linux/drivers/net/ixgbe/ixgbe_common.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel 10 Gigabit PCI Express Linux driver
   4  Copyright(c) 1999 - 2011 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/pci.h>
  29#include <linux/delay.h>
  30#include <linux/sched.h>
  31#include <linux/netdevice.h>
  32
  33#include "ixgbe.h"
  34#include "ixgbe_common.h"
  35#include "ixgbe_phy.h"
  36
  37static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw);
  38static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw);
  39static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw);
  40static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw);
  41static void ixgbe_standby_eeprom(struct ixgbe_hw *hw);
  42static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
  43                                        u16 count);
  44static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count);
  45static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  46static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec);
  47static void ixgbe_release_eeprom(struct ixgbe_hw *hw);
  48
  49static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr);
  50static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw);
  51static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw);
  52static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw);
  53static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw);
  54static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
  55                              u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm);
  56static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num);
  57static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg);
  58static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  59                                             u16 words, u16 *data);
  60static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
  61                                             u16 words, u16 *data);
  62static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
  63                                                 u16 offset);
  64
  65/**
  66 *  ixgbe_start_hw_generic - Prepare hardware for Tx/Rx
  67 *  @hw: pointer to hardware structure
  68 *
  69 *  Starts the hardware by filling the bus info structure and media type, clears
  70 *  all on chip counters, initializes receive address registers, multicast
  71 *  table, VLAN filter table, calls routine to set up link and flow control
  72 *  settings, and leaves transmit and receive units disabled and uninitialized
  73 **/
  74s32 ixgbe_start_hw_generic(struct ixgbe_hw *hw)
  75{
  76        u32 ctrl_ext;
  77
  78        /* Set the media type */
  79        hw->phy.media_type = hw->mac.ops.get_media_type(hw);
  80
  81        /* Identify the PHY */
  82        hw->phy.ops.identify(hw);
  83
  84        /* Clear the VLAN filter table */
  85        hw->mac.ops.clear_vfta(hw);
  86
  87        /* Clear statistics registers */
  88        hw->mac.ops.clear_hw_cntrs(hw);
  89
  90        /* Set No Snoop Disable */
  91        ctrl_ext = IXGBE_READ_REG(hw, IXGBE_CTRL_EXT);
  92        ctrl_ext |= IXGBE_CTRL_EXT_NS_DIS;
  93        IXGBE_WRITE_REG(hw, IXGBE_CTRL_EXT, ctrl_ext);
  94        IXGBE_WRITE_FLUSH(hw);
  95
  96        /* Setup flow control */
  97        ixgbe_setup_fc(hw, 0);
  98
  99        /* Clear adapter stopped flag */
 100        hw->adapter_stopped = false;
 101
 102        return 0;
 103}
 104
 105/**
 106 *  ixgbe_start_hw_gen2 - Init sequence for common device family
 107 *  @hw: pointer to hw structure
 108 *
 109 * Performs the init sequence common to the second generation
 110 * of 10 GbE devices.
 111 * Devices in the second generation:
 112 *     82599
 113 *     X540
 114 **/
 115s32 ixgbe_start_hw_gen2(struct ixgbe_hw *hw)
 116{
 117        u32 i;
 118        u32 regval;
 119
 120        /* Clear the rate limiters */
 121        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 122                IXGBE_WRITE_REG(hw, IXGBE_RTTDQSEL, i);
 123                IXGBE_WRITE_REG(hw, IXGBE_RTTBCNRC, 0);
 124        }
 125        IXGBE_WRITE_FLUSH(hw);
 126
 127        /* Disable relaxed ordering */
 128        for (i = 0; i < hw->mac.max_tx_queues; i++) {
 129                regval = IXGBE_READ_REG(hw, IXGBE_DCA_TXCTRL_82599(i));
 130                regval &= ~IXGBE_DCA_TXCTRL_TX_WB_RO_EN;
 131                IXGBE_WRITE_REG(hw, IXGBE_DCA_TXCTRL_82599(i), regval);
 132        }
 133
 134        for (i = 0; i < hw->mac.max_rx_queues; i++) {
 135                regval = IXGBE_READ_REG(hw, IXGBE_DCA_RXCTRL(i));
 136                regval &= ~(IXGBE_DCA_RXCTRL_DESC_WRO_EN |
 137                                        IXGBE_DCA_RXCTRL_DESC_HSRO_EN);
 138                IXGBE_WRITE_REG(hw, IXGBE_DCA_RXCTRL(i), regval);
 139        }
 140
 141        return 0;
 142}
 143
 144/**
 145 *  ixgbe_init_hw_generic - Generic hardware initialization
 146 *  @hw: pointer to hardware structure
 147 *
 148 *  Initialize the hardware by resetting the hardware, filling the bus info
 149 *  structure and media type, clears all on chip counters, initializes receive
 150 *  address registers, multicast table, VLAN filter table, calls routine to set
 151 *  up link and flow control settings, and leaves transmit and receive units
 152 *  disabled and uninitialized
 153 **/
 154s32 ixgbe_init_hw_generic(struct ixgbe_hw *hw)
 155{
 156        s32 status;
 157
 158        /* Reset the hardware */
 159        status = hw->mac.ops.reset_hw(hw);
 160
 161        if (status == 0) {
 162                /* Start the HW */
 163                status = hw->mac.ops.start_hw(hw);
 164        }
 165
 166        return status;
 167}
 168
 169/**
 170 *  ixgbe_clear_hw_cntrs_generic - Generic clear hardware counters
 171 *  @hw: pointer to hardware structure
 172 *
 173 *  Clears all hardware statistics counters by reading them from the hardware
 174 *  Statistics counters are clear on read.
 175 **/
 176s32 ixgbe_clear_hw_cntrs_generic(struct ixgbe_hw *hw)
 177{
 178        u16 i = 0;
 179
 180        IXGBE_READ_REG(hw, IXGBE_CRCERRS);
 181        IXGBE_READ_REG(hw, IXGBE_ILLERRC);
 182        IXGBE_READ_REG(hw, IXGBE_ERRBC);
 183        IXGBE_READ_REG(hw, IXGBE_MSPDC);
 184        for (i = 0; i < 8; i++)
 185                IXGBE_READ_REG(hw, IXGBE_MPC(i));
 186
 187        IXGBE_READ_REG(hw, IXGBE_MLFC);
 188        IXGBE_READ_REG(hw, IXGBE_MRFC);
 189        IXGBE_READ_REG(hw, IXGBE_RLEC);
 190        IXGBE_READ_REG(hw, IXGBE_LXONTXC);
 191        IXGBE_READ_REG(hw, IXGBE_LXOFFTXC);
 192        if (hw->mac.type >= ixgbe_mac_82599EB) {
 193                IXGBE_READ_REG(hw, IXGBE_LXONRXCNT);
 194                IXGBE_READ_REG(hw, IXGBE_LXOFFRXCNT);
 195        } else {
 196                IXGBE_READ_REG(hw, IXGBE_LXONRXC);
 197                IXGBE_READ_REG(hw, IXGBE_LXOFFRXC);
 198        }
 199
 200        for (i = 0; i < 8; i++) {
 201                IXGBE_READ_REG(hw, IXGBE_PXONTXC(i));
 202                IXGBE_READ_REG(hw, IXGBE_PXOFFTXC(i));
 203                if (hw->mac.type >= ixgbe_mac_82599EB) {
 204                        IXGBE_READ_REG(hw, IXGBE_PXONRXCNT(i));
 205                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXCNT(i));
 206                } else {
 207                        IXGBE_READ_REG(hw, IXGBE_PXONRXC(i));
 208                        IXGBE_READ_REG(hw, IXGBE_PXOFFRXC(i));
 209                }
 210        }
 211        if (hw->mac.type >= ixgbe_mac_82599EB)
 212                for (i = 0; i < 8; i++)
 213                        IXGBE_READ_REG(hw, IXGBE_PXON2OFFCNT(i));
 214        IXGBE_READ_REG(hw, IXGBE_PRC64);
 215        IXGBE_READ_REG(hw, IXGBE_PRC127);
 216        IXGBE_READ_REG(hw, IXGBE_PRC255);
 217        IXGBE_READ_REG(hw, IXGBE_PRC511);
 218        IXGBE_READ_REG(hw, IXGBE_PRC1023);
 219        IXGBE_READ_REG(hw, IXGBE_PRC1522);
 220        IXGBE_READ_REG(hw, IXGBE_GPRC);
 221        IXGBE_READ_REG(hw, IXGBE_BPRC);
 222        IXGBE_READ_REG(hw, IXGBE_MPRC);
 223        IXGBE_READ_REG(hw, IXGBE_GPTC);
 224        IXGBE_READ_REG(hw, IXGBE_GORCL);
 225        IXGBE_READ_REG(hw, IXGBE_GORCH);
 226        IXGBE_READ_REG(hw, IXGBE_GOTCL);
 227        IXGBE_READ_REG(hw, IXGBE_GOTCH);
 228        for (i = 0; i < 8; i++)
 229                IXGBE_READ_REG(hw, IXGBE_RNBC(i));
 230        IXGBE_READ_REG(hw, IXGBE_RUC);
 231        IXGBE_READ_REG(hw, IXGBE_RFC);
 232        IXGBE_READ_REG(hw, IXGBE_ROC);
 233        IXGBE_READ_REG(hw, IXGBE_RJC);
 234        IXGBE_READ_REG(hw, IXGBE_MNGPRC);
 235        IXGBE_READ_REG(hw, IXGBE_MNGPDC);
 236        IXGBE_READ_REG(hw, IXGBE_MNGPTC);
 237        IXGBE_READ_REG(hw, IXGBE_TORL);
 238        IXGBE_READ_REG(hw, IXGBE_TORH);
 239        IXGBE_READ_REG(hw, IXGBE_TPR);
 240        IXGBE_READ_REG(hw, IXGBE_TPT);
 241        IXGBE_READ_REG(hw, IXGBE_PTC64);
 242        IXGBE_READ_REG(hw, IXGBE_PTC127);
 243        IXGBE_READ_REG(hw, IXGBE_PTC255);
 244        IXGBE_READ_REG(hw, IXGBE_PTC511);
 245        IXGBE_READ_REG(hw, IXGBE_PTC1023);
 246        IXGBE_READ_REG(hw, IXGBE_PTC1522);
 247        IXGBE_READ_REG(hw, IXGBE_MPTC);
 248        IXGBE_READ_REG(hw, IXGBE_BPTC);
 249        for (i = 0; i < 16; i++) {
 250                IXGBE_READ_REG(hw, IXGBE_QPRC(i));
 251                IXGBE_READ_REG(hw, IXGBE_QPTC(i));
 252                if (hw->mac.type >= ixgbe_mac_82599EB) {
 253                        IXGBE_READ_REG(hw, IXGBE_QBRC_L(i));
 254                        IXGBE_READ_REG(hw, IXGBE_QBRC_H(i));
 255                        IXGBE_READ_REG(hw, IXGBE_QBTC_L(i));
 256                        IXGBE_READ_REG(hw, IXGBE_QBTC_H(i));
 257                        IXGBE_READ_REG(hw, IXGBE_QPRDC(i));
 258                } else {
 259                        IXGBE_READ_REG(hw, IXGBE_QBRC(i));
 260                        IXGBE_READ_REG(hw, IXGBE_QBTC(i));
 261                }
 262        }
 263
 264        if (hw->mac.type == ixgbe_mac_X540) {
 265                if (hw->phy.id == 0)
 266                        hw->phy.ops.identify(hw);
 267                hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECL, &i);
 268                hw->phy.ops.read_reg(hw, 0x3, IXGBE_PCRC8ECH, &i);
 269                hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECL, &i);
 270                hw->phy.ops.read_reg(hw, 0x3, IXGBE_LDPCECH, &i);
 271        }
 272
 273        return 0;
 274}
 275
 276/**
 277 *  ixgbe_read_pba_string_generic - Reads part number string from EEPROM
 278 *  @hw: pointer to hardware structure
 279 *  @pba_num: stores the part number string from the EEPROM
 280 *  @pba_num_size: part number string buffer length
 281 *
 282 *  Reads the part number string from the EEPROM.
 283 **/
 284s32 ixgbe_read_pba_string_generic(struct ixgbe_hw *hw, u8 *pba_num,
 285                                  u32 pba_num_size)
 286{
 287        s32 ret_val;
 288        u16 data;
 289        u16 pba_ptr;
 290        u16 offset;
 291        u16 length;
 292
 293        if (pba_num == NULL) {
 294                hw_dbg(hw, "PBA string buffer was null\n");
 295                return IXGBE_ERR_INVALID_ARGUMENT;
 296        }
 297
 298        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM0_PTR, &data);
 299        if (ret_val) {
 300                hw_dbg(hw, "NVM Read Error\n");
 301                return ret_val;
 302        }
 303
 304        ret_val = hw->eeprom.ops.read(hw, IXGBE_PBANUM1_PTR, &pba_ptr);
 305        if (ret_val) {
 306                hw_dbg(hw, "NVM Read Error\n");
 307                return ret_val;
 308        }
 309
 310        /*
 311         * if data is not ptr guard the PBA must be in legacy format which
 312         * means pba_ptr is actually our second data word for the PBA number
 313         * and we can decode it into an ascii string
 314         */
 315        if (data != IXGBE_PBANUM_PTR_GUARD) {
 316                hw_dbg(hw, "NVM PBA number is not stored as string\n");
 317
 318                /* we will need 11 characters to store the PBA */
 319                if (pba_num_size < 11) {
 320                        hw_dbg(hw, "PBA string buffer too small\n");
 321                        return IXGBE_ERR_NO_SPACE;
 322                }
 323
 324                /* extract hex string from data and pba_ptr */
 325                pba_num[0] = (data >> 12) & 0xF;
 326                pba_num[1] = (data >> 8) & 0xF;
 327                pba_num[2] = (data >> 4) & 0xF;
 328                pba_num[3] = data & 0xF;
 329                pba_num[4] = (pba_ptr >> 12) & 0xF;
 330                pba_num[5] = (pba_ptr >> 8) & 0xF;
 331                pba_num[6] = '-';
 332                pba_num[7] = 0;
 333                pba_num[8] = (pba_ptr >> 4) & 0xF;
 334                pba_num[9] = pba_ptr & 0xF;
 335
 336                /* put a null character on the end of our string */
 337                pba_num[10] = '\0';
 338
 339                /* switch all the data but the '-' to hex char */
 340                for (offset = 0; offset < 10; offset++) {
 341                        if (pba_num[offset] < 0xA)
 342                                pba_num[offset] += '0';
 343                        else if (pba_num[offset] < 0x10)
 344                                pba_num[offset] += 'A' - 0xA;
 345                }
 346
 347                return 0;
 348        }
 349
 350        ret_val = hw->eeprom.ops.read(hw, pba_ptr, &length);
 351        if (ret_val) {
 352                hw_dbg(hw, "NVM Read Error\n");
 353                return ret_val;
 354        }
 355
 356        if (length == 0xFFFF || length == 0) {
 357                hw_dbg(hw, "NVM PBA number section invalid length\n");
 358                return IXGBE_ERR_PBA_SECTION;
 359        }
 360
 361        /* check if pba_num buffer is big enough */
 362        if (pba_num_size  < (((u32)length * 2) - 1)) {
 363                hw_dbg(hw, "PBA string buffer too small\n");
 364                return IXGBE_ERR_NO_SPACE;
 365        }
 366
 367        /* trim pba length from start of string */
 368        pba_ptr++;
 369        length--;
 370
 371        for (offset = 0; offset < length; offset++) {
 372                ret_val = hw->eeprom.ops.read(hw, pba_ptr + offset, &data);
 373                if (ret_val) {
 374                        hw_dbg(hw, "NVM Read Error\n");
 375                        return ret_val;
 376                }
 377                pba_num[offset * 2] = (u8)(data >> 8);
 378                pba_num[(offset * 2) + 1] = (u8)(data & 0xFF);
 379        }
 380        pba_num[offset * 2] = '\0';
 381
 382        return 0;
 383}
 384
 385/**
 386 *  ixgbe_get_mac_addr_generic - Generic get MAC address
 387 *  @hw: pointer to hardware structure
 388 *  @mac_addr: Adapter MAC address
 389 *
 390 *  Reads the adapter's MAC address from first Receive Address Register (RAR0)
 391 *  A reset of the adapter must be performed prior to calling this function
 392 *  in order for the MAC address to have been loaded from the EEPROM into RAR0
 393 **/
 394s32 ixgbe_get_mac_addr_generic(struct ixgbe_hw *hw, u8 *mac_addr)
 395{
 396        u32 rar_high;
 397        u32 rar_low;
 398        u16 i;
 399
 400        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(0));
 401        rar_low = IXGBE_READ_REG(hw, IXGBE_RAL(0));
 402
 403        for (i = 0; i < 4; i++)
 404                mac_addr[i] = (u8)(rar_low >> (i*8));
 405
 406        for (i = 0; i < 2; i++)
 407                mac_addr[i+4] = (u8)(rar_high >> (i*8));
 408
 409        return 0;
 410}
 411
 412/**
 413 *  ixgbe_get_bus_info_generic - Generic set PCI bus info
 414 *  @hw: pointer to hardware structure
 415 *
 416 *  Sets the PCI bus info (speed, width, type) within the ixgbe_hw structure
 417 **/
 418s32 ixgbe_get_bus_info_generic(struct ixgbe_hw *hw)
 419{
 420        struct ixgbe_adapter *adapter = hw->back;
 421        struct ixgbe_mac_info *mac = &hw->mac;
 422        u16 link_status;
 423
 424        hw->bus.type = ixgbe_bus_type_pci_express;
 425
 426        /* Get the negotiated link width and speed from PCI config space */
 427        pci_read_config_word(adapter->pdev, IXGBE_PCI_LINK_STATUS,
 428                             &link_status);
 429
 430        switch (link_status & IXGBE_PCI_LINK_WIDTH) {
 431        case IXGBE_PCI_LINK_WIDTH_1:
 432                hw->bus.width = ixgbe_bus_width_pcie_x1;
 433                break;
 434        case IXGBE_PCI_LINK_WIDTH_2:
 435                hw->bus.width = ixgbe_bus_width_pcie_x2;
 436                break;
 437        case IXGBE_PCI_LINK_WIDTH_4:
 438                hw->bus.width = ixgbe_bus_width_pcie_x4;
 439                break;
 440        case IXGBE_PCI_LINK_WIDTH_8:
 441                hw->bus.width = ixgbe_bus_width_pcie_x8;
 442                break;
 443        default:
 444                hw->bus.width = ixgbe_bus_width_unknown;
 445                break;
 446        }
 447
 448        switch (link_status & IXGBE_PCI_LINK_SPEED) {
 449        case IXGBE_PCI_LINK_SPEED_2500:
 450                hw->bus.speed = ixgbe_bus_speed_2500;
 451                break;
 452        case IXGBE_PCI_LINK_SPEED_5000:
 453                hw->bus.speed = ixgbe_bus_speed_5000;
 454                break;
 455        default:
 456                hw->bus.speed = ixgbe_bus_speed_unknown;
 457                break;
 458        }
 459
 460        mac->ops.set_lan_id(hw);
 461
 462        return 0;
 463}
 464
 465/**
 466 *  ixgbe_set_lan_id_multi_port_pcie - Set LAN id for PCIe multiple port devices
 467 *  @hw: pointer to the HW structure
 468 *
 469 *  Determines the LAN function id by reading memory-mapped registers
 470 *  and swaps the port value if requested.
 471 **/
 472void ixgbe_set_lan_id_multi_port_pcie(struct ixgbe_hw *hw)
 473{
 474        struct ixgbe_bus_info *bus = &hw->bus;
 475        u32 reg;
 476
 477        reg = IXGBE_READ_REG(hw, IXGBE_STATUS);
 478        bus->func = (reg & IXGBE_STATUS_LAN_ID) >> IXGBE_STATUS_LAN_ID_SHIFT;
 479        bus->lan_id = bus->func;
 480
 481        /* check for a port swap */
 482        reg = IXGBE_READ_REG(hw, IXGBE_FACTPS);
 483        if (reg & IXGBE_FACTPS_LFS)
 484                bus->func ^= 0x1;
 485}
 486
 487/**
 488 *  ixgbe_stop_adapter_generic - Generic stop Tx/Rx units
 489 *  @hw: pointer to hardware structure
 490 *
 491 *  Sets the adapter_stopped flag within ixgbe_hw struct. Clears interrupts,
 492 *  disables transmit and receive units. The adapter_stopped flag is used by
 493 *  the shared code and drivers to determine if the adapter is in a stopped
 494 *  state and should not touch the hardware.
 495 **/
 496s32 ixgbe_stop_adapter_generic(struct ixgbe_hw *hw)
 497{
 498        u32 number_of_queues;
 499        u32 reg_val;
 500        u16 i;
 501
 502        /*
 503         * Set the adapter_stopped flag so other driver functions stop touching
 504         * the hardware
 505         */
 506        hw->adapter_stopped = true;
 507
 508        /* Disable the receive unit */
 509        reg_val = IXGBE_READ_REG(hw, IXGBE_RXCTRL);
 510        reg_val &= ~(IXGBE_RXCTRL_RXEN);
 511        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, reg_val);
 512        IXGBE_WRITE_FLUSH(hw);
 513        usleep_range(2000, 4000);
 514
 515        /* Clear interrupt mask to stop from interrupts being generated */
 516        IXGBE_WRITE_REG(hw, IXGBE_EIMC, IXGBE_IRQ_CLEAR_MASK);
 517
 518        /* Clear any pending interrupts */
 519        IXGBE_READ_REG(hw, IXGBE_EICR);
 520
 521        /* Disable the transmit unit.  Each queue must be disabled. */
 522        number_of_queues = hw->mac.max_tx_queues;
 523        for (i = 0; i < number_of_queues; i++) {
 524                reg_val = IXGBE_READ_REG(hw, IXGBE_TXDCTL(i));
 525                if (reg_val & IXGBE_TXDCTL_ENABLE) {
 526                        reg_val &= ~IXGBE_TXDCTL_ENABLE;
 527                        IXGBE_WRITE_REG(hw, IXGBE_TXDCTL(i), reg_val);
 528                }
 529        }
 530
 531        /*
 532         * Prevent the PCI-E bus from from hanging by disabling PCI-E master
 533         * access and verify no pending requests
 534         */
 535        ixgbe_disable_pcie_master(hw);
 536
 537        return 0;
 538}
 539
 540/**
 541 *  ixgbe_led_on_generic - Turns on the software controllable LEDs.
 542 *  @hw: pointer to hardware structure
 543 *  @index: led number to turn on
 544 **/
 545s32 ixgbe_led_on_generic(struct ixgbe_hw *hw, u32 index)
 546{
 547        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 548
 549        /* To turn on the LED, set mode to ON. */
 550        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 551        led_reg |= IXGBE_LED_ON << IXGBE_LED_MODE_SHIFT(index);
 552        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 553        IXGBE_WRITE_FLUSH(hw);
 554
 555        return 0;
 556}
 557
 558/**
 559 *  ixgbe_led_off_generic - Turns off the software controllable LEDs.
 560 *  @hw: pointer to hardware structure
 561 *  @index: led number to turn off
 562 **/
 563s32 ixgbe_led_off_generic(struct ixgbe_hw *hw, u32 index)
 564{
 565        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
 566
 567        /* To turn off the LED, set mode to OFF. */
 568        led_reg &= ~IXGBE_LED_MODE_MASK(index);
 569        led_reg |= IXGBE_LED_OFF << IXGBE_LED_MODE_SHIFT(index);
 570        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
 571        IXGBE_WRITE_FLUSH(hw);
 572
 573        return 0;
 574}
 575
 576/**
 577 *  ixgbe_init_eeprom_params_generic - Initialize EEPROM params
 578 *  @hw: pointer to hardware structure
 579 *
 580 *  Initializes the EEPROM parameters ixgbe_eeprom_info within the
 581 *  ixgbe_hw struct in order to set up EEPROM access.
 582 **/
 583s32 ixgbe_init_eeprom_params_generic(struct ixgbe_hw *hw)
 584{
 585        struct ixgbe_eeprom_info *eeprom = &hw->eeprom;
 586        u32 eec;
 587        u16 eeprom_size;
 588
 589        if (eeprom->type == ixgbe_eeprom_uninitialized) {
 590                eeprom->type = ixgbe_eeprom_none;
 591                /* Set default semaphore delay to 10ms which is a well
 592                 * tested value */
 593                eeprom->semaphore_delay = 10;
 594                /* Clear EEPROM page size, it will be initialized as needed */
 595                eeprom->word_page_size = 0;
 596
 597                /*
 598                 * Check for EEPROM present first.
 599                 * If not present leave as none
 600                 */
 601                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
 602                if (eec & IXGBE_EEC_PRES) {
 603                        eeprom->type = ixgbe_eeprom_spi;
 604
 605                        /*
 606                         * SPI EEPROM is assumed here.  This code would need to
 607                         * change if a future EEPROM is not SPI.
 608                         */
 609                        eeprom_size = (u16)((eec & IXGBE_EEC_SIZE) >>
 610                                            IXGBE_EEC_SIZE_SHIFT);
 611                        eeprom->word_size = 1 << (eeprom_size +
 612                                                  IXGBE_EEPROM_WORD_SIZE_SHIFT);
 613                }
 614
 615                if (eec & IXGBE_EEC_ADDR_SIZE)
 616                        eeprom->address_bits = 16;
 617                else
 618                        eeprom->address_bits = 8;
 619                hw_dbg(hw, "Eeprom params: type = %d, size = %d, address bits: "
 620                          "%d\n", eeprom->type, eeprom->word_size,
 621                          eeprom->address_bits);
 622        }
 623
 624        return 0;
 625}
 626
 627/**
 628 *  ixgbe_write_eeprom_buffer_bit_bang_generic - Write EEPROM using bit-bang
 629 *  @hw: pointer to hardware structure
 630 *  @offset: offset within the EEPROM to write
 631 *  @words: number of words
 632 *  @data: 16 bit word(s) to write to EEPROM
 633 *
 634 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 635 **/
 636s32 ixgbe_write_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 637                                               u16 words, u16 *data)
 638{
 639        s32 status = 0;
 640        u16 i, count;
 641
 642        hw->eeprom.ops.init_params(hw);
 643
 644        if (words == 0) {
 645                status = IXGBE_ERR_INVALID_ARGUMENT;
 646                goto out;
 647        }
 648
 649        if (offset + words > hw->eeprom.word_size) {
 650                status = IXGBE_ERR_EEPROM;
 651                goto out;
 652        }
 653
 654        /*
 655         * The EEPROM page size cannot be queried from the chip. We do lazy
 656         * initialization. It is worth to do that when we write large buffer.
 657         */
 658        if ((hw->eeprom.word_page_size == 0) &&
 659            (words > IXGBE_EEPROM_PAGE_SIZE_MAX))
 660                ixgbe_detect_eeprom_page_size_generic(hw, offset);
 661
 662        /*
 663         * We cannot hold synchronization semaphores for too long
 664         * to avoid other entity starvation. However it is more efficient
 665         * to read in bursts than synchronizing access for each word.
 666         */
 667        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 668                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 669                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 670                status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset + i,
 671                                                            count, &data[i]);
 672
 673                if (status != 0)
 674                        break;
 675        }
 676
 677out:
 678        return status;
 679}
 680
 681/**
 682 *  ixgbe_write_eeprom_buffer_bit_bang - Writes 16 bit word(s) to EEPROM
 683 *  @hw: pointer to hardware structure
 684 *  @offset: offset within the EEPROM to be written to
 685 *  @words: number of word(s)
 686 *  @data: 16 bit word(s) to be written to the EEPROM
 687 *
 688 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 689 *  EEPROM will most likely contain an invalid checksum.
 690 **/
 691static s32 ixgbe_write_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 692                                              u16 words, u16 *data)
 693{
 694        s32 status;
 695        u16 word;
 696        u16 page_size;
 697        u16 i;
 698        u8 write_opcode = IXGBE_EEPROM_WRITE_OPCODE_SPI;
 699
 700        /* Prepare the EEPROM for writing  */
 701        status = ixgbe_acquire_eeprom(hw);
 702
 703        if (status == 0) {
 704                if (ixgbe_ready_eeprom(hw) != 0) {
 705                        ixgbe_release_eeprom(hw);
 706                        status = IXGBE_ERR_EEPROM;
 707                }
 708        }
 709
 710        if (status == 0) {
 711                for (i = 0; i < words; i++) {
 712                        ixgbe_standby_eeprom(hw);
 713
 714                        /*  Send the WRITE ENABLE command (8 bit opcode )  */
 715                        ixgbe_shift_out_eeprom_bits(hw,
 716                                                  IXGBE_EEPROM_WREN_OPCODE_SPI,
 717                                                  IXGBE_EEPROM_OPCODE_BITS);
 718
 719                        ixgbe_standby_eeprom(hw);
 720
 721                        /*
 722                         * Some SPI eeproms use the 8th address bit embedded
 723                         * in the opcode
 724                         */
 725                        if ((hw->eeprom.address_bits == 8) &&
 726                            ((offset + i) >= 128))
 727                                write_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 728
 729                        /* Send the Write command (8-bit opcode + addr) */
 730                        ixgbe_shift_out_eeprom_bits(hw, write_opcode,
 731                                                    IXGBE_EEPROM_OPCODE_BITS);
 732                        ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 733                                                    hw->eeprom.address_bits);
 734
 735                        page_size = hw->eeprom.word_page_size;
 736
 737                        /* Send the data in burst via SPI*/
 738                        do {
 739                                word = data[i];
 740                                word = (word >> 8) | (word << 8);
 741                                ixgbe_shift_out_eeprom_bits(hw, word, 16);
 742
 743                                if (page_size == 0)
 744                                        break;
 745
 746                                /* do not wrap around page */
 747                                if (((offset + i) & (page_size - 1)) ==
 748                                    (page_size - 1))
 749                                        break;
 750                        } while (++i < words);
 751
 752                        ixgbe_standby_eeprom(hw);
 753                        usleep_range(10000, 20000);
 754                }
 755                /* Done with writing - release the EEPROM */
 756                ixgbe_release_eeprom(hw);
 757        }
 758
 759        return status;
 760}
 761
 762/**
 763 *  ixgbe_write_eeprom_generic - Writes 16 bit value to EEPROM
 764 *  @hw: pointer to hardware structure
 765 *  @offset: offset within the EEPROM to be written to
 766 *  @data: 16 bit word to be written to the EEPROM
 767 *
 768 *  If ixgbe_eeprom_update_checksum is not called after this function, the
 769 *  EEPROM will most likely contain an invalid checksum.
 770 **/
 771s32 ixgbe_write_eeprom_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
 772{
 773        s32 status;
 774
 775        hw->eeprom.ops.init_params(hw);
 776
 777        if (offset >= hw->eeprom.word_size) {
 778                status = IXGBE_ERR_EEPROM;
 779                goto out;
 780        }
 781
 782        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset, 1, &data);
 783
 784out:
 785        return status;
 786}
 787
 788/**
 789 *  ixgbe_read_eeprom_buffer_bit_bang_generic - Read EEPROM using bit-bang
 790 *  @hw: pointer to hardware structure
 791 *  @offset: offset within the EEPROM to be read
 792 *  @words: number of word(s)
 793 *  @data: read 16 bit words(s) from EEPROM
 794 *
 795 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 796 **/
 797s32 ixgbe_read_eeprom_buffer_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 798                                              u16 words, u16 *data)
 799{
 800        s32 status = 0;
 801        u16 i, count;
 802
 803        hw->eeprom.ops.init_params(hw);
 804
 805        if (words == 0) {
 806                status = IXGBE_ERR_INVALID_ARGUMENT;
 807                goto out;
 808        }
 809
 810        if (offset + words > hw->eeprom.word_size) {
 811                status = IXGBE_ERR_EEPROM;
 812                goto out;
 813        }
 814
 815        /*
 816         * We cannot hold synchronization semaphores for too long
 817         * to avoid other entity starvation. However it is more efficient
 818         * to read in bursts than synchronizing access for each word.
 819         */
 820        for (i = 0; i < words; i += IXGBE_EEPROM_RD_BUFFER_MAX_COUNT) {
 821                count = (words - i) / IXGBE_EEPROM_RD_BUFFER_MAX_COUNT > 0 ?
 822                         IXGBE_EEPROM_RD_BUFFER_MAX_COUNT : (words - i);
 823
 824                status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset + i,
 825                                                           count, &data[i]);
 826
 827                if (status != 0)
 828                        break;
 829        }
 830
 831out:
 832        return status;
 833}
 834
 835/**
 836 *  ixgbe_read_eeprom_buffer_bit_bang - Read EEPROM using bit-bang
 837 *  @hw: pointer to hardware structure
 838 *  @offset: offset within the EEPROM to be read
 839 *  @words: number of word(s)
 840 *  @data: read 16 bit word(s) from EEPROM
 841 *
 842 *  Reads 16 bit word(s) from EEPROM through bit-bang method
 843 **/
 844static s32 ixgbe_read_eeprom_buffer_bit_bang(struct ixgbe_hw *hw, u16 offset,
 845                                             u16 words, u16 *data)
 846{
 847        s32 status;
 848        u16 word_in;
 849        u8 read_opcode = IXGBE_EEPROM_READ_OPCODE_SPI;
 850        u16 i;
 851
 852        /* Prepare the EEPROM for reading  */
 853        status = ixgbe_acquire_eeprom(hw);
 854
 855        if (status == 0) {
 856                if (ixgbe_ready_eeprom(hw) != 0) {
 857                        ixgbe_release_eeprom(hw);
 858                        status = IXGBE_ERR_EEPROM;
 859                }
 860        }
 861
 862        if (status == 0) {
 863                for (i = 0; i < words; i++) {
 864                        ixgbe_standby_eeprom(hw);
 865                        /*
 866                         * Some SPI eeproms use the 8th address bit embedded
 867                         * in the opcode
 868                         */
 869                        if ((hw->eeprom.address_bits == 8) &&
 870                            ((offset + i) >= 128))
 871                                read_opcode |= IXGBE_EEPROM_A8_OPCODE_SPI;
 872
 873                        /* Send the READ command (opcode + addr) */
 874                        ixgbe_shift_out_eeprom_bits(hw, read_opcode,
 875                                                    IXGBE_EEPROM_OPCODE_BITS);
 876                        ixgbe_shift_out_eeprom_bits(hw, (u16)((offset + i) * 2),
 877                                                    hw->eeprom.address_bits);
 878
 879                        /* Read the data. */
 880                        word_in = ixgbe_shift_in_eeprom_bits(hw, 16);
 881                        data[i] = (word_in >> 8) | (word_in << 8);
 882                }
 883
 884                /* End this read operation */
 885                ixgbe_release_eeprom(hw);
 886        }
 887
 888        return status;
 889}
 890
 891/**
 892 *  ixgbe_read_eeprom_bit_bang_generic - Read EEPROM word using bit-bang
 893 *  @hw: pointer to hardware structure
 894 *  @offset: offset within the EEPROM to be read
 895 *  @data: read 16 bit value from EEPROM
 896 *
 897 *  Reads 16 bit value from EEPROM through bit-bang method
 898 **/
 899s32 ixgbe_read_eeprom_bit_bang_generic(struct ixgbe_hw *hw, u16 offset,
 900                                       u16 *data)
 901{
 902        s32 status;
 903
 904        hw->eeprom.ops.init_params(hw);
 905
 906        if (offset >= hw->eeprom.word_size) {
 907                status = IXGBE_ERR_EEPROM;
 908                goto out;
 909        }
 910
 911        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
 912
 913out:
 914        return status;
 915}
 916
 917/**
 918 *  ixgbe_read_eerd_buffer_generic - Read EEPROM word(s) using EERD
 919 *  @hw: pointer to hardware structure
 920 *  @offset: offset of word in the EEPROM to read
 921 *  @words: number of word(s)
 922 *  @data: 16 bit word(s) from the EEPROM
 923 *
 924 *  Reads a 16 bit word(s) from the EEPROM using the EERD register.
 925 **/
 926s32 ixgbe_read_eerd_buffer_generic(struct ixgbe_hw *hw, u16 offset,
 927                                   u16 words, u16 *data)
 928{
 929        u32 eerd;
 930        s32 status = 0;
 931        u32 i;
 932
 933        hw->eeprom.ops.init_params(hw);
 934
 935        if (words == 0) {
 936                status = IXGBE_ERR_INVALID_ARGUMENT;
 937                goto out;
 938        }
 939
 940        if (offset >= hw->eeprom.word_size) {
 941                status = IXGBE_ERR_EEPROM;
 942                goto out;
 943        }
 944
 945        for (i = 0; i < words; i++) {
 946                eerd = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) +
 947                       IXGBE_EEPROM_RW_REG_START;
 948
 949                IXGBE_WRITE_REG(hw, IXGBE_EERD, eerd);
 950                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_READ);
 951
 952                if (status == 0) {
 953                        data[i] = (IXGBE_READ_REG(hw, IXGBE_EERD) >>
 954                                   IXGBE_EEPROM_RW_REG_DATA);
 955                } else {
 956                        hw_dbg(hw, "Eeprom read timed out\n");
 957                        goto out;
 958                }
 959        }
 960out:
 961        return status;
 962}
 963
 964/**
 965 *  ixgbe_detect_eeprom_page_size_generic - Detect EEPROM page size
 966 *  @hw: pointer to hardware structure
 967 *  @offset: offset within the EEPROM to be used as a scratch pad
 968 *
 969 *  Discover EEPROM page size by writing marching data at given offset.
 970 *  This function is called only when we are writing a new large buffer
 971 *  at given offset so the data would be overwritten anyway.
 972 **/
 973static s32 ixgbe_detect_eeprom_page_size_generic(struct ixgbe_hw *hw,
 974                                                 u16 offset)
 975{
 976        u16 data[IXGBE_EEPROM_PAGE_SIZE_MAX];
 977        s32 status = 0;
 978        u16 i;
 979
 980        for (i = 0; i < IXGBE_EEPROM_PAGE_SIZE_MAX; i++)
 981                data[i] = i;
 982
 983        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX;
 984        status = ixgbe_write_eeprom_buffer_bit_bang(hw, offset,
 985                                             IXGBE_EEPROM_PAGE_SIZE_MAX, data);
 986        hw->eeprom.word_page_size = 0;
 987        if (status != 0)
 988                goto out;
 989
 990        status = ixgbe_read_eeprom_buffer_bit_bang(hw, offset, 1, data);
 991        if (status != 0)
 992                goto out;
 993
 994        /*
 995         * When writing in burst more than the actual page size
 996         * EEPROM address wraps around current page.
 997         */
 998        hw->eeprom.word_page_size = IXGBE_EEPROM_PAGE_SIZE_MAX - data[0];
 999
1000        hw_dbg(hw, "Detected EEPROM page size = %d words.",
1001               hw->eeprom.word_page_size);
1002out:
1003        return status;
1004}
1005
1006/**
1007 *  ixgbe_read_eerd_generic - Read EEPROM word using EERD
1008 *  @hw: pointer to hardware structure
1009 *  @offset: offset of  word in the EEPROM to read
1010 *  @data: word read from the EEPROM
1011 *
1012 *  Reads a 16 bit word from the EEPROM using the EERD register.
1013 **/
1014s32 ixgbe_read_eerd_generic(struct ixgbe_hw *hw, u16 offset, u16 *data)
1015{
1016        return ixgbe_read_eerd_buffer_generic(hw, offset, 1, data);
1017}
1018
1019/**
1020 *  ixgbe_write_eewr_buffer_generic - Write EEPROM word(s) using EEWR
1021 *  @hw: pointer to hardware structure
1022 *  @offset: offset of  word in the EEPROM to write
1023 *  @words: number of words
1024 *  @data: word(s) write to the EEPROM
1025 *
1026 *  Write a 16 bit word(s) to the EEPROM using the EEWR register.
1027 **/
1028s32 ixgbe_write_eewr_buffer_generic(struct ixgbe_hw *hw, u16 offset,
1029                                    u16 words, u16 *data)
1030{
1031        u32 eewr;
1032        s32 status = 0;
1033        u16 i;
1034
1035        hw->eeprom.ops.init_params(hw);
1036
1037        if (words == 0) {
1038                status = IXGBE_ERR_INVALID_ARGUMENT;
1039                goto out;
1040        }
1041
1042        if (offset >= hw->eeprom.word_size) {
1043                status = IXGBE_ERR_EEPROM;
1044                goto out;
1045        }
1046
1047        for (i = 0; i < words; i++) {
1048                eewr = ((offset + i) << IXGBE_EEPROM_RW_ADDR_SHIFT) |
1049                       (data[i] << IXGBE_EEPROM_RW_REG_DATA) |
1050                       IXGBE_EEPROM_RW_REG_START;
1051
1052                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1053                if (status != 0) {
1054                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1055                        goto out;
1056                }
1057
1058                IXGBE_WRITE_REG(hw, IXGBE_EEWR, eewr);
1059
1060                status = ixgbe_poll_eerd_eewr_done(hw, IXGBE_NVM_POLL_WRITE);
1061                if (status != 0) {
1062                        hw_dbg(hw, "Eeprom write EEWR timed out\n");
1063                        goto out;
1064                }
1065        }
1066
1067out:
1068        return status;
1069}
1070
1071/**
1072 *  ixgbe_write_eewr_generic - Write EEPROM word using EEWR
1073 *  @hw: pointer to hardware structure
1074 *  @offset: offset of  word in the EEPROM to write
1075 *  @data: word write to the EEPROM
1076 *
1077 *  Write a 16 bit word to the EEPROM using the EEWR register.
1078 **/
1079s32 ixgbe_write_eewr_generic(struct ixgbe_hw *hw, u16 offset, u16 data)
1080{
1081        return ixgbe_write_eewr_buffer_generic(hw, offset, 1, &data);
1082}
1083
1084/**
1085 *  ixgbe_poll_eerd_eewr_done - Poll EERD read or EEWR write status
1086 *  @hw: pointer to hardware structure
1087 *  @ee_reg: EEPROM flag for polling
1088 *
1089 *  Polls the status bit (bit 1) of the EERD or EEWR to determine when the
1090 *  read or write is done respectively.
1091 **/
1092static s32 ixgbe_poll_eerd_eewr_done(struct ixgbe_hw *hw, u32 ee_reg)
1093{
1094        u32 i;
1095        u32 reg;
1096        s32 status = IXGBE_ERR_EEPROM;
1097
1098        for (i = 0; i < IXGBE_EERD_EEWR_ATTEMPTS; i++) {
1099                if (ee_reg == IXGBE_NVM_POLL_READ)
1100                        reg = IXGBE_READ_REG(hw, IXGBE_EERD);
1101                else
1102                        reg = IXGBE_READ_REG(hw, IXGBE_EEWR);
1103
1104                if (reg & IXGBE_EEPROM_RW_REG_DONE) {
1105                        status = 0;
1106                        break;
1107                }
1108                udelay(5);
1109        }
1110        return status;
1111}
1112
1113/**
1114 *  ixgbe_acquire_eeprom - Acquire EEPROM using bit-bang
1115 *  @hw: pointer to hardware structure
1116 *
1117 *  Prepares EEPROM for access using bit-bang method. This function should
1118 *  be called before issuing a command to the EEPROM.
1119 **/
1120static s32 ixgbe_acquire_eeprom(struct ixgbe_hw *hw)
1121{
1122        s32 status = 0;
1123        u32 eec;
1124        u32 i;
1125
1126        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_EEP_SM) != 0)
1127                status = IXGBE_ERR_SWFW_SYNC;
1128
1129        if (status == 0) {
1130                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1131
1132                /* Request EEPROM Access */
1133                eec |= IXGBE_EEC_REQ;
1134                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1135
1136                for (i = 0; i < IXGBE_EEPROM_GRANT_ATTEMPTS; i++) {
1137                        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1138                        if (eec & IXGBE_EEC_GNT)
1139                                break;
1140                        udelay(5);
1141                }
1142
1143                /* Release if grant not acquired */
1144                if (!(eec & IXGBE_EEC_GNT)) {
1145                        eec &= ~IXGBE_EEC_REQ;
1146                        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1147                        hw_dbg(hw, "Could not acquire EEPROM grant\n");
1148
1149                        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1150                        status = IXGBE_ERR_EEPROM;
1151                }
1152
1153                /* Setup EEPROM for Read/Write */
1154                if (status == 0) {
1155                        /* Clear CS and SK */
1156                        eec &= ~(IXGBE_EEC_CS | IXGBE_EEC_SK);
1157                        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1158                        IXGBE_WRITE_FLUSH(hw);
1159                        udelay(1);
1160                }
1161        }
1162        return status;
1163}
1164
1165/**
1166 *  ixgbe_get_eeprom_semaphore - Get hardware semaphore
1167 *  @hw: pointer to hardware structure
1168 *
1169 *  Sets the hardware semaphores so EEPROM access can occur for bit-bang method
1170 **/
1171static s32 ixgbe_get_eeprom_semaphore(struct ixgbe_hw *hw)
1172{
1173        s32 status = IXGBE_ERR_EEPROM;
1174        u32 timeout = 2000;
1175        u32 i;
1176        u32 swsm;
1177
1178        /* Get SMBI software semaphore between device drivers first */
1179        for (i = 0; i < timeout; i++) {
1180                /*
1181                 * If the SMBI bit is 0 when we read it, then the bit will be
1182                 * set and we have the semaphore
1183                 */
1184                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1185                if (!(swsm & IXGBE_SWSM_SMBI)) {
1186                        status = 0;
1187                        break;
1188                }
1189                udelay(50);
1190        }
1191
1192        if (i == timeout) {
1193                hw_dbg(hw, "Driver can't access the Eeprom - SMBI Semaphore "
1194                       "not granted.\n");
1195                /*
1196                 * this release is particularly important because our attempts
1197                 * above to get the semaphore may have succeeded, and if there
1198                 * was a timeout, we should unconditionally clear the semaphore
1199                 * bits to free the driver to make progress
1200                 */
1201                ixgbe_release_eeprom_semaphore(hw);
1202
1203                udelay(50);
1204                /*
1205                 * one last try
1206                 * If the SMBI bit is 0 when we read it, then the bit will be
1207                 * set and we have the semaphore
1208                 */
1209                swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1210                if (!(swsm & IXGBE_SWSM_SMBI))
1211                        status = 0;
1212        }
1213
1214        /* Now get the semaphore between SW/FW through the SWESMBI bit */
1215        if (status == 0) {
1216                for (i = 0; i < timeout; i++) {
1217                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1218
1219                        /* Set the SW EEPROM semaphore bit to request access */
1220                        swsm |= IXGBE_SWSM_SWESMBI;
1221                        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1222
1223                        /*
1224                         * If we set the bit successfully then we got the
1225                         * semaphore.
1226                         */
1227                        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1228                        if (swsm & IXGBE_SWSM_SWESMBI)
1229                                break;
1230
1231                        udelay(50);
1232                }
1233
1234                /*
1235                 * Release semaphores and return error if SW EEPROM semaphore
1236                 * was not granted because we don't have access to the EEPROM
1237                 */
1238                if (i >= timeout) {
1239                        hw_dbg(hw, "SWESMBI Software EEPROM semaphore "
1240                               "not granted.\n");
1241                        ixgbe_release_eeprom_semaphore(hw);
1242                        status = IXGBE_ERR_EEPROM;
1243                }
1244        } else {
1245                hw_dbg(hw, "Software semaphore SMBI between device drivers "
1246                       "not granted.\n");
1247        }
1248
1249        return status;
1250}
1251
1252/**
1253 *  ixgbe_release_eeprom_semaphore - Release hardware semaphore
1254 *  @hw: pointer to hardware structure
1255 *
1256 *  This function clears hardware semaphore bits.
1257 **/
1258static void ixgbe_release_eeprom_semaphore(struct ixgbe_hw *hw)
1259{
1260        u32 swsm;
1261
1262        swsm = IXGBE_READ_REG(hw, IXGBE_SWSM);
1263
1264        /* Release both semaphores by writing 0 to the bits SWESMBI and SMBI */
1265        swsm &= ~(IXGBE_SWSM_SWESMBI | IXGBE_SWSM_SMBI);
1266        IXGBE_WRITE_REG(hw, IXGBE_SWSM, swsm);
1267        IXGBE_WRITE_FLUSH(hw);
1268}
1269
1270/**
1271 *  ixgbe_ready_eeprom - Polls for EEPROM ready
1272 *  @hw: pointer to hardware structure
1273 **/
1274static s32 ixgbe_ready_eeprom(struct ixgbe_hw *hw)
1275{
1276        s32 status = 0;
1277        u16 i;
1278        u8 spi_stat_reg;
1279
1280        /*
1281         * Read "Status Register" repeatedly until the LSB is cleared.  The
1282         * EEPROM will signal that the command has been completed by clearing
1283         * bit 0 of the internal status register.  If it's not cleared within
1284         * 5 milliseconds, then error out.
1285         */
1286        for (i = 0; i < IXGBE_EEPROM_MAX_RETRY_SPI; i += 5) {
1287                ixgbe_shift_out_eeprom_bits(hw, IXGBE_EEPROM_RDSR_OPCODE_SPI,
1288                                            IXGBE_EEPROM_OPCODE_BITS);
1289                spi_stat_reg = (u8)ixgbe_shift_in_eeprom_bits(hw, 8);
1290                if (!(spi_stat_reg & IXGBE_EEPROM_STATUS_RDY_SPI))
1291                        break;
1292
1293                udelay(5);
1294                ixgbe_standby_eeprom(hw);
1295        }
1296
1297        /*
1298         * On some parts, SPI write time could vary from 0-20mSec on 3.3V
1299         * devices (and only 0-5mSec on 5V devices)
1300         */
1301        if (i >= IXGBE_EEPROM_MAX_RETRY_SPI) {
1302                hw_dbg(hw, "SPI EEPROM Status error\n");
1303                status = IXGBE_ERR_EEPROM;
1304        }
1305
1306        return status;
1307}
1308
1309/**
1310 *  ixgbe_standby_eeprom - Returns EEPROM to a "standby" state
1311 *  @hw: pointer to hardware structure
1312 **/
1313static void ixgbe_standby_eeprom(struct ixgbe_hw *hw)
1314{
1315        u32 eec;
1316
1317        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1318
1319        /* Toggle CS to flush commands */
1320        eec |= IXGBE_EEC_CS;
1321        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1322        IXGBE_WRITE_FLUSH(hw);
1323        udelay(1);
1324        eec &= ~IXGBE_EEC_CS;
1325        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1326        IXGBE_WRITE_FLUSH(hw);
1327        udelay(1);
1328}
1329
1330/**
1331 *  ixgbe_shift_out_eeprom_bits - Shift data bits out to the EEPROM.
1332 *  @hw: pointer to hardware structure
1333 *  @data: data to send to the EEPROM
1334 *  @count: number of bits to shift out
1335 **/
1336static void ixgbe_shift_out_eeprom_bits(struct ixgbe_hw *hw, u16 data,
1337                                        u16 count)
1338{
1339        u32 eec;
1340        u32 mask;
1341        u32 i;
1342
1343        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1344
1345        /*
1346         * Mask is used to shift "count" bits of "data" out to the EEPROM
1347         * one bit at a time.  Determine the starting bit based on count
1348         */
1349        mask = 0x01 << (count - 1);
1350
1351        for (i = 0; i < count; i++) {
1352                /*
1353                 * A "1" is shifted out to the EEPROM by setting bit "DI" to a
1354                 * "1", and then raising and then lowering the clock (the SK
1355                 * bit controls the clock input to the EEPROM).  A "0" is
1356                 * shifted out to the EEPROM by setting "DI" to "0" and then
1357                 * raising and then lowering the clock.
1358                 */
1359                if (data & mask)
1360                        eec |= IXGBE_EEC_DI;
1361                else
1362                        eec &= ~IXGBE_EEC_DI;
1363
1364                IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1365                IXGBE_WRITE_FLUSH(hw);
1366
1367                udelay(1);
1368
1369                ixgbe_raise_eeprom_clk(hw, &eec);
1370                ixgbe_lower_eeprom_clk(hw, &eec);
1371
1372                /*
1373                 * Shift mask to signify next bit of data to shift in to the
1374                 * EEPROM
1375                 */
1376                mask = mask >> 1;
1377        }
1378
1379        /* We leave the "DI" bit set to "0" when we leave this routine. */
1380        eec &= ~IXGBE_EEC_DI;
1381        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1382        IXGBE_WRITE_FLUSH(hw);
1383}
1384
1385/**
1386 *  ixgbe_shift_in_eeprom_bits - Shift data bits in from the EEPROM
1387 *  @hw: pointer to hardware structure
1388 **/
1389static u16 ixgbe_shift_in_eeprom_bits(struct ixgbe_hw *hw, u16 count)
1390{
1391        u32 eec;
1392        u32 i;
1393        u16 data = 0;
1394
1395        /*
1396         * In order to read a register from the EEPROM, we need to shift
1397         * 'count' bits in from the EEPROM. Bits are "shifted in" by raising
1398         * the clock input to the EEPROM (setting the SK bit), and then reading
1399         * the value of the "DO" bit.  During this "shifting in" process the
1400         * "DI" bit should always be clear.
1401         */
1402        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1403
1404        eec &= ~(IXGBE_EEC_DO | IXGBE_EEC_DI);
1405
1406        for (i = 0; i < count; i++) {
1407                data = data << 1;
1408                ixgbe_raise_eeprom_clk(hw, &eec);
1409
1410                eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1411
1412                eec &= ~(IXGBE_EEC_DI);
1413                if (eec & IXGBE_EEC_DO)
1414                        data |= 1;
1415
1416                ixgbe_lower_eeprom_clk(hw, &eec);
1417        }
1418
1419        return data;
1420}
1421
1422/**
1423 *  ixgbe_raise_eeprom_clk - Raises the EEPROM's clock input.
1424 *  @hw: pointer to hardware structure
1425 *  @eec: EEC register's current value
1426 **/
1427static void ixgbe_raise_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1428{
1429        /*
1430         * Raise the clock input to the EEPROM
1431         * (setting the SK bit), then delay
1432         */
1433        *eec = *eec | IXGBE_EEC_SK;
1434        IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1435        IXGBE_WRITE_FLUSH(hw);
1436        udelay(1);
1437}
1438
1439/**
1440 *  ixgbe_lower_eeprom_clk - Lowers the EEPROM's clock input.
1441 *  @hw: pointer to hardware structure
1442 *  @eecd: EECD's current value
1443 **/
1444static void ixgbe_lower_eeprom_clk(struct ixgbe_hw *hw, u32 *eec)
1445{
1446        /*
1447         * Lower the clock input to the EEPROM (clearing the SK bit), then
1448         * delay
1449         */
1450        *eec = *eec & ~IXGBE_EEC_SK;
1451        IXGBE_WRITE_REG(hw, IXGBE_EEC, *eec);
1452        IXGBE_WRITE_FLUSH(hw);
1453        udelay(1);
1454}
1455
1456/**
1457 *  ixgbe_release_eeprom - Release EEPROM, release semaphores
1458 *  @hw: pointer to hardware structure
1459 **/
1460static void ixgbe_release_eeprom(struct ixgbe_hw *hw)
1461{
1462        u32 eec;
1463
1464        eec = IXGBE_READ_REG(hw, IXGBE_EEC);
1465
1466        eec |= IXGBE_EEC_CS;  /* Pull CS high */
1467        eec &= ~IXGBE_EEC_SK; /* Lower SCK */
1468
1469        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1470        IXGBE_WRITE_FLUSH(hw);
1471
1472        udelay(1);
1473
1474        /* Stop requesting EEPROM access */
1475        eec &= ~IXGBE_EEC_REQ;
1476        IXGBE_WRITE_REG(hw, IXGBE_EEC, eec);
1477
1478        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_EEP_SM);
1479
1480        /*
1481         * Delay before attempt to obtain semaphore again to allow FW
1482         * access. semaphore_delay is in ms we need us for usleep_range
1483         */
1484        usleep_range(hw->eeprom.semaphore_delay * 1000,
1485                     hw->eeprom.semaphore_delay * 2000);
1486}
1487
1488/**
1489 *  ixgbe_calc_eeprom_checksum_generic - Calculates and returns the checksum
1490 *  @hw: pointer to hardware structure
1491 **/
1492u16 ixgbe_calc_eeprom_checksum_generic(struct ixgbe_hw *hw)
1493{
1494        u16 i;
1495        u16 j;
1496        u16 checksum = 0;
1497        u16 length = 0;
1498        u16 pointer = 0;
1499        u16 word = 0;
1500
1501        /* Include 0x0-0x3F in the checksum */
1502        for (i = 0; i < IXGBE_EEPROM_CHECKSUM; i++) {
1503                if (hw->eeprom.ops.read(hw, i, &word) != 0) {
1504                        hw_dbg(hw, "EEPROM read failed\n");
1505                        break;
1506                }
1507                checksum += word;
1508        }
1509
1510        /* Include all data from pointers except for the fw pointer */
1511        for (i = IXGBE_PCIE_ANALOG_PTR; i < IXGBE_FW_PTR; i++) {
1512                hw->eeprom.ops.read(hw, i, &pointer);
1513
1514                /* Make sure the pointer seems valid */
1515                if (pointer != 0xFFFF && pointer != 0) {
1516                        hw->eeprom.ops.read(hw, pointer, &length);
1517
1518                        if (length != 0xFFFF && length != 0) {
1519                                for (j = pointer+1; j <= pointer+length; j++) {
1520                                        hw->eeprom.ops.read(hw, j, &word);
1521                                        checksum += word;
1522                                }
1523                        }
1524                }
1525        }
1526
1527        checksum = (u16)IXGBE_EEPROM_SUM - checksum;
1528
1529        return checksum;
1530}
1531
1532/**
1533 *  ixgbe_validate_eeprom_checksum_generic - Validate EEPROM checksum
1534 *  @hw: pointer to hardware structure
1535 *  @checksum_val: calculated checksum
1536 *
1537 *  Performs checksum calculation and validates the EEPROM checksum.  If the
1538 *  caller does not need checksum_val, the value can be NULL.
1539 **/
1540s32 ixgbe_validate_eeprom_checksum_generic(struct ixgbe_hw *hw,
1541                                           u16 *checksum_val)
1542{
1543        s32 status;
1544        u16 checksum;
1545        u16 read_checksum = 0;
1546
1547        /*
1548         * Read the first word from the EEPROM. If this times out or fails, do
1549         * not continue or we could be in for a very long wait while every
1550         * EEPROM read fails
1551         */
1552        status = hw->eeprom.ops.read(hw, 0, &checksum);
1553
1554        if (status == 0) {
1555                checksum = hw->eeprom.ops.calc_checksum(hw);
1556
1557                hw->eeprom.ops.read(hw, IXGBE_EEPROM_CHECKSUM, &read_checksum);
1558
1559                /*
1560                 * Verify read checksum from EEPROM is the same as
1561                 * calculated checksum
1562                 */
1563                if (read_checksum != checksum)
1564                        status = IXGBE_ERR_EEPROM_CHECKSUM;
1565
1566                /* If the user cares, return the calculated checksum */
1567                if (checksum_val)
1568                        *checksum_val = checksum;
1569        } else {
1570                hw_dbg(hw, "EEPROM read failed\n");
1571        }
1572
1573        return status;
1574}
1575
1576/**
1577 *  ixgbe_update_eeprom_checksum_generic - Updates the EEPROM checksum
1578 *  @hw: pointer to hardware structure
1579 **/
1580s32 ixgbe_update_eeprom_checksum_generic(struct ixgbe_hw *hw)
1581{
1582        s32 status;
1583        u16 checksum;
1584
1585        /*
1586         * Read the first word from the EEPROM. If this times out or fails, do
1587         * not continue or we could be in for a very long wait while every
1588         * EEPROM read fails
1589         */
1590        status = hw->eeprom.ops.read(hw, 0, &checksum);
1591
1592        if (status == 0) {
1593                checksum = hw->eeprom.ops.calc_checksum(hw);
1594                status = hw->eeprom.ops.write(hw, IXGBE_EEPROM_CHECKSUM,
1595                                              checksum);
1596        } else {
1597                hw_dbg(hw, "EEPROM read failed\n");
1598        }
1599
1600        return status;
1601}
1602
1603/**
1604 *  ixgbe_validate_mac_addr - Validate MAC address
1605 *  @mac_addr: pointer to MAC address.
1606 *
1607 *  Tests a MAC address to ensure it is a valid Individual Address
1608 **/
1609s32 ixgbe_validate_mac_addr(u8 *mac_addr)
1610{
1611        s32 status = 0;
1612
1613        /* Make sure it is not a multicast address */
1614        if (IXGBE_IS_MULTICAST(mac_addr))
1615                status = IXGBE_ERR_INVALID_MAC_ADDR;
1616        /* Not a broadcast address */
1617        else if (IXGBE_IS_BROADCAST(mac_addr))
1618                status = IXGBE_ERR_INVALID_MAC_ADDR;
1619        /* Reject the zero address */
1620        else if (mac_addr[0] == 0 && mac_addr[1] == 0 && mac_addr[2] == 0 &&
1621                 mac_addr[3] == 0 && mac_addr[4] == 0 && mac_addr[5] == 0)
1622                status = IXGBE_ERR_INVALID_MAC_ADDR;
1623
1624        return status;
1625}
1626
1627/**
1628 *  ixgbe_set_rar_generic - Set Rx address register
1629 *  @hw: pointer to hardware structure
1630 *  @index: Receive address register to write
1631 *  @addr: Address to put into receive address register
1632 *  @vmdq: VMDq "set" or "pool" index
1633 *  @enable_addr: set flag that address is active
1634 *
1635 *  Puts an ethernet address into a receive address register.
1636 **/
1637s32 ixgbe_set_rar_generic(struct ixgbe_hw *hw, u32 index, u8 *addr, u32 vmdq,
1638                          u32 enable_addr)
1639{
1640        u32 rar_low, rar_high;
1641        u32 rar_entries = hw->mac.num_rar_entries;
1642
1643        /* Make sure we are using a valid rar index range */
1644        if (index >= rar_entries) {
1645                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1646                return IXGBE_ERR_INVALID_ARGUMENT;
1647        }
1648
1649        /* setup VMDq pool selection before this RAR gets enabled */
1650        hw->mac.ops.set_vmdq(hw, index, vmdq);
1651
1652        /*
1653         * HW expects these in little endian so we reverse the byte
1654         * order from network order (big endian) to little endian
1655         */
1656        rar_low = ((u32)addr[0] |
1657                   ((u32)addr[1] << 8) |
1658                   ((u32)addr[2] << 16) |
1659                   ((u32)addr[3] << 24));
1660        /*
1661         * Some parts put the VMDq setting in the extra RAH bits,
1662         * so save everything except the lower 16 bits that hold part
1663         * of the address and the address valid bit.
1664         */
1665        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1666        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1667        rar_high |= ((u32)addr[4] | ((u32)addr[5] << 8));
1668
1669        if (enable_addr != 0)
1670                rar_high |= IXGBE_RAH_AV;
1671
1672        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), rar_low);
1673        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1674
1675        return 0;
1676}
1677
1678/**
1679 *  ixgbe_clear_rar_generic - Remove Rx address register
1680 *  @hw: pointer to hardware structure
1681 *  @index: Receive address register to write
1682 *
1683 *  Clears an ethernet address from a receive address register.
1684 **/
1685s32 ixgbe_clear_rar_generic(struct ixgbe_hw *hw, u32 index)
1686{
1687        u32 rar_high;
1688        u32 rar_entries = hw->mac.num_rar_entries;
1689
1690        /* Make sure we are using a valid rar index range */
1691        if (index >= rar_entries) {
1692                hw_dbg(hw, "RAR index %d is out of range.\n", index);
1693                return IXGBE_ERR_INVALID_ARGUMENT;
1694        }
1695
1696        /*
1697         * Some parts put the VMDq setting in the extra RAH bits,
1698         * so save everything except the lower 16 bits that hold part
1699         * of the address and the address valid bit.
1700         */
1701        rar_high = IXGBE_READ_REG(hw, IXGBE_RAH(index));
1702        rar_high &= ~(0x0000FFFF | IXGBE_RAH_AV);
1703
1704        IXGBE_WRITE_REG(hw, IXGBE_RAL(index), 0);
1705        IXGBE_WRITE_REG(hw, IXGBE_RAH(index), rar_high);
1706
1707        /* clear VMDq pool/queue selection for this RAR */
1708        hw->mac.ops.clear_vmdq(hw, index, IXGBE_CLEAR_VMDQ_ALL);
1709
1710        return 0;
1711}
1712
1713/**
1714 *  ixgbe_init_rx_addrs_generic - Initializes receive address filters.
1715 *  @hw: pointer to hardware structure
1716 *
1717 *  Places the MAC address in receive address register 0 and clears the rest
1718 *  of the receive address registers. Clears the multicast table. Assumes
1719 *  the receiver is in reset when the routine is called.
1720 **/
1721s32 ixgbe_init_rx_addrs_generic(struct ixgbe_hw *hw)
1722{
1723        u32 i;
1724        u32 rar_entries = hw->mac.num_rar_entries;
1725
1726        /*
1727         * If the current mac address is valid, assume it is a software override
1728         * to the permanent address.
1729         * Otherwise, use the permanent address from the eeprom.
1730         */
1731        if (ixgbe_validate_mac_addr(hw->mac.addr) ==
1732            IXGBE_ERR_INVALID_MAC_ADDR) {
1733                /* Get the MAC address from the RAR0 for later reference */
1734                hw->mac.ops.get_mac_addr(hw, hw->mac.addr);
1735
1736                hw_dbg(hw, " Keeping Current RAR0 Addr =%pM\n", hw->mac.addr);
1737        } else {
1738                /* Setup the receive address. */
1739                hw_dbg(hw, "Overriding MAC Address in RAR[0]\n");
1740                hw_dbg(hw, " New MAC Addr =%pM\n", hw->mac.addr);
1741
1742                hw->mac.ops.set_rar(hw, 0, hw->mac.addr, 0, IXGBE_RAH_AV);
1743
1744                /*  clear VMDq pool/queue selection for RAR 0 */
1745                hw->mac.ops.clear_vmdq(hw, 0, IXGBE_CLEAR_VMDQ_ALL);
1746        }
1747        hw->addr_ctrl.overflow_promisc = 0;
1748
1749        hw->addr_ctrl.rar_used_count = 1;
1750
1751        /* Zero out the other receive addresses. */
1752        hw_dbg(hw, "Clearing RAR[1-%d]\n", rar_entries - 1);
1753        for (i = 1; i < rar_entries; i++) {
1754                IXGBE_WRITE_REG(hw, IXGBE_RAL(i), 0);
1755                IXGBE_WRITE_REG(hw, IXGBE_RAH(i), 0);
1756        }
1757
1758        /* Clear the MTA */
1759        hw->addr_ctrl.mta_in_use = 0;
1760        IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1761
1762        hw_dbg(hw, " Clearing MTA\n");
1763        for (i = 0; i < hw->mac.mcft_size; i++)
1764                IXGBE_WRITE_REG(hw, IXGBE_MTA(i), 0);
1765
1766        if (hw->mac.ops.init_uta_tables)
1767                hw->mac.ops.init_uta_tables(hw);
1768
1769        return 0;
1770}
1771
1772/**
1773 *  ixgbe_mta_vector - Determines bit-vector in multicast table to set
1774 *  @hw: pointer to hardware structure
1775 *  @mc_addr: the multicast address
1776 *
1777 *  Extracts the 12 bits, from a multicast address, to determine which
1778 *  bit-vector to set in the multicast table. The hardware uses 12 bits, from
1779 *  incoming rx multicast addresses, to determine the bit-vector to check in
1780 *  the MTA. Which of the 4 combination, of 12-bits, the hardware uses is set
1781 *  by the MO field of the MCSTCTRL. The MO field is set during initialization
1782 *  to mc_filter_type.
1783 **/
1784static s32 ixgbe_mta_vector(struct ixgbe_hw *hw, u8 *mc_addr)
1785{
1786        u32 vector = 0;
1787
1788        switch (hw->mac.mc_filter_type) {
1789        case 0:   /* use bits [47:36] of the address */
1790                vector = ((mc_addr[4] >> 4) | (((u16)mc_addr[5]) << 4));
1791                break;
1792        case 1:   /* use bits [46:35] of the address */
1793                vector = ((mc_addr[4] >> 3) | (((u16)mc_addr[5]) << 5));
1794                break;
1795        case 2:   /* use bits [45:34] of the address */
1796                vector = ((mc_addr[4] >> 2) | (((u16)mc_addr[5]) << 6));
1797                break;
1798        case 3:   /* use bits [43:32] of the address */
1799                vector = ((mc_addr[4]) | (((u16)mc_addr[5]) << 8));
1800                break;
1801        default:  /* Invalid mc_filter_type */
1802                hw_dbg(hw, "MC filter type param set incorrectly\n");
1803                break;
1804        }
1805
1806        /* vector can only be 12-bits or boundary will be exceeded */
1807        vector &= 0xFFF;
1808        return vector;
1809}
1810
1811/**
1812 *  ixgbe_set_mta - Set bit-vector in multicast table
1813 *  @hw: pointer to hardware structure
1814 *  @hash_value: Multicast address hash value
1815 *
1816 *  Sets the bit-vector in the multicast table.
1817 **/
1818static void ixgbe_set_mta(struct ixgbe_hw *hw, u8 *mc_addr)
1819{
1820        u32 vector;
1821        u32 vector_bit;
1822        u32 vector_reg;
1823
1824        hw->addr_ctrl.mta_in_use++;
1825
1826        vector = ixgbe_mta_vector(hw, mc_addr);
1827        hw_dbg(hw, " bit-vector = 0x%03X\n", vector);
1828
1829        /*
1830         * The MTA is a register array of 128 32-bit registers. It is treated
1831         * like an array of 4096 bits.  We want to set bit
1832         * BitArray[vector_value]. So we figure out what register the bit is
1833         * in, read it, OR in the new bit, then write back the new value.  The
1834         * register is determined by the upper 7 bits of the vector value and
1835         * the bit within that register are determined by the lower 5 bits of
1836         * the value.
1837         */
1838        vector_reg = (vector >> 5) & 0x7F;
1839        vector_bit = vector & 0x1F;
1840        hw->mac.mta_shadow[vector_reg] |= (1 << vector_bit);
1841}
1842
1843/**
1844 *  ixgbe_update_mc_addr_list_generic - Updates MAC list of multicast addresses
1845 *  @hw: pointer to hardware structure
1846 *  @netdev: pointer to net device structure
1847 *
1848 *  The given list replaces any existing list. Clears the MC addrs from receive
1849 *  address registers and the multicast table. Uses unused receive address
1850 *  registers for the first multicast addresses, and hashes the rest into the
1851 *  multicast table.
1852 **/
1853s32 ixgbe_update_mc_addr_list_generic(struct ixgbe_hw *hw,
1854                                      struct net_device *netdev)
1855{
1856        struct netdev_hw_addr *ha;
1857        u32 i;
1858
1859        /*
1860         * Set the new number of MC addresses that we are being requested to
1861         * use.
1862         */
1863        hw->addr_ctrl.num_mc_addrs = netdev_mc_count(netdev);
1864        hw->addr_ctrl.mta_in_use = 0;
1865
1866        /* Clear mta_shadow */
1867        hw_dbg(hw, " Clearing MTA\n");
1868        memset(&hw->mac.mta_shadow, 0, sizeof(hw->mac.mta_shadow));
1869
1870        /* Update mta shadow */
1871        netdev_for_each_mc_addr(ha, netdev) {
1872                hw_dbg(hw, " Adding the multicast addresses:\n");
1873                ixgbe_set_mta(hw, ha->addr);
1874        }
1875
1876        /* Enable mta */
1877        for (i = 0; i < hw->mac.mcft_size; i++)
1878                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_MTA(0), i,
1879                                      hw->mac.mta_shadow[i]);
1880
1881        if (hw->addr_ctrl.mta_in_use > 0)
1882                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL,
1883                                IXGBE_MCSTCTRL_MFE | hw->mac.mc_filter_type);
1884
1885        hw_dbg(hw, "ixgbe_update_mc_addr_list_generic Complete\n");
1886        return 0;
1887}
1888
1889/**
1890 *  ixgbe_enable_mc_generic - Enable multicast address in RAR
1891 *  @hw: pointer to hardware structure
1892 *
1893 *  Enables multicast address in RAR and the use of the multicast hash table.
1894 **/
1895s32 ixgbe_enable_mc_generic(struct ixgbe_hw *hw)
1896{
1897        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1898
1899        if (a->mta_in_use > 0)
1900                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, IXGBE_MCSTCTRL_MFE |
1901                                hw->mac.mc_filter_type);
1902
1903        return 0;
1904}
1905
1906/**
1907 *  ixgbe_disable_mc_generic - Disable multicast address in RAR
1908 *  @hw: pointer to hardware structure
1909 *
1910 *  Disables multicast address in RAR and the use of the multicast hash table.
1911 **/
1912s32 ixgbe_disable_mc_generic(struct ixgbe_hw *hw)
1913{
1914        struct ixgbe_addr_filter_info *a = &hw->addr_ctrl;
1915
1916        if (a->mta_in_use > 0)
1917                IXGBE_WRITE_REG(hw, IXGBE_MCSTCTRL, hw->mac.mc_filter_type);
1918
1919        return 0;
1920}
1921
1922/**
1923 *  ixgbe_fc_enable_generic - Enable flow control
1924 *  @hw: pointer to hardware structure
1925 *  @packetbuf_num: packet buffer number (0-7)
1926 *
1927 *  Enable flow control according to the current settings.
1928 **/
1929s32 ixgbe_fc_enable_generic(struct ixgbe_hw *hw, s32 packetbuf_num)
1930{
1931        s32 ret_val = 0;
1932        u32 mflcn_reg, fccfg_reg;
1933        u32 reg;
1934        u32 rx_pba_size;
1935        u32 fcrtl, fcrth;
1936
1937#ifdef CONFIG_DCB
1938        if (hw->fc.requested_mode == ixgbe_fc_pfc)
1939                goto out;
1940
1941#endif /* CONFIG_DCB */
1942        /* Negotiate the fc mode to use */
1943        ret_val = ixgbe_fc_autoneg(hw);
1944        if (ret_val == IXGBE_ERR_FLOW_CONTROL)
1945                goto out;
1946
1947        /* Disable any previous flow control settings */
1948        mflcn_reg = IXGBE_READ_REG(hw, IXGBE_MFLCN);
1949        mflcn_reg &= ~(IXGBE_MFLCN_RFCE | IXGBE_MFLCN_RPFCE);
1950
1951        fccfg_reg = IXGBE_READ_REG(hw, IXGBE_FCCFG);
1952        fccfg_reg &= ~(IXGBE_FCCFG_TFCE_802_3X | IXGBE_FCCFG_TFCE_PRIORITY);
1953
1954        /*
1955         * The possible values of fc.current_mode are:
1956         * 0: Flow control is completely disabled
1957         * 1: Rx flow control is enabled (we can receive pause frames,
1958         *    but not send pause frames).
1959         * 2: Tx flow control is enabled (we can send pause frames but
1960         *    we do not support receiving pause frames).
1961         * 3: Both Rx and Tx flow control (symmetric) are enabled.
1962#ifdef CONFIG_DCB
1963         * 4: Priority Flow Control is enabled.
1964#endif
1965         * other: Invalid.
1966         */
1967        switch (hw->fc.current_mode) {
1968        case ixgbe_fc_none:
1969                /*
1970                 * Flow control is disabled by software override or autoneg.
1971                 * The code below will actually disable it in the HW.
1972                 */
1973                break;
1974        case ixgbe_fc_rx_pause:
1975                /*
1976                 * Rx Flow control is enabled and Tx Flow control is
1977                 * disabled by software override. Since there really
1978                 * isn't a way to advertise that we are capable of RX
1979                 * Pause ONLY, we will advertise that we support both
1980                 * symmetric and asymmetric Rx PAUSE.  Later, we will
1981                 * disable the adapter's ability to send PAUSE frames.
1982                 */
1983                mflcn_reg |= IXGBE_MFLCN_RFCE;
1984                break;
1985        case ixgbe_fc_tx_pause:
1986                /*
1987                 * Tx Flow control is enabled, and Rx Flow control is
1988                 * disabled by software override.
1989                 */
1990                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1991                break;
1992        case ixgbe_fc_full:
1993                /* Flow control (both Rx and Tx) is enabled by SW override. */
1994                mflcn_reg |= IXGBE_MFLCN_RFCE;
1995                fccfg_reg |= IXGBE_FCCFG_TFCE_802_3X;
1996                break;
1997#ifdef CONFIG_DCB
1998        case ixgbe_fc_pfc:
1999                goto out;
2000                break;
2001#endif /* CONFIG_DCB */
2002        default:
2003                hw_dbg(hw, "Flow control param set incorrectly\n");
2004                ret_val = IXGBE_ERR_CONFIG;
2005                goto out;
2006                break;
2007        }
2008
2009        /* Set 802.3x based flow control settings. */
2010        mflcn_reg |= IXGBE_MFLCN_DPF;
2011        IXGBE_WRITE_REG(hw, IXGBE_MFLCN, mflcn_reg);
2012        IXGBE_WRITE_REG(hw, IXGBE_FCCFG, fccfg_reg);
2013
2014        rx_pba_size = IXGBE_READ_REG(hw, IXGBE_RXPBSIZE(packetbuf_num));
2015        rx_pba_size >>= IXGBE_RXPBSIZE_SHIFT;
2016
2017        fcrth = (rx_pba_size - hw->fc.high_water) << 10;
2018        fcrtl = (rx_pba_size - hw->fc.low_water) << 10;
2019
2020        if (hw->fc.current_mode & ixgbe_fc_tx_pause) {
2021                fcrth |= IXGBE_FCRTH_FCEN;
2022                if (hw->fc.send_xon)
2023                        fcrtl |= IXGBE_FCRTL_XONE;
2024        }
2025
2026        IXGBE_WRITE_REG(hw, IXGBE_FCRTH_82599(packetbuf_num), fcrth);
2027        IXGBE_WRITE_REG(hw, IXGBE_FCRTL_82599(packetbuf_num), fcrtl);
2028
2029        /* Configure pause time (2 TCs per register) */
2030        reg = IXGBE_READ_REG(hw, IXGBE_FCTTV(packetbuf_num / 2));
2031        if ((packetbuf_num & 1) == 0)
2032                reg = (reg & 0xFFFF0000) | hw->fc.pause_time;
2033        else
2034                reg = (reg & 0x0000FFFF) | (hw->fc.pause_time << 16);
2035        IXGBE_WRITE_REG(hw, IXGBE_FCTTV(packetbuf_num / 2), reg);
2036
2037        IXGBE_WRITE_REG(hw, IXGBE_FCRTV, (hw->fc.pause_time >> 1));
2038
2039out:
2040        return ret_val;
2041}
2042
2043/**
2044 *  ixgbe_fc_autoneg - Configure flow control
2045 *  @hw: pointer to hardware structure
2046 *
2047 *  Compares our advertised flow control capabilities to those advertised by
2048 *  our link partner, and determines the proper flow control mode to use.
2049 **/
2050s32 ixgbe_fc_autoneg(struct ixgbe_hw *hw)
2051{
2052        s32 ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2053        ixgbe_link_speed speed;
2054        bool link_up;
2055
2056        if (hw->fc.disable_fc_autoneg)
2057                goto out;
2058
2059        /*
2060         * AN should have completed when the cable was plugged in.
2061         * Look for reasons to bail out.  Bail out if:
2062         * - FC autoneg is disabled, or if
2063         * - link is not up.
2064         *
2065         * Since we're being called from an LSC, link is already known to be up.
2066         * So use link_up_wait_to_complete=false.
2067         */
2068        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2069        if (!link_up) {
2070                ret_val = IXGBE_ERR_FLOW_CONTROL;
2071                goto out;
2072        }
2073
2074        switch (hw->phy.media_type) {
2075        /* Autoneg flow control on fiber adapters */
2076        case ixgbe_media_type_fiber:
2077                if (speed == IXGBE_LINK_SPEED_1GB_FULL)
2078                        ret_val = ixgbe_fc_autoneg_fiber(hw);
2079                break;
2080
2081        /* Autoneg flow control on backplane adapters */
2082        case ixgbe_media_type_backplane:
2083                ret_val = ixgbe_fc_autoneg_backplane(hw);
2084                break;
2085
2086        /* Autoneg flow control on copper adapters */
2087        case ixgbe_media_type_copper:
2088                if (ixgbe_device_supports_autoneg_fc(hw) == 0)
2089                        ret_val = ixgbe_fc_autoneg_copper(hw);
2090                break;
2091
2092        default:
2093                break;
2094        }
2095
2096out:
2097        if (ret_val == 0) {
2098                hw->fc.fc_was_autonegged = true;
2099        } else {
2100                hw->fc.fc_was_autonegged = false;
2101                hw->fc.current_mode = hw->fc.requested_mode;
2102        }
2103        return ret_val;
2104}
2105
2106/**
2107 *  ixgbe_fc_autoneg_fiber - Enable flow control on 1 gig fiber
2108 *  @hw: pointer to hardware structure
2109 *
2110 *  Enable flow control according on 1 gig fiber.
2111 **/
2112static s32 ixgbe_fc_autoneg_fiber(struct ixgbe_hw *hw)
2113{
2114        u32 pcs_anadv_reg, pcs_lpab_reg, linkstat;
2115        s32 ret_val;
2116
2117        /*
2118         * On multispeed fiber at 1g, bail out if
2119         * - link is up but AN did not complete, or if
2120         * - link is up and AN completed but timed out
2121         */
2122
2123        linkstat = IXGBE_READ_REG(hw, IXGBE_PCS1GLSTA);
2124        if (((linkstat & IXGBE_PCS1GLSTA_AN_COMPLETE) == 0) ||
2125            ((linkstat & IXGBE_PCS1GLSTA_AN_TIMED_OUT) == 1)) {
2126                ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2127                goto out;
2128        }
2129
2130        pcs_anadv_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2131        pcs_lpab_reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANLP);
2132
2133        ret_val =  ixgbe_negotiate_fc(hw, pcs_anadv_reg,
2134                               pcs_lpab_reg, IXGBE_PCS1GANA_SYM_PAUSE,
2135                               IXGBE_PCS1GANA_ASM_PAUSE,
2136                               IXGBE_PCS1GANA_SYM_PAUSE,
2137                               IXGBE_PCS1GANA_ASM_PAUSE);
2138
2139out:
2140        return ret_val;
2141}
2142
2143/**
2144 *  ixgbe_fc_autoneg_backplane - Enable flow control IEEE clause 37
2145 *  @hw: pointer to hardware structure
2146 *
2147 *  Enable flow control according to IEEE clause 37.
2148 **/
2149static s32 ixgbe_fc_autoneg_backplane(struct ixgbe_hw *hw)
2150{
2151        u32 links2, anlp1_reg, autoc_reg, links;
2152        s32 ret_val;
2153
2154        /*
2155         * On backplane, bail out if
2156         * - backplane autoneg was not completed, or if
2157         * - we are 82599 and link partner is not AN enabled
2158         */
2159        links = IXGBE_READ_REG(hw, IXGBE_LINKS);
2160        if ((links & IXGBE_LINKS_KX_AN_COMP) == 0) {
2161                hw->fc.fc_was_autonegged = false;
2162                hw->fc.current_mode = hw->fc.requested_mode;
2163                ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2164                goto out;
2165        }
2166
2167        if (hw->mac.type == ixgbe_mac_82599EB) {
2168                links2 = IXGBE_READ_REG(hw, IXGBE_LINKS2);
2169                if ((links2 & IXGBE_LINKS2_AN_SUPPORTED) == 0) {
2170                        hw->fc.fc_was_autonegged = false;
2171                        hw->fc.current_mode = hw->fc.requested_mode;
2172                        ret_val = IXGBE_ERR_FC_NOT_NEGOTIATED;
2173                        goto out;
2174                }
2175        }
2176        /*
2177         * Read the 10g AN autoc and LP ability registers and resolve
2178         * local flow control settings accordingly
2179         */
2180        autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2181        anlp1_reg = IXGBE_READ_REG(hw, IXGBE_ANLP1);
2182
2183        ret_val = ixgbe_negotiate_fc(hw, autoc_reg,
2184                anlp1_reg, IXGBE_AUTOC_SYM_PAUSE, IXGBE_AUTOC_ASM_PAUSE,
2185                IXGBE_ANLP1_SYM_PAUSE, IXGBE_ANLP1_ASM_PAUSE);
2186
2187out:
2188        return ret_val;
2189}
2190
2191/**
2192 *  ixgbe_fc_autoneg_copper - Enable flow control IEEE clause 37
2193 *  @hw: pointer to hardware structure
2194 *
2195 *  Enable flow control according to IEEE clause 37.
2196 **/
2197static s32 ixgbe_fc_autoneg_copper(struct ixgbe_hw *hw)
2198{
2199        u16 technology_ability_reg = 0;
2200        u16 lp_technology_ability_reg = 0;
2201
2202        hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2203                             MDIO_MMD_AN,
2204                             &technology_ability_reg);
2205        hw->phy.ops.read_reg(hw, MDIO_AN_LPA,
2206                             MDIO_MMD_AN,
2207                             &lp_technology_ability_reg);
2208
2209        return ixgbe_negotiate_fc(hw, (u32)technology_ability_reg,
2210                                  (u32)lp_technology_ability_reg,
2211                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE,
2212                                  IXGBE_TAF_SYM_PAUSE, IXGBE_TAF_ASM_PAUSE);
2213}
2214
2215/**
2216 *  ixgbe_negotiate_fc - Negotiate flow control
2217 *  @hw: pointer to hardware structure
2218 *  @adv_reg: flow control advertised settings
2219 *  @lp_reg: link partner's flow control settings
2220 *  @adv_sym: symmetric pause bit in advertisement
2221 *  @adv_asm: asymmetric pause bit in advertisement
2222 *  @lp_sym: symmetric pause bit in link partner advertisement
2223 *  @lp_asm: asymmetric pause bit in link partner advertisement
2224 *
2225 *  Find the intersection between advertised settings and link partner's
2226 *  advertised settings
2227 **/
2228static s32 ixgbe_negotiate_fc(struct ixgbe_hw *hw, u32 adv_reg, u32 lp_reg,
2229                              u32 adv_sym, u32 adv_asm, u32 lp_sym, u32 lp_asm)
2230{
2231        if ((!(adv_reg)) ||  (!(lp_reg)))
2232                return IXGBE_ERR_FC_NOT_NEGOTIATED;
2233
2234        if ((adv_reg & adv_sym) && (lp_reg & lp_sym)) {
2235                /*
2236                 * Now we need to check if the user selected Rx ONLY
2237                 * of pause frames.  In this case, we had to advertise
2238                 * FULL flow control because we could not advertise RX
2239                 * ONLY. Hence, we must now check to see if we need to
2240                 * turn OFF the TRANSMISSION of PAUSE frames.
2241                 */
2242                if (hw->fc.requested_mode == ixgbe_fc_full) {
2243                        hw->fc.current_mode = ixgbe_fc_full;
2244                        hw_dbg(hw, "Flow Control = FULL.\n");
2245                } else {
2246                        hw->fc.current_mode = ixgbe_fc_rx_pause;
2247                        hw_dbg(hw, "Flow Control=RX PAUSE frames only\n");
2248                }
2249        } else if (!(adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2250                   (lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2251                hw->fc.current_mode = ixgbe_fc_tx_pause;
2252                hw_dbg(hw, "Flow Control = TX PAUSE frames only.\n");
2253        } else if ((adv_reg & adv_sym) && (adv_reg & adv_asm) &&
2254                   !(lp_reg & lp_sym) && (lp_reg & lp_asm)) {
2255                hw->fc.current_mode = ixgbe_fc_rx_pause;
2256                hw_dbg(hw, "Flow Control = RX PAUSE frames only.\n");
2257        } else {
2258                hw->fc.current_mode = ixgbe_fc_none;
2259                hw_dbg(hw, "Flow Control = NONE.\n");
2260        }
2261        return 0;
2262}
2263
2264/**
2265 *  ixgbe_setup_fc - Set up flow control
2266 *  @hw: pointer to hardware structure
2267 *
2268 *  Called at init time to set up flow control.
2269 **/
2270static s32 ixgbe_setup_fc(struct ixgbe_hw *hw, s32 packetbuf_num)
2271{
2272        s32 ret_val = 0;
2273        u32 reg = 0, reg_bp = 0;
2274        u16 reg_cu = 0;
2275
2276#ifdef CONFIG_DCB
2277        if (hw->fc.requested_mode == ixgbe_fc_pfc) {
2278                hw->fc.current_mode = hw->fc.requested_mode;
2279                goto out;
2280        }
2281
2282#endif /* CONFIG_DCB */
2283        /* Validate the packetbuf configuration */
2284        if (packetbuf_num < 0 || packetbuf_num > 7) {
2285                hw_dbg(hw, "Invalid packet buffer number [%d], expected range "
2286                       "is 0-7\n", packetbuf_num);
2287                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2288                goto out;
2289        }
2290
2291        /*
2292         * Validate the water mark configuration.  Zero water marks are invalid
2293         * because it causes the controller to just blast out fc packets.
2294         */
2295        if (!hw->fc.low_water || !hw->fc.high_water || !hw->fc.pause_time) {
2296                hw_dbg(hw, "Invalid water mark configuration\n");
2297                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2298                goto out;
2299        }
2300
2301        /*
2302         * Validate the requested mode.  Strict IEEE mode does not allow
2303         * ixgbe_fc_rx_pause because it will cause us to fail at UNH.
2304         */
2305        if (hw->fc.strict_ieee && hw->fc.requested_mode == ixgbe_fc_rx_pause) {
2306                hw_dbg(hw, "ixgbe_fc_rx_pause not valid in strict "
2307                       "IEEE mode\n");
2308                ret_val = IXGBE_ERR_INVALID_LINK_SETTINGS;
2309                goto out;
2310        }
2311
2312        /*
2313         * 10gig parts do not have a word in the EEPROM to determine the
2314         * default flow control setting, so we explicitly set it to full.
2315         */
2316        if (hw->fc.requested_mode == ixgbe_fc_default)
2317                hw->fc.requested_mode = ixgbe_fc_full;
2318
2319        /*
2320         * Set up the 1G and 10G flow control advertisement registers so the
2321         * HW will be able to do fc autoneg once the cable is plugged in.  If
2322         * we link at 10G, the 1G advertisement is harmless and vice versa.
2323         */
2324
2325        switch (hw->phy.media_type) {
2326        case ixgbe_media_type_fiber:
2327        case ixgbe_media_type_backplane:
2328                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GANA);
2329                reg_bp = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2330                break;
2331
2332        case ixgbe_media_type_copper:
2333                hw->phy.ops.read_reg(hw, MDIO_AN_ADVERTISE,
2334                                        MDIO_MMD_AN, &reg_cu);
2335                break;
2336
2337        default:
2338                ;
2339        }
2340
2341        /*
2342         * The possible values of fc.requested_mode are:
2343         * 0: Flow control is completely disabled
2344         * 1: Rx flow control is enabled (we can receive pause frames,
2345         *    but not send pause frames).
2346         * 2: Tx flow control is enabled (we can send pause frames but
2347         *    we do not support receiving pause frames).
2348         * 3: Both Rx and Tx flow control (symmetric) are enabled.
2349#ifdef CONFIG_DCB
2350         * 4: Priority Flow Control is enabled.
2351#endif
2352         * other: Invalid.
2353         */
2354        switch (hw->fc.requested_mode) {
2355        case ixgbe_fc_none:
2356                /* Flow control completely disabled by software override. */
2357                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2358                if (hw->phy.media_type == ixgbe_media_type_backplane)
2359                        reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE |
2360                                    IXGBE_AUTOC_ASM_PAUSE);
2361                else if (hw->phy.media_type == ixgbe_media_type_copper)
2362                        reg_cu &= ~(IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2363                break;
2364        case ixgbe_fc_rx_pause:
2365                /*
2366                 * Rx Flow control is enabled and Tx Flow control is
2367                 * disabled by software override. Since there really
2368                 * isn't a way to advertise that we are capable of RX
2369                 * Pause ONLY, we will advertise that we support both
2370                 * symmetric and asymmetric Rx PAUSE.  Later, we will
2371                 * disable the adapter's ability to send PAUSE frames.
2372                 */
2373                reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2374                if (hw->phy.media_type == ixgbe_media_type_backplane)
2375                        reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2376                                   IXGBE_AUTOC_ASM_PAUSE);
2377                else if (hw->phy.media_type == ixgbe_media_type_copper)
2378                        reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2379                break;
2380        case ixgbe_fc_tx_pause:
2381                /*
2382                 * Tx Flow control is enabled, and Rx Flow control is
2383                 * disabled by software override.
2384                 */
2385                reg |= (IXGBE_PCS1GANA_ASM_PAUSE);
2386                reg &= ~(IXGBE_PCS1GANA_SYM_PAUSE);
2387                if (hw->phy.media_type == ixgbe_media_type_backplane) {
2388                        reg_bp |= (IXGBE_AUTOC_ASM_PAUSE);
2389                        reg_bp &= ~(IXGBE_AUTOC_SYM_PAUSE);
2390                } else if (hw->phy.media_type == ixgbe_media_type_copper) {
2391                        reg_cu |= (IXGBE_TAF_ASM_PAUSE);
2392                        reg_cu &= ~(IXGBE_TAF_SYM_PAUSE);
2393                }
2394                break;
2395        case ixgbe_fc_full:
2396                /* Flow control (both Rx and Tx) is enabled by SW override. */
2397                reg |= (IXGBE_PCS1GANA_SYM_PAUSE | IXGBE_PCS1GANA_ASM_PAUSE);
2398                if (hw->phy.media_type == ixgbe_media_type_backplane)
2399                        reg_bp |= (IXGBE_AUTOC_SYM_PAUSE |
2400                                   IXGBE_AUTOC_ASM_PAUSE);
2401                else if (hw->phy.media_type == ixgbe_media_type_copper)
2402                        reg_cu |= (IXGBE_TAF_SYM_PAUSE | IXGBE_TAF_ASM_PAUSE);
2403                break;
2404#ifdef CONFIG_DCB
2405        case ixgbe_fc_pfc:
2406                goto out;
2407                break;
2408#endif /* CONFIG_DCB */
2409        default:
2410                hw_dbg(hw, "Flow control param set incorrectly\n");
2411                ret_val = IXGBE_ERR_CONFIG;
2412                goto out;
2413                break;
2414        }
2415
2416        if (hw->mac.type != ixgbe_mac_X540) {
2417                /*
2418                 * Enable auto-negotiation between the MAC & PHY;
2419                 * the MAC will advertise clause 37 flow control.
2420                 */
2421                IXGBE_WRITE_REG(hw, IXGBE_PCS1GANA, reg);
2422                reg = IXGBE_READ_REG(hw, IXGBE_PCS1GLCTL);
2423
2424                /* Disable AN timeout */
2425                if (hw->fc.strict_ieee)
2426                        reg &= ~IXGBE_PCS1GLCTL_AN_1G_TIMEOUT_EN;
2427
2428                IXGBE_WRITE_REG(hw, IXGBE_PCS1GLCTL, reg);
2429                hw_dbg(hw, "Set up FC; PCS1GLCTL = 0x%08X\n", reg);
2430        }
2431
2432        /*
2433         * AUTOC restart handles negotiation of 1G and 10G on backplane
2434         * and copper. There is no need to set the PCS1GCTL register.
2435         *
2436         */
2437        if (hw->phy.media_type == ixgbe_media_type_backplane) {
2438                reg_bp |= IXGBE_AUTOC_AN_RESTART;
2439                IXGBE_WRITE_REG(hw, IXGBE_AUTOC, reg_bp);
2440        } else if ((hw->phy.media_type == ixgbe_media_type_copper) &&
2441                    (ixgbe_device_supports_autoneg_fc(hw) == 0)) {
2442                hw->phy.ops.write_reg(hw, MDIO_AN_ADVERTISE,
2443                                      MDIO_MMD_AN, reg_cu);
2444        }
2445
2446        hw_dbg(hw, "Set up FC; IXGBE_AUTOC = 0x%08X\n", reg);
2447out:
2448        return ret_val;
2449}
2450
2451/**
2452 *  ixgbe_disable_pcie_master - Disable PCI-express master access
2453 *  @hw: pointer to hardware structure
2454 *
2455 *  Disables PCI-Express master access and verifies there are no pending
2456 *  requests. IXGBE_ERR_MASTER_REQUESTS_PENDING is returned if master disable
2457 *  bit hasn't caused the master requests to be disabled, else 0
2458 *  is returned signifying master requests disabled.
2459 **/
2460s32 ixgbe_disable_pcie_master(struct ixgbe_hw *hw)
2461{
2462        struct ixgbe_adapter *adapter = hw->back;
2463        u32 i;
2464        u32 reg_val;
2465        u32 number_of_queues;
2466        s32 status = 0;
2467        u16 dev_status = 0;
2468
2469        /* Just jump out if bus mastering is already disabled */
2470        if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2471                goto out;
2472
2473        /* Disable the receive unit by stopping each queue */
2474        number_of_queues = hw->mac.max_rx_queues;
2475        for (i = 0; i < number_of_queues; i++) {
2476                reg_val = IXGBE_READ_REG(hw, IXGBE_RXDCTL(i));
2477                if (reg_val & IXGBE_RXDCTL_ENABLE) {
2478                        reg_val &= ~IXGBE_RXDCTL_ENABLE;
2479                        IXGBE_WRITE_REG(hw, IXGBE_RXDCTL(i), reg_val);
2480                }
2481        }
2482
2483        reg_val = IXGBE_READ_REG(hw, IXGBE_CTRL);
2484        reg_val |= IXGBE_CTRL_GIO_DIS;
2485        IXGBE_WRITE_REG(hw, IXGBE_CTRL, reg_val);
2486
2487        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2488                if (!(IXGBE_READ_REG(hw, IXGBE_STATUS) & IXGBE_STATUS_GIO))
2489                        goto check_device_status;
2490                udelay(100);
2491        }
2492
2493        hw_dbg(hw, "GIO Master Disable bit didn't clear - requesting resets\n");
2494        status = IXGBE_ERR_MASTER_REQUESTS_PENDING;
2495
2496        /*
2497         * Before proceeding, make sure that the PCIe block does not have
2498         * transactions pending.
2499         */
2500check_device_status:
2501        for (i = 0; i < IXGBE_PCI_MASTER_DISABLE_TIMEOUT; i++) {
2502                pci_read_config_word(adapter->pdev, IXGBE_PCI_DEVICE_STATUS,
2503                                                         &dev_status);
2504                if (!(dev_status & IXGBE_PCI_DEVICE_STATUS_TRANSACTION_PENDING))
2505                        break;
2506                udelay(100);
2507        }
2508
2509        if (i == IXGBE_PCI_MASTER_DISABLE_TIMEOUT)
2510                hw_dbg(hw, "PCIe transaction pending bit also did not clear.\n");
2511        else
2512                goto out;
2513
2514        /*
2515         * Two consecutive resets are required via CTRL.RST per datasheet
2516         * 5.2.5.3.2 Master Disable.  We set a flag to inform the reset routine
2517         * of this need.  The first reset prevents new master requests from
2518         * being issued by our device.  We then must wait 1usec for any
2519         * remaining completions from the PCIe bus to trickle in, and then reset
2520         * again to clear out any effects they may have had on our device.
2521         */
2522         hw->mac.flags |= IXGBE_FLAGS_DOUBLE_RESET_REQUIRED;
2523
2524out:
2525        return status;
2526}
2527
2528
2529/**
2530 *  ixgbe_acquire_swfw_sync - Acquire SWFW semaphore
2531 *  @hw: pointer to hardware structure
2532 *  @mask: Mask to specify which semaphore to acquire
2533 *
2534 *  Acquires the SWFW semaphore through the GSSR register for the specified
2535 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2536 **/
2537s32 ixgbe_acquire_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2538{
2539        u32 gssr;
2540        u32 swmask = mask;
2541        u32 fwmask = mask << 5;
2542        s32 timeout = 200;
2543
2544        while (timeout) {
2545                /*
2546                 * SW EEPROM semaphore bit is used for access to all
2547                 * SW_FW_SYNC/GSSR bits (not just EEPROM)
2548                 */
2549                if (ixgbe_get_eeprom_semaphore(hw))
2550                        return IXGBE_ERR_SWFW_SYNC;
2551
2552                gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2553                if (!(gssr & (fwmask | swmask)))
2554                        break;
2555
2556                /*
2557                 * Firmware currently using resource (fwmask) or other software
2558                 * thread currently using resource (swmask)
2559                 */
2560                ixgbe_release_eeprom_semaphore(hw);
2561                usleep_range(5000, 10000);
2562                timeout--;
2563        }
2564
2565        if (!timeout) {
2566                hw_dbg(hw, "Driver can't access resource, SW_FW_SYNC timeout.\n");
2567                return IXGBE_ERR_SWFW_SYNC;
2568        }
2569
2570        gssr |= swmask;
2571        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2572
2573        ixgbe_release_eeprom_semaphore(hw);
2574        return 0;
2575}
2576
2577/**
2578 *  ixgbe_release_swfw_sync - Release SWFW semaphore
2579 *  @hw: pointer to hardware structure
2580 *  @mask: Mask to specify which semaphore to release
2581 *
2582 *  Releases the SWFW semaphore through the GSSR register for the specified
2583 *  function (CSR, PHY0, PHY1, EEPROM, Flash)
2584 **/
2585void ixgbe_release_swfw_sync(struct ixgbe_hw *hw, u16 mask)
2586{
2587        u32 gssr;
2588        u32 swmask = mask;
2589
2590        ixgbe_get_eeprom_semaphore(hw);
2591
2592        gssr = IXGBE_READ_REG(hw, IXGBE_GSSR);
2593        gssr &= ~swmask;
2594        IXGBE_WRITE_REG(hw, IXGBE_GSSR, gssr);
2595
2596        ixgbe_release_eeprom_semaphore(hw);
2597}
2598
2599/**
2600 *  ixgbe_enable_rx_dma_generic - Enable the Rx DMA unit
2601 *  @hw: pointer to hardware structure
2602 *  @regval: register value to write to RXCTRL
2603 *
2604 *  Enables the Rx DMA unit
2605 **/
2606s32 ixgbe_enable_rx_dma_generic(struct ixgbe_hw *hw, u32 regval)
2607{
2608        IXGBE_WRITE_REG(hw, IXGBE_RXCTRL, regval);
2609
2610        return 0;
2611}
2612
2613/**
2614 *  ixgbe_blink_led_start_generic - Blink LED based on index.
2615 *  @hw: pointer to hardware structure
2616 *  @index: led number to blink
2617 **/
2618s32 ixgbe_blink_led_start_generic(struct ixgbe_hw *hw, u32 index)
2619{
2620        ixgbe_link_speed speed = 0;
2621        bool link_up = 0;
2622        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2623        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2624
2625        /*
2626         * Link must be up to auto-blink the LEDs;
2627         * Force it if link is down.
2628         */
2629        hw->mac.ops.check_link(hw, &speed, &link_up, false);
2630
2631        if (!link_up) {
2632                autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2633                autoc_reg |= IXGBE_AUTOC_FLU;
2634                IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2635                IXGBE_WRITE_FLUSH(hw);
2636                usleep_range(10000, 20000);
2637        }
2638
2639        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2640        led_reg |= IXGBE_LED_BLINK(index);
2641        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2642        IXGBE_WRITE_FLUSH(hw);
2643
2644        return 0;
2645}
2646
2647/**
2648 *  ixgbe_blink_led_stop_generic - Stop blinking LED based on index.
2649 *  @hw: pointer to hardware structure
2650 *  @index: led number to stop blinking
2651 **/
2652s32 ixgbe_blink_led_stop_generic(struct ixgbe_hw *hw, u32 index)
2653{
2654        u32 autoc_reg = IXGBE_READ_REG(hw, IXGBE_AUTOC);
2655        u32 led_reg = IXGBE_READ_REG(hw, IXGBE_LEDCTL);
2656
2657        autoc_reg &= ~IXGBE_AUTOC_FLU;
2658        autoc_reg |= IXGBE_AUTOC_AN_RESTART;
2659        IXGBE_WRITE_REG(hw, IXGBE_AUTOC, autoc_reg);
2660
2661        led_reg &= ~IXGBE_LED_MODE_MASK(index);
2662        led_reg &= ~IXGBE_LED_BLINK(index);
2663        led_reg |= IXGBE_LED_LINK_ACTIVE << IXGBE_LED_MODE_SHIFT(index);
2664        IXGBE_WRITE_REG(hw, IXGBE_LEDCTL, led_reg);
2665        IXGBE_WRITE_FLUSH(hw);
2666
2667        return 0;
2668}
2669
2670/**
2671 *  ixgbe_get_san_mac_addr_offset - Get SAN MAC address offset from the EEPROM
2672 *  @hw: pointer to hardware structure
2673 *  @san_mac_offset: SAN MAC address offset
2674 *
2675 *  This function will read the EEPROM location for the SAN MAC address
2676 *  pointer, and returns the value at that location.  This is used in both
2677 *  get and set mac_addr routines.
2678 **/
2679static s32 ixgbe_get_san_mac_addr_offset(struct ixgbe_hw *hw,
2680                                        u16 *san_mac_offset)
2681{
2682        /*
2683         * First read the EEPROM pointer to see if the MAC addresses are
2684         * available.
2685         */
2686        hw->eeprom.ops.read(hw, IXGBE_SAN_MAC_ADDR_PTR, san_mac_offset);
2687
2688        return 0;
2689}
2690
2691/**
2692 *  ixgbe_get_san_mac_addr_generic - SAN MAC address retrieval from the EEPROM
2693 *  @hw: pointer to hardware structure
2694 *  @san_mac_addr: SAN MAC address
2695 *
2696 *  Reads the SAN MAC address from the EEPROM, if it's available.  This is
2697 *  per-port, so set_lan_id() must be called before reading the addresses.
2698 *  set_lan_id() is called by identify_sfp(), but this cannot be relied
2699 *  upon for non-SFP connections, so we must call it here.
2700 **/
2701s32 ixgbe_get_san_mac_addr_generic(struct ixgbe_hw *hw, u8 *san_mac_addr)
2702{
2703        u16 san_mac_data, san_mac_offset;
2704        u8 i;
2705
2706        /*
2707         * First read the EEPROM pointer to see if the MAC addresses are
2708         * available.  If they're not, no point in calling set_lan_id() here.
2709         */
2710        ixgbe_get_san_mac_addr_offset(hw, &san_mac_offset);
2711
2712        if ((san_mac_offset == 0) || (san_mac_offset == 0xFFFF)) {
2713                /*
2714                 * No addresses available in this EEPROM.  It's not an
2715                 * error though, so just wipe the local address and return.
2716                 */
2717                for (i = 0; i < 6; i++)
2718                        san_mac_addr[i] = 0xFF;
2719
2720                goto san_mac_addr_out;
2721        }
2722
2723        /* make sure we know which port we need to program */
2724        hw->mac.ops.set_lan_id(hw);
2725        /* apply the port offset to the address offset */
2726        (hw->bus.func) ? (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT1_OFFSET) :
2727                         (san_mac_offset += IXGBE_SAN_MAC_ADDR_PORT0_OFFSET);
2728        for (i = 0; i < 3; i++) {
2729                hw->eeprom.ops.read(hw, san_mac_offset, &san_mac_data);
2730                san_mac_addr[i * 2] = (u8)(san_mac_data);
2731                san_mac_addr[i * 2 + 1] = (u8)(san_mac_data >> 8);
2732                san_mac_offset++;
2733        }
2734
2735san_mac_addr_out:
2736        return 0;
2737}
2738
2739/**
2740 *  ixgbe_get_pcie_msix_count_generic - Gets MSI-X vector count
2741 *  @hw: pointer to hardware structure
2742 *
2743 *  Read PCIe configuration space, and get the MSI-X vector count from
2744 *  the capabilities table.
2745 **/
2746u32 ixgbe_get_pcie_msix_count_generic(struct ixgbe_hw *hw)
2747{
2748        struct ixgbe_adapter *adapter = hw->back;
2749        u16 msix_count;
2750        pci_read_config_word(adapter->pdev, IXGBE_PCIE_MSIX_82599_CAPS,
2751                             &msix_count);
2752        msix_count &= IXGBE_PCIE_MSIX_TBL_SZ_MASK;
2753
2754        /* MSI-X count is zero-based in HW, so increment to give proper value */
2755        msix_count++;
2756
2757        return msix_count;
2758}
2759
2760/**
2761 *  ixgbe_clear_vmdq_generic - Disassociate a VMDq pool index from a rx address
2762 *  @hw: pointer to hardware struct
2763 *  @rar: receive address register index to disassociate
2764 *  @vmdq: VMDq pool index to remove from the rar
2765 **/
2766s32 ixgbe_clear_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2767{
2768        u32 mpsar_lo, mpsar_hi;
2769        u32 rar_entries = hw->mac.num_rar_entries;
2770
2771        /* Make sure we are using a valid rar index range */
2772        if (rar >= rar_entries) {
2773                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2774                return IXGBE_ERR_INVALID_ARGUMENT;
2775        }
2776
2777        mpsar_lo = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2778        mpsar_hi = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2779
2780        if (!mpsar_lo && !mpsar_hi)
2781                goto done;
2782
2783        if (vmdq == IXGBE_CLEAR_VMDQ_ALL) {
2784                if (mpsar_lo) {
2785                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), 0);
2786                        mpsar_lo = 0;
2787                }
2788                if (mpsar_hi) {
2789                        IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), 0);
2790                        mpsar_hi = 0;
2791                }
2792        } else if (vmdq < 32) {
2793                mpsar_lo &= ~(1 << vmdq);
2794                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar_lo);
2795        } else {
2796                mpsar_hi &= ~(1 << (vmdq - 32));
2797                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar_hi);
2798        }
2799
2800        /* was that the last pool using this rar? */
2801        if (mpsar_lo == 0 && mpsar_hi == 0 && rar != 0)
2802                hw->mac.ops.clear_rar(hw, rar);
2803done:
2804        return 0;
2805}
2806
2807/**
2808 *  ixgbe_set_vmdq_generic - Associate a VMDq pool index with a rx address
2809 *  @hw: pointer to hardware struct
2810 *  @rar: receive address register index to associate with a VMDq index
2811 *  @vmdq: VMDq pool index
2812 **/
2813s32 ixgbe_set_vmdq_generic(struct ixgbe_hw *hw, u32 rar, u32 vmdq)
2814{
2815        u32 mpsar;
2816        u32 rar_entries = hw->mac.num_rar_entries;
2817
2818        /* Make sure we are using a valid rar index range */
2819        if (rar >= rar_entries) {
2820                hw_dbg(hw, "RAR index %d is out of range.\n", rar);
2821                return IXGBE_ERR_INVALID_ARGUMENT;
2822        }
2823
2824        if (vmdq < 32) {
2825                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_LO(rar));
2826                mpsar |= 1 << vmdq;
2827                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_LO(rar), mpsar);
2828        } else {
2829                mpsar = IXGBE_READ_REG(hw, IXGBE_MPSAR_HI(rar));
2830                mpsar |= 1 << (vmdq - 32);
2831                IXGBE_WRITE_REG(hw, IXGBE_MPSAR_HI(rar), mpsar);
2832        }
2833        return 0;
2834}
2835
2836/**
2837 *  ixgbe_init_uta_tables_generic - Initialize the Unicast Table Array
2838 *  @hw: pointer to hardware structure
2839 **/
2840s32 ixgbe_init_uta_tables_generic(struct ixgbe_hw *hw)
2841{
2842        int i;
2843
2844        for (i = 0; i < 128; i++)
2845                IXGBE_WRITE_REG(hw, IXGBE_UTA(i), 0);
2846
2847        return 0;
2848}
2849
2850/**
2851 *  ixgbe_find_vlvf_slot - find the vlanid or the first empty slot
2852 *  @hw: pointer to hardware structure
2853 *  @vlan: VLAN id to write to VLAN filter
2854 *
2855 *  return the VLVF index where this VLAN id should be placed
2856 *
2857 **/
2858static s32 ixgbe_find_vlvf_slot(struct ixgbe_hw *hw, u32 vlan)
2859{
2860        u32 bits = 0;
2861        u32 first_empty_slot = 0;
2862        s32 regindex;
2863
2864        /* short cut the special case */
2865        if (vlan == 0)
2866                return 0;
2867
2868        /*
2869          * Search for the vlan id in the VLVF entries. Save off the first empty
2870          * slot found along the way
2871          */
2872        for (regindex = 1; regindex < IXGBE_VLVF_ENTRIES; regindex++) {
2873                bits = IXGBE_READ_REG(hw, IXGBE_VLVF(regindex));
2874                if (!bits && !(first_empty_slot))
2875                        first_empty_slot = regindex;
2876                else if ((bits & 0x0FFF) == vlan)
2877                        break;
2878        }
2879
2880        /*
2881          * If regindex is less than IXGBE_VLVF_ENTRIES, then we found the vlan
2882          * in the VLVF. Else use the first empty VLVF register for this
2883          * vlan id.
2884          */
2885        if (regindex >= IXGBE_VLVF_ENTRIES) {
2886                if (first_empty_slot)
2887                        regindex = first_empty_slot;
2888                else {
2889                        hw_dbg(hw, "No space in VLVF.\n");
2890                        regindex = IXGBE_ERR_NO_SPACE;
2891                }
2892        }
2893
2894        return regindex;
2895}
2896
2897/**
2898 *  ixgbe_set_vfta_generic - Set VLAN filter table
2899 *  @hw: pointer to hardware structure
2900 *  @vlan: VLAN id to write to VLAN filter
2901 *  @vind: VMDq output index that maps queue to VLAN id in VFVFB
2902 *  @vlan_on: boolean flag to turn on/off VLAN in VFVF
2903 *
2904 *  Turn on/off specified VLAN in the VLAN filter table.
2905 **/
2906s32 ixgbe_set_vfta_generic(struct ixgbe_hw *hw, u32 vlan, u32 vind,
2907                           bool vlan_on)
2908{
2909        s32 regindex;
2910        u32 bitindex;
2911        u32 vfta;
2912        u32 bits;
2913        u32 vt;
2914        u32 targetbit;
2915        bool vfta_changed = false;
2916
2917        if (vlan > 4095)
2918                return IXGBE_ERR_PARAM;
2919
2920        /*
2921         * this is a 2 part operation - first the VFTA, then the
2922         * VLVF and VLVFB if VT Mode is set
2923         * We don't write the VFTA until we know the VLVF part succeeded.
2924         */
2925
2926        /* Part 1
2927         * The VFTA is a bitstring made up of 128 32-bit registers
2928         * that enable the particular VLAN id, much like the MTA:
2929         *    bits[11-5]: which register
2930         *    bits[4-0]:  which bit in the register
2931         */
2932        regindex = (vlan >> 5) & 0x7F;
2933        bitindex = vlan & 0x1F;
2934        targetbit = (1 << bitindex);
2935        vfta = IXGBE_READ_REG(hw, IXGBE_VFTA(regindex));
2936
2937        if (vlan_on) {
2938                if (!(vfta & targetbit)) {
2939                        vfta |= targetbit;
2940                        vfta_changed = true;
2941                }
2942        } else {
2943                if ((vfta & targetbit)) {
2944                        vfta &= ~targetbit;
2945                        vfta_changed = true;
2946                }
2947        }
2948
2949        /* Part 2
2950         * If VT Mode is set
2951         *   Either vlan_on
2952         *     make sure the vlan is in VLVF
2953         *     set the vind bit in the matching VLVFB
2954         *   Or !vlan_on
2955         *     clear the pool bit and possibly the vind
2956         */
2957        vt = IXGBE_READ_REG(hw, IXGBE_VT_CTL);
2958        if (vt & IXGBE_VT_CTL_VT_ENABLE) {
2959                s32 vlvf_index;
2960
2961                vlvf_index = ixgbe_find_vlvf_slot(hw, vlan);
2962                if (vlvf_index < 0)
2963                        return vlvf_index;
2964
2965                if (vlan_on) {
2966                        /* set the pool bit */
2967                        if (vind < 32) {
2968                                bits = IXGBE_READ_REG(hw,
2969                                                IXGBE_VLVFB(vlvf_index*2));
2970                                bits |= (1 << vind);
2971                                IXGBE_WRITE_REG(hw,
2972                                                IXGBE_VLVFB(vlvf_index*2),
2973                                                bits);
2974                        } else {
2975                                bits = IXGBE_READ_REG(hw,
2976                                                IXGBE_VLVFB((vlvf_index*2)+1));
2977                                bits |= (1 << (vind-32));
2978                                IXGBE_WRITE_REG(hw,
2979                                                IXGBE_VLVFB((vlvf_index*2)+1),
2980                                                bits);
2981                        }
2982                } else {
2983                        /* clear the pool bit */
2984                        if (vind < 32) {
2985                                bits = IXGBE_READ_REG(hw,
2986                                                IXGBE_VLVFB(vlvf_index*2));
2987                                bits &= ~(1 << vind);
2988                                IXGBE_WRITE_REG(hw,
2989                                                IXGBE_VLVFB(vlvf_index*2),
2990                                                bits);
2991                                bits |= IXGBE_READ_REG(hw,
2992                                                IXGBE_VLVFB((vlvf_index*2)+1));
2993                        } else {
2994                                bits = IXGBE_READ_REG(hw,
2995                                                IXGBE_VLVFB((vlvf_index*2)+1));
2996                                bits &= ~(1 << (vind-32));
2997                                IXGBE_WRITE_REG(hw,
2998                                                IXGBE_VLVFB((vlvf_index*2)+1),
2999                                                bits);
3000                                bits |= IXGBE_READ_REG(hw,
3001                                                IXGBE_VLVFB(vlvf_index*2));
3002                        }
3003                }
3004
3005                /*
3006                 * If there are still bits set in the VLVFB registers
3007                 * for the VLAN ID indicated we need to see if the
3008                 * caller is requesting that we clear the VFTA entry bit.
3009                 * If the caller has requested that we clear the VFTA
3010                 * entry bit but there are still pools/VFs using this VLAN
3011                 * ID entry then ignore the request.  We're not worried
3012                 * about the case where we're turning the VFTA VLAN ID
3013                 * entry bit on, only when requested to turn it off as
3014                 * there may be multiple pools and/or VFs using the
3015                 * VLAN ID entry.  In that case we cannot clear the
3016                 * VFTA bit until all pools/VFs using that VLAN ID have also
3017                 * been cleared.  This will be indicated by "bits" being
3018                 * zero.
3019                 */
3020                if (bits) {
3021                        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index),
3022                                        (IXGBE_VLVF_VIEN | vlan));
3023                        if (!vlan_on) {
3024                                /* someone wants to clear the vfta entry
3025                                 * but some pools/VFs are still using it.
3026                                 * Ignore it. */
3027                                vfta_changed = false;
3028                        }
3029                }
3030                else
3031                        IXGBE_WRITE_REG(hw, IXGBE_VLVF(vlvf_index), 0);
3032        }
3033
3034        if (vfta_changed)
3035                IXGBE_WRITE_REG(hw, IXGBE_VFTA(regindex), vfta);
3036
3037        return 0;
3038}
3039
3040/**
3041 *  ixgbe_clear_vfta_generic - Clear VLAN filter table
3042 *  @hw: pointer to hardware structure
3043 *
3044 *  Clears the VLAN filer table, and the VMDq index associated with the filter
3045 **/
3046s32 ixgbe_clear_vfta_generic(struct ixgbe_hw *hw)
3047{
3048        u32 offset;
3049
3050        for (offset = 0; offset < hw->mac.vft_size; offset++)
3051                IXGBE_WRITE_REG(hw, IXGBE_VFTA(offset), 0);
3052
3053        for (offset = 0; offset < IXGBE_VLVF_ENTRIES; offset++) {
3054                IXGBE_WRITE_REG(hw, IXGBE_VLVF(offset), 0);
3055                IXGBE_WRITE_REG(hw, IXGBE_VLVFB(offset*2), 0);
3056                IXGBE_WRITE_REG(hw, IXGBE_VLVFB((offset*2)+1), 0);
3057        }
3058
3059        return 0;
3060}
3061
3062/**
3063 *  ixgbe_check_mac_link_generic - Determine link and speed status
3064 *  @hw: pointer to hardware structure
3065 *  @speed: pointer to link speed
3066 *  @link_up: true when link is up
3067 *  @link_up_wait_to_complete: bool used to wait for link up or not
3068 *
3069 *  Reads the links register to determine if link is up and the current speed
3070 **/
3071s32 ixgbe_check_mac_link_generic(struct ixgbe_hw *hw, ixgbe_link_speed *speed,
3072                                 bool *link_up, bool link_up_wait_to_complete)
3073{
3074        u32 links_reg, links_orig;
3075        u32 i;
3076
3077        /* clear the old state */
3078        links_orig = IXGBE_READ_REG(hw, IXGBE_LINKS);
3079
3080        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3081
3082        if (links_orig != links_reg) {
3083                hw_dbg(hw, "LINKS changed from %08X to %08X\n",
3084                       links_orig, links_reg);
3085        }
3086
3087        if (link_up_wait_to_complete) {
3088                for (i = 0; i < IXGBE_LINK_UP_TIME; i++) {
3089                        if (links_reg & IXGBE_LINKS_UP) {
3090                                *link_up = true;
3091                                break;
3092                        } else {
3093                                *link_up = false;
3094                        }
3095                        msleep(100);
3096                        links_reg = IXGBE_READ_REG(hw, IXGBE_LINKS);
3097                }
3098        } else {
3099                if (links_reg & IXGBE_LINKS_UP)
3100                        *link_up = true;
3101                else
3102                        *link_up = false;
3103        }
3104
3105        if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3106            IXGBE_LINKS_SPEED_10G_82599)
3107                *speed = IXGBE_LINK_SPEED_10GB_FULL;
3108        else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3109                 IXGBE_LINKS_SPEED_1G_82599)
3110                *speed = IXGBE_LINK_SPEED_1GB_FULL;
3111        else if ((links_reg & IXGBE_LINKS_SPEED_82599) ==
3112                 IXGBE_LINKS_SPEED_100_82599)
3113                *speed = IXGBE_LINK_SPEED_100_FULL;
3114        else
3115                *speed = IXGBE_LINK_SPEED_UNKNOWN;
3116
3117        /* if link is down, zero out the current_mode */
3118        if (*link_up == false) {
3119                hw->fc.current_mode = ixgbe_fc_none;
3120                hw->fc.fc_was_autonegged = false;
3121        }
3122
3123        return 0;
3124}
3125
3126/**
3127 *  ixgbe_get_wwn_prefix_generic Get alternative WWNN/WWPN prefix from
3128 *  the EEPROM
3129 *  @hw: pointer to hardware structure
3130 *  @wwnn_prefix: the alternative WWNN prefix
3131 *  @wwpn_prefix: the alternative WWPN prefix
3132 *
3133 *  This function will read the EEPROM from the alternative SAN MAC address
3134 *  block to check the support for the alternative WWNN/WWPN prefix support.
3135 **/
3136s32 ixgbe_get_wwn_prefix_generic(struct ixgbe_hw *hw, u16 *wwnn_prefix,
3137                                        u16 *wwpn_prefix)
3138{
3139        u16 offset, caps;
3140        u16 alt_san_mac_blk_offset;
3141
3142        /* clear output first */
3143        *wwnn_prefix = 0xFFFF;
3144        *wwpn_prefix = 0xFFFF;
3145
3146        /* check if alternative SAN MAC is supported */
3147        hw->eeprom.ops.read(hw, IXGBE_ALT_SAN_MAC_ADDR_BLK_PTR,
3148                            &alt_san_mac_blk_offset);
3149
3150        if ((alt_san_mac_blk_offset == 0) ||
3151            (alt_san_mac_blk_offset == 0xFFFF))
3152                goto wwn_prefix_out;
3153
3154        /* check capability in alternative san mac address block */
3155        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_CAPS_OFFSET;
3156        hw->eeprom.ops.read(hw, offset, &caps);
3157        if (!(caps & IXGBE_ALT_SAN_MAC_ADDR_CAPS_ALTWWN))
3158                goto wwn_prefix_out;
3159
3160        /* get the corresponding prefix for WWNN/WWPN */
3161        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWNN_OFFSET;
3162        hw->eeprom.ops.read(hw, offset, wwnn_prefix);
3163
3164        offset = alt_san_mac_blk_offset + IXGBE_ALT_SAN_MAC_ADDR_WWPN_OFFSET;
3165        hw->eeprom.ops.read(hw, offset, wwpn_prefix);
3166
3167wwn_prefix_out:
3168        return 0;
3169}
3170
3171/**
3172 *  ixgbe_device_supports_autoneg_fc - Check if phy supports autoneg flow
3173 *  control
3174 *  @hw: pointer to hardware structure
3175 *
3176 *  There are several phys that do not support autoneg flow control. This
3177 *  function check the device id to see if the associated phy supports
3178 *  autoneg flow control.
3179 **/
3180static s32 ixgbe_device_supports_autoneg_fc(struct ixgbe_hw *hw)
3181{
3182
3183        switch (hw->device_id) {
3184        case IXGBE_DEV_ID_X540T:
3185                return 0;
3186        case IXGBE_DEV_ID_82599_T3_LOM:
3187                return 0;
3188        default:
3189                return IXGBE_ERR_FC_NOT_SUPPORTED;
3190        }
3191}
3192
3193/**
3194 *  ixgbe_set_mac_anti_spoofing - Enable/Disable MAC anti-spoofing
3195 *  @hw: pointer to hardware structure
3196 *  @enable: enable or disable switch for anti-spoofing
3197 *  @pf: Physical Function pool - do not enable anti-spoofing for the PF
3198 *
3199 **/
3200void ixgbe_set_mac_anti_spoofing(struct ixgbe_hw *hw, bool enable, int pf)
3201{
3202        int j;
3203        int pf_target_reg = pf >> 3;
3204        int pf_target_shift = pf % 8;
3205        u32 pfvfspoof = 0;
3206
3207        if (hw->mac.type == ixgbe_mac_82598EB)
3208                return;
3209
3210        if (enable)
3211                pfvfspoof = IXGBE_SPOOF_MACAS_MASK;
3212
3213        /*
3214         * PFVFSPOOF register array is size 8 with 8 bits assigned to
3215         * MAC anti-spoof enables in each register array element.
3216         */
3217        for (j = 0; j < IXGBE_PFVFSPOOF_REG_COUNT; j++)
3218                IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(j), pfvfspoof);
3219
3220        /* If not enabling anti-spoofing then done */
3221        if (!enable)
3222                return;
3223
3224        /*
3225         * The PF should be allowed to spoof so that it can support
3226         * emulation mode NICs.  Reset the bit assigned to the PF
3227         */
3228        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg));
3229        pfvfspoof ^= (1 << pf_target_shift);
3230        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(pf_target_reg), pfvfspoof);
3231}
3232
3233/**
3234 *  ixgbe_set_vlan_anti_spoofing - Enable/Disable VLAN anti-spoofing
3235 *  @hw: pointer to hardware structure
3236 *  @enable: enable or disable switch for VLAN anti-spoofing
3237 *  @pf: Virtual Function pool - VF Pool to set for VLAN anti-spoofing
3238 *
3239 **/
3240void ixgbe_set_vlan_anti_spoofing(struct ixgbe_hw *hw, bool enable, int vf)
3241{
3242        int vf_target_reg = vf >> 3;
3243        int vf_target_shift = vf % 8 + IXGBE_SPOOF_VLANAS_SHIFT;
3244        u32 pfvfspoof;
3245
3246        if (hw->mac.type == ixgbe_mac_82598EB)
3247                return;
3248
3249        pfvfspoof = IXGBE_READ_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg));
3250        if (enable)
3251                pfvfspoof |= (1 << vf_target_shift);
3252        else
3253                pfvfspoof &= ~(1 << vf_target_shift);
3254        IXGBE_WRITE_REG(hw, IXGBE_PFVFSPOOF(vf_target_reg), pfvfspoof);
3255}
3256
3257/**
3258 *  ixgbe_get_device_caps_generic - Get additional device capabilities
3259 *  @hw: pointer to hardware structure
3260 *  @device_caps: the EEPROM word with the extra device capabilities
3261 *
3262 *  This function will read the EEPROM location for the device capabilities,
3263 *  and return the word through device_caps.
3264 **/
3265s32 ixgbe_get_device_caps_generic(struct ixgbe_hw *hw, u16 *device_caps)
3266{
3267        hw->eeprom.ops.read(hw, IXGBE_DEVICE_CAPS, device_caps);
3268
3269        return 0;
3270}
3271
3272/**
3273 * ixgbe_set_rxpba_generic - Initialize RX packet buffer
3274 * @hw: pointer to hardware structure
3275 * @num_pb: number of packet buffers to allocate
3276 * @headroom: reserve n KB of headroom
3277 * @strategy: packet buffer allocation strategy
3278 **/
3279void ixgbe_set_rxpba_generic(struct ixgbe_hw *hw,
3280                             int num_pb,
3281                             u32 headroom,
3282                             int strategy)
3283{
3284        u32 pbsize = hw->mac.rx_pb_size;
3285        int i = 0;
3286        u32 rxpktsize, txpktsize, txpbthresh;
3287
3288        /* Reserve headroom */
3289        pbsize -= headroom;
3290
3291        if (!num_pb)
3292                num_pb = 1;
3293
3294        /* Divide remaining packet buffer space amongst the number
3295         * of packet buffers requested using supplied strategy.
3296         */
3297        switch (strategy) {
3298        case (PBA_STRATEGY_WEIGHTED):
3299                /* pba_80_48 strategy weight first half of packet buffer with
3300                 * 5/8 of the packet buffer space.
3301                 */
3302                rxpktsize = ((pbsize * 5 * 2) / (num_pb * 8));
3303                pbsize -= rxpktsize * (num_pb / 2);
3304                rxpktsize <<= IXGBE_RXPBSIZE_SHIFT;
3305                for (; i < (num_pb / 2); i++)
3306                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3307                /* Fall through to configure remaining packet buffers */
3308        case (PBA_STRATEGY_EQUAL):
3309                /* Divide the remaining Rx packet buffer evenly among the TCs */
3310                rxpktsize = (pbsize / (num_pb - i)) << IXGBE_RXPBSIZE_SHIFT;
3311                for (; i < num_pb; i++)
3312                        IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), rxpktsize);
3313                break;
3314        default:
3315                break;
3316        }
3317
3318        /*
3319         * Setup Tx packet buffer and threshold equally for all TCs
3320         * TXPBTHRESH register is set in K so divide by 1024 and subtract
3321         * 10 since the largest packet we support is just over 9K.
3322         */
3323        txpktsize = IXGBE_TXPBSIZE_MAX / num_pb;
3324        txpbthresh = (txpktsize / 1024) - IXGBE_TXPKT_SIZE_MAX;
3325        for (i = 0; i < num_pb; i++) {
3326                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), txpktsize);
3327                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), txpbthresh);
3328        }
3329
3330        /* Clear unused TCs, if any, to zero buffer size*/
3331        for (; i < IXGBE_MAX_PB; i++) {
3332                IXGBE_WRITE_REG(hw, IXGBE_RXPBSIZE(i), 0);
3333                IXGBE_WRITE_REG(hw, IXGBE_TXPBSIZE(i), 0);
3334                IXGBE_WRITE_REG(hw, IXGBE_TXPBTHRESH(i), 0);
3335        }
3336}
3337
3338/**
3339 *  ixgbe_calculate_checksum - Calculate checksum for buffer
3340 *  @buffer: pointer to EEPROM
3341 *  @length: size of EEPROM to calculate a checksum for
3342 *  Calculates the checksum for some buffer on a specified length.  The
3343 *  checksum calculated is returned.
3344 **/
3345static u8 ixgbe_calculate_checksum(u8 *buffer, u32 length)
3346{
3347        u32 i;
3348        u8 sum = 0;
3349
3350        if (!buffer)
3351                return 0;
3352
3353        for (i = 0; i < length; i++)
3354                sum += buffer[i];
3355
3356        return (u8) (0 - sum);
3357}
3358
3359/**
3360 *  ixgbe_host_interface_command - Issue command to manageability block
3361 *  @hw: pointer to the HW structure
3362 *  @buffer: contains the command to write and where the return status will
3363 *           be placed
3364 *  @lenght: lenght of buffer, must be multiple of 4 bytes
3365 *
3366 *  Communicates with the manageability block.  On success return 0
3367 *  else return IXGBE_ERR_HOST_INTERFACE_COMMAND.
3368 **/
3369static s32 ixgbe_host_interface_command(struct ixgbe_hw *hw, u8 *buffer,
3370                                        u32 length)
3371{
3372        u32 hicr, i;
3373        u32 hdr_size = sizeof(struct ixgbe_hic_hdr);
3374        u8 buf_len, dword_len;
3375
3376        s32 ret_val = 0;
3377
3378        if (length == 0 || length & 0x3 ||
3379            length > IXGBE_HI_MAX_BLOCK_BYTE_LENGTH) {
3380                hw_dbg(hw, "Buffer length failure.\n");
3381                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3382                goto out;
3383        }
3384
3385        /* Check that the host interface is enabled. */
3386        hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3387        if ((hicr & IXGBE_HICR_EN) == 0) {
3388                hw_dbg(hw, "IXGBE_HOST_EN bit disabled.\n");
3389                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3390                goto out;
3391        }
3392
3393        /* Calculate length in DWORDs */
3394        dword_len = length >> 2;
3395
3396        /*
3397         * The device driver writes the relevant command block
3398         * into the ram area.
3399         */
3400        for (i = 0; i < dword_len; i++)
3401                IXGBE_WRITE_REG_ARRAY(hw, IXGBE_FLEX_MNG,
3402                                      i, *((u32 *)buffer + i));
3403
3404        /* Setting this bit tells the ARC that a new command is pending. */
3405        IXGBE_WRITE_REG(hw, IXGBE_HICR, hicr | IXGBE_HICR_C);
3406
3407        for (i = 0; i < IXGBE_HI_COMMAND_TIMEOUT; i++) {
3408                hicr = IXGBE_READ_REG(hw, IXGBE_HICR);
3409                if (!(hicr & IXGBE_HICR_C))
3410                        break;
3411                usleep_range(1000, 2000);
3412        }
3413
3414        /* Check command successful completion. */
3415        if (i == IXGBE_HI_COMMAND_TIMEOUT ||
3416            (!(IXGBE_READ_REG(hw, IXGBE_HICR) & IXGBE_HICR_SV))) {
3417                hw_dbg(hw, "Command has failed with no status valid.\n");
3418                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3419                goto out;
3420        }
3421
3422        /* Calculate length in DWORDs */
3423        dword_len = hdr_size >> 2;
3424
3425        /* first pull in the header so we know the buffer length */
3426        for (i = 0; i < dword_len; i++)
3427                *((u32 *)buffer + i) =
3428                        IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, i);
3429
3430        /* If there is any thing in data position pull it in */
3431        buf_len = ((struct ixgbe_hic_hdr *)buffer)->buf_len;
3432        if (buf_len == 0)
3433                goto out;
3434
3435        if (length < (buf_len + hdr_size)) {
3436                hw_dbg(hw, "Buffer not large enough for reply message.\n");
3437                ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3438                goto out;
3439        }
3440
3441        /* Calculate length in DWORDs, add one for odd lengths */
3442        dword_len = (buf_len + 1) >> 2;
3443
3444        /* Pull in the rest of the buffer (i is where we left off)*/
3445        for (; i < buf_len; i++)
3446                *((u32 *)buffer + i) =
3447                        IXGBE_READ_REG_ARRAY(hw, IXGBE_FLEX_MNG, i);
3448
3449out:
3450        return ret_val;
3451}
3452
3453/**
3454 *  ixgbe_set_fw_drv_ver_generic - Sends driver version to firmware
3455 *  @hw: pointer to the HW structure
3456 *  @maj: driver version major number
3457 *  @min: driver version minor number
3458 *  @build: driver version build number
3459 *  @sub: driver version sub build number
3460 *
3461 *  Sends driver version number to firmware through the manageability
3462 *  block.  On success return 0
3463 *  else returns IXGBE_ERR_SWFW_SYNC when encountering an error acquiring
3464 *  semaphore or IXGBE_ERR_HOST_INTERFACE_COMMAND when command fails.
3465 **/
3466s32 ixgbe_set_fw_drv_ver_generic(struct ixgbe_hw *hw, u8 maj, u8 min,
3467                                 u8 build, u8 sub)
3468{
3469        struct ixgbe_hic_drv_info fw_cmd;
3470        int i;
3471        s32 ret_val = 0;
3472
3473        if (hw->mac.ops.acquire_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM) != 0) {
3474                ret_val = IXGBE_ERR_SWFW_SYNC;
3475                goto out;
3476        }
3477
3478        fw_cmd.hdr.cmd = FW_CEM_CMD_DRIVER_INFO;
3479        fw_cmd.hdr.buf_len = FW_CEM_CMD_DRIVER_INFO_LEN;
3480        fw_cmd.hdr.cmd_or_resp.cmd_resv = FW_CEM_CMD_RESERVED;
3481        fw_cmd.port_num = (u8)hw->bus.func;
3482        fw_cmd.ver_maj = maj;
3483        fw_cmd.ver_min = min;
3484        fw_cmd.ver_build = build;
3485        fw_cmd.ver_sub = sub;
3486        fw_cmd.hdr.checksum = 0;
3487        fw_cmd.hdr.checksum = ixgbe_calculate_checksum((u8 *)&fw_cmd,
3488                                (FW_CEM_HDR_LEN + fw_cmd.hdr.buf_len));
3489        fw_cmd.pad = 0;
3490        fw_cmd.pad2 = 0;
3491
3492        for (i = 0; i <= FW_CEM_MAX_RETRIES; i++) {
3493                ret_val = ixgbe_host_interface_command(hw, (u8 *)&fw_cmd,
3494                                                       sizeof(fw_cmd));
3495                if (ret_val != 0)
3496                        continue;
3497
3498                if (fw_cmd.hdr.cmd_or_resp.ret_status ==
3499                    FW_CEM_RESP_STATUS_SUCCESS)
3500                        ret_val = 0;
3501                else
3502                        ret_val = IXGBE_ERR_HOST_INTERFACE_COMMAND;
3503
3504                break;
3505        }
3506
3507        hw->mac.ops.release_swfw_sync(hw, IXGBE_GSSR_SW_MNG_SM);
3508out:
3509        return ret_val;
3510}
3511