linux/drivers/net/ks8851.c
<<
>>
Prefs
   1/* drivers/net/ks8851.c
   2 *
   3 * Copyright 2009 Simtec Electronics
   4 *      http://www.simtec.co.uk/
   5 *      Ben Dooks <ben@simtec.co.uk>
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11
  12#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  13
  14#define DEBUG
  15
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/kernel.h>
  19#include <linux/netdevice.h>
  20#include <linux/etherdevice.h>
  21#include <linux/ethtool.h>
  22#include <linux/cache.h>
  23#include <linux/crc32.h>
  24#include <linux/mii.h>
  25
  26#include <linux/spi/spi.h>
  27
  28#include "ks8851.h"
  29
  30/**
  31 * struct ks8851_rxctrl - KS8851 driver rx control
  32 * @mchash: Multicast hash-table data.
  33 * @rxcr1: KS_RXCR1 register setting
  34 * @rxcr2: KS_RXCR2 register setting
  35 *
  36 * Representation of the settings needs to control the receive filtering
  37 * such as the multicast hash-filter and the receive register settings. This
  38 * is used to make the job of working out if the receive settings change and
  39 * then issuing the new settings to the worker that will send the necessary
  40 * commands.
  41 */
  42struct ks8851_rxctrl {
  43        u16     mchash[4];
  44        u16     rxcr1;
  45        u16     rxcr2;
  46};
  47
  48/**
  49 * union ks8851_tx_hdr - tx header data
  50 * @txb: The header as bytes
  51 * @txw: The header as 16bit, little-endian words
  52 *
  53 * A dual representation of the tx header data to allow
  54 * access to individual bytes, and to allow 16bit accesses
  55 * with 16bit alignment.
  56 */
  57union ks8851_tx_hdr {
  58        u8      txb[6];
  59        __le16  txw[3];
  60};
  61
  62/**
  63 * struct ks8851_net - KS8851 driver private data
  64 * @netdev: The network device we're bound to
  65 * @spidev: The spi device we're bound to.
  66 * @lock: Lock to ensure that the device is not accessed when busy.
  67 * @statelock: Lock on this structure for tx list.
  68 * @mii: The MII state information for the mii calls.
  69 * @rxctrl: RX settings for @rxctrl_work.
  70 * @tx_work: Work queue for tx packets
  71 * @irq_work: Work queue for servicing interrupts
  72 * @rxctrl_work: Work queue for updating RX mode and multicast lists
  73 * @txq: Queue of packets for transmission.
  74 * @spi_msg1: pre-setup SPI transfer with one message, @spi_xfer1.
  75 * @spi_msg2: pre-setup SPI transfer with two messages, @spi_xfer2.
  76 * @txh: Space for generating packet TX header in DMA-able data
  77 * @rxd: Space for receiving SPI data, in DMA-able space.
  78 * @txd: Space for transmitting SPI data, in DMA-able space.
  79 * @msg_enable: The message flags controlling driver output (see ethtool).
  80 * @fid: Incrementing frame id tag.
  81 * @rc_ier: Cached copy of KS_IER.
  82 * @rc_ccr: Cached copy of KS_CCR.
  83 * @rc_rxqcr: Cached copy of KS_RXQCR.
  84 * @eeprom_size: Companion eeprom size in Bytes, 0 if no eeprom
  85 *
  86 * The @lock ensures that the chip is protected when certain operations are
  87 * in progress. When the read or write packet transfer is in progress, most
  88 * of the chip registers are not ccessible until the transfer is finished and
  89 * the DMA has been de-asserted.
  90 *
  91 * The @statelock is used to protect information in the structure which may
  92 * need to be accessed via several sources, such as the network driver layer
  93 * or one of the work queues.
  94 *
  95 * We align the buffers we may use for rx/tx to ensure that if the SPI driver
  96 * wants to DMA map them, it will not have any problems with data the driver
  97 * modifies.
  98 */
  99struct ks8851_net {
 100        struct net_device       *netdev;
 101        struct spi_device       *spidev;
 102        struct mutex            lock;
 103        spinlock_t              statelock;
 104
 105        union ks8851_tx_hdr     txh ____cacheline_aligned;
 106        u8                      rxd[8];
 107        u8                      txd[8];
 108
 109        u32                     msg_enable ____cacheline_aligned;
 110        u16                     tx_space;
 111        u8                      fid;
 112
 113        u16                     rc_ier;
 114        u16                     rc_rxqcr;
 115        u16                     rc_ccr;
 116        u16                     eeprom_size;
 117
 118        struct mii_if_info      mii;
 119        struct ks8851_rxctrl    rxctrl;
 120
 121        struct work_struct      tx_work;
 122        struct work_struct      irq_work;
 123        struct work_struct      rxctrl_work;
 124
 125        struct sk_buff_head     txq;
 126
 127        struct spi_message      spi_msg1;
 128        struct spi_message      spi_msg2;
 129        struct spi_transfer     spi_xfer1;
 130        struct spi_transfer     spi_xfer2[2];
 131};
 132
 133static int msg_enable;
 134
 135/* shift for byte-enable data */
 136#define BYTE_EN(_x)     ((_x) << 2)
 137
 138/* turn register number and byte-enable mask into data for start of packet */
 139#define MK_OP(_byteen, _reg) (BYTE_EN(_byteen) | (_reg)  << (8+2) | (_reg) >> 6)
 140
 141/* SPI register read/write calls.
 142 *
 143 * All these calls issue SPI transactions to access the chip's registers. They
 144 * all require that the necessary lock is held to prevent accesses when the
 145 * chip is busy transferring packet data (RX/TX FIFO accesses).
 146 */
 147
 148/**
 149 * ks8851_wrreg16 - write 16bit register value to chip
 150 * @ks: The chip state
 151 * @reg: The register address
 152 * @val: The value to write
 153 *
 154 * Issue a write to put the value @val into the register specified in @reg.
 155 */
 156static void ks8851_wrreg16(struct ks8851_net *ks, unsigned reg, unsigned val)
 157{
 158        struct spi_transfer *xfer = &ks->spi_xfer1;
 159        struct spi_message *msg = &ks->spi_msg1;
 160        __le16 txb[2];
 161        int ret;
 162
 163        txb[0] = cpu_to_le16(MK_OP(reg & 2 ? 0xC : 0x03, reg) | KS_SPIOP_WR);
 164        txb[1] = cpu_to_le16(val);
 165
 166        xfer->tx_buf = txb;
 167        xfer->rx_buf = NULL;
 168        xfer->len = 4;
 169
 170        ret = spi_sync(ks->spidev, msg);
 171        if (ret < 0)
 172                netdev_err(ks->netdev, "spi_sync() failed\n");
 173}
 174
 175/**
 176 * ks8851_wrreg8 - write 8bit register value to chip
 177 * @ks: The chip state
 178 * @reg: The register address
 179 * @val: The value to write
 180 *
 181 * Issue a write to put the value @val into the register specified in @reg.
 182 */
 183static void ks8851_wrreg8(struct ks8851_net *ks, unsigned reg, unsigned val)
 184{
 185        struct spi_transfer *xfer = &ks->spi_xfer1;
 186        struct spi_message *msg = &ks->spi_msg1;
 187        __le16 txb[2];
 188        int ret;
 189        int bit;
 190
 191        bit = 1 << (reg & 3);
 192
 193        txb[0] = cpu_to_le16(MK_OP(bit, reg) | KS_SPIOP_WR);
 194        txb[1] = val;
 195
 196        xfer->tx_buf = txb;
 197        xfer->rx_buf = NULL;
 198        xfer->len = 3;
 199
 200        ret = spi_sync(ks->spidev, msg);
 201        if (ret < 0)
 202                netdev_err(ks->netdev, "spi_sync() failed\n");
 203}
 204
 205/**
 206 * ks8851_rx_1msg - select whether to use one or two messages for spi read
 207 * @ks: The device structure
 208 *
 209 * Return whether to generate a single message with a tx and rx buffer
 210 * supplied to spi_sync(), or alternatively send the tx and rx buffers
 211 * as separate messages.
 212 *
 213 * Depending on the hardware in use, a single message may be more efficient
 214 * on interrupts or work done by the driver.
 215 *
 216 * This currently always returns true until we add some per-device data passed
 217 * from the platform code to specify which mode is better.
 218 */
 219static inline bool ks8851_rx_1msg(struct ks8851_net *ks)
 220{
 221        return true;
 222}
 223
 224/**
 225 * ks8851_rdreg - issue read register command and return the data
 226 * @ks: The device state
 227 * @op: The register address and byte enables in message format.
 228 * @rxb: The RX buffer to return the result into
 229 * @rxl: The length of data expected.
 230 *
 231 * This is the low level read call that issues the necessary spi message(s)
 232 * to read data from the register specified in @op.
 233 */
 234static void ks8851_rdreg(struct ks8851_net *ks, unsigned op,
 235                         u8 *rxb, unsigned rxl)
 236{
 237        struct spi_transfer *xfer;
 238        struct spi_message *msg;
 239        __le16 *txb = (__le16 *)ks->txd;
 240        u8 *trx = ks->rxd;
 241        int ret;
 242
 243        txb[0] = cpu_to_le16(op | KS_SPIOP_RD);
 244
 245        if (ks8851_rx_1msg(ks)) {
 246                msg = &ks->spi_msg1;
 247                xfer = &ks->spi_xfer1;
 248
 249                xfer->tx_buf = txb;
 250                xfer->rx_buf = trx;
 251                xfer->len = rxl + 2;
 252        } else {
 253                msg = &ks->spi_msg2;
 254                xfer = ks->spi_xfer2;
 255
 256                xfer->tx_buf = txb;
 257                xfer->rx_buf = NULL;
 258                xfer->len = 2;
 259
 260                xfer++;
 261                xfer->tx_buf = NULL;
 262                xfer->rx_buf = trx;
 263                xfer->len = rxl;
 264        }
 265
 266        ret = spi_sync(ks->spidev, msg);
 267        if (ret < 0)
 268                netdev_err(ks->netdev, "read: spi_sync() failed\n");
 269        else if (ks8851_rx_1msg(ks))
 270                memcpy(rxb, trx + 2, rxl);
 271        else
 272                memcpy(rxb, trx, rxl);
 273}
 274
 275/**
 276 * ks8851_rdreg8 - read 8 bit register from device
 277 * @ks: The chip information
 278 * @reg: The register address
 279 *
 280 * Read a 8bit register from the chip, returning the result
 281*/
 282static unsigned ks8851_rdreg8(struct ks8851_net *ks, unsigned reg)
 283{
 284        u8 rxb[1];
 285
 286        ks8851_rdreg(ks, MK_OP(1 << (reg & 3), reg), rxb, 1);
 287        return rxb[0];
 288}
 289
 290/**
 291 * ks8851_rdreg16 - read 16 bit register from device
 292 * @ks: The chip information
 293 * @reg: The register address
 294 *
 295 * Read a 16bit register from the chip, returning the result
 296*/
 297static unsigned ks8851_rdreg16(struct ks8851_net *ks, unsigned reg)
 298{
 299        __le16 rx = 0;
 300
 301        ks8851_rdreg(ks, MK_OP(reg & 2 ? 0xC : 0x3, reg), (u8 *)&rx, 2);
 302        return le16_to_cpu(rx);
 303}
 304
 305/**
 306 * ks8851_rdreg32 - read 32 bit register from device
 307 * @ks: The chip information
 308 * @reg: The register address
 309 *
 310 * Read a 32bit register from the chip.
 311 *
 312 * Note, this read requires the address be aligned to 4 bytes.
 313*/
 314static unsigned ks8851_rdreg32(struct ks8851_net *ks, unsigned reg)
 315{
 316        __le32 rx = 0;
 317
 318        WARN_ON(reg & 3);
 319
 320        ks8851_rdreg(ks, MK_OP(0xf, reg), (u8 *)&rx, 4);
 321        return le32_to_cpu(rx);
 322}
 323
 324/**
 325 * ks8851_soft_reset - issue one of the soft reset to the device
 326 * @ks: The device state.
 327 * @op: The bit(s) to set in the GRR
 328 *
 329 * Issue the relevant soft-reset command to the device's GRR register
 330 * specified by @op.
 331 *
 332 * Note, the delays are in there as a caution to ensure that the reset
 333 * has time to take effect and then complete. Since the datasheet does
 334 * not currently specify the exact sequence, we have chosen something
 335 * that seems to work with our device.
 336 */
 337static void ks8851_soft_reset(struct ks8851_net *ks, unsigned op)
 338{
 339        ks8851_wrreg16(ks, KS_GRR, op);
 340        mdelay(1);      /* wait a short time to effect reset */
 341        ks8851_wrreg16(ks, KS_GRR, 0);
 342        mdelay(1);      /* wait for condition to clear */
 343}
 344
 345/**
 346 * ks8851_write_mac_addr - write mac address to device registers
 347 * @dev: The network device
 348 *
 349 * Update the KS8851 MAC address registers from the address in @dev.
 350 *
 351 * This call assumes that the chip is not running, so there is no need to
 352 * shutdown the RXQ process whilst setting this.
 353*/
 354static int ks8851_write_mac_addr(struct net_device *dev)
 355{
 356        struct ks8851_net *ks = netdev_priv(dev);
 357        int i;
 358
 359        mutex_lock(&ks->lock);
 360
 361        for (i = 0; i < ETH_ALEN; i++)
 362                ks8851_wrreg8(ks, KS_MAR(i), dev->dev_addr[i]);
 363
 364        mutex_unlock(&ks->lock);
 365
 366        return 0;
 367}
 368
 369/**
 370 * ks8851_init_mac - initialise the mac address
 371 * @ks: The device structure
 372 *
 373 * Get or create the initial mac address for the device and then set that
 374 * into the station address register. Currently we assume that the device
 375 * does not have a valid mac address in it, and so we use random_ether_addr()
 376 * to create a new one.
 377 *
 378 * In future, the driver should check to see if the device has an EEPROM
 379 * attached and whether that has a valid ethernet address in it.
 380 */
 381static void ks8851_init_mac(struct ks8851_net *ks)
 382{
 383        struct net_device *dev = ks->netdev;
 384
 385        random_ether_addr(dev->dev_addr);
 386        ks8851_write_mac_addr(dev);
 387}
 388
 389/**
 390 * ks8851_irq - device interrupt handler
 391 * @irq: Interrupt number passed from the IRQ hnalder.
 392 * @pw: The private word passed to register_irq(), our struct ks8851_net.
 393 *
 394 * Disable the interrupt from happening again until we've processed the
 395 * current status by scheduling ks8851_irq_work().
 396 */
 397static irqreturn_t ks8851_irq(int irq, void *pw)
 398{
 399        struct ks8851_net *ks = pw;
 400
 401        disable_irq_nosync(irq);
 402        schedule_work(&ks->irq_work);
 403        return IRQ_HANDLED;
 404}
 405
 406/**
 407 * ks8851_rdfifo - read data from the receive fifo
 408 * @ks: The device state.
 409 * @buff: The buffer address
 410 * @len: The length of the data to read
 411 *
 412 * Issue an RXQ FIFO read command and read the @len amount of data from
 413 * the FIFO into the buffer specified by @buff.
 414 */
 415static void ks8851_rdfifo(struct ks8851_net *ks, u8 *buff, unsigned len)
 416{
 417        struct spi_transfer *xfer = ks->spi_xfer2;
 418        struct spi_message *msg = &ks->spi_msg2;
 419        u8 txb[1];
 420        int ret;
 421
 422        netif_dbg(ks, rx_status, ks->netdev,
 423                  "%s: %d@%p\n", __func__, len, buff);
 424
 425        /* set the operation we're issuing */
 426        txb[0] = KS_SPIOP_RXFIFO;
 427
 428        xfer->tx_buf = txb;
 429        xfer->rx_buf = NULL;
 430        xfer->len = 1;
 431
 432        xfer++;
 433        xfer->rx_buf = buff;
 434        xfer->tx_buf = NULL;
 435        xfer->len = len;
 436
 437        ret = spi_sync(ks->spidev, msg);
 438        if (ret < 0)
 439                netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 440}
 441
 442/**
 443 * ks8851_dbg_dumpkkt - dump initial packet contents to debug
 444 * @ks: The device state
 445 * @rxpkt: The data for the received packet
 446 *
 447 * Dump the initial data from the packet to dev_dbg().
 448*/
 449static void ks8851_dbg_dumpkkt(struct ks8851_net *ks, u8 *rxpkt)
 450{
 451        netdev_dbg(ks->netdev,
 452                   "pkt %02x%02x%02x%02x %02x%02x%02x%02x %02x%02x%02x%02x\n",
 453                   rxpkt[4], rxpkt[5], rxpkt[6], rxpkt[7],
 454                   rxpkt[8], rxpkt[9], rxpkt[10], rxpkt[11],
 455                   rxpkt[12], rxpkt[13], rxpkt[14], rxpkt[15]);
 456}
 457
 458/**
 459 * ks8851_rx_pkts - receive packets from the host
 460 * @ks: The device information.
 461 *
 462 * This is called from the IRQ work queue when the system detects that there
 463 * are packets in the receive queue. Find out how many packets there are and
 464 * read them from the FIFO.
 465 */
 466static void ks8851_rx_pkts(struct ks8851_net *ks)
 467{
 468        struct sk_buff *skb;
 469        unsigned rxfc;
 470        unsigned rxlen;
 471        unsigned rxstat;
 472        u32 rxh;
 473        u8 *rxpkt;
 474
 475        rxfc = ks8851_rdreg8(ks, KS_RXFC);
 476
 477        netif_dbg(ks, rx_status, ks->netdev,
 478                  "%s: %d packets\n", __func__, rxfc);
 479
 480        /* Currently we're issuing a read per packet, but we could possibly
 481         * improve the code by issuing a single read, getting the receive
 482         * header, allocating the packet and then reading the packet data
 483         * out in one go.
 484         *
 485         * This form of operation would require us to hold the SPI bus'
 486         * chipselect low during the entie transaction to avoid any
 487         * reset to the data stream coming from the chip.
 488         */
 489
 490        for (; rxfc != 0; rxfc--) {
 491                rxh = ks8851_rdreg32(ks, KS_RXFHSR);
 492                rxstat = rxh & 0xffff;
 493                rxlen = rxh >> 16;
 494
 495                netif_dbg(ks, rx_status, ks->netdev,
 496                          "rx: stat 0x%04x, len 0x%04x\n", rxstat, rxlen);
 497
 498                /* the length of the packet includes the 32bit CRC */
 499
 500                /* set dma read address */
 501                ks8851_wrreg16(ks, KS_RXFDPR, RXFDPR_RXFPAI | 0x00);
 502
 503                /* start the packet dma process, and set auto-dequeue rx */
 504                ks8851_wrreg16(ks, KS_RXQCR,
 505                               ks->rc_rxqcr | RXQCR_SDA | RXQCR_ADRFE);
 506
 507                if (rxlen > 4) {
 508                        unsigned int rxalign;
 509
 510                        rxlen -= 4;
 511                        rxalign = ALIGN(rxlen, 4);
 512                        skb = netdev_alloc_skb_ip_align(ks->netdev, rxalign);
 513                        if (skb) {
 514
 515                                /* 4 bytes of status header + 4 bytes of
 516                                 * garbage: we put them before ethernet
 517                                 * header, so that they are copied,
 518                                 * but ignored.
 519                                 */
 520
 521                                rxpkt = skb_put(skb, rxlen) - 8;
 522
 523                                ks8851_rdfifo(ks, rxpkt, rxalign + 8);
 524
 525                                if (netif_msg_pktdata(ks))
 526                                        ks8851_dbg_dumpkkt(ks, rxpkt);
 527
 528                                skb->protocol = eth_type_trans(skb, ks->netdev);
 529                                netif_rx(skb);
 530
 531                                ks->netdev->stats.rx_packets++;
 532                                ks->netdev->stats.rx_bytes += rxlen;
 533                        }
 534                }
 535
 536                ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 537        }
 538}
 539
 540/**
 541 * ks8851_irq_work - work queue handler for dealing with interrupt requests
 542 * @work: The work structure that was scheduled by schedule_work()
 543 *
 544 * This is the handler invoked when the ks8851_irq() is called to find out
 545 * what happened, as we cannot allow ourselves to sleep whilst waiting for
 546 * anything other process has the chip's lock.
 547 *
 548 * Read the interrupt status, work out what needs to be done and then clear
 549 * any of the interrupts that are not needed.
 550 */
 551static void ks8851_irq_work(struct work_struct *work)
 552{
 553        struct ks8851_net *ks = container_of(work, struct ks8851_net, irq_work);
 554        unsigned status;
 555        unsigned handled = 0;
 556
 557        mutex_lock(&ks->lock);
 558
 559        status = ks8851_rdreg16(ks, KS_ISR);
 560
 561        netif_dbg(ks, intr, ks->netdev,
 562                  "%s: status 0x%04x\n", __func__, status);
 563
 564        if (status & IRQ_LCI) {
 565                /* should do something about checking link status */
 566                handled |= IRQ_LCI;
 567        }
 568
 569        if (status & IRQ_LDI) {
 570                u16 pmecr = ks8851_rdreg16(ks, KS_PMECR);
 571                pmecr &= ~PMECR_WKEVT_MASK;
 572                ks8851_wrreg16(ks, KS_PMECR, pmecr | PMECR_WKEVT_LINK);
 573
 574                handled |= IRQ_LDI;
 575        }
 576
 577        if (status & IRQ_RXPSI)
 578                handled |= IRQ_RXPSI;
 579
 580        if (status & IRQ_TXI) {
 581                handled |= IRQ_TXI;
 582
 583                /* no lock here, tx queue should have been stopped */
 584
 585                /* update our idea of how much tx space is available to the
 586                 * system */
 587                ks->tx_space = ks8851_rdreg16(ks, KS_TXMIR);
 588
 589                netif_dbg(ks, intr, ks->netdev,
 590                          "%s: txspace %d\n", __func__, ks->tx_space);
 591        }
 592
 593        if (status & IRQ_RXI)
 594                handled |= IRQ_RXI;
 595
 596        if (status & IRQ_SPIBEI) {
 597                dev_err(&ks->spidev->dev, "%s: spi bus error\n", __func__);
 598                handled |= IRQ_SPIBEI;
 599        }
 600
 601        ks8851_wrreg16(ks, KS_ISR, handled);
 602
 603        if (status & IRQ_RXI) {
 604                /* the datasheet says to disable the rx interrupt during
 605                 * packet read-out, however we're masking the interrupt
 606                 * from the device so do not bother masking just the RX
 607                 * from the device. */
 608
 609                ks8851_rx_pkts(ks);
 610        }
 611
 612        /* if something stopped the rx process, probably due to wanting
 613         * to change the rx settings, then do something about restarting
 614         * it. */
 615        if (status & IRQ_RXPSI) {
 616                struct ks8851_rxctrl *rxc = &ks->rxctrl;
 617
 618                /* update the multicast hash table */
 619                ks8851_wrreg16(ks, KS_MAHTR0, rxc->mchash[0]);
 620                ks8851_wrreg16(ks, KS_MAHTR1, rxc->mchash[1]);
 621                ks8851_wrreg16(ks, KS_MAHTR2, rxc->mchash[2]);
 622                ks8851_wrreg16(ks, KS_MAHTR3, rxc->mchash[3]);
 623
 624                ks8851_wrreg16(ks, KS_RXCR2, rxc->rxcr2);
 625                ks8851_wrreg16(ks, KS_RXCR1, rxc->rxcr1);
 626        }
 627
 628        mutex_unlock(&ks->lock);
 629
 630        if (status & IRQ_TXI)
 631                netif_wake_queue(ks->netdev);
 632
 633        enable_irq(ks->netdev->irq);
 634}
 635
 636/**
 637 * calc_txlen - calculate size of message to send packet
 638 * @len: Length of data
 639 *
 640 * Returns the size of the TXFIFO message needed to send
 641 * this packet.
 642 */
 643static inline unsigned calc_txlen(unsigned len)
 644{
 645        return ALIGN(len + 4, 4);
 646}
 647
 648/**
 649 * ks8851_wrpkt - write packet to TX FIFO
 650 * @ks: The device state.
 651 * @txp: The sk_buff to transmit.
 652 * @irq: IRQ on completion of the packet.
 653 *
 654 * Send the @txp to the chip. This means creating the relevant packet header
 655 * specifying the length of the packet and the other information the chip
 656 * needs, such as IRQ on completion. Send the header and the packet data to
 657 * the device.
 658 */
 659static void ks8851_wrpkt(struct ks8851_net *ks, struct sk_buff *txp, bool irq)
 660{
 661        struct spi_transfer *xfer = ks->spi_xfer2;
 662        struct spi_message *msg = &ks->spi_msg2;
 663        unsigned fid = 0;
 664        int ret;
 665
 666        netif_dbg(ks, tx_queued, ks->netdev, "%s: skb %p, %d@%p, irq %d\n",
 667                  __func__, txp, txp->len, txp->data, irq);
 668
 669        fid = ks->fid++;
 670        fid &= TXFR_TXFID_MASK;
 671
 672        if (irq)
 673                fid |= TXFR_TXIC;       /* irq on completion */
 674
 675        /* start header at txb[1] to align txw entries */
 676        ks->txh.txb[1] = KS_SPIOP_TXFIFO;
 677        ks->txh.txw[1] = cpu_to_le16(fid);
 678        ks->txh.txw[2] = cpu_to_le16(txp->len);
 679
 680        xfer->tx_buf = &ks->txh.txb[1];
 681        xfer->rx_buf = NULL;
 682        xfer->len = 5;
 683
 684        xfer++;
 685        xfer->tx_buf = txp->data;
 686        xfer->rx_buf = NULL;
 687        xfer->len = ALIGN(txp->len, 4);
 688
 689        ret = spi_sync(ks->spidev, msg);
 690        if (ret < 0)
 691                netdev_err(ks->netdev, "%s: spi_sync() failed\n", __func__);
 692}
 693
 694/**
 695 * ks8851_done_tx - update and then free skbuff after transmitting
 696 * @ks: The device state
 697 * @txb: The buffer transmitted
 698 */
 699static void ks8851_done_tx(struct ks8851_net *ks, struct sk_buff *txb)
 700{
 701        struct net_device *dev = ks->netdev;
 702
 703        dev->stats.tx_bytes += txb->len;
 704        dev->stats.tx_packets++;
 705
 706        dev_kfree_skb(txb);
 707}
 708
 709/**
 710 * ks8851_tx_work - process tx packet(s)
 711 * @work: The work strucutre what was scheduled.
 712 *
 713 * This is called when a number of packets have been scheduled for
 714 * transmission and need to be sent to the device.
 715 */
 716static void ks8851_tx_work(struct work_struct *work)
 717{
 718        struct ks8851_net *ks = container_of(work, struct ks8851_net, tx_work);
 719        struct sk_buff *txb;
 720        bool last = skb_queue_empty(&ks->txq);
 721
 722        mutex_lock(&ks->lock);
 723
 724        while (!last) {
 725                txb = skb_dequeue(&ks->txq);
 726                last = skb_queue_empty(&ks->txq);
 727
 728                if (txb != NULL) {
 729                        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr | RXQCR_SDA);
 730                        ks8851_wrpkt(ks, txb, last);
 731                        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 732                        ks8851_wrreg16(ks, KS_TXQCR, TXQCR_METFE);
 733
 734                        ks8851_done_tx(ks, txb);
 735                }
 736        }
 737
 738        mutex_unlock(&ks->lock);
 739}
 740
 741/**
 742 * ks8851_set_powermode - set power mode of the device
 743 * @ks: The device state
 744 * @pwrmode: The power mode value to write to KS_PMECR.
 745 *
 746 * Change the power mode of the chip.
 747 */
 748static void ks8851_set_powermode(struct ks8851_net *ks, unsigned pwrmode)
 749{
 750        unsigned pmecr;
 751
 752        netif_dbg(ks, hw, ks->netdev, "setting power mode %d\n", pwrmode);
 753
 754        pmecr = ks8851_rdreg16(ks, KS_PMECR);
 755        pmecr &= ~PMECR_PM_MASK;
 756        pmecr |= pwrmode;
 757
 758        ks8851_wrreg16(ks, KS_PMECR, pmecr);
 759}
 760
 761/**
 762 * ks8851_net_open - open network device
 763 * @dev: The network device being opened.
 764 *
 765 * Called when the network device is marked active, such as a user executing
 766 * 'ifconfig up' on the device.
 767 */
 768static int ks8851_net_open(struct net_device *dev)
 769{
 770        struct ks8851_net *ks = netdev_priv(dev);
 771
 772        /* lock the card, even if we may not actually be doing anything
 773         * else at the moment */
 774        mutex_lock(&ks->lock);
 775
 776        netif_dbg(ks, ifup, ks->netdev, "opening\n");
 777
 778        /* bring chip out of any power saving mode it was in */
 779        ks8851_set_powermode(ks, PMECR_PM_NORMAL);
 780
 781        /* issue a soft reset to the RX/TX QMU to put it into a known
 782         * state. */
 783        ks8851_soft_reset(ks, GRR_QMU);
 784
 785        /* setup transmission parameters */
 786
 787        ks8851_wrreg16(ks, KS_TXCR, (TXCR_TXE | /* enable transmit process */
 788                                     TXCR_TXPE | /* pad to min length */
 789                                     TXCR_TXCRC | /* add CRC */
 790                                     TXCR_TXFCE)); /* enable flow control */
 791
 792        /* auto-increment tx data, reset tx pointer */
 793        ks8851_wrreg16(ks, KS_TXFDPR, TXFDPR_TXFPAI);
 794
 795        /* setup receiver control */
 796
 797        ks8851_wrreg16(ks, KS_RXCR1, (RXCR1_RXPAFMA | /*  from mac filter */
 798                                      RXCR1_RXFCE | /* enable flow control */
 799                                      RXCR1_RXBE | /* broadcast enable */
 800                                      RXCR1_RXUE | /* unicast enable */
 801                                      RXCR1_RXE)); /* enable rx block */
 802
 803        /* transfer entire frames out in one go */
 804        ks8851_wrreg16(ks, KS_RXCR2, RXCR2_SRDBL_FRAME);
 805
 806        /* set receive counter timeouts */
 807        ks8851_wrreg16(ks, KS_RXDTTR, 1000); /* 1ms after first frame to IRQ */
 808        ks8851_wrreg16(ks, KS_RXDBCTR, 4096); /* >4Kbytes in buffer to IRQ */
 809        ks8851_wrreg16(ks, KS_RXFCTR, 10);  /* 10 frames to IRQ */
 810
 811        ks->rc_rxqcr = (RXQCR_RXFCTE |  /* IRQ on frame count exceeded */
 812                        RXQCR_RXDBCTE | /* IRQ on byte count exceeded */
 813                        RXQCR_RXDTTE);  /* IRQ on time exceeded */
 814
 815        ks8851_wrreg16(ks, KS_RXQCR, ks->rc_rxqcr);
 816
 817        /* clear then enable interrupts */
 818
 819#define STD_IRQ (IRQ_LCI |      /* Link Change */       \
 820                 IRQ_TXI |      /* TX done */           \
 821                 IRQ_RXI |      /* RX done */           \
 822                 IRQ_SPIBEI |   /* SPI bus error */     \
 823                 IRQ_TXPSI |    /* TX process stop */   \
 824                 IRQ_RXPSI)     /* RX process stop */
 825
 826        ks->rc_ier = STD_IRQ;
 827        ks8851_wrreg16(ks, KS_ISR, STD_IRQ);
 828        ks8851_wrreg16(ks, KS_IER, STD_IRQ);
 829
 830        netif_start_queue(ks->netdev);
 831
 832        netif_dbg(ks, ifup, ks->netdev, "network device up\n");
 833
 834        mutex_unlock(&ks->lock);
 835        return 0;
 836}
 837
 838/**
 839 * ks8851_net_stop - close network device
 840 * @dev: The device being closed.
 841 *
 842 * Called to close down a network device which has been active. Cancell any
 843 * work, shutdown the RX and TX process and then place the chip into a low
 844 * power state whilst it is not being used.
 845 */
 846static int ks8851_net_stop(struct net_device *dev)
 847{
 848        struct ks8851_net *ks = netdev_priv(dev);
 849
 850        netif_info(ks, ifdown, dev, "shutting down\n");
 851
 852        netif_stop_queue(dev);
 853
 854        mutex_lock(&ks->lock);
 855
 856        /* stop any outstanding work */
 857        flush_work(&ks->irq_work);
 858        flush_work(&ks->tx_work);
 859        flush_work(&ks->rxctrl_work);
 860
 861        /* turn off the IRQs and ack any outstanding */
 862        ks8851_wrreg16(ks, KS_IER, 0x0000);
 863        ks8851_wrreg16(ks, KS_ISR, 0xffff);
 864
 865        /* shutdown RX process */
 866        ks8851_wrreg16(ks, KS_RXCR1, 0x0000);
 867
 868        /* shutdown TX process */
 869        ks8851_wrreg16(ks, KS_TXCR, 0x0000);
 870
 871        /* set powermode to soft power down to save power */
 872        ks8851_set_powermode(ks, PMECR_PM_SOFTDOWN);
 873
 874        /* ensure any queued tx buffers are dumped */
 875        while (!skb_queue_empty(&ks->txq)) {
 876                struct sk_buff *txb = skb_dequeue(&ks->txq);
 877
 878                netif_dbg(ks, ifdown, ks->netdev,
 879                          "%s: freeing txb %p\n", __func__, txb);
 880
 881                dev_kfree_skb(txb);
 882        }
 883
 884        mutex_unlock(&ks->lock);
 885        return 0;
 886}
 887
 888/**
 889 * ks8851_start_xmit - transmit packet
 890 * @skb: The buffer to transmit
 891 * @dev: The device used to transmit the packet.
 892 *
 893 * Called by the network layer to transmit the @skb. Queue the packet for
 894 * the device and schedule the necessary work to transmit the packet when
 895 * it is free.
 896 *
 897 * We do this to firstly avoid sleeping with the network device locked,
 898 * and secondly so we can round up more than one packet to transmit which
 899 * means we can try and avoid generating too many transmit done interrupts.
 900 */
 901static netdev_tx_t ks8851_start_xmit(struct sk_buff *skb,
 902                                     struct net_device *dev)
 903{
 904        struct ks8851_net *ks = netdev_priv(dev);
 905        unsigned needed = calc_txlen(skb->len);
 906        netdev_tx_t ret = NETDEV_TX_OK;
 907
 908        netif_dbg(ks, tx_queued, ks->netdev,
 909                  "%s: skb %p, %d@%p\n", __func__, skb, skb->len, skb->data);
 910
 911        spin_lock(&ks->statelock);
 912
 913        if (needed > ks->tx_space) {
 914                netif_stop_queue(dev);
 915                ret = NETDEV_TX_BUSY;
 916        } else {
 917                ks->tx_space -= needed;
 918                skb_queue_tail(&ks->txq, skb);
 919        }
 920
 921        spin_unlock(&ks->statelock);
 922        schedule_work(&ks->tx_work);
 923
 924        return ret;
 925}
 926
 927/**
 928 * ks8851_rxctrl_work - work handler to change rx mode
 929 * @work: The work structure this belongs to.
 930 *
 931 * Lock the device and issue the necessary changes to the receive mode from
 932 * the network device layer. This is done so that we can do this without
 933 * having to sleep whilst holding the network device lock.
 934 *
 935 * Since the recommendation from Micrel is that the RXQ is shutdown whilst the
 936 * receive parameters are programmed, we issue a write to disable the RXQ and
 937 * then wait for the interrupt handler to be triggered once the RXQ shutdown is
 938 * complete. The interrupt handler then writes the new values into the chip.
 939 */
 940static void ks8851_rxctrl_work(struct work_struct *work)
 941{
 942        struct ks8851_net *ks = container_of(work, struct ks8851_net, rxctrl_work);
 943
 944        mutex_lock(&ks->lock);
 945
 946        /* need to shutdown RXQ before modifying filter parameters */
 947        ks8851_wrreg16(ks, KS_RXCR1, 0x00);
 948
 949        mutex_unlock(&ks->lock);
 950}
 951
 952static void ks8851_set_rx_mode(struct net_device *dev)
 953{
 954        struct ks8851_net *ks = netdev_priv(dev);
 955        struct ks8851_rxctrl rxctrl;
 956
 957        memset(&rxctrl, 0, sizeof(rxctrl));
 958
 959        if (dev->flags & IFF_PROMISC) {
 960                /* interface to receive everything */
 961
 962                rxctrl.rxcr1 = RXCR1_RXAE | RXCR1_RXINVF;
 963        } else if (dev->flags & IFF_ALLMULTI) {
 964                /* accept all multicast packets */
 965
 966                rxctrl.rxcr1 = (RXCR1_RXME | RXCR1_RXAE |
 967                                RXCR1_RXPAFMA | RXCR1_RXMAFMA);
 968        } else if (dev->flags & IFF_MULTICAST && !netdev_mc_empty(dev)) {
 969                struct netdev_hw_addr *ha;
 970                u32 crc;
 971
 972                /* accept some multicast */
 973
 974                netdev_for_each_mc_addr(ha, dev) {
 975                        crc = ether_crc(ETH_ALEN, ha->addr);
 976                        crc >>= (32 - 6);  /* get top six bits */
 977
 978                        rxctrl.mchash[crc >> 4] |= (1 << (crc & 0xf));
 979                }
 980
 981                rxctrl.rxcr1 = RXCR1_RXME | RXCR1_RXPAFMA;
 982        } else {
 983                /* just accept broadcast / unicast */
 984                rxctrl.rxcr1 = RXCR1_RXPAFMA;
 985        }
 986
 987        rxctrl.rxcr1 |= (RXCR1_RXUE | /* unicast enable */
 988                         RXCR1_RXBE | /* broadcast enable */
 989                         RXCR1_RXE | /* RX process enable */
 990                         RXCR1_RXFCE); /* enable flow control */
 991
 992        rxctrl.rxcr2 |= RXCR2_SRDBL_FRAME;
 993
 994        /* schedule work to do the actual set of the data if needed */
 995
 996        spin_lock(&ks->statelock);
 997
 998        if (memcmp(&rxctrl, &ks->rxctrl, sizeof(rxctrl)) != 0) {
 999                memcpy(&ks->rxctrl, &rxctrl, sizeof(ks->rxctrl));
1000                schedule_work(&ks->rxctrl_work);
1001        }
1002
1003        spin_unlock(&ks->statelock);
1004}
1005
1006static int ks8851_set_mac_address(struct net_device *dev, void *addr)
1007{
1008        struct sockaddr *sa = addr;
1009
1010        if (netif_running(dev))
1011                return -EBUSY;
1012
1013        if (!is_valid_ether_addr(sa->sa_data))
1014                return -EADDRNOTAVAIL;
1015
1016        memcpy(dev->dev_addr, sa->sa_data, ETH_ALEN);
1017        return ks8851_write_mac_addr(dev);
1018}
1019
1020static int ks8851_net_ioctl(struct net_device *dev, struct ifreq *req, int cmd)
1021{
1022        struct ks8851_net *ks = netdev_priv(dev);
1023
1024        if (!netif_running(dev))
1025                return -EINVAL;
1026
1027        return generic_mii_ioctl(&ks->mii, if_mii(req), cmd, NULL);
1028}
1029
1030static const struct net_device_ops ks8851_netdev_ops = {
1031        .ndo_open               = ks8851_net_open,
1032        .ndo_stop               = ks8851_net_stop,
1033        .ndo_do_ioctl           = ks8851_net_ioctl,
1034        .ndo_start_xmit         = ks8851_start_xmit,
1035        .ndo_set_mac_address    = ks8851_set_mac_address,
1036        .ndo_set_rx_mode        = ks8851_set_rx_mode,
1037        .ndo_change_mtu         = eth_change_mtu,
1038        .ndo_validate_addr      = eth_validate_addr,
1039};
1040
1041/* Companion eeprom access */
1042
1043enum {  /* EEPROM programming states */
1044        EEPROM_CONTROL,
1045        EEPROM_ADDRESS,
1046        EEPROM_DATA,
1047        EEPROM_COMPLETE
1048};
1049
1050/**
1051 * ks8851_eeprom_read - read a 16bits word in ks8851 companion EEPROM
1052 * @dev: The network device the PHY is on.
1053 * @addr: EEPROM address to read
1054 *
1055 * eeprom_size: used to define the data coding length. Can be changed
1056 * through debug-fs.
1057 *
1058 * Programs a read on the EEPROM using ks8851 EEPROM SW access feature.
1059 * Warning: The READ feature is not supported on ks8851 revision 0.
1060 *
1061 * Rough programming model:
1062 *  - on period start: set clock high and read value on bus
1063 *  - on period / 2: set clock low and program value on bus
1064 *  - start on period / 2
1065 */
1066unsigned int ks8851_eeprom_read(struct net_device *dev, unsigned int addr)
1067{
1068        struct ks8851_net *ks = netdev_priv(dev);
1069        int eepcr;
1070        int ctrl = EEPROM_OP_READ;
1071        int state = EEPROM_CONTROL;
1072        int bit_count = EEPROM_OP_LEN - 1;
1073        unsigned int data = 0;
1074        int dummy;
1075        unsigned int addr_len;
1076
1077        addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1078
1079        /* start transaction: chip select high, authorize write */
1080        mutex_lock(&ks->lock);
1081        eepcr = EEPCR_EESA | EEPCR_EESRWA;
1082        ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1083        eepcr |= EEPCR_EECS;
1084        ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1085        mutex_unlock(&ks->lock);
1086
1087        while (state != EEPROM_COMPLETE) {
1088                /* falling clock period starts... */
1089                /* set EED_IO pin for control and address */
1090                eepcr &= ~EEPCR_EEDO;
1091                switch (state) {
1092                case EEPROM_CONTROL:
1093                        eepcr |= ((ctrl >> bit_count) & 1) << 2;
1094                        if (bit_count-- <= 0) {
1095                                bit_count = addr_len - 1;
1096                                state = EEPROM_ADDRESS;
1097                        }
1098                        break;
1099                case EEPROM_ADDRESS:
1100                        eepcr |= ((addr >> bit_count) & 1) << 2;
1101                        bit_count--;
1102                        break;
1103                case EEPROM_DATA:
1104                        /* Change to receive mode */
1105                        eepcr &= ~EEPCR_EESRWA;
1106                        break;
1107                }
1108
1109                /* lower clock  */
1110                eepcr &= ~EEPCR_EESCK;
1111
1112                mutex_lock(&ks->lock);
1113                ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1114                mutex_unlock(&ks->lock);
1115
1116                /* waitread period / 2 */
1117                udelay(EEPROM_SK_PERIOD / 2);
1118
1119                /* rising clock period starts... */
1120
1121                /* raise clock */
1122                mutex_lock(&ks->lock);
1123                eepcr |= EEPCR_EESCK;
1124                ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1125                mutex_unlock(&ks->lock);
1126
1127                /* Manage read */
1128                switch (state) {
1129                case EEPROM_ADDRESS:
1130                        if (bit_count < 0) {
1131                                bit_count = EEPROM_DATA_LEN - 1;
1132                                state = EEPROM_DATA;
1133                        }
1134                        break;
1135                case EEPROM_DATA:
1136                        mutex_lock(&ks->lock);
1137                        dummy = ks8851_rdreg16(ks, KS_EEPCR);
1138                        mutex_unlock(&ks->lock);
1139                        data |= ((dummy >> EEPCR_EESB_OFFSET) & 1) << bit_count;
1140                        if (bit_count-- <= 0)
1141                                state = EEPROM_COMPLETE;
1142                        break;
1143                }
1144
1145                /* wait period / 2 */
1146                udelay(EEPROM_SK_PERIOD / 2);
1147        }
1148
1149        /* close transaction */
1150        mutex_lock(&ks->lock);
1151        eepcr &= ~EEPCR_EECS;
1152        ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1153        eepcr = 0;
1154        ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1155        mutex_unlock(&ks->lock);
1156
1157        return data;
1158}
1159
1160/**
1161 * ks8851_eeprom_write - write a 16bits word in ks8851 companion EEPROM
1162 * @dev: The network device the PHY is on.
1163 * @op: operand (can be WRITE, EWEN, EWDS)
1164 * @addr: EEPROM address to write
1165 * @data: data to write
1166 *
1167 * eeprom_size: used to define the data coding length. Can be changed
1168 * through debug-fs.
1169 *
1170 * Programs a write on the EEPROM using ks8851 EEPROM SW access feature.
1171 *
1172 * Note that a write enable is required before writing data.
1173 *
1174 * Rough programming model:
1175 *  - on period start: set clock high
1176 *  - on period / 2: set clock low and program value on bus
1177 *  - start on period / 2
1178 */
1179void ks8851_eeprom_write(struct net_device *dev, unsigned int op,
1180                                        unsigned int addr, unsigned int data)
1181{
1182        struct ks8851_net *ks = netdev_priv(dev);
1183        int eepcr;
1184        int state = EEPROM_CONTROL;
1185        int bit_count = EEPROM_OP_LEN - 1;
1186        unsigned int addr_len;
1187
1188        addr_len = (ks->eeprom_size == 128) ? 6 : 8;
1189
1190        switch (op) {
1191        case EEPROM_OP_EWEN:
1192                addr = 0x30;
1193        break;
1194        case EEPROM_OP_EWDS:
1195                addr = 0;
1196                break;
1197        }
1198
1199        /* start transaction: chip select high, authorize write */
1200        mutex_lock(&ks->lock);
1201        eepcr = EEPCR_EESA | EEPCR_EESRWA;
1202        ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1203        eepcr |= EEPCR_EECS;
1204        ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1205        mutex_unlock(&ks->lock);
1206
1207        while (state != EEPROM_COMPLETE) {
1208                /* falling clock period starts... */
1209                /* set EED_IO pin for control and address */
1210                eepcr &= ~EEPCR_EEDO;
1211                switch (state) {
1212                case EEPROM_CONTROL:
1213                        eepcr |= ((op >> bit_count) & 1) << 2;
1214                        if (bit_count-- <= 0) {
1215                                bit_count = addr_len - 1;
1216                                state = EEPROM_ADDRESS;
1217                        }
1218                        break;
1219                case EEPROM_ADDRESS:
1220                        eepcr |= ((addr >> bit_count) & 1) << 2;
1221                        if (bit_count-- <= 0) {
1222                                if (op == EEPROM_OP_WRITE) {
1223                                        bit_count = EEPROM_DATA_LEN - 1;
1224                                        state = EEPROM_DATA;
1225                                } else {
1226                                        state = EEPROM_COMPLETE;
1227                                }
1228                        }
1229                        break;
1230                case EEPROM_DATA:
1231                        eepcr |= ((data >> bit_count) & 1) << 2;
1232                        if (bit_count-- <= 0)
1233                                state = EEPROM_COMPLETE;
1234                        break;
1235                }
1236
1237                /* lower clock  */
1238                eepcr &= ~EEPCR_EESCK;
1239
1240                mutex_lock(&ks->lock);
1241                ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1242                mutex_unlock(&ks->lock);
1243
1244                /* wait period / 2 */
1245                udelay(EEPROM_SK_PERIOD / 2);
1246
1247                /* rising clock period starts... */
1248
1249                /* raise clock */
1250                eepcr |= EEPCR_EESCK;
1251                mutex_lock(&ks->lock);
1252                ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1253                mutex_unlock(&ks->lock);
1254
1255                /* wait period / 2 */
1256                udelay(EEPROM_SK_PERIOD / 2);
1257        }
1258
1259        /* close transaction */
1260        mutex_lock(&ks->lock);
1261        eepcr &= ~EEPCR_EECS;
1262        ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1263        eepcr = 0;
1264        ks8851_wrreg16(ks, KS_EEPCR, eepcr);
1265        mutex_unlock(&ks->lock);
1266
1267}
1268
1269/* ethtool support */
1270
1271static void ks8851_get_drvinfo(struct net_device *dev,
1272                               struct ethtool_drvinfo *di)
1273{
1274        strlcpy(di->driver, "KS8851", sizeof(di->driver));
1275        strlcpy(di->version, "1.00", sizeof(di->version));
1276        strlcpy(di->bus_info, dev_name(dev->dev.parent), sizeof(di->bus_info));
1277}
1278
1279static u32 ks8851_get_msglevel(struct net_device *dev)
1280{
1281        struct ks8851_net *ks = netdev_priv(dev);
1282        return ks->msg_enable;
1283}
1284
1285static void ks8851_set_msglevel(struct net_device *dev, u32 to)
1286{
1287        struct ks8851_net *ks = netdev_priv(dev);
1288        ks->msg_enable = to;
1289}
1290
1291static int ks8851_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1292{
1293        struct ks8851_net *ks = netdev_priv(dev);
1294        return mii_ethtool_gset(&ks->mii, cmd);
1295}
1296
1297static int ks8851_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
1298{
1299        struct ks8851_net *ks = netdev_priv(dev);
1300        return mii_ethtool_sset(&ks->mii, cmd);
1301}
1302
1303static u32 ks8851_get_link(struct net_device *dev)
1304{
1305        struct ks8851_net *ks = netdev_priv(dev);
1306        return mii_link_ok(&ks->mii);
1307}
1308
1309static int ks8851_nway_reset(struct net_device *dev)
1310{
1311        struct ks8851_net *ks = netdev_priv(dev);
1312        return mii_nway_restart(&ks->mii);
1313}
1314
1315static int ks8851_get_eeprom_len(struct net_device *dev)
1316{
1317        struct ks8851_net *ks = netdev_priv(dev);
1318        return ks->eeprom_size;
1319}
1320
1321static int ks8851_get_eeprom(struct net_device *dev,
1322                            struct ethtool_eeprom *eeprom, u8 *bytes)
1323{
1324        struct ks8851_net *ks = netdev_priv(dev);
1325        u16 *eeprom_buff;
1326        int first_word;
1327        int last_word;
1328        int ret_val = 0;
1329        u16 i;
1330
1331        if (eeprom->len == 0)
1332                return -EINVAL;
1333
1334        if (eeprom->len > ks->eeprom_size)
1335                return -EINVAL;
1336
1337        eeprom->magic = ks8851_rdreg16(ks, KS_CIDER);
1338
1339        first_word = eeprom->offset >> 1;
1340        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1341
1342        eeprom_buff = kmalloc(sizeof(u16) *
1343                        (last_word - first_word + 1), GFP_KERNEL);
1344        if (!eeprom_buff)
1345                return -ENOMEM;
1346
1347        for (i = 0; i < last_word - first_word + 1; i++)
1348                eeprom_buff[i] = ks8851_eeprom_read(dev, first_word + 1);
1349
1350        /* Device's eeprom is little-endian, word addressable */
1351        for (i = 0; i < last_word - first_word + 1; i++)
1352                le16_to_cpus(&eeprom_buff[i]);
1353
1354        memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1), eeprom->len);
1355        kfree(eeprom_buff);
1356
1357        return ret_val;
1358}
1359
1360static int ks8851_set_eeprom(struct net_device *dev,
1361                            struct ethtool_eeprom *eeprom, u8 *bytes)
1362{
1363        struct ks8851_net *ks = netdev_priv(dev);
1364        u16 *eeprom_buff;
1365        void *ptr;
1366        int max_len;
1367        int first_word;
1368        int last_word;
1369        int ret_val = 0;
1370        u16 i;
1371
1372        if (eeprom->len == 0)
1373                return -EOPNOTSUPP;
1374
1375        if (eeprom->len > ks->eeprom_size)
1376                return -EINVAL;
1377
1378        if (eeprom->magic != ks8851_rdreg16(ks, KS_CIDER))
1379                return -EFAULT;
1380
1381        first_word = eeprom->offset >> 1;
1382        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
1383        max_len = (last_word - first_word + 1) * 2;
1384        eeprom_buff = kmalloc(max_len, GFP_KERNEL);
1385        if (!eeprom_buff)
1386                return -ENOMEM;
1387
1388        ptr = (void *)eeprom_buff;
1389
1390        if (eeprom->offset & 1) {
1391                /* need read/modify/write of first changed EEPROM word */
1392                /* only the second byte of the word is being modified */
1393                eeprom_buff[0] = ks8851_eeprom_read(dev, first_word);
1394                ptr++;
1395        }
1396        if ((eeprom->offset + eeprom->len) & 1)
1397                /* need read/modify/write of last changed EEPROM word */
1398                /* only the first byte of the word is being modified */
1399                eeprom_buff[last_word - first_word] =
1400                                        ks8851_eeprom_read(dev, last_word);
1401
1402
1403        /* Device's eeprom is little-endian, word addressable */
1404        le16_to_cpus(&eeprom_buff[0]);
1405        le16_to_cpus(&eeprom_buff[last_word - first_word]);
1406
1407        memcpy(ptr, bytes, eeprom->len);
1408
1409        for (i = 0; i < last_word - first_word + 1; i++)
1410                eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
1411
1412        ks8851_eeprom_write(dev, EEPROM_OP_EWEN, 0, 0);
1413
1414        for (i = 0; i < last_word - first_word + 1; i++) {
1415                ks8851_eeprom_write(dev, EEPROM_OP_WRITE, first_word + i,
1416                                                        eeprom_buff[i]);
1417                mdelay(EEPROM_WRITE_TIME);
1418        }
1419
1420        ks8851_eeprom_write(dev, EEPROM_OP_EWDS, 0, 0);
1421
1422        kfree(eeprom_buff);
1423        return ret_val;
1424}
1425
1426static const struct ethtool_ops ks8851_ethtool_ops = {
1427        .get_drvinfo    = ks8851_get_drvinfo,
1428        .get_msglevel   = ks8851_get_msglevel,
1429        .set_msglevel   = ks8851_set_msglevel,
1430        .get_settings   = ks8851_get_settings,
1431        .set_settings   = ks8851_set_settings,
1432        .get_link       = ks8851_get_link,
1433        .nway_reset     = ks8851_nway_reset,
1434        .get_eeprom_len = ks8851_get_eeprom_len,
1435        .get_eeprom     = ks8851_get_eeprom,
1436        .set_eeprom     = ks8851_set_eeprom,
1437};
1438
1439/* MII interface controls */
1440
1441/**
1442 * ks8851_phy_reg - convert MII register into a KS8851 register
1443 * @reg: MII register number.
1444 *
1445 * Return the KS8851 register number for the corresponding MII PHY register
1446 * if possible. Return zero if the MII register has no direct mapping to the
1447 * KS8851 register set.
1448 */
1449static int ks8851_phy_reg(int reg)
1450{
1451        switch (reg) {
1452        case MII_BMCR:
1453                return KS_P1MBCR;
1454        case MII_BMSR:
1455                return KS_P1MBSR;
1456        case MII_PHYSID1:
1457                return KS_PHY1ILR;
1458        case MII_PHYSID2:
1459                return KS_PHY1IHR;
1460        case MII_ADVERTISE:
1461                return KS_P1ANAR;
1462        case MII_LPA:
1463                return KS_P1ANLPR;
1464        }
1465
1466        return 0x0;
1467}
1468
1469/**
1470 * ks8851_phy_read - MII interface PHY register read.
1471 * @dev: The network device the PHY is on.
1472 * @phy_addr: Address of PHY (ignored as we only have one)
1473 * @reg: The register to read.
1474 *
1475 * This call reads data from the PHY register specified in @reg. Since the
1476 * device does not support all the MII registers, the non-existent values
1477 * are always returned as zero.
1478 *
1479 * We return zero for unsupported registers as the MII code does not check
1480 * the value returned for any error status, and simply returns it to the
1481 * caller. The mii-tool that the driver was tested with takes any -ve error
1482 * as real PHY capabilities, thus displaying incorrect data to the user.
1483 */
1484static int ks8851_phy_read(struct net_device *dev, int phy_addr, int reg)
1485{
1486        struct ks8851_net *ks = netdev_priv(dev);
1487        int ksreg;
1488        int result;
1489
1490        ksreg = ks8851_phy_reg(reg);
1491        if (!ksreg)
1492                return 0x0;     /* no error return allowed, so use zero */
1493
1494        mutex_lock(&ks->lock);
1495        result = ks8851_rdreg16(ks, ksreg);
1496        mutex_unlock(&ks->lock);
1497
1498        return result;
1499}
1500
1501static void ks8851_phy_write(struct net_device *dev,
1502                             int phy, int reg, int value)
1503{
1504        struct ks8851_net *ks = netdev_priv(dev);
1505        int ksreg;
1506
1507        ksreg = ks8851_phy_reg(reg);
1508        if (ksreg) {
1509                mutex_lock(&ks->lock);
1510                ks8851_wrreg16(ks, ksreg, value);
1511                mutex_unlock(&ks->lock);
1512        }
1513}
1514
1515/**
1516 * ks8851_read_selftest - read the selftest memory info.
1517 * @ks: The device state
1518 *
1519 * Read and check the TX/RX memory selftest information.
1520 */
1521static int ks8851_read_selftest(struct ks8851_net *ks)
1522{
1523        unsigned both_done = MBIR_TXMBF | MBIR_RXMBF;
1524        int ret = 0;
1525        unsigned rd;
1526
1527        rd = ks8851_rdreg16(ks, KS_MBIR);
1528
1529        if ((rd & both_done) != both_done) {
1530                netdev_warn(ks->netdev, "Memory selftest not finished\n");
1531                return 0;
1532        }
1533
1534        if (rd & MBIR_TXMBFA) {
1535                netdev_err(ks->netdev, "TX memory selftest fail\n");
1536                ret |= 1;
1537        }
1538
1539        if (rd & MBIR_RXMBFA) {
1540                netdev_err(ks->netdev, "RX memory selftest fail\n");
1541                ret |= 2;
1542        }
1543
1544        return 0;
1545}
1546
1547/* driver bus management functions */
1548
1549#ifdef CONFIG_PM
1550static int ks8851_suspend(struct spi_device *spi, pm_message_t state)
1551{
1552        struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1553        struct net_device *dev = ks->netdev;
1554
1555        if (netif_running(dev)) {
1556                netif_device_detach(dev);
1557                ks8851_net_stop(dev);
1558        }
1559
1560        return 0;
1561}
1562
1563static int ks8851_resume(struct spi_device *spi)
1564{
1565        struct ks8851_net *ks = dev_get_drvdata(&spi->dev);
1566        struct net_device *dev = ks->netdev;
1567
1568        if (netif_running(dev)) {
1569                ks8851_net_open(dev);
1570                netif_device_attach(dev);
1571        }
1572
1573        return 0;
1574}
1575#else
1576#define ks8851_suspend NULL
1577#define ks8851_resume NULL
1578#endif
1579
1580static int __devinit ks8851_probe(struct spi_device *spi)
1581{
1582        struct net_device *ndev;
1583        struct ks8851_net *ks;
1584        int ret;
1585
1586        ndev = alloc_etherdev(sizeof(struct ks8851_net));
1587        if (!ndev) {
1588                dev_err(&spi->dev, "failed to alloc ethernet device\n");
1589                return -ENOMEM;
1590        }
1591
1592        spi->bits_per_word = 8;
1593
1594        ks = netdev_priv(ndev);
1595
1596        ks->netdev = ndev;
1597        ks->spidev = spi;
1598        ks->tx_space = 6144;
1599
1600        mutex_init(&ks->lock);
1601        spin_lock_init(&ks->statelock);
1602
1603        INIT_WORK(&ks->tx_work, ks8851_tx_work);
1604        INIT_WORK(&ks->irq_work, ks8851_irq_work);
1605        INIT_WORK(&ks->rxctrl_work, ks8851_rxctrl_work);
1606
1607        /* initialise pre-made spi transfer messages */
1608
1609        spi_message_init(&ks->spi_msg1);
1610        spi_message_add_tail(&ks->spi_xfer1, &ks->spi_msg1);
1611
1612        spi_message_init(&ks->spi_msg2);
1613        spi_message_add_tail(&ks->spi_xfer2[0], &ks->spi_msg2);
1614        spi_message_add_tail(&ks->spi_xfer2[1], &ks->spi_msg2);
1615
1616        /* setup mii state */
1617        ks->mii.dev             = ndev;
1618        ks->mii.phy_id          = 1,
1619        ks->mii.phy_id_mask     = 1;
1620        ks->mii.reg_num_mask    = 0xf;
1621        ks->mii.mdio_read       = ks8851_phy_read;
1622        ks->mii.mdio_write      = ks8851_phy_write;
1623
1624        dev_info(&spi->dev, "message enable is %d\n", msg_enable);
1625
1626        /* set the default message enable */
1627        ks->msg_enable = netif_msg_init(msg_enable, (NETIF_MSG_DRV |
1628                                                     NETIF_MSG_PROBE |
1629                                                     NETIF_MSG_LINK));
1630
1631        skb_queue_head_init(&ks->txq);
1632
1633        SET_ETHTOOL_OPS(ndev, &ks8851_ethtool_ops);
1634        SET_NETDEV_DEV(ndev, &spi->dev);
1635
1636        dev_set_drvdata(&spi->dev, ks);
1637
1638        ndev->if_port = IF_PORT_100BASET;
1639        ndev->netdev_ops = &ks8851_netdev_ops;
1640        ndev->irq = spi->irq;
1641
1642        /* issue a global soft reset to reset the device. */
1643        ks8851_soft_reset(ks, GRR_GSR);
1644
1645        /* simple check for a valid chip being connected to the bus */
1646
1647        if ((ks8851_rdreg16(ks, KS_CIDER) & ~CIDER_REV_MASK) != CIDER_ID) {
1648                dev_err(&spi->dev, "failed to read device ID\n");
1649                ret = -ENODEV;
1650                goto err_id;
1651        }
1652
1653        /* cache the contents of the CCR register for EEPROM, etc. */
1654        ks->rc_ccr = ks8851_rdreg16(ks, KS_CCR);
1655
1656        if (ks->rc_ccr & CCR_EEPROM)
1657                ks->eeprom_size = 128;
1658        else
1659                ks->eeprom_size = 0;
1660
1661        ks8851_read_selftest(ks);
1662        ks8851_init_mac(ks);
1663
1664        ret = request_irq(spi->irq, ks8851_irq, IRQF_TRIGGER_LOW,
1665                          ndev->name, ks);
1666        if (ret < 0) {
1667                dev_err(&spi->dev, "failed to get irq\n");
1668                goto err_irq;
1669        }
1670
1671        ret = register_netdev(ndev);
1672        if (ret) {
1673                dev_err(&spi->dev, "failed to register network device\n");
1674                goto err_netdev;
1675        }
1676
1677        netdev_info(ndev, "revision %d, MAC %pM, IRQ %d\n",
1678                    CIDER_REV_GET(ks8851_rdreg16(ks, KS_CIDER)),
1679                    ndev->dev_addr, ndev->irq);
1680
1681        return 0;
1682
1683
1684err_netdev:
1685        free_irq(ndev->irq, ndev);
1686
1687err_id:
1688err_irq:
1689        free_netdev(ndev);
1690        return ret;
1691}
1692
1693static int __devexit ks8851_remove(struct spi_device *spi)
1694{
1695        struct ks8851_net *priv = dev_get_drvdata(&spi->dev);
1696
1697        if (netif_msg_drv(priv))
1698                dev_info(&spi->dev, "remove\n");
1699
1700        unregister_netdev(priv->netdev);
1701        free_irq(spi->irq, priv);
1702        free_netdev(priv->netdev);
1703
1704        return 0;
1705}
1706
1707static struct spi_driver ks8851_driver = {
1708        .driver = {
1709                .name = "ks8851",
1710                .owner = THIS_MODULE,
1711        },
1712        .probe = ks8851_probe,
1713        .remove = __devexit_p(ks8851_remove),
1714        .suspend = ks8851_suspend,
1715        .resume = ks8851_resume,
1716};
1717
1718static int __init ks8851_init(void)
1719{
1720        return spi_register_driver(&ks8851_driver);
1721}
1722
1723static void __exit ks8851_exit(void)
1724{
1725        spi_unregister_driver(&ks8851_driver);
1726}
1727
1728module_init(ks8851_init);
1729module_exit(ks8851_exit);
1730
1731MODULE_DESCRIPTION("KS8851 Network driver");
1732MODULE_AUTHOR("Ben Dooks <ben@simtec.co.uk>");
1733MODULE_LICENSE("GPL");
1734
1735module_param_named(message, msg_enable, int, 0);
1736MODULE_PARM_DESC(message, "Message verbosity level (0=none, 31=all)");
1737MODULE_ALIAS("spi:ks8851");
1738