND_IO_READ;
 535        info->buf = buf;
 536        init_completion(&info->comp);
 537
 538        /*  configure and start prefetch transfer */
 539        ret = gpmc_prefetch_enable(info->gpmc_cs,
 540                        PREFETCH_FIFOTHRESHOLD_MAX/2, 0x0, len, 0x0);
 541        if (ret)
 542                /* PFPW engine is busy, use cpu copy method */
 543                goto out_copy;
 544
 545        info->buf_len = len;
 546        /* enable irq */
 547        gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
 548                (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
 549
 550        /* waiting for read to complete */
 551        wait_for_completion(&info->comp);
 552
 553        /* disable and stop the PFPW engine */
 554        gpmc_prefetch_reset(info->gpmc_cs);
 555        return;
 556
 557out_copy:
 558        if (info->nand.options & NAND_BUSWIDTH_16)
 559                omap_read_buf16(mtd, buf, len);
 560        else
 561                omap_read_buf8(mtd, buf, len);
 562}
 563
 564/*
 565 * omap_write_buf_irq_pref - write buffer to NAND controller
 566 * @mtd: MTD device structure
 567 * @buf: data buffer
 568 * @len: number of bytes to write
 569 */
 570static void omap_write_buf_irq_pref(struct mtd_info *mtd,
 571                                        const u_char *buf, int len)
 572{
 573        struct omap_nand_info *info = container_of(mtd,
 574                                                struct omap_nand_info, mtd);
 575        int ret = 0;
 576        unsigned long tim, limit;
 577
 578        if (len <= mtd->oobsize) {
 579                omap_write_buf_pref(mtd, buf, len);
 580                return;
 581        }
 582
 583        info->iomode = OMAP_NAND_IO_WRITE;
 584        info->buf = (u_char *) buf;
 585        init_completion(&info->comp);
 586
 587        /* configure and start prefetch transfer : size=24 */
 588        ret = gpmc_prefetch_enable(info->gpmc_cs,
 589                        (PREFETCH_FIFOTHRESHOLD_MAX * 3) / 8, 0x0, len, 0x1);
 590        if (ret)
 591                /* PFPW engine is busy, use cpu copy method */
 592                goto out_copy;
 593
 594        info->buf_len = len;
 595        /* enable irq */
 596        gpmc_cs_configure(info->gpmc_cs, GPMC_ENABLE_IRQ,
 597                        (GPMC_IRQ_FIFOEVENTENABLE | GPMC_IRQ_COUNT_EVENT));
 598
 599        /* waiting for write to complete */
 600        wait_for_completion(&info->comp);
 601        /* wait for data to flushed-out before reset the prefetch */
 602        tim = 0;
 603        limit = (loops_per_jiffy *  msecs_to_jiffies(OMAP_NAND_TIMEOUT_MS));
 604        while (gpmc_read_status(GPMC_PREFETCH_COUNT) && (tim++ < limit))
 605                cpu_relax();
 606
 607        /* disable and stop the PFPW engine */
 608        gpmc_prefetch_reset(info->gpmc_cs);
 609        return;
 610
 611out_copy:
 612        if (info->nand.options & NAND_BUSWIDTH_16)
 613                omap_write_buf16(mtd, buf, len);
 614        else
 615                omap_write_buf8(mtd, buf, len);
 616}
 617
 618/**
 619 * omap_verify_buf - Verify chip data against buffer
 620 * @mtd: MTD device structure
 621 * @buf: buffer containing the data to compare
 622 * @len: number of bytes to compare
 623 */
 624static int omap_verify_buf(struct mtd_info *mtd, const u_char * buf, int len)
 625{
 626        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 627                                                        mtd);
 628        u16 *p = (u16 *) buf;
 629
 630        len >>= 1;
 631        while (len--) {
 632                if (*p++ != cpu_to_le16(readw(info->nand.IO_ADDR_R)))
 633                        return -EFAULT;
 634        }
 635
 636        return 0;
 637}
 638
 639/**
 640 * gen_true_ecc - This function will generate true ECC value
 641 * @ecc_buf: buffer to store ecc code
 642 *
 643 * This generated true ECC value can be used when correcting
 644 * data read from NAND flash memory core
 645 */
 646static void gen_true_ecc(u8 *ecc_buf)
 647{
 648        u32 tmp = ecc_buf[0] | (ecc_buf[1] << 16) |
 649                ((ecc_buf[2] & 0xF0) << 20) | ((ecc_buf[2] & 0x0F) << 8);
 650
 651        ecc_buf[0] = ~(P64o(tmp) | P64e(tmp) | P32o(tmp) | P32e(tmp) |
 652                        P16o(tmp) | P16e(tmp) | P8o(tmp) | P8e(tmp));
 653        ecc_buf[1] = ~(P1024o(tmp) | P1024e(tmp) | P512o(tmp) | P512e(tmp) |
 654                        P256o(tmp) | P256e(tmp) | P128o(tmp) | P128e(tmp));
 655        ecc_buf[2] = ~(P4o(tmp) | P4e(tmp) | P2o(tmp) | P2e(tmp) | P1o(tmp) |
 656                        P1e(tmp) | P2048o(tmp) | P2048e(tmp));
 657}
 658
 659/**
 660 * omap_compare_ecc - Detect (2 bits) and correct (1 bit) error in data
 661 * @ecc_data1:  ecc code from nand spare area
 662 * @ecc_data2:  ecc code from hardware register obtained from hardware ecc
 663 * @page_data:  page data
 664 *
 665 * This function compares two ECC's and indicates if there is an error.
 666 * If the error can be corrected it will be corrected to the buffer.
 667 * If there is no error, %0 is returned. If there is an error but it
 668 * was corrected, %1 is returned. Otherwise, %-1 is returned.
 669 */
 670static int omap_compare_ecc(u8 *ecc_data1,      /* read from NAND memory */
 671                            u8 *ecc_data2,      /* read from register */
 672                            u8 *page_data)
 673{
 674        uint    i;
 675        u8      tmp0_bit[8], tmp1_bit[8], tmp2_bit[8];
 676        u8      comp0_bit[8], comp1_bit[8], comp2_bit[8];
 677        u8      ecc_bit[24];
 678        u8      ecc_sum = 0;
 679        u8      find_bit = 0;
 680        uint    find_byte = 0;
 681        int     isEccFF;
 682
 683        isEccFF = ((*(u32 *)ecc_data1 & 0xFFFFFF) == 0xFFFFFF);
 684
 685        gen_true_ecc(ecc_data1);
 686        gen_true_ecc(ecc_data2);
 687
 688        for (i = 0; i <= 2; i++) {
 689                *(ecc_data1 + i) = ~(*(ecc_data1 + i));
 690                *(ecc_data2 + i) = ~(*(ecc_data2 + i));
 691        }
 692
 693        for (i = 0; i < 8; i++) {
 694                tmp0_bit[i]     = *ecc_data1 % 2;
 695                *ecc_data1      = *ecc_data1 / 2;
 696        }
 697
 698        for (i = 0; i < 8; i++) {
 699                tmp1_bit[i]      = *(ecc_data1 + 1) % 2;
 700                *(ecc_data1 + 1) = *(ecc_data1 + 1) / 2;
 701        }
 702
 703        for (i = 0; i < 8; i++) {
 704                tmp2_bit[i]      = *(ecc_data1 + 2) % 2;
 705                *(ecc_data1 + 2) = *(ecc_data1 + 2) / 2;
 706        }
 707
 708        for (i = 0; i < 8; i++) {
 709                comp0_bit[i]     = *ecc_data2 % 2;
 710                *ecc_data2       = *ecc_data2 / 2;
 711        }
 712
 713        for (i = 0; i < 8; i++) {
 714                comp1_bit[i]     = *(ecc_data2 + 1) % 2;
 715                *(ecc_data2 + 1) = *(ecc_data2 + 1) / 2;
 716        }
 717
 718        for (i = 0; i < 8; i++) {
 719                comp2_bit[i]     = *(ecc_data2 + 2) % 2;
 720                *(ecc_data2 + 2) = *(ecc_data2 + 2) / 2;
 721        }
 722
 723        for (i = 0; i < 6; i++)
 724                ecc_bit[i] = tmp2_bit[i + 2] ^ comp2_bit[i + 2];
 725
 726        for (i = 0; i < 8; i++)
 727                ecc_bit[i + 6] = tmp0_bit[i] ^ comp0_bit[i];
 728
 729        for (i = 0; i < 8; i++)
 730                ecc_bit[i + 14] = tmp1_bit[i] ^ comp1_bit[i];
 731
 732        ecc_bit[22] = tmp2_bit[0] ^ comp2_bit[0];
 733        ecc_bit[23] = tmp2_bit[1] ^ comp2_bit[1];
 734
 735        for (i = 0; i < 24; i++)
 736                ecc_sum += ecc_bit[i];
 737
 738        switch (ecc_sum) {
 739        case 0:
 740                /* Not reached because this function is not called if
 741                 *  ECC values are equal
 742                 */
 743                return 0;
 744
 745        case 1:
 746                /* Uncorrectable error */
 747                DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR 1\n");
 748                return -1;
 749
 750        case 11:
 751                /* UN-Correctable error */
 752                DEBUG(MTD_DEBUG_LEVEL0, "ECC UNCORRECTED_ERROR B\n");
 753                return -1;
 754
 755        case 12:
 756                /* Correctable error */
 757                find_byte = (ecc_bit[23] << 8) +
 758                            (ecc_bit[21] << 7) +
 759                            (ecc_bit[19] << 6) +
 760                            (ecc_bit[17] << 5) +
 761                            (ecc_bit[15] << 4) +
 762                            (ecc_bit[13] << 3) +
 763                            (ecc_bit[11] << 2) +
 764                            (ecc_bit[9]  << 1) +
 765                            ecc_bit[7];
 766
 767                find_bit = (ecc_bit[5] << 2) + (ecc_bit[3] << 1) + ecc_bit[1];
 768
 769                DEBUG(MTD_DEBUG_LEVEL0, "Correcting single bit ECC error at "
 770                                "offset: %d, bit: %d\n", find_byte, find_bit);
 771
 772                page_data[find_byte] ^= (1 << find_bit);
 773
 774                return 1;
 775        default:
 776                if (isEccFF) {
 777                        if (ecc_data2[0] == 0 &&
 778                            ecc_data2[1] == 0 &&
 779                            ecc_data2[2] == 0)
 780                                return 0;
 781                }
 782                DEBUG(MTD_DEBUG_LEVEL0, "UNCORRECTED_ERROR default\n");
 783                return -1;
 784        }
 785}
 786
 787/**
 788 * omap_correct_data - Compares the ECC read with HW generated ECC
 789 * @mtd: MTD device structure
 790 * @dat: page data
 791 * @read_ecc: ecc read from nand flash
 792 * @calc_ecc: ecc read from HW ECC registers
 793 *
 794 * Compares the ecc read from nand spare area with ECC registers values
 795 * and if ECC's mismatched, it will call 'omap_compare_ecc' for error
 796 * detection and correction. If there are no errors, %0 is returned. If
 797 * there were errors and all of the errors were corrected, the number of
 798 * corrected errors is returned. If uncorrectable errors exist, %-1 is
 799 * returned.
 800 */
 801static int omap_correct_data(struct mtd_info *mtd, u_char *dat,
 802                                u_char *read_ecc, u_char *calc_ecc)
 803{
 804        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 805                                                        mtd);
 806        int blockCnt = 0, i = 0, ret = 0;
 807        int stat = 0;
 808
 809        /* Ex NAND_ECC_HW12_2048 */
 810        if ((info->nand.ecc.mode == NAND_ECC_HW) &&
 811                        (info->nand.ecc.size  == 2048))
 812                blockCnt = 4;
 813        else
 814                blockCnt = 1;
 815
 816        for (i = 0; i < blockCnt; i++) {
 817                if (memcmp(read_ecc, calc_ecc, 3) != 0) {
 818                        ret = omap_compare_ecc(read_ecc, calc_ecc, dat);
 819                        if (ret < 0)
 820                                return ret;
 821                        /* keep track of the number of corrected errors */
 822                        stat += ret;
 823                }
 824                read_ecc += 3;
 825                calc_ecc += 3;
 826                dat      += 512;
 827        }
 828        return stat;
 829}
 830
 831/**
 832 * omap_calcuate_ecc - Generate non-inverted ECC bytes.
 833 * @mtd: MTD device structure
 834 * @dat: The pointer to data on which ecc is computed
 835 * @ecc_code: The ecc_code buffer
 836 *
 837 * Using noninverted ECC can be considered ugly since writing a blank
 838 * page ie. padding will clear the ECC bytes. This is no problem as long
 839 * nobody is trying to write data on the seemingly unused page. Reading
 840 * an erased page will produce an ECC mismatch between generated and read
 841 * ECC bytes that has to be dealt with separately.
 842 */
 843static int omap_calculate_ecc(struct mtd_info *mtd, const u_char *dat,
 844                                u_char *ecc_code)
 845{
 846        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 847                                                        mtd);
 848        return gpmc_calculate_ecc(info->gpmc_cs, dat, ecc_code);
 849}
 850
 851/**
 852 * omap_enable_hwecc - This function enables the hardware ecc functionality
 853 * @mtd: MTD device structure
 854 * @mode: Read/Write mode
 855 */
 856static void omap_enable_hwecc(struct mtd_info *mtd, int mode)
 857{
 858        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 859                                                        mtd);
 860        struct nand_chip *chip = mtd->priv;
 861        unsigned int dev_width = (chip->options & NAND_BUSWIDTH_16) ? 1 : 0;
 862
 863        gpmc_enable_hwecc(info->gpmc_cs, mode, dev_width, info->nand.ecc.size);
 864}
 865
 866/**
 867 * omap_wait - wait until the command is done
 868 * @mtd: MTD device structure
 869 * @chip: NAND Chip structure
 870 *
 871 * Wait function is called during Program and erase operations and
 872 * the way it is called from MTD layer, we should wait till the NAND
 873 * chip is ready after the programming/erase operation has completed.
 874 *
 875 * Erase can take up to 400ms and program up to 20ms according to
 876 * general NAND and SmartMedia specs
 877 */
 878static int omap_wait(struct mtd_info *mtd, struct nand_chip *chip)
 879{
 880        struct nand_chip *this = mtd->priv;
 881        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 882                                                        mtd);
 883        unsigned long timeo = jiffies;
 884        int status = NAND_STATUS_FAIL, state = this->state;
 885
 886        if (state == FL_ERASING)
 887                timeo += (HZ * 400) / 1000;
 888        else
 889                timeo += (HZ * 20) / 1000;
 890
 891        gpmc_nand_write(info->gpmc_cs,
 892                        GPMC_NAND_COMMAND, (NAND_CMD_STATUS & 0xFF));
 893        while (time_before(jiffies, timeo)) {
 894                status = gpmc_nand_read(info->gpmc_cs, GPMC_NAND_DATA);
 895                if (status & NAND_STATUS_READY)
 896                        break;
 897                cond_resched();
 898        }
 899        return status;
 900}
 901
 902/**
 903 * omap_dev_ready - calls the platform specific dev_ready function
 904 * @mtd: MTD device structure
 905 */
 906static int omap_dev_ready(struct mtd_info *mtd)
 907{
 908        unsigned int val = 0;
 909        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
 910                                                        mtd);
 911
 912        val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 913        if ((val & 0x100) == 0x100) {
 914                /* Clear IRQ Interrupt */
 915                val |= 0x100;
 916                val &= ~(0x0);
 917                gpmc_cs_configure(info->gpmc_cs, GPMC_SET_IRQ_STATUS, val);
 918        } else {
 919                unsigned int cnt = 0;
 920                while (cnt++ < 0x1FF) {
 921                        if  ((val & 0x100) == 0x100)
 922                                return 0;
 923                        val = gpmc_read_status(GPMC_GET_IRQ_STATUS);
 924                }
 925        }
 926
 927        return 1;
 928}
 929
 930static int __devinit omap_nand_probe(struct platform_device *pdev)
 931{
 932        struct omap_nand_info           *info;
 933        struct omap_nand_platform_data  *pdata;
 934        int                             err;
 935        int                             i, offset;
 936
 937        pdata = pdev->dev.platform_data;
 938        if (pdata == NULL) {
 939                dev_err(&pdev->dev, "platform data missing\n");
 940                return -ENODEV;
 941        }
 942
 943        info = kzalloc(sizeof(struct omap_nand_info), GFP_KERNEL);
 944        if (!info)
 945                return -ENOMEM;
 946
 947        platform_set_drvdata(pdev, info);
 948
 949        spin_lock_init(&info->controller.lock);
 950        init_waitqueue_head(&info->controller.wq);
 951
 952        info->pdev = pdev;
 953
 954        info->gpmc_cs           = pdata->cs;
 955        info->phys_base         = pdata->phys_base;
 956
 957        info->mtd.priv          = &info->nand;
 958        info->mtd.name          = dev_name(&pdev->dev);
 959        info->mtd.owner         = THIS_MODULE;
 960
 961        info->nand.options      = pdata->devsize;
 962        info->nand.options      |= NAND_SKIP_BBTSCAN;
 963
 964        /* NAND write protect off */
 965        gpmc_cs_configure(info->gpmc_cs, GPMC_CONFIG_WP, 0);
 966
 967        if (!request_mem_region(info->phys_base, NAND_IO_SIZE,
 968                                pdev->dev.driver->name)) {
 969                err = -EBUSY;
 970                goto out_free_info;
 971        }
 972
 973        info->nand.IO_ADDR_R = ioremap(info->phys_base, NAND_IO_SIZE);
 974        if (!info->nand.IO_ADDR_R) {
 975                err = -ENOMEM;
 976                goto out_release_mem_region;
 977        }
 978
 979        info->nand.controller = &info->controller;
 980
 981        info->nand.IO_ADDR_W = info->nand.IO_ADDR_R;
 982        info->nand.cmd_ctrl  = omap_hwcontrol;
 983
 984        /*
 985         * If RDY/BSY line is connected to OMAP then use the omap ready
 986         * funcrtion and the generic nand_wait function which reads the status
 987         * register after monitoring the RDY/BSY line.Otherwise use a standard
 988         * chip delay which is slightly more than tR (AC Timing) of the NAND
 989         * device and read status register until you get a failure or success
 990         */
 991        if (pdata->dev_ready) {
 992                info->nand.dev_ready = omap_dev_ready;
 993                info->nand.chip_delay = 0;
 994        } else {
 995                info->nand.waitfunc = omap_wait;
 996                info->nand.chip_delay = 50;
 997        }
 998
 999        switch (pdata->xfer_type) {
1000        case NAND_OMAP_PREFETCH_POLLED:
1001                info->nand.read_buf   = omap_read_buf_pref;
1002                info->nand.write_buf  = omap_write_buf_pref;
1003                break;
1004
1005        case NAND_OMAP_POLLED:
1006                if (info->nand.options & NAND_BUSWIDTH_16) {
1007                        info->nand.read_buf   = omap_read_buf16;
1008                        info->nand.write_buf  = omap_write_buf16;
1009                } else {
1010                        info->nand.read_buf   = omap_read_buf8;
1011                        info->nand.write_buf  = omap_write_buf8;
1012                }
1013                break;
1014
1015        case NAND_OMAP_PREFETCH_DMA:
1016                err = omap_request_dma(OMAP24XX_DMA_GPMC, "NAND",
1017                                omap_nand_dma_cb, &info->comp, &info->dma_ch);
1018                if (err < 0) {
1019                        info->dma_ch = -1;
1020                        dev_err(&pdev->dev, "DMA request failed!\n");
1021                        goto out_release_mem_region;
1022                } else {
1023                        omap_set_dma_dest_burst_mode(info->dma_ch,
1024                                        OMAP_DMA_DATA_BURST_16);
1025                        omap_set_dma_src_burst_mode(info->dma_ch,
1026                                        OMAP_DMA_DATA_BURST_16);
1027
1028                        info->nand.read_buf   = omap_read_buf_dma_pref;
1029                        info->nand.write_buf  = omap_write_buf_dma_pref;
1030                }
1031                break;
1032
1033        case NAND_OMAP_PREFETCH_IRQ:
1034                err = request_irq(pdata->gpmc_irq,
1035                                omap_nand_irq, IRQF_SHARED, "gpmc-nand", info);
1036                if (err) {
1037                        dev_err(&pdev->dev, "requesting irq(%d) error:%d",
1038                                                        pdata->gpmc_irq, err);
1039                        goto out_release_mem_region;
1040                } else {
1041                        info->gpmc_irq       = pdata->gpmc_irq;
1042                        info->nand.read_buf  = omap_read_buf_irq_pref;
1043                        info->nand.write_buf = omap_write_buf_irq_pref;
1044                }
1045                break;
1046
1047        default:
1048                dev_err(&pdev->dev,
1049                        "xfer_type(%d) not supported!\n", pdata->xfer_type);
1050                err = -EINVAL;
1051                goto out_release_mem_region;
1052        }
1053
1054        info->nand.verify_buf = omap_verify_buf;
1055
1056        /* selsect the ecc type */
1057        if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_DEFAULT)
1058                info->nand.ecc.mode = NAND_ECC_SOFT;
1059        else if ((pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW) ||
1060                (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE)) {
1061                info->nand.ecc.bytes            = 3;
1062                info->nand.ecc.size             = 512;
1063                info->nand.ecc.calculate        = omap_calculate_ecc;
1064                info->nand.ecc.hwctl            = omap_enable_hwecc;
1065                info->nand.ecc.correct          = omap_correct_data;
1066                info->nand.ecc.mode             = NAND_ECC_HW;
1067        }
1068
1069        /* DIP switches on some boards change between 8 and 16 bit
1070         * bus widths for flash.  Try the other width if the first try fails.
1071         */
1072        if (nand_scan_ident(&info->mtd, 1, NULL)) {
1073                info->nand.options ^= NAND_BUSWIDTH_16;
1074                if (nand_scan_ident(&info->mtd, 1, NULL)) {
1075                        err = -ENXIO;
1076                        goto out_release_mem_region;
1077                }
1078        }
1079
1080        /* rom code layout */
1081        if (pdata->ecc_opt == OMAP_ECC_HAMMING_CODE_HW_ROMCODE) {
1082
1083                if (info->nand.options & NAND_BUSWIDTH_16)
1084                        offset = 2;
1085                else {
1086                        offset = 1;
1087                        info->nand.badblock_pattern = &bb_descrip_flashbased;
1088                }
1089                omap_oobinfo.eccbytes = 3 * (info->mtd.oobsize/16);
1090                for (i = 0; i < omap_oobinfo.eccbytes; i++)
1091                        omap_oobinfo.eccpos[i] = i+offset;
1092
1093                omap_oobinfo.oobfree->offset = offset + omap_oobinfo.eccbytes;
1094                omap_oobinfo.oobfree->length = info->mtd.oobsize -
1095                                        (offset + omap_oobinfo.eccbytes);
1096
1097                info->nand.ecc.layout = &omap_oobinfo;
1098        }
1099
1100        /* second phase scan */
1101        if (nand_scan_tail(&info->mtd)) {
1102                err = -ENXIO;
1103                goto out_release_mem_region;
1104        }
1105
1106        err = parse_mtd_partitions(&info->mtd, part_probes, &info->parts, 0);
1107        if (err > 0)
1108                mtd_device_register(&info->mtd, info->parts, err);
1109        else if (pdata->parts)
1110                mtd_device_register(&info->mtd, pdata->parts, pdata->nr_parts);
1111        else
1112                mtd_device_register(&info->mtd, NULL, 0);
1113
1114        platform_set_drvdata(pdev, &info->mtd);
1115
1116        return 0;
1117
1118out_release_mem_region:
1119        release_mem_region(info->phys_base, NAND_IO_SIZE);
1120out_free_info:
1121        kfree(info);
1122
1123        return err;
1124}
1125
1126static int omap_nand_remove(struct platform_device *pdev)
1127{
1128        struct mtd_info *mtd = platform_get_drvdata(pdev);
1129        struct omap_nand_info *info = container_of(mtd, struct omap_nand_info,
1130                                                        mtd);
1131
1132        platform_set_drvdata(pdev, NULL);
1133        if (info->dma_ch != -1)
1134                omap_free_dma(info->dma_ch);
1135
1136        if (info->gpmc_irq)
1137                free_irq(info->gpmc_irq, info);
1138
1139        /* Release NAND device, its internal structures and partitions */
1140        nand_release(&info->mtd);
1141        iounmap(info->nand.IO_ADDR_R);
1142        kfree(&info->mtd);
1143        return 0;
1144}
1145
1146static struct platform_driver omap_nand_driver = {
1147        .probe          = omap_nand_probe,
1148        .remove         = omap_nand_remove,
1149        .driver         = {
1150                .name   = DRIVER_NAME,
1151                .owner  = THIS_MODULE,
1152        },
1153};
1154
1155static int __init omap_nand_init(void)
1156{
1157        pr_info("%s driver initializing\n", DRIVER_NAME);
1158
1159        return platform_driver_register(&omap_nand_driver);
1160}
1161
1162static void __exit omap_nand_exit(void)
1163{
1164        platform_driver_unregister(&omap_nand_driver);
1165}
1166
1167module_init(omap_nand_init);
1168module_exit(omap_nand_exit);
1169
1170MODULE_ALIAS("platform:" DRIVER_NAME);
1171MODULE_LICENSE("GPL");
1172MODULE_DESCRIPTION("Glue layer for NAND flash on TI OMAP boards");
1173