linux/drivers/net/3c59x.c
<<
>>
Prefs
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3        Written 1996-1999 by Donald Becker.
   4
   5        This software may be used and distributed according to the terms
   6        of the GNU General Public License, incorporated herein by reference.
   7
   8        This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9        Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10        and the EtherLink XL 3c900 and 3c905 cards.
  11
  12        Problem reports and questions should be directed to
  13        vortex@scyld.com
  14
  15        The author may be reached as becker@scyld.com, or C/O
  16        Scyld Computing Corporation
  17        410 Severn Ave., Suite 210
  18        Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME        "3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE    16
  39#define RX_RING_SIZE    32
  40#define PKT_BUF_SZ              1536                    /* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>                    /* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <asm/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] __devinitconst =
 106        DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132                                Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211        PCI_USES_MASTER=4,
 212};
 213
 214enum {  IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215        EEPROM_8BIT=0x10,       /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216        HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217        INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218        EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219        EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222        CH_3C590 = 0,
 223        CH_3C592,
 224        CH_3C597,
 225        CH_3C595_1,
 226        CH_3C595_2,
 227
 228        CH_3C595_3,
 229        CH_3C900_1,
 230        CH_3C900_2,
 231        CH_3C900_3,
 232        CH_3C900_4,
 233
 234        CH_3C900_5,
 235        CH_3C900B_FL,
 236        CH_3C905_1,
 237        CH_3C905_2,
 238        CH_3C905B_TX,
 239        CH_3C905B_1,
 240
 241        CH_3C905B_2,
 242        CH_3C905B_FX,
 243        CH_3C905C,
 244        CH_3C9202,
 245        CH_3C980,
 246        CH_3C9805,
 247
 248        CH_3CSOHO100_TX,
 249        CH_3C555,
 250        CH_3C556,
 251        CH_3C556B,
 252        CH_3C575,
 253
 254        CH_3C575_1,
 255        CH_3CCFE575,
 256        CH_3CCFE575CT,
 257        CH_3CCFE656,
 258        CH_3CCFEM656,
 259
 260        CH_3CCFEM656_1,
 261        CH_3C450,
 262        CH_3C920,
 263        CH_3C982A,
 264        CH_3C982B,
 265
 266        CH_905BT4,
 267        CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276        const char *name;
 277        int flags;
 278        int drv_flags;
 279        int io_size;
 280} vortex_info_tbl[] __devinitdata = {
 281        {"3c590 Vortex 10Mbps",
 282         PCI_USES_MASTER, IS_VORTEX, 32, },
 283        {"3c592 EISA 10Mbps Demon/Vortex",                                      /* AKPM: from Don's 3c59x_cb.c 0.49H */
 284         PCI_USES_MASTER, IS_VORTEX, 32, },
 285        {"3c597 EISA Fast Demon/Vortex",                                        /* AKPM: from Don's 3c59x_cb.c 0.49H */
 286         PCI_USES_MASTER, IS_VORTEX, 32, },
 287        {"3c595 Vortex 100baseTx",
 288         PCI_USES_MASTER, IS_VORTEX, 32, },
 289        {"3c595 Vortex 100baseT4",
 290         PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292        {"3c595 Vortex 100base-MII",
 293         PCI_USES_MASTER, IS_VORTEX, 32, },
 294        {"3c900 Boomerang 10baseT",
 295         PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296        {"3c900 Boomerang 10Mbps Combo",
 297         PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298        {"3c900 Cyclone 10Mbps TPO",                                            /* AKPM: from Don's 0.99M */
 299         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300        {"3c900 Cyclone 10Mbps Combo",
 301         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303        {"3c900 Cyclone 10Mbps TPC",                                            /* AKPM: from Don's 0.99M */
 304         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305        {"3c900B-FL Cyclone 10base-FL",
 306         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307        {"3c905 Boomerang 100baseTx",
 308         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309        {"3c905 Boomerang 100baseT4",
 310         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311        {"3C905B-TX Fast Etherlink XL PCI",
 312         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313        {"3c905B Cyclone 100baseTx",
 314         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316        {"3c905B Cyclone 10/100/BNC",
 317         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318        {"3c905B-FX Cyclone 100baseFx",
 319         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320        {"3c905C Tornado",
 321        PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322        {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323         PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324        {"3c980 Cyclone",
 325         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327        {"3c980C Python-T",
 328         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329        {"3cSOHO100-TX Hurricane",
 330         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331        {"3c555 Laptop Hurricane",
 332         PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333        {"3c556 Laptop Tornado",
 334         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335                                                                        HAS_HWCKSM, 128, },
 336        {"3c556B Laptop Hurricane",
 337         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338                                        WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340        {"3c575 [Megahertz] 10/100 LAN  CardBus",
 341        PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342        {"3c575 Boomerang CardBus",
 343         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344        {"3CCFE575BT Cyclone CardBus",
 345         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347        {"3CCFE575CT Tornado CardBus",
 348         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349                                                                        MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350        {"3CCFE656 Cyclone CardBus",
 351         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354        {"3CCFEM656B Cyclone+Winmodem CardBus",
 355         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357        {"3CXFEM656C Tornado+Winmodem CardBus",                 /* From pcmcia-cs-3.1.5 */
 358         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359                                                                        MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360        {"3c450 HomePNA Tornado",                                               /* AKPM: from Don's 0.99Q */
 361         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362        {"3c920 Tornado",
 363         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364        {"3c982 Hydra Dual Port A",
 365         PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367        {"3c982 Hydra Dual Port B",
 368         PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369        {"3c905B-T4",
 370         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371        {"3c920B-EMB-WNM Tornado",
 372         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374        {NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
 379        { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380        { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381        { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382        { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383        { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385        { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386        { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387        { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388        { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389        { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391        { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392        { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393        { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394        { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395        { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396        { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398        { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399        { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400        { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401        { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402        { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403        { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405        { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406        { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407        { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408        { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409        { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411        { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412        { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413        { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414        { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415        { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417        { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418        { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419        { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420        { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421        { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423        { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424        { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426        {0,}                                            /* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448        TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449        RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450        UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451        DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452        RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453        FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454        SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455        SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456        StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457        StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461        RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465        IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466        TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467        IntReq = 0x0040, StatsFull = 0x0080,
 468        DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469        DMAInProgress = 1<<11,                  /* DMA controller is still busy.*/
 470        CmdInProgress = 1<<12,                  /* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476        TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477        RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478        TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481        Wn0EepromCmd = 10,              /* Window 0: EEPROM command register. */
 482        Wn0EepromData = 12,             /* Window 0: EEPROM results register. */
 483        IntrStatus=0x0E,                /* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486        EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487        EEPROM_EWENB = 0x30,            /* Enable erasing/writing for 10 msec. */
 488        EEPROM_EWDIS = 0x00,            /* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492        PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493        EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494        NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495        DriverTune=13, Checksum=15};
 496
 497enum Window2 {                  /* Window 2. */
 498        Wn2_ResetOptions=12,
 499};
 500enum Window3 {                  /* Window 3: MAC/config bits. */
 501        Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)                                       \
 508        (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |   \
 509        (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)             BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)    BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)    BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)             BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)    BFEXT(v, 16, 2)
 516#define XCVR(v)                 BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)   BFEXT(v, 24, 1)
 518
 519enum Window4 {          /* Window 4: Xcvr/media bits. */
 520        Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523        Media_SQE = 0x0008,             /* Enable SQE error counting for AUI. */
 524        Media_10TP = 0x00C0,    /* Enable link beat and jabber for 10baseT. */
 525        Media_Lnk = 0x0080,             /* Enable just link beat for 100TX/100FX. */
 526        Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {                                  /* Window 7: Bus Master control. */
 529        Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530        Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534        PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535        TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG       0x80000000                      /* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE     0x00010000                      /* This packet has been downloaded */
 543struct boom_rx_desc {
 544        __le32 next;                                    /* Last entry points to 0.   */
 545        __le32 status;
 546        __le32 addr;                                    /* Up to 63 addr/len pairs possible. */
 547        __le32 length;                                  /* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551        RxDComplete=0x00008000, RxDError=0x4000,
 552        /* See boomerang_rx() for actual error bits */
 553        IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554        IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564        __le32 next;                                    /* Last entry points to 0.   */
 565        __le32 status;                                  /* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567        struct {
 568                __le32 addr;
 569                __le32 length;
 570        } frag[1+MAX_SKB_FRAGS];
 571#else
 572                __le32 addr;
 573                __le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579        CRCDisable=0x2000, TxDComplete=0x8000,
 580        AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581        TxIntrUploaded=0x80000000,              /* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588        unsigned long tx_deferred;
 589        unsigned long tx_max_collisions;
 590        unsigned long tx_multiple_collisions;
 591        unsigned long tx_single_collisions;
 592        unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596        /* The Rx and Tx rings should be quad-word-aligned. */
 597        struct boom_rx_desc* rx_ring;
 598        struct boom_tx_desc* tx_ring;
 599        dma_addr_t rx_ring_dma;
 600        dma_addr_t tx_ring_dma;
 601        /* The addresses of transmit- and receive-in-place skbuffs. */
 602        struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603        struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604        unsigned int cur_rx, cur_tx;            /* The next free ring entry */
 605        unsigned int dirty_rx, dirty_tx;        /* The ring entries to be free()ed. */
 606        struct vortex_extra_stats xstats;       /* NIC-specific extra stats */
 607        struct sk_buff *tx_skb;                         /* Packet being eaten by bus master ctrl.  */
 608        dma_addr_t tx_skb_dma;                          /* Allocated DMA address for bus master ctrl DMA.   */
 609
 610        /* PCI configuration space information. */
 611        struct device *gendev;
 612        void __iomem *ioaddr;                   /* IO address space */
 613        void __iomem *cb_fn_base;               /* CardBus function status addr space. */
 614
 615        /* Some values here only for performance evaluation and path-coverage */
 616        int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617        int card_idx;
 618
 619        /* The remainder are related to chip state, mostly media selection. */
 620        struct timer_list timer;                        /* Media selection timer. */
 621        struct timer_list rx_oom_timer;         /* Rx skb allocation retry timer */
 622        int options;                                            /* User-settable misc. driver options. */
 623        unsigned int media_override:4,          /* Passed-in media type. */
 624                default_media:4,                                /* Read from the EEPROM/Wn3_Config. */
 625                full_duplex:1, autoselect:1,
 626                bus_master:1,                                   /* Vortex can only do a fragment bus-m. */
 627                full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 628                flow_ctrl:1,                                    /* Use 802.3x flow control (PAUSE only) */
 629                partner_flow_ctrl:1,                    /* Partner supports flow control */
 630                has_nway:1,
 631                enable_wol:1,                                   /* Wake-on-LAN is enabled */
 632                pm_state_valid:1,                               /* pci_dev->saved_config_space has sane contents */
 633                open:1,
 634                medialock:1,
 635                must_free_region:1,                             /* Flag: if zero, Cardbus owns the I/O region */
 636                large_frames:1,                 /* accept large frames */
 637                handling_irq:1;                 /* private in_irq indicator */
 638        /* {get|set}_wol operations are already serialized by rtnl.
 639         * no additional locking is required for the enable_wol and acpi_set_WOL()
 640         */
 641        int drv_flags;
 642        u16 status_enable;
 643        u16 intr_enable;
 644        u16 available_media;                            /* From Wn3_Options. */
 645        u16 capabilities, info1, info2;         /* Various, from EEPROM. */
 646        u16 advertising;                                        /* NWay media advertisement */
 647        unsigned char phys[2];                          /* MII device addresses. */
 648        u16 deferred;                                           /* Resend these interrupts when we
 649                                                                                 * bale from the ISR */
 650        u16 io_size;                                            /* Size of PCI region (for release_region) */
 651
 652        /* Serialises access to hardware other than MII and variables below.
 653         * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 654        spinlock_t lock;
 655
 656        spinlock_t mii_lock;            /* Serialises access to MII */
 657        struct mii_if_info mii;         /* MII lib hooks/info */
 658        spinlock_t window_lock;         /* Serialises access to windowed regs */
 659        int window;                     /* Register window */
 660};
 661
 662static void window_set(struct vortex_private *vp, int window)
 663{
 664        if (window != vp->window) {
 665                iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 666                vp->window = window;
 667        }
 668}
 669
 670#define DEFINE_WINDOW_IO(size)                                          \
 671static u ## size                                                        \
 672window_read ## size(struct vortex_private *vp, int window, int addr)    \
 673{                                                                       \
 674        unsigned long flags;                                            \
 675        u ## size ret;                                                  \
 676        spin_lock_irqsave(&vp->window_lock, flags);                     \
 677        window_set(vp, window);                                         \
 678        ret = ioread ## size(vp->ioaddr + addr);                        \
 679        spin_unlock_irqrestore(&vp->window_lock, flags);                \
 680        return ret;                                                     \
 681}                                                                       \
 682static void                                                             \
 683window_write ## size(struct vortex_private *vp, u ## size value,        \
 684                     int window, int addr)                              \
 685{                                                                       \
 686        unsigned long flags;                                            \
 687        spin_lock_irqsave(&vp->window_lock, flags);                     \
 688        window_set(vp, window);                                         \
 689        iowrite ## size(value, vp->ioaddr + addr);                      \
 690        spin_unlock_irqrestore(&vp->window_lock, flags);                \
 691}
 692DEFINE_WINDOW_IO(8)
 693DEFINE_WINDOW_IO(16)
 694DEFINE_WINDOW_IO(32)
 695
 696#ifdef CONFIG_PCI
 697#define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
 698#else
 699#define DEVICE_PCI(dev) NULL
 700#endif
 701
 702#define VORTEX_PCI(vp)                                                  \
 703        ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 704
 705#ifdef CONFIG_EISA
 706#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 707#else
 708#define DEVICE_EISA(dev) NULL
 709#endif
 710
 711#define VORTEX_EISA(vp)                                                 \
 712        ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 713
 714/* The action to take with a media selection timer tick.
 715   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 716 */
 717enum xcvr_types {
 718        XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 719        XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 720};
 721
 722static const struct media_table {
 723        char *name;
 724        unsigned int media_bits:16,             /* Bits to set in Wn4_Media register. */
 725                mask:8,                                         /* The transceiver-present bit in Wn3_Config.*/
 726                next:8;                                         /* The media type to try next. */
 727        int wait;                                               /* Time before we check media status. */
 728} media_tbl[] = {
 729  {     "10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 730  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 731  { "undefined", 0,                     0x80, XCVR_10baseT, 10000},
 732  { "10base2",   0,                     0x10, XCVR_AUI,         (1*HZ)/10},
 733  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 734  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,             (14*HZ)/10},
 735  { "MII",               0,                     0x41, XCVR_10baseT, 3*HZ },
 736  { "undefined", 0,                     0x01, XCVR_10baseT, 10000},
 737  { "Autonegotiate", 0,         0x41, XCVR_10baseT, 3*HZ},
 738  { "MII-External",      0,             0x41, XCVR_10baseT, 3*HZ },
 739  { "Default",   0,                     0xFF, XCVR_10baseT, 10000},
 740};
 741
 742static struct {
 743        const char str[ETH_GSTRING_LEN];
 744} ethtool_stats_keys[] = {
 745        { "tx_deferred" },
 746        { "tx_max_collisions" },
 747        { "tx_multiple_collisions" },
 748        { "tx_single_collisions" },
 749        { "rx_bad_ssd" },
 750};
 751
 752/* number of ETHTOOL_GSTATS u64's */
 753#define VORTEX_NUM_STATS    5
 754
 755static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 756                                   int chip_idx, int card_idx);
 757static int vortex_up(struct net_device *dev);
 758static void vortex_down(struct net_device *dev, int final);
 759static int vortex_open(struct net_device *dev);
 760static void mdio_sync(struct vortex_private *vp, int bits);
 761static int mdio_read(struct net_device *dev, int phy_id, int location);
 762static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 763static void vortex_timer(unsigned long arg);
 764static void rx_oom_timer(unsigned long arg);
 765static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 766                                     struct net_device *dev);
 767static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 768                                        struct net_device *dev);
 769static int vortex_rx(struct net_device *dev);
 770static int boomerang_rx(struct net_device *dev);
 771static irqreturn_t vortex_interrupt(int irq, void *dev_id);
 772static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
 773static int vortex_close(struct net_device *dev);
 774static void dump_tx_ring(struct net_device *dev);
 775static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 776static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 777static void set_rx_mode(struct net_device *dev);
 778#ifdef CONFIG_PCI
 779static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 780#endif
 781static void vortex_tx_timeout(struct net_device *dev);
 782static void acpi_set_WOL(struct net_device *dev);
 783static const struct ethtool_ops vortex_ethtool_ops;
 784static void set_8021q_mode(struct net_device *dev, int enable);
 785
 786/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 787/* Option count limit only -- unlimited interfaces are supported. */
 788#define MAX_UNITS 8
 789static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 790static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 794static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 795static int global_options = -1;
 796static int global_full_duplex = -1;
 797static int global_enable_wol = -1;
 798static int global_use_mmio = -1;
 799
 800/* Variables to work-around the Compaq PCI BIOS32 problem. */
 801static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 802static struct net_device *compaq_net_device;
 803
 804static int vortex_cards_found;
 805
 806module_param(debug, int, 0);
 807module_param(global_options, int, 0);
 808module_param_array(options, int, NULL, 0);
 809module_param(global_full_duplex, int, 0);
 810module_param_array(full_duplex, int, NULL, 0);
 811module_param_array(hw_checksums, int, NULL, 0);
 812module_param_array(flow_ctrl, int, NULL, 0);
 813module_param(global_enable_wol, int, 0);
 814module_param_array(enable_wol, int, NULL, 0);
 815module_param(rx_copybreak, int, 0);
 816module_param(max_interrupt_work, int, 0);
 817module_param(compaq_ioaddr, int, 0);
 818module_param(compaq_irq, int, 0);
 819module_param(compaq_device_id, int, 0);
 820module_param(watchdog, int, 0);
 821module_param(global_use_mmio, int, 0);
 822module_param_array(use_mmio, int, NULL, 0);
 823MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 824MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 825MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 826MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 827MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 828MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 829MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 830MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 831MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 832MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 833MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 834MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 836MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 837MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 838MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 839MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 840
 841#ifdef CONFIG_NET_POLL_CONTROLLER
 842static void poll_vortex(struct net_device *dev)
 843{
 844        struct vortex_private *vp = netdev_priv(dev);
 845        unsigned long flags;
 846        local_irq_save(flags);
 847        (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
 848        local_irq_restore(flags);
 849}
 850#endif
 851
 852#ifdef CONFIG_PM
 853
 854static int vortex_suspend(struct device *dev)
 855{
 856        struct pci_dev *pdev = to_pci_dev(dev);
 857        struct net_device *ndev = pci_get_drvdata(pdev);
 858
 859        if (!ndev || !netif_running(ndev))
 860                return 0;
 861
 862        netif_device_detach(ndev);
 863        vortex_down(ndev, 1);
 864
 865        return 0;
 866}
 867
 868static int vortex_resume(struct device *dev)
 869{
 870        struct pci_dev *pdev = to_pci_dev(dev);
 871        struct net_device *ndev = pci_get_drvdata(pdev);
 872        int err;
 873
 874        if (!ndev || !netif_running(ndev))
 875                return 0;
 876
 877        err = vortex_up(ndev);
 878        if (err)
 879                return err;
 880
 881        netif_device_attach(ndev);
 882
 883        return 0;
 884}
 885
 886static const struct dev_pm_ops vortex_pm_ops = {
 887        .suspend = vortex_suspend,
 888        .resume = vortex_resume,
 889        .freeze = vortex_suspend,
 890        .thaw = vortex_resume,
 891        .poweroff = vortex_suspend,
 892        .restore = vortex_resume,
 893};
 894
 895#define VORTEX_PM_OPS (&vortex_pm_ops)
 896
 897#else /* !CONFIG_PM */
 898
 899#define VORTEX_PM_OPS NULL
 900
 901#endif /* !CONFIG_PM */
 902
 903#ifdef CONFIG_EISA
 904static struct eisa_device_id vortex_eisa_ids[] = {
 905        { "TCM5920", CH_3C592 },
 906        { "TCM5970", CH_3C597 },
 907        { "" }
 908};
 909MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 910
 911static int __init vortex_eisa_probe(struct device *device)
 912{
 913        void __iomem *ioaddr;
 914        struct eisa_device *edev;
 915
 916        edev = to_eisa_device(device);
 917
 918        if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 919                return -EBUSY;
 920
 921        ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 922
 923        if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 924                                          edev->id.driver_data, vortex_cards_found)) {
 925                release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 926                return -ENODEV;
 927        }
 928
 929        vortex_cards_found++;
 930
 931        return 0;
 932}
 933
 934static int __devexit vortex_eisa_remove(struct device *device)
 935{
 936        struct eisa_device *edev;
 937        struct net_device *dev;
 938        struct vortex_private *vp;
 939        void __iomem *ioaddr;
 940
 941        edev = to_eisa_device(device);
 942        dev = eisa_get_drvdata(edev);
 943
 944        if (!dev) {
 945                pr_err("vortex_eisa_remove called for Compaq device!\n");
 946                BUG();
 947        }
 948
 949        vp = netdev_priv(dev);
 950        ioaddr = vp->ioaddr;
 951
 952        unregister_netdev(dev);
 953        iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 954        release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
 955
 956        free_netdev(dev);
 957        return 0;
 958}
 959
 960static struct eisa_driver vortex_eisa_driver = {
 961        .id_table = vortex_eisa_ids,
 962        .driver   = {
 963                .name    = "3c59x",
 964                .probe   = vortex_eisa_probe,
 965                .remove  = __devexit_p(vortex_eisa_remove)
 966        }
 967};
 968
 969#endif /* CONFIG_EISA */
 970
 971/* returns count found (>= 0), or negative on error */
 972static int __init vortex_eisa_init(void)
 973{
 974        int eisa_found = 0;
 975        int orig_cards_found = vortex_cards_found;
 976
 977#ifdef CONFIG_EISA
 978        int err;
 979
 980        err = eisa_driver_register (&vortex_eisa_driver);
 981        if (!err) {
 982                /*
 983                 * Because of the way EISA bus is probed, we cannot assume
 984                 * any device have been found when we exit from
 985                 * eisa_driver_register (the bus root driver may not be
 986                 * initialized yet). So we blindly assume something was
 987                 * found, and let the sysfs magic happened...
 988                 */
 989                eisa_found = 1;
 990        }
 991#endif
 992
 993        /* Special code to work-around the Compaq PCI BIOS32 problem. */
 994        if (compaq_ioaddr) {
 995                vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 996                              compaq_irq, compaq_device_id, vortex_cards_found++);
 997        }
 998
 999        return vortex_cards_found - orig_cards_found + eisa_found;
1000}
1001
1002/* returns count (>= 0), or negative on error */
1003static int __devinit vortex_init_one(struct pci_dev *pdev,
1004                                      const struct pci_device_id *ent)
1005{
1006        int rc, unit, pci_bar;
1007        struct vortex_chip_info *vci;
1008        void __iomem *ioaddr;
1009
1010        /* wake up and enable device */
1011        rc = pci_enable_device(pdev);
1012        if (rc < 0)
1013                goto out;
1014
1015        unit = vortex_cards_found;
1016
1017        if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1018                /* Determine the default if the user didn't override us */
1019                vci = &vortex_info_tbl[ent->driver_data];
1020                pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1021        } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1022                pci_bar = use_mmio[unit] ? 1 : 0;
1023        else
1024                pci_bar = global_use_mmio ? 1 : 0;
1025
1026        ioaddr = pci_iomap(pdev, pci_bar, 0);
1027        if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1028                ioaddr = pci_iomap(pdev, 0, 0);
1029        if (!ioaddr) {
1030                pci_disable_device(pdev);
1031                rc = -ENOMEM;
1032                goto out;
1033        }
1034
1035        rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1036                           ent->driver_data, unit);
1037        if (rc < 0) {
1038                pci_iounmap(pdev, ioaddr);
1039                pci_disable_device(pdev);
1040                goto out;
1041        }
1042
1043        vortex_cards_found++;
1044
1045out:
1046        return rc;
1047}
1048
1049static const struct net_device_ops boomrang_netdev_ops = {
1050        .ndo_open               = vortex_open,
1051        .ndo_stop               = vortex_close,
1052        .ndo_start_xmit         = boomerang_start_xmit,
1053        .ndo_tx_timeout         = vortex_tx_timeout,
1054        .ndo_get_stats          = vortex_get_stats,
1055#ifdef CONFIG_PCI
1056        .ndo_do_ioctl           = vortex_ioctl,
1057#endif
1058        .ndo_set_multicast_list = set_rx_mode,
1059        .ndo_change_mtu         = eth_change_mtu,
1060        .ndo_set_mac_address    = eth_mac_addr,
1061        .ndo_validate_addr      = eth_validate_addr,
1062#ifdef CONFIG_NET_POLL_CONTROLLER
1063        .ndo_poll_controller    = poll_vortex,
1064#endif
1065};
1066
1067static const struct net_device_ops vortex_netdev_ops = {
1068        .ndo_open               = vortex_open,
1069        .ndo_stop               = vortex_close,
1070        .ndo_start_xmit         = vortex_start_xmit,
1071        .ndo_tx_timeout         = vortex_tx_timeout,
1072        .ndo_get_stats          = vortex_get_stats,
1073#ifdef CONFIG_PCI
1074        .ndo_do_ioctl           = vortex_ioctl,
1075#endif
1076        .ndo_set_multicast_list = set_rx_mode,
1077        .ndo_change_mtu         = eth_change_mtu,
1078        .ndo_set_mac_address    = eth_mac_addr,
1079        .ndo_validate_addr      = eth_validate_addr,
1080#ifdef CONFIG_NET_POLL_CONTROLLER
1081        .ndo_poll_controller    = poll_vortex,
1082#endif
1083};
1084
1085/*
1086 * Start up the PCI/EISA device which is described by *gendev.
1087 * Return 0 on success.
1088 *
1089 * NOTE: pdev can be NULL, for the case of a Compaq device
1090 */
1091static int __devinit vortex_probe1(struct device *gendev,
1092                                   void __iomem *ioaddr, int irq,
1093                                   int chip_idx, int card_idx)
1094{
1095        struct vortex_private *vp;
1096        int option;
1097        unsigned int eeprom[0x40], checksum = 0;                /* EEPROM contents */
1098        int i, step;
1099        struct net_device *dev;
1100        static int printed_version;
1101        int retval, print_info;
1102        struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1103        const char *print_name = "3c59x";
1104        struct pci_dev *pdev = NULL;
1105        struct eisa_device *edev = NULL;
1106
1107        if (!printed_version) {
1108                pr_info("%s", version);
1109                printed_version = 1;
1110        }
1111
1112        if (gendev) {
1113                if ((pdev = DEVICE_PCI(gendev))) {
1114                        print_name = pci_name(pdev);
1115                }
1116
1117                if ((edev = DEVICE_EISA(gendev))) {
1118                        print_name = dev_name(&edev->dev);
1119                }
1120        }
1121
1122        dev = alloc_etherdev(sizeof(*vp));
1123        retval = -ENOMEM;
1124        if (!dev) {
1125                pr_err(PFX "unable to allocate etherdev, aborting\n");
1126                goto out;
1127        }
1128        SET_NETDEV_DEV(dev, gendev);
1129        vp = netdev_priv(dev);
1130
1131        option = global_options;
1132
1133        /* The lower four bits are the media type. */
1134        if (dev->mem_start) {
1135                /*
1136                 * The 'options' param is passed in as the third arg to the
1137                 * LILO 'ether=' argument for non-modular use
1138                 */
1139                option = dev->mem_start;
1140        }
1141        else if (card_idx < MAX_UNITS) {
1142                if (options[card_idx] >= 0)
1143                        option = options[card_idx];
1144        }
1145
1146        if (option > 0) {
1147                if (option & 0x8000)
1148                        vortex_debug = 7;
1149                if (option & 0x4000)
1150                        vortex_debug = 2;
1151                if (option & 0x0400)
1152                        vp->enable_wol = 1;
1153        }
1154
1155        print_info = (vortex_debug > 1);
1156        if (print_info)
1157                pr_info("See Documentation/networking/vortex.txt\n");
1158
1159        pr_info("%s: 3Com %s %s at %p.\n",
1160               print_name,
1161               pdev ? "PCI" : "EISA",
1162               vci->name,
1163               ioaddr);
1164
1165        dev->base_addr = (unsigned long)ioaddr;
1166        dev->irq = irq;
1167        dev->mtu = mtu;
1168        vp->ioaddr = ioaddr;
1169        vp->large_frames = mtu > 1500;
1170        vp->drv_flags = vci->drv_flags;
1171        vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1172        vp->io_size = vci->io_size;
1173        vp->card_idx = card_idx;
1174        vp->window = -1;
1175
1176        /* module list only for Compaq device */
1177        if (gendev == NULL) {
1178                compaq_net_device = dev;
1179        }
1180
1181        /* PCI-only startup logic */
1182        if (pdev) {
1183                /* EISA resources already marked, so only PCI needs to do this here */
1184                /* Ignore return value, because Cardbus drivers already allocate for us */
1185                if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1186                        vp->must_free_region = 1;
1187
1188                /* enable bus-mastering if necessary */
1189                if (vci->flags & PCI_USES_MASTER)
1190                        pci_set_master(pdev);
1191
1192                if (vci->drv_flags & IS_VORTEX) {
1193                        u8 pci_latency;
1194                        u8 new_latency = 248;
1195
1196                        /* Check the PCI latency value.  On the 3c590 series the latency timer
1197                           must be set to the maximum value to avoid data corruption that occurs
1198                           when the timer expires during a transfer.  This bug exists the Vortex
1199                           chip only. */
1200                        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1201                        if (pci_latency < new_latency) {
1202                                pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1203                                        print_name, pci_latency, new_latency);
1204                                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1205                        }
1206                }
1207        }
1208
1209        spin_lock_init(&vp->lock);
1210        spin_lock_init(&vp->mii_lock);
1211        spin_lock_init(&vp->window_lock);
1212        vp->gendev = gendev;
1213        vp->mii.dev = dev;
1214        vp->mii.mdio_read = mdio_read;
1215        vp->mii.mdio_write = mdio_write;
1216        vp->mii.phy_id_mask = 0x1f;
1217        vp->mii.reg_num_mask = 0x1f;
1218
1219        /* Makes sure rings are at least 16 byte aligned. */
1220        vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1221                                           + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1222                                           &vp->rx_ring_dma);
1223        retval = -ENOMEM;
1224        if (!vp->rx_ring)
1225                goto free_region;
1226
1227        vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1228        vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1229
1230        /* if we are a PCI driver, we store info in pdev->driver_data
1231         * instead of a module list */
1232        if (pdev)
1233                pci_set_drvdata(pdev, dev);
1234        if (edev)
1235                eisa_set_drvdata(edev, dev);
1236
1237        vp->media_override = 7;
1238        if (option >= 0) {
1239                vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1240                if (vp->media_override != 7)
1241                        vp->medialock = 1;
1242                vp->full_duplex = (option & 0x200) ? 1 : 0;
1243                vp->bus_master = (option & 16) ? 1 : 0;
1244        }
1245
1246        if (global_full_duplex > 0)
1247                vp->full_duplex = 1;
1248        if (global_enable_wol > 0)
1249                vp->enable_wol = 1;
1250
1251        if (card_idx < MAX_UNITS) {
1252                if (full_duplex[card_idx] > 0)
1253                        vp->full_duplex = 1;
1254                if (flow_ctrl[card_idx] > 0)
1255                        vp->flow_ctrl = 1;
1256                if (enable_wol[card_idx] > 0)
1257                        vp->enable_wol = 1;
1258        }
1259
1260        vp->mii.force_media = vp->full_duplex;
1261        vp->options = option;
1262        /* Read the station address from the EEPROM. */
1263        {
1264                int base;
1265
1266                if (vci->drv_flags & EEPROM_8BIT)
1267                        base = 0x230;
1268                else if (vci->drv_flags & EEPROM_OFFSET)
1269                        base = EEPROM_Read + 0x30;
1270                else
1271                        base = EEPROM_Read;
1272
1273                for (i = 0; i < 0x40; i++) {
1274                        int timer;
1275                        window_write16(vp, base + i, 0, Wn0EepromCmd);
1276                        /* Pause for at least 162 us. for the read to take place. */
1277                        for (timer = 10; timer >= 0; timer--) {
1278                                udelay(162);
1279                                if ((window_read16(vp, 0, Wn0EepromCmd) &
1280                                     0x8000) == 0)
1281                                        break;
1282                        }
1283                        eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1284                }
1285        }
1286        for (i = 0; i < 0x18; i++)
1287                checksum ^= eeprom[i];
1288        checksum = (checksum ^ (checksum >> 8)) & 0xff;
1289        if (checksum != 0x00) {         /* Grrr, needless incompatible change 3Com. */
1290                while (i < 0x21)
1291                        checksum ^= eeprom[i++];
1292                checksum = (checksum ^ (checksum >> 8)) & 0xff;
1293        }
1294        if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1295                pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1296        for (i = 0; i < 3; i++)
1297                ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1298        memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1299        if (print_info)
1300                pr_cont(" %pM", dev->dev_addr);
1301        /* Unfortunately an all zero eeprom passes the checksum and this
1302           gets found in the wild in failure cases. Crypto is hard 8) */
1303        if (!is_valid_ether_addr(dev->dev_addr)) {
1304                retval = -EINVAL;
1305                pr_err("*** EEPROM MAC address is invalid.\n");
1306                goto free_ring; /* With every pack */
1307        }
1308        for (i = 0; i < 6; i++)
1309                window_write8(vp, dev->dev_addr[i], 2, i);
1310
1311        if (print_info)
1312                pr_cont(", IRQ %d\n", dev->irq);
1313        /* Tell them about an invalid IRQ. */
1314        if (dev->irq <= 0 || dev->irq >= nr_irqs)
1315                pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1316                           dev->irq);
1317
1318        step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1319        if (print_info) {
1320                pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1321                        eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1322                        step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1323        }
1324
1325
1326        if (pdev && vci->drv_flags & HAS_CB_FNS) {
1327                unsigned short n;
1328
1329                vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1330                if (!vp->cb_fn_base) {
1331                        retval = -ENOMEM;
1332                        goto free_ring;
1333                }
1334
1335                if (print_info) {
1336                        pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1337                                print_name,
1338                                (unsigned long long)pci_resource_start(pdev, 2),
1339                                vp->cb_fn_base);
1340                }
1341
1342                n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1343                if (vp->drv_flags & INVERT_LED_PWR)
1344                        n |= 0x10;
1345                if (vp->drv_flags & INVERT_MII_PWR)
1346                        n |= 0x4000;
1347                window_write16(vp, n, 2, Wn2_ResetOptions);
1348                if (vp->drv_flags & WNO_XCVR_PWR) {
1349                        window_write16(vp, 0x0800, 0, 0);
1350                }
1351        }
1352
1353        /* Extract our information from the EEPROM data. */
1354        vp->info1 = eeprom[13];
1355        vp->info2 = eeprom[15];
1356        vp->capabilities = eeprom[16];
1357
1358        if (vp->info1 & 0x8000) {
1359                vp->full_duplex = 1;
1360                if (print_info)
1361                        pr_info("Full duplex capable\n");
1362        }
1363
1364        {
1365                static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1366                unsigned int config;
1367                vp->available_media = window_read16(vp, 3, Wn3_Options);
1368                if ((vp->available_media & 0xff) == 0)          /* Broken 3c916 */
1369                        vp->available_media = 0x40;
1370                config = window_read32(vp, 3, Wn3_Config);
1371                if (print_info) {
1372                        pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1373                                config, window_read16(vp, 3, Wn3_Options));
1374                        pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1375                                   8 << RAM_SIZE(config),
1376                                   RAM_WIDTH(config) ? "word" : "byte",
1377                                   ram_split[RAM_SPLIT(config)],
1378                                   AUTOSELECT(config) ? "autoselect/" : "",
1379                                   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1380                                   media_tbl[XCVR(config)].name);
1381                }
1382                vp->default_media = XCVR(config);
1383                if (vp->default_media == XCVR_NWAY)
1384                        vp->has_nway = 1;
1385                vp->autoselect = AUTOSELECT(config);
1386        }
1387
1388        if (vp->media_override != 7) {
1389                pr_info("%s:  Media override to transceiver type %d (%s).\n",
1390                                print_name, vp->media_override,
1391                                media_tbl[vp->media_override].name);
1392                dev->if_port = vp->media_override;
1393        } else
1394                dev->if_port = vp->default_media;
1395
1396        if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1397                dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1398                int phy, phy_idx = 0;
1399                mii_preamble_required++;
1400                if (vp->drv_flags & EXTRA_PREAMBLE)
1401                        mii_preamble_required++;
1402                mdio_sync(vp, 32);
1403                mdio_read(dev, 24, MII_BMSR);
1404                for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1405                        int mii_status, phyx;
1406
1407                        /*
1408                         * For the 3c905CX we look at index 24 first, because it bogusly
1409                         * reports an external PHY at all indices
1410                         */
1411                        if (phy == 0)
1412                                phyx = 24;
1413                        else if (phy <= 24)
1414                                phyx = phy - 1;
1415                        else
1416                                phyx = phy;
1417                        mii_status = mdio_read(dev, phyx, MII_BMSR);
1418                        if (mii_status  &&  mii_status != 0xffff) {
1419                                vp->phys[phy_idx++] = phyx;
1420                                if (print_info) {
1421                                        pr_info("  MII transceiver found at address %d, status %4x.\n",
1422                                                phyx, mii_status);
1423                                }
1424                                if ((mii_status & 0x0040) == 0)
1425                                        mii_preamble_required++;
1426                        }
1427                }
1428                mii_preamble_required--;
1429                if (phy_idx == 0) {
1430                        pr_warning("  ***WARNING*** No MII transceivers found!\n");
1431                        vp->phys[0] = 24;
1432                } else {
1433                        vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1434                        if (vp->full_duplex) {
1435                                /* Only advertise the FD media types. */
1436                                vp->advertising &= ~0x02A0;
1437                                mdio_write(dev, vp->phys[0], 4, vp->advertising);
1438                        }
1439                }
1440                vp->mii.phy_id = vp->phys[0];
1441        }
1442
1443        if (vp->capabilities & CapBusMaster) {
1444                vp->full_bus_master_tx = 1;
1445                if (print_info) {
1446                        pr_info("  Enabling bus-master transmits and %s receives.\n",
1447                        (vp->info2 & 1) ? "early" : "whole-frame" );
1448                }
1449                vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1450                vp->bus_master = 0;             /* AKPM: vortex only */
1451        }
1452
1453        /* The 3c59x-specific entries in the device structure. */
1454        if (vp->full_bus_master_tx) {
1455                dev->netdev_ops = &boomrang_netdev_ops;
1456                /* Actually, it still should work with iommu. */
1457                if (card_idx < MAX_UNITS &&
1458                    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1459                                hw_checksums[card_idx] == 1)) {
1460                        dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1461                }
1462        } else
1463                dev->netdev_ops =  &vortex_netdev_ops;
1464
1465        if (print_info) {
1466                pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1467                                print_name,
1468                                (dev->features & NETIF_F_SG) ? "en":"dis",
1469                                (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1470        }
1471
1472        dev->ethtool_ops = &vortex_ethtool_ops;
1473        dev->watchdog_timeo = (watchdog * HZ) / 1000;
1474
1475        if (pdev) {
1476                vp->pm_state_valid = 1;
1477                pci_save_state(VORTEX_PCI(vp));
1478                acpi_set_WOL(dev);
1479        }
1480        retval = register_netdev(dev);
1481        if (retval == 0)
1482                return 0;
1483
1484free_ring:
1485        pci_free_consistent(pdev,
1486                                                sizeof(struct boom_rx_desc) * RX_RING_SIZE
1487                                                        + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1488                                                vp->rx_ring,
1489                                                vp->rx_ring_dma);
1490free_region:
1491        if (vp->must_free_region)
1492                release_region(dev->base_addr, vci->io_size);
1493        free_netdev(dev);
1494        pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1495out:
1496        return retval;
1497}
1498
1499static void
1500issue_and_wait(struct net_device *dev, int cmd)
1501{
1502        struct vortex_private *vp = netdev_priv(dev);
1503        void __iomem *ioaddr = vp->ioaddr;
1504        int i;
1505
1506        iowrite16(cmd, ioaddr + EL3_CMD);
1507        for (i = 0; i < 2000; i++) {
1508                if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1509                        return;
1510        }
1511
1512        /* OK, that didn't work.  Do it the slow way.  One second */
1513        for (i = 0; i < 100000; i++) {
1514                if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1515                        if (vortex_debug > 1)
1516                                pr_info("%s: command 0x%04x took %d usecs\n",
1517                                           dev->name, cmd, i * 10);
1518                        return;
1519                }
1520                udelay(10);
1521        }
1522        pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1523                           dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1524}
1525
1526static void
1527vortex_set_duplex(struct net_device *dev)
1528{
1529        struct vortex_private *vp = netdev_priv(dev);
1530
1531        pr_info("%s:  setting %s-duplex.\n",
1532                dev->name, (vp->full_duplex) ? "full" : "half");
1533
1534        /* Set the full-duplex bit. */
1535        window_write16(vp,
1536                       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1537                       (vp->large_frames ? 0x40 : 0) |
1538                       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1539                        0x100 : 0),
1540                       3, Wn3_MAC_Ctrl);
1541}
1542
1543static void vortex_check_media(struct net_device *dev, unsigned int init)
1544{
1545        struct vortex_private *vp = netdev_priv(dev);
1546        unsigned int ok_to_print = 0;
1547
1548        if (vortex_debug > 3)
1549                ok_to_print = 1;
1550
1551        if (mii_check_media(&vp->mii, ok_to_print, init)) {
1552                vp->full_duplex = vp->mii.full_duplex;
1553                vortex_set_duplex(dev);
1554        } else if (init) {
1555                vortex_set_duplex(dev);
1556        }
1557}
1558
1559static int
1560vortex_up(struct net_device *dev)
1561{
1562        struct vortex_private *vp = netdev_priv(dev);
1563        void __iomem *ioaddr = vp->ioaddr;
1564        unsigned int config;
1565        int i, mii_reg1, mii_reg5, err = 0;
1566
1567        if (VORTEX_PCI(vp)) {
1568                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);    /* Go active */
1569                if (vp->pm_state_valid)
1570                        pci_restore_state(VORTEX_PCI(vp));
1571                err = pci_enable_device(VORTEX_PCI(vp));
1572                if (err) {
1573                        pr_warning("%s: Could not enable device\n",
1574                                dev->name);
1575                        goto err_out;
1576                }
1577        }
1578
1579        /* Before initializing select the active media port. */
1580        config = window_read32(vp, 3, Wn3_Config);
1581
1582        if (vp->media_override != 7) {
1583                pr_info("%s: Media override to transceiver %d (%s).\n",
1584                           dev->name, vp->media_override,
1585                           media_tbl[vp->media_override].name);
1586                dev->if_port = vp->media_override;
1587        } else if (vp->autoselect) {
1588                if (vp->has_nway) {
1589                        if (vortex_debug > 1)
1590                                pr_info("%s: using NWAY device table, not %d\n",
1591                                                                dev->name, dev->if_port);
1592                        dev->if_port = XCVR_NWAY;
1593                } else {
1594                        /* Find first available media type, starting with 100baseTx. */
1595                        dev->if_port = XCVR_100baseTx;
1596                        while (! (vp->available_media & media_tbl[dev->if_port].mask))
1597                                dev->if_port = media_tbl[dev->if_port].next;
1598                        if (vortex_debug > 1)
1599                                pr_info("%s: first available media type: %s\n",
1600                                        dev->name, media_tbl[dev->if_port].name);
1601                }
1602        } else {
1603                dev->if_port = vp->default_media;
1604                if (vortex_debug > 1)
1605                        pr_info("%s: using default media %s\n",
1606                                dev->name, media_tbl[dev->if_port].name);
1607        }
1608
1609        init_timer(&vp->timer);
1610        vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1611        vp->timer.data = (unsigned long)dev;
1612        vp->timer.function = vortex_timer;              /* timer handler */
1613        add_timer(&vp->timer);
1614
1615        init_timer(&vp->rx_oom_timer);
1616        vp->rx_oom_timer.data = (unsigned long)dev;
1617        vp->rx_oom_timer.function = rx_oom_timer;
1618
1619        if (vortex_debug > 1)
1620                pr_debug("%s: Initial media type %s.\n",
1621                           dev->name, media_tbl[dev->if_port].name);
1622
1623        vp->full_duplex = vp->mii.force_media;
1624        config = BFINS(config, dev->if_port, 20, 4);
1625        if (vortex_debug > 6)
1626                pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1627        window_write32(vp, config, 3, Wn3_Config);
1628
1629        if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1630                mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1631                mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1632                vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1633                vp->mii.full_duplex = vp->full_duplex;
1634
1635                vortex_check_media(dev, 1);
1636        }
1637        else
1638                vortex_set_duplex(dev);
1639
1640        issue_and_wait(dev, TxReset);
1641        /*
1642         * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1643         */
1644        issue_and_wait(dev, RxReset|0x04);
1645
1646
1647        iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1648
1649        if (vortex_debug > 1) {
1650                pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1651                           dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1652        }
1653
1654        /* Set the station address and mask in window 2 each time opened. */
1655        for (i = 0; i < 6; i++)
1656                window_write8(vp, dev->dev_addr[i], 2, i);
1657        for (; i < 12; i+=2)
1658                window_write16(vp, 0, 2, i);
1659
1660        if (vp->cb_fn_base) {
1661                unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1662                if (vp->drv_flags & INVERT_LED_PWR)
1663                        n |= 0x10;
1664                if (vp->drv_flags & INVERT_MII_PWR)
1665                        n |= 0x4000;
1666                window_write16(vp, n, 2, Wn2_ResetOptions);
1667        }
1668
1669        if (dev->if_port == XCVR_10base2)
1670                /* Start the thinnet transceiver. We should really wait 50ms...*/
1671                iowrite16(StartCoax, ioaddr + EL3_CMD);
1672        if (dev->if_port != XCVR_NWAY) {
1673                window_write16(vp,
1674                               (window_read16(vp, 4, Wn4_Media) &
1675                                ~(Media_10TP|Media_SQE)) |
1676                               media_tbl[dev->if_port].media_bits,
1677                               4, Wn4_Media);
1678        }
1679
1680        /* Switch to the stats window, and clear all stats by reading. */
1681        iowrite16(StatsDisable, ioaddr + EL3_CMD);
1682        for (i = 0; i < 10; i++)
1683                window_read8(vp, 6, i);
1684        window_read16(vp, 6, 10);
1685        window_read16(vp, 6, 12);
1686        /* New: On the Vortex we must also clear the BadSSD counter. */
1687        window_read8(vp, 4, 12);
1688        /* ..and on the Boomerang we enable the extra statistics bits. */
1689        window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1690
1691        if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1692                vp->cur_rx = vp->dirty_rx = 0;
1693                /* Initialize the RxEarly register as recommended. */
1694                iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1695                iowrite32(0x0020, ioaddr + PktStatus);
1696                iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1697        }
1698        if (vp->full_bus_master_tx) {           /* Boomerang bus master Tx. */
1699                vp->cur_tx = vp->dirty_tx = 0;
1700                if (vp->drv_flags & IS_BOOMERANG)
1701                        iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1702                /* Clear the Rx, Tx rings. */
1703                for (i = 0; i < RX_RING_SIZE; i++)      /* AKPM: this is done in vortex_open, too */
1704                        vp->rx_ring[i].status = 0;
1705                for (i = 0; i < TX_RING_SIZE; i++)
1706                        vp->tx_skbuff[i] = NULL;
1707                iowrite32(0, ioaddr + DownListPtr);
1708        }
1709        /* Set receiver mode: presumably accept b-case and phys addr only. */
1710        set_rx_mode(dev);
1711        /* enable 802.1q tagged frames */
1712        set_8021q_mode(dev, 1);
1713        iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1714
1715        iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1716        iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1717        /* Allow status bits to be seen. */
1718        vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1719                (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1720                (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1721                (vp->bus_master ? DMADone : 0);
1722        vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1723                (vp->full_bus_master_rx ? 0 : RxComplete) |
1724                StatsFull | HostError | TxComplete | IntReq
1725                | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1726        iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1727        /* Ack all pending events, and set active indicator mask. */
1728        iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1729                 ioaddr + EL3_CMD);
1730        iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1731        if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
1732                iowrite32(0x8000, vp->cb_fn_base + 4);
1733        netif_start_queue (dev);
1734err_out:
1735        return err;
1736}
1737
1738static int
1739vortex_open(struct net_device *dev)
1740{
1741        struct vortex_private *vp = netdev_priv(dev);
1742        int i;
1743        int retval;
1744
1745        /* Use the now-standard shared IRQ implementation. */
1746        if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1747                                boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1748                pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1749                goto err;
1750        }
1751
1752        if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1753                if (vortex_debug > 2)
1754                        pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1755                for (i = 0; i < RX_RING_SIZE; i++) {
1756                        struct sk_buff *skb;
1757                        vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1758                        vp->rx_ring[i].status = 0;      /* Clear complete bit. */
1759                        vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1760
1761                        skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1762                                                 GFP_KERNEL);
1763                        vp->rx_skbuff[i] = skb;
1764                        if (skb == NULL)
1765                                break;                  /* Bad news!  */
1766
1767                        skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1768                        vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1769                }
1770                if (i != RX_RING_SIZE) {
1771                        int j;
1772                        pr_emerg("%s: no memory for rx ring\n", dev->name);
1773                        for (j = 0; j < i; j++) {
1774                                if (vp->rx_skbuff[j]) {
1775                                        dev_kfree_skb(vp->rx_skbuff[j]);
1776                                        vp->rx_skbuff[j] = NULL;
1777                                }
1778                        }
1779                        retval = -ENOMEM;
1780                        goto err_free_irq;
1781                }
1782                /* Wrap the ring. */
1783                vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1784        }
1785
1786        retval = vortex_up(dev);
1787        if (!retval)
1788                goto out;
1789
1790err_free_irq:
1791        free_irq(dev->irq, dev);
1792err:
1793        if (vortex_debug > 1)
1794                pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1795out:
1796        return retval;
1797}
1798
1799static void
1800vortex_timer(unsigned long data)
1801{
1802        struct net_device *dev = (struct net_device *)data;
1803        struct vortex_private *vp = netdev_priv(dev);
1804        void __iomem *ioaddr = vp->ioaddr;
1805        int next_tick = 60*HZ;
1806        int ok = 0;
1807        int media_status;
1808
1809        if (vortex_debug > 2) {
1810                pr_debug("%s: Media selection timer tick happened, %s.\n",
1811                           dev->name, media_tbl[dev->if_port].name);
1812                pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1813        }
1814
1815        media_status = window_read16(vp, 4, Wn4_Media);
1816        switch (dev->if_port) {
1817        case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1818                if (media_status & Media_LnkBeat) {
1819                        netif_carrier_on(dev);
1820                        ok = 1;
1821                        if (vortex_debug > 1)
1822                                pr_debug("%s: Media %s has link beat, %x.\n",
1823                                           dev->name, media_tbl[dev->if_port].name, media_status);
1824                } else {
1825                        netif_carrier_off(dev);
1826                        if (vortex_debug > 1) {
1827                                pr_debug("%s: Media %s has no link beat, %x.\n",
1828                                           dev->name, media_tbl[dev->if_port].name, media_status);
1829                        }
1830                }
1831                break;
1832        case XCVR_MII: case XCVR_NWAY:
1833                {
1834                        ok = 1;
1835                        vortex_check_media(dev, 0);
1836                }
1837                break;
1838          default:                                      /* Other media types handled by Tx timeouts. */
1839                if (vortex_debug > 1)
1840                  pr_debug("%s: Media %s has no indication, %x.\n",
1841                                 dev->name, media_tbl[dev->if_port].name, media_status);
1842                ok = 1;
1843        }
1844
1845        if (!netif_carrier_ok(dev))
1846                next_tick = 5*HZ;
1847
1848        if (vp->medialock)
1849                goto leave_media_alone;
1850
1851        if (!ok) {
1852                unsigned int config;
1853
1854                spin_lock_irq(&vp->lock);
1855
1856                do {
1857                        dev->if_port = media_tbl[dev->if_port].next;
1858                } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1859                if (dev->if_port == XCVR_Default) { /* Go back to default. */
1860                  dev->if_port = vp->default_media;
1861                  if (vortex_debug > 1)
1862                        pr_debug("%s: Media selection failing, using default %s port.\n",
1863                                   dev->name, media_tbl[dev->if_port].name);
1864                } else {
1865                        if (vortex_debug > 1)
1866                                pr_debug("%s: Media selection failed, now trying %s port.\n",
1867                                           dev->name, media_tbl[dev->if_port].name);
1868                        next_tick = media_tbl[dev->if_port].wait;
1869                }
1870                window_write16(vp,
1871                               (media_status & ~(Media_10TP|Media_SQE)) |
1872                               media_tbl[dev->if_port].media_bits,
1873                               4, Wn4_Media);
1874
1875                config = window_read32(vp, 3, Wn3_Config);
1876                config = BFINS(config, dev->if_port, 20, 4);
1877                window_write32(vp, config, 3, Wn3_Config);
1878
1879                iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1880                         ioaddr + EL3_CMD);
1881                if (vortex_debug > 1)
1882                        pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1883                /* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1884
1885                spin_unlock_irq(&vp->lock);
1886        }
1887
1888leave_media_alone:
1889        if (vortex_debug > 2)
1890          pr_debug("%s: Media selection timer finished, %s.\n",
1891                         dev->name, media_tbl[dev->if_port].name);
1892
1893        mod_timer(&vp->timer, RUN_AT(next_tick));
1894        if (vp->deferred)
1895                iowrite16(FakeIntr, ioaddr + EL3_CMD);
1896}
1897
1898static void vortex_tx_timeout(struct net_device *dev)
1899{
1900        struct vortex_private *vp = netdev_priv(dev);
1901        void __iomem *ioaddr = vp->ioaddr;
1902
1903        pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1904                   dev->name, ioread8(ioaddr + TxStatus),
1905                   ioread16(ioaddr + EL3_STATUS));
1906        pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1907                        window_read16(vp, 4, Wn4_NetDiag),
1908                        window_read16(vp, 4, Wn4_Media),
1909                        ioread32(ioaddr + PktStatus),
1910                        window_read16(vp, 4, Wn4_FIFODiag));
1911        /* Slight code bloat to be user friendly. */
1912        if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1913                pr_err("%s: Transmitter encountered 16 collisions --"
1914                           " network cable problem?\n", dev->name);
1915        if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1916                pr_err("%s: Interrupt posted but not delivered --"
1917                           " IRQ blocked by another device?\n", dev->name);
1918                /* Bad idea here.. but we might as well handle a few events. */
1919                {
1920                        /*
1921                         * Block interrupts because vortex_interrupt does a bare spin_lock()
1922                         */
1923                        unsigned long flags;
1924                        local_irq_save(flags);
1925                        if (vp->full_bus_master_tx)
1926                                boomerang_interrupt(dev->irq, dev);
1927                        else
1928                                vortex_interrupt(dev->irq, dev);
1929                        local_irq_restore(flags);
1930                }
1931        }
1932
1933        if (vortex_debug > 0)
1934                dump_tx_ring(dev);
1935
1936        issue_and_wait(dev, TxReset);
1937
1938        dev->stats.tx_errors++;
1939        if (vp->full_bus_master_tx) {
1940                pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1941                if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1942                        iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1943                                 ioaddr + DownListPtr);
1944                if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1945                        netif_wake_queue (dev);
1946                if (vp->drv_flags & IS_BOOMERANG)
1947                        iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1948                iowrite16(DownUnstall, ioaddr + EL3_CMD);
1949        } else {
1950                dev->stats.tx_dropped++;
1951                netif_wake_queue(dev);
1952        }
1953
1954        /* Issue Tx Enable */
1955        iowrite16(TxEnable, ioaddr + EL3_CMD);
1956        dev->trans_start = jiffies; /* prevent tx timeout */
1957}
1958
1959/*
1960 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1961 * the cache impact.
1962 */
1963static void
1964vortex_error(struct net_device *dev, int status)
1965{
1966        struct vortex_private *vp = netdev_priv(dev);
1967        void __iomem *ioaddr = vp->ioaddr;
1968        int do_tx_reset = 0, reset_mask = 0;
1969        unsigned char tx_status = 0;
1970
1971        if (vortex_debug > 2) {
1972                pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1973        }
1974
1975        if (status & TxComplete) {                      /* Really "TxError" for us. */
1976                tx_status = ioread8(ioaddr + TxStatus);
1977                /* Presumably a tx-timeout. We must merely re-enable. */
1978                if (vortex_debug > 2 ||
1979                    (tx_status != 0x88 && vortex_debug > 0)) {
1980                        pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1981                                   dev->name, tx_status);
1982                        if (tx_status == 0x82) {
1983                                pr_err("Probably a duplex mismatch.  See "
1984                                                "Documentation/networking/vortex.txt\n");
1985                        }
1986                        dump_tx_ring(dev);
1987                }
1988                if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1989                if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1990                if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1991                iowrite8(0, ioaddr + TxStatus);
1992                if (tx_status & 0x30) {                 /* txJabber or txUnderrun */
1993                        do_tx_reset = 1;
1994                } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {      /* maxCollisions */
1995                        do_tx_reset = 1;
1996                        reset_mask = 0x0108;            /* Reset interface logic, but not download logic */
1997                } else {                                /* Merely re-enable the transmitter. */
1998                        iowrite16(TxEnable, ioaddr + EL3_CMD);
1999                }
2000        }
2001
2002        if (status & RxEarly)                           /* Rx early is unused. */
2003                iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2004
2005        if (status & StatsFull) {                       /* Empty statistics. */
2006                static int DoneDidThat;
2007                if (vortex_debug > 4)
2008                        pr_debug("%s: Updating stats.\n", dev->name);
2009                update_stats(ioaddr, dev);
2010                /* HACK: Disable statistics as an interrupt source. */
2011                /* This occurs when we have the wrong media type! */
2012                if (DoneDidThat == 0  &&
2013                        ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2014                        pr_warning("%s: Updating statistics failed, disabling "
2015                                   "stats as an interrupt source.\n", dev->name);
2016                        iowrite16(SetIntrEnb |
2017                                  (window_read16(vp, 5, 10) & ~StatsFull),
2018                                  ioaddr + EL3_CMD);
2019                        vp->intr_enable &= ~StatsFull;
2020                        DoneDidThat++;
2021                }
2022        }
2023        if (status & IntReq) {          /* Restore all interrupt sources.  */
2024                iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2025                iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2026        }
2027        if (status & HostError) {
2028                u16 fifo_diag;
2029                fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2030                pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2031                           dev->name, fifo_diag);
2032                /* Adapter failure requires Tx/Rx reset and reinit. */
2033                if (vp->full_bus_master_tx) {
2034                        int bus_status = ioread32(ioaddr + PktStatus);
2035                        /* 0x80000000 PCI master abort. */
2036                        /* 0x40000000 PCI target abort. */
2037                        if (vortex_debug)
2038                                pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2039
2040                        /* In this case, blow the card away */
2041                        /* Must not enter D3 or we can't legally issue the reset! */
2042                        vortex_down(dev, 0);
2043                        issue_and_wait(dev, TotalReset | 0xff);
2044                        vortex_up(dev);         /* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2045                } else if (fifo_diag & 0x0400)
2046                        do_tx_reset = 1;
2047                if (fifo_diag & 0x3000) {
2048                        /* Reset Rx fifo and upload logic */
2049                        issue_and_wait(dev, RxReset|0x07);
2050                        /* Set the Rx filter to the current state. */
2051                        set_rx_mode(dev);
2052                        /* enable 802.1q VLAN tagged frames */
2053                        set_8021q_mode(dev, 1);
2054                        iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2055                        iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2056                }
2057        }
2058
2059        if (do_tx_reset) {
2060                issue_and_wait(dev, TxReset|reset_mask);
2061                iowrite16(TxEnable, ioaddr + EL3_CMD);
2062                if (!vp->full_bus_master_tx)
2063                        netif_wake_queue(dev);
2064        }
2065}
2066
2067static netdev_tx_t
2068vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2069{
2070        struct vortex_private *vp = netdev_priv(dev);
2071        void __iomem *ioaddr = vp->ioaddr;
2072
2073        /* Put out the doubleword header... */
2074        iowrite32(skb->len, ioaddr + TX_FIFO);
2075        if (vp->bus_master) {
2076                /* Set the bus-master controller to transfer the packet. */
2077                int len = (skb->len + 3) & ~3;
2078                vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2079                                                PCI_DMA_TODEVICE);
2080                spin_lock_irq(&vp->window_lock);
2081                window_set(vp, 7);
2082                iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2083                iowrite16(len, ioaddr + Wn7_MasterLen);
2084                spin_unlock_irq(&vp->window_lock);
2085                vp->tx_skb = skb;
2086                iowrite16(StartDMADown, ioaddr + EL3_CMD);
2087                /* netif_wake_queue() will be called at the DMADone interrupt. */
2088        } else {
2089                /* ... and the packet rounded to a doubleword. */
2090                iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2091                dev_kfree_skb (skb);
2092                if (ioread16(ioaddr + TxFree) > 1536) {
2093                        netif_start_queue (dev);        /* AKPM: redundant? */
2094                } else {
2095                        /* Interrupt us when the FIFO has room for max-sized packet. */
2096                        netif_stop_queue(dev);
2097                        iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2098                }
2099        }
2100
2101
2102        /* Clear the Tx status stack. */
2103        {
2104                int tx_status;
2105                int i = 32;
2106
2107                while (--i > 0  &&      (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2108                        if (tx_status & 0x3C) {         /* A Tx-disabling error occurred.  */
2109                                if (vortex_debug > 2)
2110                                  pr_debug("%s: Tx error, status %2.2x.\n",
2111                                                 dev->name, tx_status);
2112                                if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2113                                if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2114                                if (tx_status & 0x30) {
2115                                        issue_and_wait(dev, TxReset);
2116                                }
2117                                iowrite16(TxEnable, ioaddr + EL3_CMD);
2118                        }
2119                        iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2120                }
2121        }
2122        return NETDEV_TX_OK;
2123}
2124
2125static netdev_tx_t
2126boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2127{
2128        struct vortex_private *vp = netdev_priv(dev);
2129        void __iomem *ioaddr = vp->ioaddr;
2130        /* Calculate the next Tx descriptor entry. */
2131        int entry = vp->cur_tx % TX_RING_SIZE;
2132        struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2133        unsigned long flags;
2134
2135        if (vortex_debug > 6) {
2136                pr_debug("boomerang_start_xmit()\n");
2137                pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2138                           dev->name, vp->cur_tx);
2139        }
2140
2141        /*
2142         * We can't allow a recursion from our interrupt handler back into the
2143         * tx routine, as they take the same spin lock, and that causes
2144         * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2145         * a bit
2146         */
2147        if (vp->handling_irq)
2148                return NETDEV_TX_BUSY;
2149
2150        if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2151                if (vortex_debug > 0)
2152                        pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2153                                   dev->name);
2154                netif_stop_queue(dev);
2155                return NETDEV_TX_BUSY;
2156        }
2157
2158        vp->tx_skbuff[entry] = skb;
2159
2160        vp->tx_ring[entry].next = 0;
2161#if DO_ZEROCOPY
2162        if (skb->ip_summed != CHECKSUM_PARTIAL)
2163                        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2164        else
2165                        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2166
2167        if (!skb_shinfo(skb)->nr_frags) {
2168                vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2169                                                                                skb->len, PCI_DMA_TODEVICE));
2170                vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2171        } else {
2172                int i;
2173
2174                vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2175                                                                                skb_headlen(skb), PCI_DMA_TODEVICE));
2176                vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2177
2178                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2179                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2180
2181                        vp->tx_ring[entry].frag[i+1].addr =
2182                                        cpu_to_le32(pci_map_single(VORTEX_PCI(vp),
2183                                                                                           (void*)page_address(frag->page) + frag->page_offset,
2184                                                                                           frag->size, PCI_DMA_TODEVICE));
2185
2186                        if (i == skb_shinfo(skb)->nr_frags-1)
2187                                        vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size|LAST_FRAG);
2188                        else
2189                                        vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(frag->size);
2190                }
2191        }
2192#else
2193        vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2194        vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2195        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2196#endif
2197
2198        spin_lock_irqsave(&vp->lock, flags);
2199        /* Wait for the stall to complete. */
2200        issue_and_wait(dev, DownStall);
2201        prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2202        if (ioread32(ioaddr + DownListPtr) == 0) {
2203                iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2204                vp->queued_packet++;
2205        }
2206
2207        vp->cur_tx++;
2208        if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2209                netif_stop_queue (dev);
2210        } else {                                        /* Clear previous interrupt enable. */
2211#if defined(tx_interrupt_mitigation)
2212                /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2213                 * were selected, this would corrupt DN_COMPLETE. No?
2214                 */
2215                prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2216#endif
2217        }
2218        iowrite16(DownUnstall, ioaddr + EL3_CMD);
2219        spin_unlock_irqrestore(&vp->lock, flags);
2220        return NETDEV_TX_OK;
2221}
2222
2223/* The interrupt handler does all of the Rx thread work and cleans up
2224   after the Tx thread. */
2225
2226/*
2227 * This is the ISR for the vortex series chips.
2228 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2229 */
2230
2231static irqreturn_t
2232vortex_interrupt(int irq, void *dev_id)
2233{
2234        struct net_device *dev = dev_id;
2235        struct vortex_private *vp = netdev_priv(dev);
2236        void __iomem *ioaddr;
2237        int status;
2238        int work_done = max_interrupt_work;
2239        int handled = 0;
2240
2241        ioaddr = vp->ioaddr;
2242        spin_lock(&vp->lock);
2243
2244        status = ioread16(ioaddr + EL3_STATUS);
2245
2246        if (vortex_debug > 6)
2247                pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2248
2249        if ((status & IntLatch) == 0)
2250                goto handler_exit;              /* No interrupt: shared IRQs cause this */
2251        handled = 1;
2252
2253        if (status & IntReq) {
2254                status |= vp->deferred;
2255                vp->deferred = 0;
2256        }
2257
2258        if (status == 0xffff)           /* h/w no longer present (hotplug)? */
2259                goto handler_exit;
2260
2261        if (vortex_debug > 4)
2262                pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2263                           dev->name, status, ioread8(ioaddr + Timer));
2264
2265        spin_lock(&vp->window_lock);
2266        window_set(vp, 7);
2267
2268        do {
2269                if (vortex_debug > 5)
2270                                pr_debug("%s: In interrupt loop, status %4.4x.\n",
2271                                           dev->name, status);
2272                if (status & RxComplete)
2273                        vortex_rx(dev);
2274
2275                if (status & TxAvailable) {
2276                        if (vortex_debug > 5)
2277                                pr_debug("      TX room bit was handled.\n");
2278                        /* There's room in the FIFO for a full-sized packet. */
2279                        iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2280                        netif_wake_queue (dev);
2281                }
2282
2283                if (status & DMADone) {
2284                        if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2285                                iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2286                                pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2287                                dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2288                                if (ioread16(ioaddr + TxFree) > 1536) {
2289                                        /*
2290                                         * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2291                                         * insufficient FIFO room, the TxAvailable test will succeed and call
2292                                         * netif_wake_queue()
2293                                         */
2294                                        netif_wake_queue(dev);
2295                                } else { /* Interrupt when FIFO has room for max-sized packet. */
2296                                        iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2297                                        netif_stop_queue(dev);
2298                                }
2299                        }
2300                }
2301                /* Check for all uncommon interrupts at once. */
2302                if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2303                        if (status == 0xffff)
2304                                break;
2305                        if (status & RxEarly)
2306                                vortex_rx(dev);
2307                        spin_unlock(&vp->window_lock);
2308                        vortex_error(dev, status);
2309                        spin_lock(&vp->window_lock);
2310                        window_set(vp, 7);
2311                }
2312
2313                if (--work_done < 0) {
2314                        pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2315                                dev->name, status);
2316                        /* Disable all pending interrupts. */
2317                        do {
2318                                vp->deferred |= status;
2319                                iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2320                                         ioaddr + EL3_CMD);
2321                                iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2322                        } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2323                        /* The timer will reenable interrupts. */
2324                        mod_timer(&vp->timer, jiffies + 1*HZ);
2325                        break;
2326                }
2327                /* Acknowledge the IRQ. */
2328                iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2329        } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2330
2331        spin_unlock(&vp->window_lock);
2332
2333        if (vortex_debug > 4)
2334                pr_debug("%s: exiting interrupt, status %4.4x.\n",
2335                           dev->name, status);
2336handler_exit:
2337        spin_unlock(&vp->lock);
2338        return IRQ_RETVAL(handled);
2339}
2340
2341/*
2342 * This is the ISR for the boomerang series chips.
2343 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2344 */
2345
2346static irqreturn_t
2347boomerang_interrupt(int irq, void *dev_id)
2348{
2349        struct net_device *dev = dev_id;
2350        struct vortex_private *vp = netdev_priv(dev);
2351        void __iomem *ioaddr;
2352        int status;
2353        int work_done = max_interrupt_work;
2354
2355        ioaddr = vp->ioaddr;
2356
2357
2358        /*
2359         * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2360         * and boomerang_start_xmit
2361         */
2362        spin_lock(&vp->lock);
2363        vp->handling_irq = 1;
2364
2365        status = ioread16(ioaddr + EL3_STATUS);
2366
2367        if (vortex_debug > 6)
2368                pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2369
2370        if ((status & IntLatch) == 0)
2371                goto handler_exit;              /* No interrupt: shared IRQs can cause this */
2372
2373        if (status == 0xffff) {         /* h/w no longer present (hotplug)? */
2374                if (vortex_debug > 1)
2375                        pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2376                goto handler_exit;
2377        }
2378
2379        if (status & IntReq) {
2380                status |= vp->deferred;
2381                vp->deferred = 0;
2382        }
2383
2384        if (vortex_debug > 4)
2385                pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2386                           dev->name, status, ioread8(ioaddr + Timer));
2387        do {
2388                if (vortex_debug > 5)
2389                                pr_debug("%s: In interrupt loop, status %4.4x.\n",
2390                                           dev->name, status);
2391                if (status & UpComplete) {
2392                        iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2393                        if (vortex_debug > 5)
2394                                pr_debug("boomerang_interrupt->boomerang_rx\n");
2395                        boomerang_rx(dev);
2396                }
2397
2398                if (status & DownComplete) {
2399                        unsigned int dirty_tx = vp->dirty_tx;
2400
2401                        iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2402                        while (vp->cur_tx - dirty_tx > 0) {
2403                                int entry = dirty_tx % TX_RING_SIZE;
2404#if 1   /* AKPM: the latter is faster, but cyclone-only */
2405                                if (ioread32(ioaddr + DownListPtr) ==
2406                                        vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2407                                        break;                  /* It still hasn't been processed. */
2408#else
2409                                if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2410                                        break;                  /* It still hasn't been processed. */
2411#endif
2412
2413                                if (vp->tx_skbuff[entry]) {
2414                                        struct sk_buff *skb = vp->tx_skbuff[entry];
2415#if DO_ZEROCOPY
2416                                        int i;
2417                                        for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2418                                                        pci_unmap_single(VORTEX_PCI(vp),
2419                                                                                         le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2420                                                                                         le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2421                                                                                         PCI_DMA_TODEVICE);
2422#else
2423                                        pci_unmap_single(VORTEX_PCI(vp),
2424                                                le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2425#endif
2426                                        dev_kfree_skb_irq(skb);
2427                                        vp->tx_skbuff[entry] = NULL;
2428                                } else {
2429                                        pr_debug("boomerang_interrupt: no skb!\n");
2430                                }
2431                                /* dev->stats.tx_packets++;  Counted below. */
2432                                dirty_tx++;
2433                        }
2434                        vp->dirty_tx = dirty_tx;
2435                        if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2436                                if (vortex_debug > 6)
2437                                        pr_debug("boomerang_interrupt: wake queue\n");
2438                                netif_wake_queue (dev);
2439                        }
2440                }
2441
2442                /* Check for all uncommon interrupts at once. */
2443                if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2444                        vortex_error(dev, status);
2445
2446                if (--work_done < 0) {
2447                        pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2448                                dev->name, status);
2449                        /* Disable all pending interrupts. */
2450                        do {
2451                                vp->deferred |= status;
2452                                iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2453                                         ioaddr + EL3_CMD);
2454                                iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2455                        } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2456                        /* The timer will reenable interrupts. */
2457                        mod_timer(&vp->timer, jiffies + 1*HZ);
2458                        break;
2459                }
2460                /* Acknowledge the IRQ. */
2461                iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2462                if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
2463                        iowrite32(0x8000, vp->cb_fn_base + 4);
2464
2465        } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2466
2467        if (vortex_debug > 4)
2468                pr_debug("%s: exiting interrupt, status %4.4x.\n",
2469                           dev->name, status);
2470handler_exit:
2471        vp->handling_irq = 0;
2472        spin_unlock(&vp->lock);
2473        return IRQ_HANDLED;
2474}
2475
2476static int vortex_rx(struct net_device *dev)
2477{
2478        struct vortex_private *vp = netdev_priv(dev);
2479        void __iomem *ioaddr = vp->ioaddr;
2480        int i;
2481        short rx_status;
2482
2483        if (vortex_debug > 5)
2484                pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2485                           ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2486        while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2487                if (rx_status & 0x4000) { /* Error, update stats. */
2488                        unsigned char rx_error = ioread8(ioaddr + RxErrors);
2489                        if (vortex_debug > 2)
2490                                pr_debug(" Rx error: status %2.2x.\n", rx_error);
2491                        dev->stats.rx_errors++;
2492                        if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2493                        if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2494                        if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2495                        if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2496                        if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2497                } else {
2498                        /* The packet length: up to 4.5K!. */
2499                        int pkt_len = rx_status & 0x1fff;
2500                        struct sk_buff *skb;
2501
2502                        skb = dev_alloc_skb(pkt_len + 5);
2503                        if (vortex_debug > 4)
2504                                pr_debug("Receiving packet size %d status %4.4x.\n",
2505                                           pkt_len, rx_status);
2506                        if (skb != NULL) {
2507                                skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2508                                /* 'skb_put()' points to the start of sk_buff data area. */
2509                                if (vp->bus_master &&
2510                                        ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2511                                        dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2512                                                                           pkt_len, PCI_DMA_FROMDEVICE);
2513                                        iowrite32(dma, ioaddr + Wn7_MasterAddr);
2514                                        iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2515                                        iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2516                                        while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2517                                                ;
2518                                        pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2519                                } else {
2520                                        ioread32_rep(ioaddr + RX_FIFO,
2521                                                     skb_put(skb, pkt_len),
2522                                                     (pkt_len + 3) >> 2);
2523                                }
2524                                iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2525                                skb->protocol = eth_type_trans(skb, dev);
2526                                netif_rx(skb);
2527                                dev->stats.rx_packets++;
2528                                /* Wait a limited time to go to next packet. */
2529                                for (i = 200; i >= 0; i--)
2530                                        if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2531                                                break;
2532                                continue;
2533                        } else if (vortex_debug > 0)
2534                                pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2535                                        dev->name, pkt_len);
2536                        dev->stats.rx_dropped++;
2537                }
2538                issue_and_wait(dev, RxDiscard);
2539        }
2540
2541        return 0;
2542}
2543
2544static int
2545boomerang_rx(struct net_device *dev)
2546{
2547        struct vortex_private *vp = netdev_priv(dev);
2548        int entry = vp->cur_rx % RX_RING_SIZE;
2549        void __iomem *ioaddr = vp->ioaddr;
2550        int rx_status;
2551        int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2552
2553        if (vortex_debug > 5)
2554                pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2555
2556        while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2557                if (--rx_work_limit < 0)
2558                        break;
2559                if (rx_status & RxDError) { /* Error, update stats. */
2560                        unsigned char rx_error = rx_status >> 16;
2561                        if (vortex_debug > 2)
2562                                pr_debug(" Rx error: status %2.2x.\n", rx_error);
2563                        dev->stats.rx_errors++;
2564                        if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2565                        if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2566                        if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2567                        if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2568                        if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2569                } else {
2570                        /* The packet length: up to 4.5K!. */
2571                        int pkt_len = rx_status & 0x1fff;
2572                        struct sk_buff *skb;
2573                        dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2574
2575                        if (vortex_debug > 4)
2576                                pr_debug("Receiving packet size %d status %4.4x.\n",
2577                                           pkt_len, rx_status);
2578
2579                        /* Check if the packet is long enough to just accept without
2580                           copying to a properly sized skbuff. */
2581                        if (pkt_len < rx_copybreak && (skb = dev_alloc_skb(pkt_len + 2)) != NULL) {
2582                                skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2583                                pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2584                                /* 'skb_put()' points to the start of sk_buff data area. */
2585                                memcpy(skb_put(skb, pkt_len),
2586                                           vp->rx_skbuff[entry]->data,
2587                                           pkt_len);
2588                                pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2589                                vp->rx_copy++;
2590                        } else {
2591                                /* Pass up the skbuff already on the Rx ring. */
2592                                skb = vp->rx_skbuff[entry];
2593                                vp->rx_skbuff[entry] = NULL;
2594                                skb_put(skb, pkt_len);
2595                                pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2596                                vp->rx_nocopy++;
2597                        }
2598                        skb->protocol = eth_type_trans(skb, dev);
2599                        {                                       /* Use hardware checksum info. */
2600                                int csum_bits = rx_status & 0xee000000;
2601                                if (csum_bits &&
2602                                        (csum_bits == (IPChksumValid | TCPChksumValid) ||
2603                                         csum_bits == (IPChksumValid | UDPChksumValid))) {
2604                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2605                                        vp->rx_csumhits++;
2606                                }
2607                        }
2608                        netif_rx(skb);
2609                        dev->stats.rx_packets++;
2610                }
2611                entry = (++vp->cur_rx) % RX_RING_SIZE;
2612        }
2613        /* Refill the Rx ring buffers. */
2614        for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2615                struct sk_buff *skb;
2616                entry = vp->dirty_rx % RX_RING_SIZE;
2617                if (vp->rx_skbuff[entry] == NULL) {
2618                        skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2619                        if (skb == NULL) {
2620                                static unsigned long last_jif;
2621                                if (time_after(jiffies, last_jif + 10 * HZ)) {
2622                                        pr_warning("%s: memory shortage\n", dev->name);
2623                                        last_jif = jiffies;
2624                                }
2625                                if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2626                                        mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2627                                break;                  /* Bad news!  */
2628                        }
2629
2630                        vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2631                        vp->rx_skbuff[entry] = skb;
2632                }
2633                vp->rx_ring[entry].status = 0;  /* Clear complete bit. */
2634                iowrite16(UpUnstall, ioaddr + EL3_CMD);
2635        }
2636        return 0;
2637}
2638
2639/*
2640 * If we've hit a total OOM refilling the Rx ring we poll once a second
2641 * for some memory.  Otherwise there is no way to restart the rx process.
2642 */
2643static void
2644rx_oom_timer(unsigned long arg)
2645{
2646        struct net_device *dev = (struct net_device *)arg;
2647        struct vortex_private *vp = netdev_priv(dev);
2648
2649        spin_lock_irq(&vp->lock);
2650        if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)        /* This test is redundant, but makes me feel good */
2651                boomerang_rx(dev);
2652        if (vortex_debug > 1) {
2653                pr_debug("%s: rx_oom_timer %s\n", dev->name,
2654                        ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2655        }
2656        spin_unlock_irq(&vp->lock);
2657}
2658
2659static void
2660vortex_down(struct net_device *dev, int final_down)
2661{
2662        struct vortex_private *vp = netdev_priv(dev);
2663        void __iomem *ioaddr = vp->ioaddr;
2664
2665        netif_stop_queue (dev);
2666
2667        del_timer_sync(&vp->rx_oom_timer);
2668        del_timer_sync(&vp->timer);
2669
2670        /* Turn off statistics ASAP.  We update dev->stats below. */
2671        iowrite16(StatsDisable, ioaddr + EL3_CMD);
2672
2673        /* Disable the receiver and transmitter. */
2674        iowrite16(RxDisable, ioaddr + EL3_CMD);
2675        iowrite16(TxDisable, ioaddr + EL3_CMD);
2676
2677        /* Disable receiving 802.1q tagged frames */
2678        set_8021q_mode(dev, 0);
2679
2680        if (dev->if_port == XCVR_10base2)
2681                /* Turn off thinnet power.  Green! */
2682                iowrite16(StopCoax, ioaddr + EL3_CMD);
2683
2684        iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2685
2686        update_stats(ioaddr, dev);
2687        if (vp->full_bus_master_rx)
2688                iowrite32(0, ioaddr + UpListPtr);
2689        if (vp->full_bus_master_tx)
2690                iowrite32(0, ioaddr + DownListPtr);
2691
2692        if (final_down && VORTEX_PCI(vp)) {
2693                vp->pm_state_valid = 1;
2694                pci_save_state(VORTEX_PCI(vp));
2695                acpi_set_WOL(dev);
2696        }
2697}
2698
2699static int
2700vortex_close(struct net_device *dev)
2701{
2702        struct vortex_private *vp = netdev_priv(dev);
2703        void __iomem *ioaddr = vp->ioaddr;
2704        int i;
2705
2706        if (netif_device_present(dev))
2707                vortex_down(dev, 1);
2708
2709        if (vortex_debug > 1) {
2710                pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2711                           dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2712                pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2713                           " tx_queued %d Rx pre-checksummed %d.\n",
2714                           dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2715        }
2716
2717#if DO_ZEROCOPY
2718        if (vp->rx_csumhits &&
2719            (vp->drv_flags & HAS_HWCKSM) == 0 &&
2720            (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2721                pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2722        }
2723#endif
2724
2725        free_irq(dev->irq, dev);
2726
2727        if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2728                for (i = 0; i < RX_RING_SIZE; i++)
2729                        if (vp->rx_skbuff[i]) {
2730                                pci_unmap_single(       VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2731                                                                        PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2732                                dev_kfree_skb(vp->rx_skbuff[i]);
2733                                vp->rx_skbuff[i] = NULL;
2734                        }
2735        }
2736        if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2737                for (i = 0; i < TX_RING_SIZE; i++) {
2738                        if (vp->tx_skbuff[i]) {
2739                                struct sk_buff *skb = vp->tx_skbuff[i];
2740#if DO_ZEROCOPY
2741                                int k;
2742
2743                                for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2744                                                pci_unmap_single(VORTEX_PCI(vp),
2745                                                                                 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2746                                                                                 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2747                                                                                 PCI_DMA_TODEVICE);
2748#else
2749                                pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2750#endif
2751                                dev_kfree_skb(skb);
2752                                vp->tx_skbuff[i] = NULL;
2753                        }
2754                }
2755        }
2756
2757        return 0;
2758}
2759
2760static void
2761dump_tx_ring(struct net_device *dev)
2762{
2763        if (vortex_debug > 0) {
2764        struct vortex_private *vp = netdev_priv(dev);
2765                void __iomem *ioaddr = vp->ioaddr;
2766
2767                if (vp->full_bus_master_tx) {
2768                        int i;
2769                        int stalled = ioread32(ioaddr + PktStatus) & 0x04;      /* Possible racy. But it's only debug stuff */
2770
2771                        pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2772                                        vp->full_bus_master_tx,
2773                                        vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2774                                        vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2775                        pr_err("  Transmit list %8.8x vs. %p.\n",
2776                                   ioread32(ioaddr + DownListPtr),
2777                                   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2778                        issue_and_wait(dev, DownStall);
2779                        for (i = 0; i < TX_RING_SIZE; i++) {
2780                                unsigned int length;
2781
2782#if DO_ZEROCOPY
2783                                length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2784#else
2785                                length = le32_to_cpu(vp->tx_ring[i].length);
2786#endif
2787                                pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2788                                           i, &vp->tx_ring[i], length,
2789                                           le32_to_cpu(vp->tx_ring[i].status));
2790                        }
2791                        if (!stalled)
2792                                iowrite16(DownUnstall, ioaddr + EL3_CMD);
2793                }
2794        }
2795}
2796
2797static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2798{
2799        struct vortex_private *vp = netdev_priv(dev);
2800        void __iomem *ioaddr = vp->ioaddr;
2801        unsigned long flags;
2802
2803        if (netif_device_present(dev)) {        /* AKPM: Used to be netif_running */
2804                spin_lock_irqsave (&vp->lock, flags);
2805                update_stats(ioaddr, dev);
2806                spin_unlock_irqrestore (&vp->lock, flags);
2807        }
2808        return &dev->stats;
2809}
2810
2811/*  Update statistics.
2812        Unlike with the EL3 we need not worry about interrupts changing
2813        the window setting from underneath us, but we must still guard
2814        against a race condition with a StatsUpdate interrupt updating the
2815        table.  This is done by checking that the ASM (!) code generated uses
2816        atomic updates with '+='.
2817        */
2818static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2819{
2820        struct vortex_private *vp = netdev_priv(dev);
2821
2822        /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2823        /* Switch to the stats window, and read everything. */
2824        dev->stats.tx_carrier_errors            += window_read8(vp, 6, 0);
2825        dev->stats.tx_heartbeat_errors          += window_read8(vp, 6, 1);
2826        dev->stats.tx_window_errors             += window_read8(vp, 6, 4);
2827        dev->stats.rx_fifo_errors               += window_read8(vp, 6, 5);
2828        dev->stats.tx_packets                   += window_read8(vp, 6, 6);
2829        dev->stats.tx_packets                   += (window_read8(vp, 6, 9) &
2830                                                    0x30) << 4;
2831        /* Rx packets   */                      window_read8(vp, 6, 7);   /* Must read to clear */
2832        /* Don't bother with register 9, an extension of registers 6&7.
2833           If we do use the 6&7 values the atomic update assumption above
2834           is invalid. */
2835        dev->stats.rx_bytes                     += window_read16(vp, 6, 10);
2836        dev->stats.tx_bytes                     += window_read16(vp, 6, 12);
2837        /* Extra stats for get_ethtool_stats() */
2838        vp->xstats.tx_multiple_collisions       += window_read8(vp, 6, 2);
2839        vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2840        vp->xstats.tx_deferred                  += window_read8(vp, 6, 8);
2841        vp->xstats.rx_bad_ssd                   += window_read8(vp, 4, 12);
2842
2843        dev->stats.collisions = vp->xstats.tx_multiple_collisions
2844                + vp->xstats.tx_single_collisions
2845                + vp->xstats.tx_max_collisions;
2846
2847        {
2848                u8 up = window_read8(vp, 4, 13);
2849                dev->stats.rx_bytes += (up & 0x0f) << 16;
2850                dev->stats.tx_bytes += (up & 0xf0) << 12;
2851        }
2852}
2853
2854static int vortex_nway_reset(struct net_device *dev)
2855{
2856        struct vortex_private *vp = netdev_priv(dev);
2857
2858        return mii_nway_restart(&vp->mii);
2859}
2860
2861static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2862{
2863        struct vortex_private *vp = netdev_priv(dev);
2864
2865        return mii_ethtool_gset(&vp->mii, cmd);
2866}
2867
2868static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2869{
2870        struct vortex_private *vp = netdev_priv(dev);
2871
2872        return mii_ethtool_sset(&vp->mii, cmd);
2873}
2874
2875static u32 vortex_get_msglevel(struct net_device *dev)
2876{
2877        return vortex_debug;
2878}
2879
2880static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2881{
2882        vortex_debug = dbg;
2883}
2884
2885static int vortex_get_sset_count(struct net_device *dev, int sset)
2886{
2887        switch (sset) {
2888        case ETH_SS_STATS:
2889                return VORTEX_NUM_STATS;
2890        default:
2891                return -EOPNOTSUPP;
2892        }
2893}
2894
2895static void vortex_get_ethtool_stats(struct net_device *dev,
2896        struct ethtool_stats *stats, u64 *data)
2897{
2898        struct vortex_private *vp = netdev_priv(dev);
2899        void __iomem *ioaddr = vp->ioaddr;
2900        unsigned long flags;
2901
2902        spin_lock_irqsave(&vp->lock, flags);
2903        update_stats(ioaddr, dev);
2904        spin_unlock_irqrestore(&vp->lock, flags);
2905
2906        data[0] = vp->xstats.tx_deferred;
2907        data[1] = vp->xstats.tx_max_collisions;
2908        data[2] = vp->xstats.tx_multiple_collisions;
2909        data[3] = vp->xstats.tx_single_collisions;
2910        data[4] = vp->xstats.rx_bad_ssd;
2911}
2912
2913
2914static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2915{
2916        switch (stringset) {
2917        case ETH_SS_STATS:
2918                memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2919                break;
2920        default:
2921                WARN_ON(1);
2922                break;
2923        }
2924}
2925
2926static void vortex_get_drvinfo(struct net_device *dev,
2927                                        struct ethtool_drvinfo *info)
2928{
2929        struct vortex_private *vp = netdev_priv(dev);
2930
2931        strcpy(info->driver, DRV_NAME);
2932        if (VORTEX_PCI(vp)) {
2933                strcpy(info->bus_info, pci_name(VORTEX_PCI(vp)));
2934        } else {
2935                if (VORTEX_EISA(vp))
2936                        strcpy(info->bus_info, dev_name(vp->gendev));
2937                else
2938                        sprintf(info->bus_info, "EISA 0x%lx %d",
2939                                        dev->base_addr, dev->irq);
2940        }
2941}
2942
2943static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2944{
2945        struct vortex_private *vp = netdev_priv(dev);
2946
2947        if (!VORTEX_PCI(vp))
2948                return;
2949
2950        wol->supported = WAKE_MAGIC;
2951
2952        wol->wolopts = 0;
2953        if (vp->enable_wol)
2954                wol->wolopts |= WAKE_MAGIC;
2955}
2956
2957static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2958{
2959        struct vortex_private *vp = netdev_priv(dev);
2960
2961        if (!VORTEX_PCI(vp))
2962                return -EOPNOTSUPP;
2963
2964        if (wol->wolopts & ~WAKE_MAGIC)
2965                return -EINVAL;
2966
2967        if (wol->wolopts & WAKE_MAGIC)
2968                vp->enable_wol = 1;
2969        else
2970                vp->enable_wol = 0;
2971        acpi_set_WOL(dev);
2972
2973        return 0;
2974}
2975
2976static const struct ethtool_ops vortex_ethtool_ops = {
2977        .get_drvinfo            = vortex_get_drvinfo,
2978        .get_strings            = vortex_get_strings,
2979        .get_msglevel           = vortex_get_msglevel,
2980        .set_msglevel           = vortex_set_msglevel,
2981        .get_ethtool_stats      = vortex_get_ethtool_stats,
2982        .get_sset_count         = vortex_get_sset_count,
2983        .get_settings           = vortex_get_settings,
2984        .set_settings           = vortex_set_settings,
2985        .get_link               = ethtool_op_get_link,
2986        .nway_reset             = vortex_nway_reset,
2987        .get_wol                = vortex_get_wol,
2988        .set_wol                = vortex_set_wol,
2989};
2990
2991#ifdef CONFIG_PCI
2992/*
2993 *      Must power the device up to do MDIO operations
2994 */
2995static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2996{
2997        int err;
2998        struct vortex_private *vp = netdev_priv(dev);
2999        pci_power_t state = 0;
3000
3001        if(VORTEX_PCI(vp))
3002                state = VORTEX_PCI(vp)->current_state;
3003
3004        /* The kernel core really should have pci_get_power_state() */
3005
3006        if(state != 0)
3007                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3008        err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3009        if(state != 0)
3010                pci_set_power_state(VORTEX_PCI(vp), state);
3011
3012        return err;
3013}
3014#endif
3015
3016
3017/* Pre-Cyclone chips have no documented multicast filter, so the only
3018   multicast setting is to receive all multicast frames.  At least
3019   the chip has a very clean way to set the mode, unlike many others. */
3020static void set_rx_mode(struct net_device *dev)
3021{
3022        struct vortex_private *vp = netdev_priv(dev);
3023        void __iomem *ioaddr = vp->ioaddr;
3024        int new_mode;
3025
3026        if (dev->flags & IFF_PROMISC) {
3027                if (vortex_debug > 3)
3028                        pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3029                new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3030        } else  if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3031                new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3032        } else
3033                new_mode = SetRxFilter | RxStation | RxBroadcast;
3034
3035        iowrite16(new_mode, ioaddr + EL3_CMD);
3036}
3037
3038#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3039/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3040   Note that this must be done after each RxReset due to some backwards
3041   compatibility logic in the Cyclone and Tornado ASICs */
3042
3043/* The Ethernet Type used for 802.1q tagged frames */
3044#define VLAN_ETHER_TYPE 0x8100
3045
3046static void set_8021q_mode(struct net_device *dev, int enable)
3047{
3048        struct vortex_private *vp = netdev_priv(dev);
3049        int mac_ctrl;
3050
3051        if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3052                /* cyclone and tornado chipsets can recognize 802.1q
3053                 * tagged frames and treat them correctly */
3054
3055                int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3056                if (enable)
3057                        max_pkt_size += 4;      /* 802.1Q VLAN tag */
3058
3059                window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3060
3061                /* set VlanEtherType to let the hardware checksumming
3062                   treat tagged frames correctly */
3063                window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3064        } else {
3065                /* on older cards we have to enable large frames */
3066
3067                vp->large_frames = dev->mtu > 1500 || enable;
3068
3069                mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3070                if (vp->large_frames)
3071                        mac_ctrl |= 0x40;
3072                else
3073                        mac_ctrl &= ~0x40;
3074                window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3075        }
3076}
3077#else
3078
3079static void set_8021q_mode(struct net_device *dev, int enable)
3080{
3081}
3082
3083
3084#endif
3085
3086/* MII transceiver control section.
3087   Read and write the MII registers using software-generated serial
3088   MDIO protocol.  See the MII specifications or DP83840A data sheet
3089   for details. */
3090
3091/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3092   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3093   "overclocking" issues. */
3094static void mdio_delay(struct vortex_private *vp)
3095{
3096        window_read32(vp, 4, Wn4_PhysicalMgmt);
3097}
3098
3099#define MDIO_SHIFT_CLK  0x01
3100#define MDIO_DIR_WRITE  0x04
3101#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3102#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3103#define MDIO_DATA_READ  0x02
3104#define MDIO_ENB_IN             0x00
3105
3106/* Generate the preamble required for initial synchronization and
3107   a few older transceivers. */
3108static void mdio_sync(struct vortex_private *vp, int bits)
3109{
3110        /* Establish sync by sending at least 32 logic ones. */
3111        while (-- bits >= 0) {
3112                window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3113                mdio_delay(vp);
3114                window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3115                               4, Wn4_PhysicalMgmt);
3116                mdio_delay(vp);
3117        }
3118}
3119
3120static int mdio_read(struct net_device *dev, int phy_id, int location)
3121{
3122        int i;
3123        struct vortex_private *vp = netdev_priv(dev);
3124        int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3125        unsigned int retval = 0;
3126
3127        spin_lock_bh(&vp->mii_lock);
3128
3129        if (mii_preamble_required)
3130                mdio_sync(vp, 32);
3131
3132        /* Shift the read command bits out. */
3133        for (i = 14; i >= 0; i--) {
3134                int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3135                window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3136                mdio_delay(vp);
3137                window_write16(vp, dataval | MDIO_SHIFT_CLK,
3138                               4, Wn4_PhysicalMgmt);
3139                mdio_delay(vp);
3140        }
3141        /* Read the two transition, 16 data, and wire-idle bits. */
3142        for (i = 19; i > 0; i--) {
3143                window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3144                mdio_delay(vp);
3145                retval = (retval << 1) |
3146                        ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3147                          MDIO_DATA_READ) ? 1 : 0);
3148                window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3149                               4, Wn4_PhysicalMgmt);
3150                mdio_delay(vp);
3151        }
3152
3153        spin_unlock_bh(&vp->mii_lock);
3154
3155        return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3156}
3157
3158static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3159{
3160        struct vortex_private *vp = netdev_priv(dev);
3161        int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3162        int i;
3163
3164        spin_lock_bh(&vp->mii_lock);
3165
3166        if (mii_preamble_required)
3167                mdio_sync(vp, 32);
3168
3169        /* Shift the command bits out. */
3170        for (i = 31; i >= 0; i--) {
3171                int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3172                window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3173                mdio_delay(vp);
3174                window_write16(vp, dataval | MDIO_SHIFT_CLK,
3175                               4, Wn4_PhysicalMgmt);
3176                mdio_delay(vp);
3177        }
3178        /* Leave the interface idle. */
3179        for (i = 1; i >= 0; i--) {
3180                window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3181                mdio_delay(vp);
3182                window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3183                               4, Wn4_PhysicalMgmt);
3184                mdio_delay(vp);
3185        }
3186
3187        spin_unlock_bh(&vp->mii_lock);
3188}
3189
3190/* ACPI: Advanced Configuration and Power Interface. */
3191/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3192static void acpi_set_WOL(struct net_device *dev)
3193{
3194        struct vortex_private *vp = netdev_priv(dev);
3195        void __iomem *ioaddr = vp->ioaddr;
3196
3197        device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3198
3199        if (vp->enable_wol) {
3200                /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3201                window_write16(vp, 2, 7, 0x0c);
3202                /* The RxFilter must accept the WOL frames. */
3203                iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3204                iowrite16(RxEnable, ioaddr + EL3_CMD);
3205
3206                if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3207                        pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3208
3209                        vp->enable_wol = 0;
3210                        return;
3211                }
3212
3213                if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3214                        return;
3215
3216                /* Change the power state to D3; RxEnable doesn't take effect. */
3217                pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3218        }
3219}
3220
3221
3222static void __devexit vortex_remove_one(struct pci_dev *pdev)
3223{
3224        struct net_device *dev = pci_get_drvdata(pdev);
3225        struct vortex_private *vp;
3226
3227        if (!dev) {
3228                pr_err("vortex_remove_one called for Compaq device!\n");
3229                BUG();
3230        }
3231
3232        vp = netdev_priv(dev);
3233
3234        if (vp->cb_fn_base)
3235                pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3236
3237        unregister_netdev(dev);
3238
3239        if (VORTEX_PCI(vp)) {
3240                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);    /* Go active */
3241                if (vp->pm_state_valid)
3242                        pci_restore_state(VORTEX_PCI(vp));
3243                pci_disable_device(VORTEX_PCI(vp));
3244        }
3245        /* Should really use issue_and_wait() here */
3246        iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3247             vp->ioaddr + EL3_CMD);
3248
3249        pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3250
3251        pci_free_consistent(pdev,
3252                                                sizeof(struct boom_rx_desc) * RX_RING_SIZE
3253                                                        + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3254                                                vp->rx_ring,
3255                                                vp->rx_ring_dma);
3256        if (vp->must_free_region)
3257                release_region(dev->base_addr, vp->io_size);
3258        free_netdev(dev);
3259}
3260
3261
3262static struct pci_driver vortex_driver = {
3263        .name           = "3c59x",
3264        .probe          = vortex_init_one,
3265        .remove         = __devexit_p(vortex_remove_one),
3266        .id_table       = vortex_pci_tbl,
3267        .driver.pm      = VORTEX_PM_OPS,
3268};
3269
3270
3271static int vortex_have_pci;
3272static int vortex_have_eisa;
3273
3274
3275static int __init vortex_init(void)
3276{
3277        int pci_rc, eisa_rc;
3278
3279        pci_rc = pci_register_driver(&vortex_driver);
3280        eisa_rc = vortex_eisa_init();
3281
3282        if (pci_rc == 0)
3283                vortex_have_pci = 1;
3284        if (eisa_rc > 0)
3285                vortex_have_eisa = 1;
3286
3287        return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3288}
3289
3290
3291static void __exit vortex_eisa_cleanup(void)
3292{
3293        struct vortex_private *vp;
3294        void __iomem *ioaddr;
3295
3296#ifdef CONFIG_EISA
3297        /* Take care of the EISA devices */
3298        eisa_driver_unregister(&vortex_eisa_driver);
3299#endif
3300
3301        if (compaq_net_device) {
3302                vp = netdev_priv(compaq_net_device);
3303                ioaddr = ioport_map(compaq_net_device->base_addr,
3304                                    VORTEX_TOTAL_SIZE);
3305
3306                unregister_netdev(compaq_net_device);
3307                iowrite16(TotalReset, ioaddr + EL3_CMD);
3308                release_region(compaq_net_device->base_addr,
3309                               VORTEX_TOTAL_SIZE);
3310
3311                free_netdev(compaq_net_device);
3312        }
3313}
3314
3315
3316static void __exit vortex_cleanup(void)
3317{
3318        if (vortex_have_pci)
3319                pci_unregister_driver(&vortex_driver);
3320        if (vortex_have_eisa)
3321                vortex_eisa_cleanup();
3322}
3323
3324
3325module_init(vortex_init);
3326module_exit(vortex_cleanup);
3327