linux/drivers/net/natsemi.c
<<
>>
Prefs
   1/* natsemi.c: A Linux PCI Ethernet driver for the NatSemi DP8381x series. */
   2/*
   3        Written/copyright 1999-2001 by Donald Becker.
   4        Portions copyright (c) 2001,2002 Sun Microsystems (thockin@sun.com)
   5        Portions copyright 2001,2002 Manfred Spraul (manfred@colorfullife.com)
   6        Portions copyright 2004 Harald Welte <laforge@gnumonks.org>
   7
   8        This software may be used and distributed according to the terms of
   9        the GNU General Public License (GPL), incorporated herein by reference.
  10        Drivers based on or derived from this code fall under the GPL and must
  11        retain the authorship, copyright and license notice.  This file is not
  12        a complete program and may only be used when the entire operating
  13        system is licensed under the GPL.  License for under other terms may be
  14        available.  Contact the original author for details.
  15
  16        The original author may be reached as becker@scyld.com, or at
  17        Scyld Computing Corporation
  18        410 Severn Ave., Suite 210
  19        Annapolis MD 21403
  20
  21        Support information and updates available at
  22        http://www.scyld.com/network/netsemi.html
  23        [link no longer provides useful info -jgarzik]
  24
  25
  26        TODO:
  27        * big endian support with CFG:BEM instead of cpu_to_le32
  28*/
  29
  30#include <linux/module.h>
  31#include <linux/kernel.h>
  32#include <linux/string.h>
  33#include <linux/timer.h>
  34#include <linux/errno.h>
  35#include <linux/ioport.h>
  36#include <linux/slab.h>
  37#include <linux/interrupt.h>
  38#include <linux/pci.h>
  39#include <linux/netdevice.h>
  40#include <linux/etherdevice.h>
  41#include <linux/skbuff.h>
  42#include <linux/init.h>
  43#include <linux/spinlock.h>
  44#include <linux/ethtool.h>
  45#include <linux/delay.h>
  46#include <linux/rtnetlink.h>
  47#include <linux/mii.h>
  48#include <linux/crc32.h>
  49#include <linux/bitops.h>
  50#include <linux/prefetch.h>
  51#include <asm/processor.h>      /* Processor type for cache alignment. */
  52#include <asm/io.h>
  53#include <asm/irq.h>
  54#include <asm/uaccess.h>
  55
  56#define DRV_NAME        "natsemi"
  57#define DRV_VERSION     "2.1"
  58#define DRV_RELDATE     "Sept 11, 2006"
  59
  60#define RX_OFFSET       2
  61
  62/* Updated to recommendations in pci-skeleton v2.03. */
  63
  64/* The user-configurable values.
  65   These may be modified when a driver module is loaded.*/
  66
  67#define NATSEMI_DEF_MSG         (NETIF_MSG_DRV          | \
  68                                 NETIF_MSG_LINK         | \
  69                                 NETIF_MSG_WOL          | \
  70                                 NETIF_MSG_RX_ERR       | \
  71                                 NETIF_MSG_TX_ERR)
  72static int debug = -1;
  73
  74static int mtu;
  75
  76/* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
  77   This chip uses a 512 element hash table based on the Ethernet CRC.  */
  78static const int multicast_filter_limit = 100;
  79
  80/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  81   Setting to > 1518 effectively disables this feature. */
  82static int rx_copybreak;
  83
  84static int dspcfg_workaround = 1;
  85
  86/* Used to pass the media type, etc.
  87   Both 'options[]' and 'full_duplex[]' should exist for driver
  88   interoperability.
  89   The media type is usually passed in 'options[]'.
  90*/
  91#define MAX_UNITS 8             /* More are supported, limit only on options */
  92static int options[MAX_UNITS];
  93static int full_duplex[MAX_UNITS];
  94
  95/* Operational parameters that are set at compile time. */
  96
  97/* Keep the ring sizes a power of two for compile efficiency.
  98   The compiler will convert <unsigned>'%'<2^N> into a bit mask.
  99   Making the Tx ring too large decreases the effectiveness of channel
 100   bonding and packet priority.
 101   There are no ill effects from too-large receive rings. */
 102#define TX_RING_SIZE    16
 103#define TX_QUEUE_LEN    10 /* Limit ring entries actually used, min 4. */
 104#define RX_RING_SIZE    32
 105
 106/* Operational parameters that usually are not changed. */
 107/* Time in jiffies before concluding the transmitter is hung. */
 108#define TX_TIMEOUT  (2*HZ)
 109
 110#define NATSEMI_HW_TIMEOUT      400
 111#define NATSEMI_TIMER_FREQ      5*HZ
 112#define NATSEMI_PG0_NREGS       64
 113#define NATSEMI_RFDR_NREGS      8
 114#define NATSEMI_PG1_NREGS       4
 115#define NATSEMI_NREGS           (NATSEMI_PG0_NREGS + NATSEMI_RFDR_NREGS + \
 116                                 NATSEMI_PG1_NREGS)
 117#define NATSEMI_REGS_VER        1 /* v1 added RFDR registers */
 118#define NATSEMI_REGS_SIZE       (NATSEMI_NREGS * sizeof(u32))
 119
 120/* Buffer sizes:
 121 * The nic writes 32-bit values, even if the upper bytes of
 122 * a 32-bit value are beyond the end of the buffer.
 123 */
 124#define NATSEMI_HEADERS         22      /* 2*mac,type,vlan,crc */
 125#define NATSEMI_PADDING         16      /* 2 bytes should be sufficient */
 126#define NATSEMI_LONGPKT         1518    /* limit for normal packets */
 127#define NATSEMI_RX_LIMIT        2046    /* maximum supported by hardware */
 128
 129/* These identify the driver base version and may not be removed. */
 130static const char version[] __devinitconst =
 131  KERN_INFO DRV_NAME " dp8381x driver, version "
 132      DRV_VERSION ", " DRV_RELDATE "\n"
 133  "  originally by Donald Becker <becker@scyld.com>\n"
 134  "  2.4.x kernel port by Jeff Garzik, Tjeerd Mulder\n";
 135
 136MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 137MODULE_DESCRIPTION("National Semiconductor DP8381x series PCI Ethernet driver");
 138MODULE_LICENSE("GPL");
 139
 140module_param(mtu, int, 0);
 141module_param(debug, int, 0);
 142module_param(rx_copybreak, int, 0);
 143module_param(dspcfg_workaround, int, 0);
 144module_param_array(options, int, NULL, 0);
 145module_param_array(full_duplex, int, NULL, 0);
 146MODULE_PARM_DESC(mtu, "DP8381x MTU (all boards)");
 147MODULE_PARM_DESC(debug, "DP8381x default debug level");
 148MODULE_PARM_DESC(rx_copybreak,
 149        "DP8381x copy breakpoint for copy-only-tiny-frames");
 150MODULE_PARM_DESC(dspcfg_workaround, "DP8381x: control DspCfg workaround");
 151MODULE_PARM_DESC(options,
 152        "DP8381x: Bits 0-3: media type, bit 17: full duplex");
 153MODULE_PARM_DESC(full_duplex, "DP8381x full duplex setting(s) (1)");
 154
 155/*
 156                                Theory of Operation
 157
 158I. Board Compatibility
 159
 160This driver is designed for National Semiconductor DP83815 PCI Ethernet NIC.
 161It also works with other chips in in the DP83810 series.
 162
 163II. Board-specific settings
 164
 165This driver requires the PCI interrupt line to be valid.
 166It honors the EEPROM-set values.
 167
 168III. Driver operation
 169
 170IIIa. Ring buffers
 171
 172This driver uses two statically allocated fixed-size descriptor lists
 173formed into rings by a branch from the final descriptor to the beginning of
 174the list.  The ring sizes are set at compile time by RX/TX_RING_SIZE.
 175The NatSemi design uses a 'next descriptor' pointer that the driver forms
 176into a list.
 177
 178IIIb/c. Transmit/Receive Structure
 179
 180This driver uses a zero-copy receive and transmit scheme.
 181The driver allocates full frame size skbuffs for the Rx ring buffers at
 182open() time and passes the skb->data field to the chip as receive data
 183buffers.  When an incoming frame is less than RX_COPYBREAK bytes long,
 184a fresh skbuff is allocated and the frame is copied to the new skbuff.
 185When the incoming frame is larger, the skbuff is passed directly up the
 186protocol stack.  Buffers consumed this way are replaced by newly allocated
 187skbuffs in a later phase of receives.
 188
 189The RX_COPYBREAK value is chosen to trade-off the memory wasted by
 190using a full-sized skbuff for small frames vs. the copying costs of larger
 191frames.  New boards are typically used in generously configured machines
 192and the underfilled buffers have negligible impact compared to the benefit of
 193a single allocation size, so the default value of zero results in never
 194copying packets.  When copying is done, the cost is usually mitigated by using
 195a combined copy/checksum routine.  Copying also preloads the cache, which is
 196most useful with small frames.
 197
 198A subtle aspect of the operation is that unaligned buffers are not permitted
 199by the hardware.  Thus the IP header at offset 14 in an ethernet frame isn't
 200longword aligned for further processing.  On copies frames are put into the
 201skbuff at an offset of "+2", 16-byte aligning the IP header.
 202
 203IIId. Synchronization
 204
 205Most operations are synchronized on the np->lock irq spinlock, except the
 206receive and transmit paths which are synchronised using a combination of
 207hardware descriptor ownership, disabling interrupts and NAPI poll scheduling.
 208
 209IVb. References
 210
 211http://www.scyld.com/expert/100mbps.html
 212http://www.scyld.com/expert/NWay.html
 213Datasheet is available from:
 214http://www.national.com/pf/DP/DP83815.html
 215
 216IVc. Errata
 217
 218None characterised.
 219*/
 220
 221
 222
 223/*
 224 * Support for fibre connections on Am79C874:
 225 * This phy needs a special setup when connected to a fibre cable.
 226 * http://www.amd.com/files/connectivitysolutions/networking/archivednetworking/22235.pdf
 227 */
 228#define PHYID_AM79C874  0x0022561b
 229
 230enum {
 231        MII_MCTRL       = 0x15,         /* mode control register */
 232        MII_FX_SEL      = 0x0001,       /* 100BASE-FX (fiber) */
 233        MII_EN_SCRM     = 0x0004,       /* enable scrambler (tp) */
 234};
 235
 236enum {
 237        NATSEMI_FLAG_IGNORE_PHY         = 0x1,
 238};
 239
 240/* array of board data directly indexed by pci_tbl[x].driver_data */
 241static struct {
 242        const char *name;
 243        unsigned long flags;
 244        unsigned int eeprom_size;
 245} natsemi_pci_info[] __devinitdata = {
 246        { "Aculab E1/T1 PMXc cPCI carrier card", NATSEMI_FLAG_IGNORE_PHY, 128 },
 247        { "NatSemi DP8381[56]", 0, 24 },
 248};
 249
 250static DEFINE_PCI_DEVICE_TABLE(natsemi_pci_tbl) = {
 251        { PCI_VENDOR_ID_NS, 0x0020, 0x12d9,     0x000c,     0, 0, 0 },
 252        { PCI_VENDOR_ID_NS, 0x0020, PCI_ANY_ID, PCI_ANY_ID, 0, 0, 1 },
 253        { }     /* terminate list */
 254};
 255MODULE_DEVICE_TABLE(pci, natsemi_pci_tbl);
 256
 257/* Offsets to the device registers.
 258   Unlike software-only systems, device drivers interact with complex hardware.
 259   It's not useful to define symbolic names for every register bit in the
 260   device.
 261*/
 262enum register_offsets {
 263        ChipCmd                 = 0x00,
 264        ChipConfig              = 0x04,
 265        EECtrl                  = 0x08,
 266        PCIBusCfg               = 0x0C,
 267        IntrStatus              = 0x10,
 268        IntrMask                = 0x14,
 269        IntrEnable              = 0x18,
 270        IntrHoldoff             = 0x1C, /* DP83816 only */
 271        TxRingPtr               = 0x20,
 272        TxConfig                = 0x24,
 273        RxRingPtr               = 0x30,
 274        RxConfig                = 0x34,
 275        ClkRun                  = 0x3C,
 276        WOLCmd                  = 0x40,
 277        PauseCmd                = 0x44,
 278        RxFilterAddr            = 0x48,
 279        RxFilterData            = 0x4C,
 280        BootRomAddr             = 0x50,
 281        BootRomData             = 0x54,
 282        SiliconRev              = 0x58,
 283        StatsCtrl               = 0x5C,
 284        StatsData               = 0x60,
 285        RxPktErrs               = 0x60,
 286        RxMissed                = 0x68,
 287        RxCRCErrs               = 0x64,
 288        BasicControl            = 0x80,
 289        BasicStatus             = 0x84,
 290        AnegAdv                 = 0x90,
 291        AnegPeer                = 0x94,
 292        PhyStatus               = 0xC0,
 293        MIntrCtrl               = 0xC4,
 294        MIntrStatus             = 0xC8,
 295        PhyCtrl                 = 0xE4,
 296
 297        /* These are from the spec, around page 78... on a separate table.
 298         * The meaning of these registers depend on the value of PGSEL. */
 299        PGSEL                   = 0xCC,
 300        PMDCSR                  = 0xE4,
 301        TSTDAT                  = 0xFC,
 302        DSPCFG                  = 0xF4,
 303        SDCFG                   = 0xF8
 304};
 305/* the values for the 'magic' registers above (PGSEL=1) */
 306#define PMDCSR_VAL      0x189c  /* enable preferred adaptation circuitry */
 307#define TSTDAT_VAL      0x0
 308#define DSPCFG_VAL      0x5040
 309#define SDCFG_VAL       0x008c  /* set voltage thresholds for Signal Detect */
 310#define DSPCFG_LOCK     0x20    /* coefficient lock bit in DSPCFG */
 311#define DSPCFG_COEF     0x1000  /* see coefficient (in TSTDAT) bit in DSPCFG */
 312#define TSTDAT_FIXED    0xe8    /* magic number for bad coefficients */
 313
 314/* misc PCI space registers */
 315enum pci_register_offsets {
 316        PCIPM                   = 0x44,
 317};
 318
 319enum ChipCmd_bits {
 320        ChipReset               = 0x100,
 321        RxReset                 = 0x20,
 322        TxReset                 = 0x10,
 323        RxOff                   = 0x08,
 324        RxOn                    = 0x04,
 325        TxOff                   = 0x02,
 326        TxOn                    = 0x01,
 327};
 328
 329enum ChipConfig_bits {
 330        CfgPhyDis               = 0x200,
 331        CfgPhyRst               = 0x400,
 332        CfgExtPhy               = 0x1000,
 333        CfgAnegEnable           = 0x2000,
 334        CfgAneg100              = 0x4000,
 335        CfgAnegFull             = 0x8000,
 336        CfgAnegDone             = 0x8000000,
 337        CfgFullDuplex           = 0x20000000,
 338        CfgSpeed100             = 0x40000000,
 339        CfgLink                 = 0x80000000,
 340};
 341
 342enum EECtrl_bits {
 343        EE_ShiftClk             = 0x04,
 344        EE_DataIn               = 0x01,
 345        EE_ChipSelect           = 0x08,
 346        EE_DataOut              = 0x02,
 347        MII_Data                = 0x10,
 348        MII_Write               = 0x20,
 349        MII_ShiftClk            = 0x40,
 350};
 351
 352enum PCIBusCfg_bits {
 353        EepromReload            = 0x4,
 354};
 355
 356/* Bits in the interrupt status/mask registers. */
 357enum IntrStatus_bits {
 358        IntrRxDone              = 0x0001,
 359        IntrRxIntr              = 0x0002,
 360        IntrRxErr               = 0x0004,
 361        IntrRxEarly             = 0x0008,
 362        IntrRxIdle              = 0x0010,
 363        IntrRxOverrun           = 0x0020,
 364        IntrTxDone              = 0x0040,
 365        IntrTxIntr              = 0x0080,
 366        IntrTxErr               = 0x0100,
 367        IntrTxIdle              = 0x0200,
 368        IntrTxUnderrun          = 0x0400,
 369        StatsMax                = 0x0800,
 370        SWInt                   = 0x1000,
 371        WOLPkt                  = 0x2000,
 372        LinkChange              = 0x4000,
 373        IntrHighBits            = 0x8000,
 374        RxStatusFIFOOver        = 0x10000,
 375        IntrPCIErr              = 0xf00000,
 376        RxResetDone             = 0x1000000,
 377        TxResetDone             = 0x2000000,
 378        IntrAbnormalSummary     = 0xCD20,
 379};
 380
 381/*
 382 * Default Interrupts:
 383 * Rx OK, Rx Packet Error, Rx Overrun,
 384 * Tx OK, Tx Packet Error, Tx Underrun,
 385 * MIB Service, Phy Interrupt, High Bits,
 386 * Rx Status FIFO overrun,
 387 * Received Target Abort, Received Master Abort,
 388 * Signalled System Error, Received Parity Error
 389 */
 390#define DEFAULT_INTR 0x00f1cd65
 391
 392enum TxConfig_bits {
 393        TxDrthMask              = 0x3f,
 394        TxFlthMask              = 0x3f00,
 395        TxMxdmaMask             = 0x700000,
 396        TxMxdma_512             = 0x0,
 397        TxMxdma_4               = 0x100000,
 398        TxMxdma_8               = 0x200000,
 399        TxMxdma_16              = 0x300000,
 400        TxMxdma_32              = 0x400000,
 401        TxMxdma_64              = 0x500000,
 402        TxMxdma_128             = 0x600000,
 403        TxMxdma_256             = 0x700000,
 404        TxCollRetry             = 0x800000,
 405        TxAutoPad               = 0x10000000,
 406        TxMacLoop               = 0x20000000,
 407        TxHeartIgn              = 0x40000000,
 408        TxCarrierIgn            = 0x80000000
 409};
 410
 411/*
 412 * Tx Configuration:
 413 * - 256 byte DMA burst length
 414 * - fill threshold 512 bytes (i.e. restart DMA when 512 bytes are free)
 415 * - 64 bytes initial drain threshold (i.e. begin actual transmission
 416 *   when 64 byte are in the fifo)
 417 * - on tx underruns, increase drain threshold by 64.
 418 * - at most use a drain threshold of 1472 bytes: The sum of the fill
 419 *   threshold and the drain threshold must be less than 2016 bytes.
 420 *
 421 */
 422#define TX_FLTH_VAL             ((512/32) << 8)
 423#define TX_DRTH_VAL_START       (64/32)
 424#define TX_DRTH_VAL_INC         2
 425#define TX_DRTH_VAL_LIMIT       (1472/32)
 426
 427enum RxConfig_bits {
 428        RxDrthMask              = 0x3e,
 429        RxMxdmaMask             = 0x700000,
 430        RxMxdma_512             = 0x0,
 431        RxMxdma_4               = 0x100000,
 432        RxMxdma_8               = 0x200000,
 433        RxMxdma_16              = 0x300000,
 434        RxMxdma_32              = 0x400000,
 435        RxMxdma_64              = 0x500000,
 436        RxMxdma_128             = 0x600000,
 437        RxMxdma_256             = 0x700000,
 438        RxAcceptLong            = 0x8000000,
 439        RxAcceptTx              = 0x10000000,
 440        RxAcceptRunt            = 0x40000000,
 441        RxAcceptErr             = 0x80000000
 442};
 443#define RX_DRTH_VAL             (128/8)
 444
 445enum ClkRun_bits {
 446        PMEEnable               = 0x100,
 447        PMEStatus               = 0x8000,
 448};
 449
 450enum WolCmd_bits {
 451        WakePhy                 = 0x1,
 452        WakeUnicast             = 0x2,
 453        WakeMulticast           = 0x4,
 454        WakeBroadcast           = 0x8,
 455        WakeArp                 = 0x10,
 456        WakePMatch0             = 0x20,
 457        WakePMatch1             = 0x40,
 458        WakePMatch2             = 0x80,
 459        WakePMatch3             = 0x100,
 460        WakeMagic               = 0x200,
 461        WakeMagicSecure         = 0x400,
 462        SecureHack              = 0x100000,
 463        WokePhy                 = 0x400000,
 464        WokeUnicast             = 0x800000,
 465        WokeMulticast           = 0x1000000,
 466        WokeBroadcast           = 0x2000000,
 467        WokeArp                 = 0x4000000,
 468        WokePMatch0             = 0x8000000,
 469        WokePMatch1             = 0x10000000,
 470        WokePMatch2             = 0x20000000,
 471        WokePMatch3             = 0x40000000,
 472        WokeMagic               = 0x80000000,
 473        WakeOptsSummary         = 0x7ff
 474};
 475
 476enum RxFilterAddr_bits {
 477        RFCRAddressMask         = 0x3ff,
 478        AcceptMulticast         = 0x00200000,
 479        AcceptMyPhys            = 0x08000000,
 480        AcceptAllPhys           = 0x10000000,
 481        AcceptAllMulticast      = 0x20000000,
 482        AcceptBroadcast         = 0x40000000,
 483        RxFilterEnable          = 0x80000000
 484};
 485
 486enum StatsCtrl_bits {
 487        StatsWarn               = 0x1,
 488        StatsFreeze             = 0x2,
 489        StatsClear              = 0x4,
 490        StatsStrobe             = 0x8,
 491};
 492
 493enum MIntrCtrl_bits {
 494        MICRIntEn               = 0x2,
 495};
 496
 497enum PhyCtrl_bits {
 498        PhyAddrMask             = 0x1f,
 499};
 500
 501#define PHY_ADDR_NONE           32
 502#define PHY_ADDR_INTERNAL       1
 503
 504/* values we might find in the silicon revision register */
 505#define SRR_DP83815_C   0x0302
 506#define SRR_DP83815_D   0x0403
 507#define SRR_DP83816_A4  0x0504
 508#define SRR_DP83816_A5  0x0505
 509
 510/* The Rx and Tx buffer descriptors. */
 511/* Note that using only 32 bit fields simplifies conversion to big-endian
 512   architectures. */
 513struct netdev_desc {
 514        __le32 next_desc;
 515        __le32 cmd_status;
 516        __le32 addr;
 517        __le32 software_use;
 518};
 519
 520/* Bits in network_desc.status */
 521enum desc_status_bits {
 522        DescOwn=0x80000000, DescMore=0x40000000, DescIntr=0x20000000,
 523        DescNoCRC=0x10000000, DescPktOK=0x08000000,
 524        DescSizeMask=0xfff,
 525
 526        DescTxAbort=0x04000000, DescTxFIFO=0x02000000,
 527        DescTxCarrier=0x01000000, DescTxDefer=0x00800000,
 528        DescTxExcDefer=0x00400000, DescTxOOWCol=0x00200000,
 529        DescTxExcColl=0x00100000, DescTxCollCount=0x000f0000,
 530
 531        DescRxAbort=0x04000000, DescRxOver=0x02000000,
 532        DescRxDest=0x01800000, DescRxLong=0x00400000,
 533        DescRxRunt=0x00200000, DescRxInvalid=0x00100000,
 534        DescRxCRC=0x00080000, DescRxAlign=0x00040000,
 535        DescRxLoop=0x00020000, DesRxColl=0x00010000,
 536};
 537
 538struct netdev_private {
 539        /* Descriptor rings first for alignment */
 540        dma_addr_t ring_dma;
 541        struct netdev_desc *rx_ring;
 542        struct netdev_desc *tx_ring;
 543        /* The addresses of receive-in-place skbuffs */
 544        struct sk_buff *rx_skbuff[RX_RING_SIZE];
 545        dma_addr_t rx_dma[RX_RING_SIZE];
 546        /* address of a sent-in-place packet/buffer, for later free() */
 547        struct sk_buff *tx_skbuff[TX_RING_SIZE];
 548        dma_addr_t tx_dma[TX_RING_SIZE];
 549        struct net_device *dev;
 550        struct napi_struct napi;
 551        /* Media monitoring timer */
 552        struct timer_list timer;
 553        /* Frequently used values: keep some adjacent for cache effect */
 554        struct pci_dev *pci_dev;
 555        struct netdev_desc *rx_head_desc;
 556        /* Producer/consumer ring indices */
 557        unsigned int cur_rx, dirty_rx;
 558        unsigned int cur_tx, dirty_tx;
 559        /* Based on MTU+slack. */
 560        unsigned int rx_buf_sz;
 561        int oom;
 562        /* Interrupt status */
 563        u32 intr_status;
 564        /* Do not touch the nic registers */
 565        int hands_off;
 566        /* Don't pay attention to the reported link state. */
 567        int ignore_phy;
 568        /* external phy that is used: only valid if dev->if_port != PORT_TP */
 569        int mii;
 570        int phy_addr_external;
 571        unsigned int full_duplex;
 572        /* Rx filter */
 573        u32 cur_rx_mode;
 574        u32 rx_filter[16];
 575        /* FIFO and PCI burst thresholds */
 576        u32 tx_config, rx_config;
 577        /* original contents of ClkRun register */
 578        u32 SavedClkRun;
 579        /* silicon revision */
 580        u32 srr;
 581        /* expected DSPCFG value */
 582        u16 dspcfg;
 583        int dspcfg_workaround;
 584        /* parms saved in ethtool format */
 585        u16     speed;          /* The forced speed, 10Mb, 100Mb, gigabit */
 586        u8      duplex;         /* Duplex, half or full */
 587        u8      autoneg;        /* Autonegotiation enabled */
 588        /* MII transceiver section */
 589        u16 advertising;
 590        unsigned int iosize;
 591        spinlock_t lock;
 592        u32 msg_enable;
 593        /* EEPROM data */
 594        int eeprom_size;
 595};
 596
 597static void move_int_phy(struct net_device *dev, int addr);
 598static int eeprom_read(void __iomem *ioaddr, int location);
 599static int mdio_read(struct net_device *dev, int reg);
 600static void mdio_write(struct net_device *dev, int reg, u16 data);
 601static void init_phy_fixup(struct net_device *dev);
 602static int miiport_read(struct net_device *dev, int phy_id, int reg);
 603static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data);
 604static int find_mii(struct net_device *dev);
 605static void natsemi_reset(struct net_device *dev);
 606static void natsemi_reload_eeprom(struct net_device *dev);
 607static void natsemi_stop_rxtx(struct net_device *dev);
 608static int netdev_open(struct net_device *dev);
 609static void do_cable_magic(struct net_device *dev);
 610static void undo_cable_magic(struct net_device *dev);
 611static void check_link(struct net_device *dev);
 612static void netdev_timer(unsigned long data);
 613static void dump_ring(struct net_device *dev);
 614static void ns_tx_timeout(struct net_device *dev);
 615static int alloc_ring(struct net_device *dev);
 616static void refill_rx(struct net_device *dev);
 617static void init_ring(struct net_device *dev);
 618static void drain_tx(struct net_device *dev);
 619static void drain_ring(struct net_device *dev);
 620static void free_ring(struct net_device *dev);
 621static void reinit_ring(struct net_device *dev);
 622static void init_registers(struct net_device *dev);
 623static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
 624static irqreturn_t intr_handler(int irq, void *dev_instance);
 625static void netdev_error(struct net_device *dev, int intr_status);
 626static int natsemi_poll(struct napi_struct *napi, int budget);
 627static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do);
 628static void netdev_tx_done(struct net_device *dev);
 629static int natsemi_change_mtu(struct net_device *dev, int new_mtu);
 630#ifdef CONFIG_NET_POLL_CONTROLLER
 631static void natsemi_poll_controller(struct net_device *dev);
 632#endif
 633static void __set_rx_mode(struct net_device *dev);
 634static void set_rx_mode(struct net_device *dev);
 635static void __get_stats(struct net_device *dev);
 636static struct net_device_stats *get_stats(struct net_device *dev);
 637static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 638static int netdev_set_wol(struct net_device *dev, u32 newval);
 639static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur);
 640static int netdev_set_sopass(struct net_device *dev, u8 *newval);
 641static int netdev_get_sopass(struct net_device *dev, u8 *data);
 642static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
 643static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd);
 644static void enable_wol_mode(struct net_device *dev, int enable_intr);
 645static int netdev_close(struct net_device *dev);
 646static int netdev_get_regs(struct net_device *dev, u8 *buf);
 647static int netdev_get_eeprom(struct net_device *dev, u8 *buf);
 648static const struct ethtool_ops ethtool_ops;
 649
 650#define NATSEMI_ATTR(_name) \
 651static ssize_t natsemi_show_##_name(struct device *dev, \
 652         struct device_attribute *attr, char *buf); \
 653         static ssize_t natsemi_set_##_name(struct device *dev, \
 654                struct device_attribute *attr, \
 655                const char *buf, size_t count); \
 656         static DEVICE_ATTR(_name, 0644, natsemi_show_##_name, natsemi_set_##_name)
 657
 658#define NATSEMI_CREATE_FILE(_dev, _name) \
 659         device_create_file(&_dev->dev, &dev_attr_##_name)
 660#define NATSEMI_REMOVE_FILE(_dev, _name) \
 661         device_remove_file(&_dev->dev, &dev_attr_##_name)
 662
 663NATSEMI_ATTR(dspcfg_workaround);
 664
 665static ssize_t natsemi_show_dspcfg_workaround(struct device *dev,
 666                                              struct device_attribute *attr,
 667                                              char *buf)
 668{
 669        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 670
 671        return sprintf(buf, "%s\n", np->dspcfg_workaround ? "on" : "off");
 672}
 673
 674static ssize_t natsemi_set_dspcfg_workaround(struct device *dev,
 675                                             struct device_attribute *attr,
 676                                             const char *buf, size_t count)
 677{
 678        struct netdev_private *np = netdev_priv(to_net_dev(dev));
 679        int new_setting;
 680        unsigned long flags;
 681
 682        /* Find out the new setting */
 683        if (!strncmp("on", buf, count - 1) || !strncmp("1", buf, count - 1))
 684                new_setting = 1;
 685        else if (!strncmp("off", buf, count - 1) ||
 686                 !strncmp("0", buf, count - 1))
 687                new_setting = 0;
 688        else
 689                 return count;
 690
 691        spin_lock_irqsave(&np->lock, flags);
 692
 693        np->dspcfg_workaround = new_setting;
 694
 695        spin_unlock_irqrestore(&np->lock, flags);
 696
 697        return count;
 698}
 699
 700static inline void __iomem *ns_ioaddr(struct net_device *dev)
 701{
 702        return (void __iomem *) dev->base_addr;
 703}
 704
 705static inline void natsemi_irq_enable(struct net_device *dev)
 706{
 707        writel(1, ns_ioaddr(dev) + IntrEnable);
 708        readl(ns_ioaddr(dev) + IntrEnable);
 709}
 710
 711static inline void natsemi_irq_disable(struct net_device *dev)
 712{
 713        writel(0, ns_ioaddr(dev) + IntrEnable);
 714        readl(ns_ioaddr(dev) + IntrEnable);
 715}
 716
 717static void move_int_phy(struct net_device *dev, int addr)
 718{
 719        struct netdev_private *np = netdev_priv(dev);
 720        void __iomem *ioaddr = ns_ioaddr(dev);
 721        int target = 31;
 722
 723        /*
 724         * The internal phy is visible on the external mii bus. Therefore we must
 725         * move it away before we can send commands to an external phy.
 726         * There are two addresses we must avoid:
 727         * - the address on the external phy that is used for transmission.
 728         * - the address that we want to access. User space can access phys
 729         *   on the mii bus with SIOCGMIIREG/SIOCSMIIREG, independent from the
 730         *   phy that is used for transmission.
 731         */
 732
 733        if (target == addr)
 734                target--;
 735        if (target == np->phy_addr_external)
 736                target--;
 737        writew(target, ioaddr + PhyCtrl);
 738        readw(ioaddr + PhyCtrl);
 739        udelay(1);
 740}
 741
 742static void __devinit natsemi_init_media (struct net_device *dev)
 743{
 744        struct netdev_private *np = netdev_priv(dev);
 745        u32 tmp;
 746
 747        if (np->ignore_phy)
 748                netif_carrier_on(dev);
 749        else
 750                netif_carrier_off(dev);
 751
 752        /* get the initial settings from hardware */
 753        tmp            = mdio_read(dev, MII_BMCR);
 754        np->speed      = (tmp & BMCR_SPEED100)? SPEED_100     : SPEED_10;
 755        np->duplex     = (tmp & BMCR_FULLDPLX)? DUPLEX_FULL   : DUPLEX_HALF;
 756        np->autoneg    = (tmp & BMCR_ANENABLE)? AUTONEG_ENABLE: AUTONEG_DISABLE;
 757        np->advertising= mdio_read(dev, MII_ADVERTISE);
 758
 759        if ((np->advertising & ADVERTISE_ALL) != ADVERTISE_ALL &&
 760            netif_msg_probe(np)) {
 761                printk(KERN_INFO "natsemi %s: Transceiver default autonegotiation %s "
 762                        "10%s %s duplex.\n",
 763                        pci_name(np->pci_dev),
 764                        (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE)?
 765                          "enabled, advertise" : "disabled, force",
 766                        (np->advertising &
 767                          (ADVERTISE_100FULL|ADVERTISE_100HALF))?
 768                            "0" : "",
 769                        (np->advertising &
 770                          (ADVERTISE_100FULL|ADVERTISE_10FULL))?
 771                            "full" : "half");
 772        }
 773        if (netif_msg_probe(np))
 774                printk(KERN_INFO
 775                        "natsemi %s: Transceiver status %#04x advertising %#04x.\n",
 776                        pci_name(np->pci_dev), mdio_read(dev, MII_BMSR),
 777                        np->advertising);
 778
 779}
 780
 781static const struct net_device_ops natsemi_netdev_ops = {
 782        .ndo_open               = netdev_open,
 783        .ndo_stop               = netdev_close,
 784        .ndo_start_xmit         = start_tx,
 785        .ndo_get_stats          = get_stats,
 786        .ndo_set_multicast_list = set_rx_mode,
 787        .ndo_change_mtu         = natsemi_change_mtu,
 788        .ndo_do_ioctl           = netdev_ioctl,
 789        .ndo_tx_timeout         = ns_tx_timeout,
 790        .ndo_set_mac_address    = eth_mac_addr,
 791        .ndo_validate_addr      = eth_validate_addr,
 792#ifdef CONFIG_NET_POLL_CONTROLLER
 793        .ndo_poll_controller    = natsemi_poll_controller,
 794#endif
 795};
 796
 797static int __devinit natsemi_probe1 (struct pci_dev *pdev,
 798        const struct pci_device_id *ent)
 799{
 800        struct net_device *dev;
 801        struct netdev_private *np;
 802        int i, option, irq, chip_idx = ent->driver_data;
 803        static int find_cnt = -1;
 804        resource_size_t iostart;
 805        unsigned long iosize;
 806        void __iomem *ioaddr;
 807        const int pcibar = 1; /* PCI base address register */
 808        int prev_eedata;
 809        u32 tmp;
 810
 811/* when built into the kernel, we only print version if device is found */
 812#ifndef MODULE
 813        static int printed_version;
 814        if (!printed_version++)
 815                printk(version);
 816#endif
 817
 818        i = pci_enable_device(pdev);
 819        if (i) return i;
 820
 821        /* natsemi has a non-standard PM control register
 822         * in PCI config space.  Some boards apparently need
 823         * to be brought to D0 in this manner.
 824         */
 825        pci_read_config_dword(pdev, PCIPM, &tmp);
 826        if (tmp & PCI_PM_CTRL_STATE_MASK) {
 827                /* D0 state, disable PME assertion */
 828                u32 newtmp = tmp & ~PCI_PM_CTRL_STATE_MASK;
 829                pci_write_config_dword(pdev, PCIPM, newtmp);
 830        }
 831
 832        find_cnt++;
 833        iostart = pci_resource_start(pdev, pcibar);
 834        iosize = pci_resource_len(pdev, pcibar);
 835        irq = pdev->irq;
 836
 837        pci_set_master(pdev);
 838
 839        dev = alloc_etherdev(sizeof (struct netdev_private));
 840        if (!dev)
 841                return -ENOMEM;
 842        SET_NETDEV_DEV(dev, &pdev->dev);
 843
 844        i = pci_request_regions(pdev, DRV_NAME);
 845        if (i)
 846                goto err_pci_request_regions;
 847
 848        ioaddr = ioremap(iostart, iosize);
 849        if (!ioaddr) {
 850                i = -ENOMEM;
 851                goto err_ioremap;
 852        }
 853
 854        /* Work around the dropped serial bit. */
 855        prev_eedata = eeprom_read(ioaddr, 6);
 856        for (i = 0; i < 3; i++) {
 857                int eedata = eeprom_read(ioaddr, i + 7);
 858                dev->dev_addr[i*2] = (eedata << 1) + (prev_eedata >> 15);
 859                dev->dev_addr[i*2+1] = eedata >> 7;
 860                prev_eedata = eedata;
 861        }
 862
 863        /* Store MAC Address in perm_addr */
 864        memcpy(dev->perm_addr, dev->dev_addr, ETH_ALEN);
 865
 866        dev->base_addr = (unsigned long __force) ioaddr;
 867        dev->irq = irq;
 868
 869        np = netdev_priv(dev);
 870        netif_napi_add(dev, &np->napi, natsemi_poll, 64);
 871        np->dev = dev;
 872
 873        np->pci_dev = pdev;
 874        pci_set_drvdata(pdev, dev);
 875        np->iosize = iosize;
 876        spin_lock_init(&np->lock);
 877        np->msg_enable = (debug >= 0) ? (1<<debug)-1 : NATSEMI_DEF_MSG;
 878        np->hands_off = 0;
 879        np->intr_status = 0;
 880        np->eeprom_size = natsemi_pci_info[chip_idx].eeprom_size;
 881        if (natsemi_pci_info[chip_idx].flags & NATSEMI_FLAG_IGNORE_PHY)
 882                np->ignore_phy = 1;
 883        else
 884                np->ignore_phy = 0;
 885        np->dspcfg_workaround = dspcfg_workaround;
 886
 887        /* Initial port:
 888         * - If configured to ignore the PHY set up for external.
 889         * - If the nic was configured to use an external phy and if find_mii
 890         *   finds a phy: use external port, first phy that replies.
 891         * - Otherwise: internal port.
 892         * Note that the phy address for the internal phy doesn't matter:
 893         * The address would be used to access a phy over the mii bus, but
 894         * the internal phy is accessed through mapped registers.
 895         */
 896        if (np->ignore_phy || readl(ioaddr + ChipConfig) & CfgExtPhy)
 897                dev->if_port = PORT_MII;
 898        else
 899                dev->if_port = PORT_TP;
 900        /* Reset the chip to erase previous misconfiguration. */
 901        natsemi_reload_eeprom(dev);
 902        natsemi_reset(dev);
 903
 904        if (dev->if_port != PORT_TP) {
 905                np->phy_addr_external = find_mii(dev);
 906                /* If we're ignoring the PHY it doesn't matter if we can't
 907                 * find one. */
 908                if (!np->ignore_phy && np->phy_addr_external == PHY_ADDR_NONE) {
 909                        dev->if_port = PORT_TP;
 910                        np->phy_addr_external = PHY_ADDR_INTERNAL;
 911                }
 912        } else {
 913                np->phy_addr_external = PHY_ADDR_INTERNAL;
 914        }
 915
 916        option = find_cnt < MAX_UNITS ? options[find_cnt] : 0;
 917        if (dev->mem_start)
 918                option = dev->mem_start;
 919
 920        /* The lower four bits are the media type. */
 921        if (option) {
 922                if (option & 0x200)
 923                        np->full_duplex = 1;
 924                if (option & 15)
 925                        printk(KERN_INFO
 926                                "natsemi %s: ignoring user supplied media type %d",
 927                                pci_name(np->pci_dev), option & 15);
 928        }
 929        if (find_cnt < MAX_UNITS  &&  full_duplex[find_cnt])
 930                np->full_duplex = 1;
 931
 932        dev->netdev_ops = &natsemi_netdev_ops;
 933        dev->watchdog_timeo = TX_TIMEOUT;
 934
 935        SET_ETHTOOL_OPS(dev, &ethtool_ops);
 936
 937        if (mtu)
 938                dev->mtu = mtu;
 939
 940        natsemi_init_media(dev);
 941
 942        /* save the silicon revision for later querying */
 943        np->srr = readl(ioaddr + SiliconRev);
 944        if (netif_msg_hw(np))
 945                printk(KERN_INFO "natsemi %s: silicon revision %#04x.\n",
 946                                pci_name(np->pci_dev), np->srr);
 947
 948        i = register_netdev(dev);
 949        if (i)
 950                goto err_register_netdev;
 951
 952        if (NATSEMI_CREATE_FILE(pdev, dspcfg_workaround))
 953                goto err_create_file;
 954
 955        if (netif_msg_drv(np)) {
 956                printk(KERN_INFO "natsemi %s: %s at %#08llx "
 957                       "(%s), %pM, IRQ %d",
 958                       dev->name, natsemi_pci_info[chip_idx].name,
 959                       (unsigned long long)iostart, pci_name(np->pci_dev),
 960                       dev->dev_addr, irq);
 961                if (dev->if_port == PORT_TP)
 962                        printk(", port TP.\n");
 963                else if (np->ignore_phy)
 964                        printk(", port MII, ignoring PHY\n");
 965                else
 966                        printk(", port MII, phy ad %d.\n", np->phy_addr_external);
 967        }
 968        return 0;
 969
 970 err_create_file:
 971        unregister_netdev(dev);
 972
 973 err_register_netdev:
 974        iounmap(ioaddr);
 975
 976 err_ioremap:
 977        pci_release_regions(pdev);
 978        pci_set_drvdata(pdev, NULL);
 979
 980 err_pci_request_regions:
 981        free_netdev(dev);
 982        return i;
 983}
 984
 985
 986/* Read the EEPROM and MII Management Data I/O (MDIO) interfaces.
 987   The EEPROM code is for the common 93c06/46 EEPROMs with 6 bit addresses. */
 988
 989/* Delay between EEPROM clock transitions.
 990   No extra delay is needed with 33Mhz PCI, but future 66Mhz access may need
 991   a delay.  Note that pre-2.0.34 kernels had a cache-alignment bug that
 992   made udelay() unreliable.
 993   The old method of using an ISA access as a delay, __SLOW_DOWN_IO__, is
 994   deprecated.
 995*/
 996#define eeprom_delay(ee_addr)   readl(ee_addr)
 997
 998#define EE_Write0 (EE_ChipSelect)
 999#define EE_Write1 (EE_ChipSelect | EE_DataIn)
1000
1001/* The EEPROM commands include the alway-set leading bit. */
1002enum EEPROM_Cmds {
1003        EE_WriteCmd=(5 << 6), EE_ReadCmd=(6 << 6), EE_EraseCmd=(7 << 6),
1004};
1005
1006static int eeprom_read(void __iomem *addr, int location)
1007{
1008        int i;
1009        int retval = 0;
1010        void __iomem *ee_addr = addr + EECtrl;
1011        int read_cmd = location | EE_ReadCmd;
1012
1013        writel(EE_Write0, ee_addr);
1014
1015        /* Shift the read command bits out. */
1016        for (i = 10; i >= 0; i--) {
1017                short dataval = (read_cmd & (1 << i)) ? EE_Write1 : EE_Write0;
1018                writel(dataval, ee_addr);
1019                eeprom_delay(ee_addr);
1020                writel(dataval | EE_ShiftClk, ee_addr);
1021                eeprom_delay(ee_addr);
1022        }
1023        writel(EE_ChipSelect, ee_addr);
1024        eeprom_delay(ee_addr);
1025
1026        for (i = 0; i < 16; i++) {
1027                writel(EE_ChipSelect | EE_ShiftClk, ee_addr);
1028                eeprom_delay(ee_addr);
1029                retval |= (readl(ee_addr) & EE_DataOut) ? 1 << i : 0;
1030                writel(EE_ChipSelect, ee_addr);
1031                eeprom_delay(ee_addr);
1032        }
1033
1034        /* Terminate the EEPROM access. */
1035        writel(EE_Write0, ee_addr);
1036        writel(0, ee_addr);
1037        return retval;
1038}
1039
1040/* MII transceiver control section.
1041 * The 83815 series has an internal transceiver, and we present the
1042 * internal management registers as if they were MII connected.
1043 * External Phy registers are referenced through the MII interface.
1044 */
1045
1046/* clock transitions >= 20ns (25MHz)
1047 * One readl should be good to PCI @ 100MHz
1048 */
1049#define mii_delay(ioaddr)  readl(ioaddr + EECtrl)
1050
1051static int mii_getbit (struct net_device *dev)
1052{
1053        int data;
1054        void __iomem *ioaddr = ns_ioaddr(dev);
1055
1056        writel(MII_ShiftClk, ioaddr + EECtrl);
1057        data = readl(ioaddr + EECtrl);
1058        writel(0, ioaddr + EECtrl);
1059        mii_delay(ioaddr);
1060        return (data & MII_Data)? 1 : 0;
1061}
1062
1063static void mii_send_bits (struct net_device *dev, u32 data, int len)
1064{
1065        u32 i;
1066        void __iomem *ioaddr = ns_ioaddr(dev);
1067
1068        for (i = (1 << (len-1)); i; i >>= 1)
1069        {
1070                u32 mdio_val = MII_Write | ((data & i)? MII_Data : 0);
1071                writel(mdio_val, ioaddr + EECtrl);
1072                mii_delay(ioaddr);
1073                writel(mdio_val | MII_ShiftClk, ioaddr + EECtrl);
1074                mii_delay(ioaddr);
1075        }
1076        writel(0, ioaddr + EECtrl);
1077        mii_delay(ioaddr);
1078}
1079
1080static int miiport_read(struct net_device *dev, int phy_id, int reg)
1081{
1082        u32 cmd;
1083        int i;
1084        u32 retval = 0;
1085
1086        /* Ensure sync */
1087        mii_send_bits (dev, 0xffffffff, 32);
1088        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1089        /* ST,OP = 0110'b for read operation */
1090        cmd = (0x06 << 10) | (phy_id << 5) | reg;
1091        mii_send_bits (dev, cmd, 14);
1092        /* Turnaround */
1093        if (mii_getbit (dev))
1094                return 0;
1095        /* Read data */
1096        for (i = 0; i < 16; i++) {
1097                retval <<= 1;
1098                retval |= mii_getbit (dev);
1099        }
1100        /* End cycle */
1101        mii_getbit (dev);
1102        return retval;
1103}
1104
1105static void miiport_write(struct net_device *dev, int phy_id, int reg, u16 data)
1106{
1107        u32 cmd;
1108
1109        /* Ensure sync */
1110        mii_send_bits (dev, 0xffffffff, 32);
1111        /* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
1112        /* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
1113        cmd = (0x5002 << 16) | (phy_id << 23) | (reg << 18) | data;
1114        mii_send_bits (dev, cmd, 32);
1115        /* End cycle */
1116        mii_getbit (dev);
1117}
1118
1119static int mdio_read(struct net_device *dev, int reg)
1120{
1121        struct netdev_private *np = netdev_priv(dev);
1122        void __iomem *ioaddr = ns_ioaddr(dev);
1123
1124        /* The 83815 series has two ports:
1125         * - an internal transceiver
1126         * - an external mii bus
1127         */
1128        if (dev->if_port == PORT_TP)
1129                return readw(ioaddr+BasicControl+(reg<<2));
1130        else
1131                return miiport_read(dev, np->phy_addr_external, reg);
1132}
1133
1134static void mdio_write(struct net_device *dev, int reg, u16 data)
1135{
1136        struct netdev_private *np = netdev_priv(dev);
1137        void __iomem *ioaddr = ns_ioaddr(dev);
1138
1139        /* The 83815 series has an internal transceiver; handle separately */
1140        if (dev->if_port == PORT_TP)
1141                writew(data, ioaddr+BasicControl+(reg<<2));
1142        else
1143                miiport_write(dev, np->phy_addr_external, reg, data);
1144}
1145
1146static void init_phy_fixup(struct net_device *dev)
1147{
1148        struct netdev_private *np = netdev_priv(dev);
1149        void __iomem *ioaddr = ns_ioaddr(dev);
1150        int i;
1151        u32 cfg;
1152        u16 tmp;
1153
1154        /* restore stuff lost when power was out */
1155        tmp = mdio_read(dev, MII_BMCR);
1156        if (np->autoneg == AUTONEG_ENABLE) {
1157                /* renegotiate if something changed */
1158                if ((tmp & BMCR_ANENABLE) == 0 ||
1159                    np->advertising != mdio_read(dev, MII_ADVERTISE))
1160                {
1161                        /* turn on autonegotiation and force negotiation */
1162                        tmp |= (BMCR_ANENABLE | BMCR_ANRESTART);
1163                        mdio_write(dev, MII_ADVERTISE, np->advertising);
1164                }
1165        } else {
1166                /* turn off auto negotiation, set speed and duplexity */
1167                tmp &= ~(BMCR_ANENABLE | BMCR_SPEED100 | BMCR_FULLDPLX);
1168                if (np->speed == SPEED_100)
1169                        tmp |= BMCR_SPEED100;
1170                if (np->duplex == DUPLEX_FULL)
1171                        tmp |= BMCR_FULLDPLX;
1172                /*
1173                 * Note: there is no good way to inform the link partner
1174                 * that our capabilities changed. The user has to unplug
1175                 * and replug the network cable after some changes, e.g.
1176                 * after switching from 10HD, autoneg off to 100 HD,
1177                 * autoneg off.
1178                 */
1179        }
1180        mdio_write(dev, MII_BMCR, tmp);
1181        readl(ioaddr + ChipConfig);
1182        udelay(1);
1183
1184        /* find out what phy this is */
1185        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1186                                + mdio_read(dev, MII_PHYSID2);
1187
1188        /* handle external phys here */
1189        switch (np->mii) {
1190        case PHYID_AM79C874:
1191                /* phy specific configuration for fibre/tp operation */
1192                tmp = mdio_read(dev, MII_MCTRL);
1193                tmp &= ~(MII_FX_SEL | MII_EN_SCRM);
1194                if (dev->if_port == PORT_FIBRE)
1195                        tmp |= MII_FX_SEL;
1196                else
1197                        tmp |= MII_EN_SCRM;
1198                mdio_write(dev, MII_MCTRL, tmp);
1199                break;
1200        default:
1201                break;
1202        }
1203        cfg = readl(ioaddr + ChipConfig);
1204        if (cfg & CfgExtPhy)
1205                return;
1206
1207        /* On page 78 of the spec, they recommend some settings for "optimum
1208           performance" to be done in sequence.  These settings optimize some
1209           of the 100Mbit autodetection circuitry.  They say we only want to
1210           do this for rev C of the chip, but engineers at NSC (Bradley
1211           Kennedy) recommends always setting them.  If you don't, you get
1212           errors on some autonegotiations that make the device unusable.
1213
1214           It seems that the DSP needs a few usec to reinitialize after
1215           the start of the phy. Just retry writing these values until they
1216           stick.
1217        */
1218        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1219
1220                int dspcfg;
1221                writew(1, ioaddr + PGSEL);
1222                writew(PMDCSR_VAL, ioaddr + PMDCSR);
1223                writew(TSTDAT_VAL, ioaddr + TSTDAT);
1224                np->dspcfg = (np->srr <= SRR_DP83815_C)?
1225                        DSPCFG_VAL : (DSPCFG_COEF | readw(ioaddr + DSPCFG));
1226                writew(np->dspcfg, ioaddr + DSPCFG);
1227                writew(SDCFG_VAL, ioaddr + SDCFG);
1228                writew(0, ioaddr + PGSEL);
1229                readl(ioaddr + ChipConfig);
1230                udelay(10);
1231
1232                writew(1, ioaddr + PGSEL);
1233                dspcfg = readw(ioaddr + DSPCFG);
1234                writew(0, ioaddr + PGSEL);
1235                if (np->dspcfg == dspcfg)
1236                        break;
1237        }
1238
1239        if (netif_msg_link(np)) {
1240                if (i==NATSEMI_HW_TIMEOUT) {
1241                        printk(KERN_INFO
1242                                "%s: DSPCFG mismatch after retrying for %d usec.\n",
1243                                dev->name, i*10);
1244                } else {
1245                        printk(KERN_INFO
1246                                "%s: DSPCFG accepted after %d usec.\n",
1247                                dev->name, i*10);
1248                }
1249        }
1250        /*
1251         * Enable PHY Specific event based interrupts.  Link state change
1252         * and Auto-Negotiation Completion are among the affected.
1253         * Read the intr status to clear it (needed for wake events).
1254         */
1255        readw(ioaddr + MIntrStatus);
1256        writew(MICRIntEn, ioaddr + MIntrCtrl);
1257}
1258
1259static int switch_port_external(struct net_device *dev)
1260{
1261        struct netdev_private *np = netdev_priv(dev);
1262        void __iomem *ioaddr = ns_ioaddr(dev);
1263        u32 cfg;
1264
1265        cfg = readl(ioaddr + ChipConfig);
1266        if (cfg & CfgExtPhy)
1267                return 0;
1268
1269        if (netif_msg_link(np)) {
1270                printk(KERN_INFO "%s: switching to external transceiver.\n",
1271                                dev->name);
1272        }
1273
1274        /* 1) switch back to external phy */
1275        writel(cfg | (CfgExtPhy | CfgPhyDis), ioaddr + ChipConfig);
1276        readl(ioaddr + ChipConfig);
1277        udelay(1);
1278
1279        /* 2) reset the external phy: */
1280        /* resetting the external PHY has been known to cause a hub supplying
1281         * power over Ethernet to kill the power.  We don't want to kill
1282         * power to this computer, so we avoid resetting the phy.
1283         */
1284
1285        /* 3) reinit the phy fixup, it got lost during power down. */
1286        move_int_phy(dev, np->phy_addr_external);
1287        init_phy_fixup(dev);
1288
1289        return 1;
1290}
1291
1292static int switch_port_internal(struct net_device *dev)
1293{
1294        struct netdev_private *np = netdev_priv(dev);
1295        void __iomem *ioaddr = ns_ioaddr(dev);
1296        int i;
1297        u32 cfg;
1298        u16 bmcr;
1299
1300        cfg = readl(ioaddr + ChipConfig);
1301        if (!(cfg &CfgExtPhy))
1302                return 0;
1303
1304        if (netif_msg_link(np)) {
1305                printk(KERN_INFO "%s: switching to internal transceiver.\n",
1306                                dev->name);
1307        }
1308        /* 1) switch back to internal phy: */
1309        cfg = cfg & ~(CfgExtPhy | CfgPhyDis);
1310        writel(cfg, ioaddr + ChipConfig);
1311        readl(ioaddr + ChipConfig);
1312        udelay(1);
1313
1314        /* 2) reset the internal phy: */
1315        bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1316        writel(bmcr | BMCR_RESET, ioaddr+BasicControl+(MII_BMCR<<2));
1317        readl(ioaddr + ChipConfig);
1318        udelay(10);
1319        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1320                bmcr = readw(ioaddr+BasicControl+(MII_BMCR<<2));
1321                if (!(bmcr & BMCR_RESET))
1322                        break;
1323                udelay(10);
1324        }
1325        if (i==NATSEMI_HW_TIMEOUT && netif_msg_link(np)) {
1326                printk(KERN_INFO
1327                        "%s: phy reset did not complete in %d usec.\n",
1328                        dev->name, i*10);
1329        }
1330        /* 3) reinit the phy fixup, it got lost during power down. */
1331        init_phy_fixup(dev);
1332
1333        return 1;
1334}
1335
1336/* Scan for a PHY on the external mii bus.
1337 * There are two tricky points:
1338 * - Do not scan while the internal phy is enabled. The internal phy will
1339 *   crash: e.g. reads from the DSPCFG register will return odd values and
1340 *   the nasty random phy reset code will reset the nic every few seconds.
1341 * - The internal phy must be moved around, an external phy could
1342 *   have the same address as the internal phy.
1343 */
1344static int find_mii(struct net_device *dev)
1345{
1346        struct netdev_private *np = netdev_priv(dev);
1347        int tmp;
1348        int i;
1349        int did_switch;
1350
1351        /* Switch to external phy */
1352        did_switch = switch_port_external(dev);
1353
1354        /* Scan the possible phy addresses:
1355         *
1356         * PHY address 0 means that the phy is in isolate mode. Not yet
1357         * supported due to lack of test hardware. User space should
1358         * handle it through ethtool.
1359         */
1360        for (i = 1; i <= 31; i++) {
1361                move_int_phy(dev, i);
1362                tmp = miiport_read(dev, i, MII_BMSR);
1363                if (tmp != 0xffff && tmp != 0x0000) {
1364                        /* found something! */
1365                        np->mii = (mdio_read(dev, MII_PHYSID1) << 16)
1366                                        + mdio_read(dev, MII_PHYSID2);
1367                        if (netif_msg_probe(np)) {
1368                                printk(KERN_INFO "natsemi %s: found external phy %08x at address %d.\n",
1369                                                pci_name(np->pci_dev), np->mii, i);
1370                        }
1371                        break;
1372                }
1373        }
1374        /* And switch back to internal phy: */
1375        if (did_switch)
1376                switch_port_internal(dev);
1377        return i;
1378}
1379
1380/* CFG bits [13:16] [18:23] */
1381#define CFG_RESET_SAVE 0xfde000
1382/* WCSR bits [0:4] [9:10] */
1383#define WCSR_RESET_SAVE 0x61f
1384/* RFCR bits [20] [22] [27:31] */
1385#define RFCR_RESET_SAVE 0xf8500000
1386
1387static void natsemi_reset(struct net_device *dev)
1388{
1389        int i;
1390        u32 cfg;
1391        u32 wcsr;
1392        u32 rfcr;
1393        u16 pmatch[3];
1394        u16 sopass[3];
1395        struct netdev_private *np = netdev_priv(dev);
1396        void __iomem *ioaddr = ns_ioaddr(dev);
1397
1398        /*
1399         * Resetting the chip causes some registers to be lost.
1400         * Natsemi suggests NOT reloading the EEPROM while live, so instead
1401         * we save the state that would have been loaded from EEPROM
1402         * on a normal power-up (see the spec EEPROM map).  This assumes
1403         * whoever calls this will follow up with init_registers() eventually.
1404         */
1405
1406        /* CFG */
1407        cfg = readl(ioaddr + ChipConfig) & CFG_RESET_SAVE;
1408        /* WCSR */
1409        wcsr = readl(ioaddr + WOLCmd) & WCSR_RESET_SAVE;
1410        /* RFCR */
1411        rfcr = readl(ioaddr + RxFilterAddr) & RFCR_RESET_SAVE;
1412        /* PMATCH */
1413        for (i = 0; i < 3; i++) {
1414                writel(i*2, ioaddr + RxFilterAddr);
1415                pmatch[i] = readw(ioaddr + RxFilterData);
1416        }
1417        /* SOPAS */
1418        for (i = 0; i < 3; i++) {
1419                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1420                sopass[i] = readw(ioaddr + RxFilterData);
1421        }
1422
1423        /* now whack the chip */
1424        writel(ChipReset, ioaddr + ChipCmd);
1425        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1426                if (!(readl(ioaddr + ChipCmd) & ChipReset))
1427                        break;
1428                udelay(5);
1429        }
1430        if (i==NATSEMI_HW_TIMEOUT) {
1431                printk(KERN_WARNING "%s: reset did not complete in %d usec.\n",
1432                        dev->name, i*5);
1433        } else if (netif_msg_hw(np)) {
1434                printk(KERN_DEBUG "%s: reset completed in %d usec.\n",
1435                        dev->name, i*5);
1436        }
1437
1438        /* restore CFG */
1439        cfg |= readl(ioaddr + ChipConfig) & ~CFG_RESET_SAVE;
1440        /* turn on external phy if it was selected */
1441        if (dev->if_port == PORT_TP)
1442                cfg &= ~(CfgExtPhy | CfgPhyDis);
1443        else
1444                cfg |= (CfgExtPhy | CfgPhyDis);
1445        writel(cfg, ioaddr + ChipConfig);
1446        /* restore WCSR */
1447        wcsr |= readl(ioaddr + WOLCmd) & ~WCSR_RESET_SAVE;
1448        writel(wcsr, ioaddr + WOLCmd);
1449        /* read RFCR */
1450        rfcr |= readl(ioaddr + RxFilterAddr) & ~RFCR_RESET_SAVE;
1451        /* restore PMATCH */
1452        for (i = 0; i < 3; i++) {
1453                writel(i*2, ioaddr + RxFilterAddr);
1454                writew(pmatch[i], ioaddr + RxFilterData);
1455        }
1456        for (i = 0; i < 3; i++) {
1457                writel(0xa+(i*2), ioaddr + RxFilterAddr);
1458                writew(sopass[i], ioaddr + RxFilterData);
1459        }
1460        /* restore RFCR */
1461        writel(rfcr, ioaddr + RxFilterAddr);
1462}
1463
1464static void reset_rx(struct net_device *dev)
1465{
1466        int i;
1467        struct netdev_private *np = netdev_priv(dev);
1468        void __iomem *ioaddr = ns_ioaddr(dev);
1469
1470        np->intr_status &= ~RxResetDone;
1471
1472        writel(RxReset, ioaddr + ChipCmd);
1473
1474        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1475                np->intr_status |= readl(ioaddr + IntrStatus);
1476                if (np->intr_status & RxResetDone)
1477                        break;
1478                udelay(15);
1479        }
1480        if (i==NATSEMI_HW_TIMEOUT) {
1481                printk(KERN_WARNING "%s: RX reset did not complete in %d usec.\n",
1482                       dev->name, i*15);
1483        } else if (netif_msg_hw(np)) {
1484                printk(KERN_WARNING "%s: RX reset took %d usec.\n",
1485                       dev->name, i*15);
1486        }
1487}
1488
1489static void natsemi_reload_eeprom(struct net_device *dev)
1490{
1491        struct netdev_private *np = netdev_priv(dev);
1492        void __iomem *ioaddr = ns_ioaddr(dev);
1493        int i;
1494
1495        writel(EepromReload, ioaddr + PCIBusCfg);
1496        for (i=0;i<NATSEMI_HW_TIMEOUT;i++) {
1497                udelay(50);
1498                if (!(readl(ioaddr + PCIBusCfg) & EepromReload))
1499                        break;
1500        }
1501        if (i==NATSEMI_HW_TIMEOUT) {
1502                printk(KERN_WARNING "natsemi %s: EEPROM did not reload in %d usec.\n",
1503                        pci_name(np->pci_dev), i*50);
1504        } else if (netif_msg_hw(np)) {
1505                printk(KERN_DEBUG "natsemi %s: EEPROM reloaded in %d usec.\n",
1506                        pci_name(np->pci_dev), i*50);
1507        }
1508}
1509
1510static void natsemi_stop_rxtx(struct net_device *dev)
1511{
1512        void __iomem * ioaddr = ns_ioaddr(dev);
1513        struct netdev_private *np = netdev_priv(dev);
1514        int i;
1515
1516        writel(RxOff | TxOff, ioaddr + ChipCmd);
1517        for(i=0;i< NATSEMI_HW_TIMEOUT;i++) {
1518                if ((readl(ioaddr + ChipCmd) & (TxOn|RxOn)) == 0)
1519                        break;
1520                udelay(5);
1521        }
1522        if (i==NATSEMI_HW_TIMEOUT) {
1523                printk(KERN_WARNING "%s: Tx/Rx process did not stop in %d usec.\n",
1524                        dev->name, i*5);
1525        } else if (netif_msg_hw(np)) {
1526                printk(KERN_DEBUG "%s: Tx/Rx process stopped in %d usec.\n",
1527                        dev->name, i*5);
1528        }
1529}
1530
1531static int netdev_open(struct net_device *dev)
1532{
1533        struct netdev_private *np = netdev_priv(dev);
1534        void __iomem * ioaddr = ns_ioaddr(dev);
1535        int i;
1536
1537        /* Reset the chip, just in case. */
1538        natsemi_reset(dev);
1539
1540        i = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
1541        if (i) return i;
1542
1543        if (netif_msg_ifup(np))
1544                printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
1545                        dev->name, dev->irq);
1546        i = alloc_ring(dev);
1547        if (i < 0) {
1548                free_irq(dev->irq, dev);
1549                return i;
1550        }
1551        napi_enable(&np->napi);
1552
1553        init_ring(dev);
1554        spin_lock_irq(&np->lock);
1555        init_registers(dev);
1556        /* now set the MAC address according to dev->dev_addr */
1557        for (i = 0; i < 3; i++) {
1558                u16 mac = (dev->dev_addr[2*i+1]<<8) + dev->dev_addr[2*i];
1559
1560                writel(i*2, ioaddr + RxFilterAddr);
1561                writew(mac, ioaddr + RxFilterData);
1562        }
1563        writel(np->cur_rx_mode, ioaddr + RxFilterAddr);
1564        spin_unlock_irq(&np->lock);
1565
1566        netif_start_queue(dev);
1567
1568        if (netif_msg_ifup(np))
1569                printk(KERN_DEBUG "%s: Done netdev_open(), status: %#08x.\n",
1570                        dev->name, (int)readl(ioaddr + ChipCmd));
1571
1572        /* Set the timer to check for link beat. */
1573        init_timer(&np->timer);
1574        np->timer.expires = round_jiffies(jiffies + NATSEMI_TIMER_FREQ);
1575        np->timer.data = (unsigned long)dev;
1576        np->timer.function = netdev_timer; /* timer handler */
1577        add_timer(&np->timer);
1578
1579        return 0;
1580}
1581
1582static void do_cable_magic(struct net_device *dev)
1583{
1584        struct netdev_private *np = netdev_priv(dev);
1585        void __iomem *ioaddr = ns_ioaddr(dev);
1586
1587        if (dev->if_port != PORT_TP)
1588                return;
1589
1590        if (np->srr >= SRR_DP83816_A5)
1591                return;
1592
1593        /*
1594         * 100 MBit links with short cables can trip an issue with the chip.
1595         * The problem manifests as lots of CRC errors and/or flickering
1596         * activity LED while idle.  This process is based on instructions
1597         * from engineers at National.
1598         */
1599        if (readl(ioaddr + ChipConfig) & CfgSpeed100) {
1600                u16 data;
1601
1602                writew(1, ioaddr + PGSEL);
1603                /*
1604                 * coefficient visibility should already be enabled via
1605                 * DSPCFG | 0x1000
1606                 */
1607                data = readw(ioaddr + TSTDAT) & 0xff;
1608                /*
1609                 * the value must be negative, and within certain values
1610                 * (these values all come from National)
1611                 */
1612                if (!(data & 0x80) || ((data >= 0xd8) && (data <= 0xff))) {
1613                        np = netdev_priv(dev);
1614
1615                        /* the bug has been triggered - fix the coefficient */
1616                        writew(TSTDAT_FIXED, ioaddr + TSTDAT);
1617                        /* lock the value */
1618                        data = readw(ioaddr + DSPCFG);
1619                        np->dspcfg = data | DSPCFG_LOCK;
1620                        writew(np->dspcfg, ioaddr + DSPCFG);
1621                }
1622                writew(0, ioaddr + PGSEL);
1623        }
1624}
1625
1626static void undo_cable_magic(struct net_device *dev)
1627{
1628        u16 data;
1629        struct netdev_private *np = netdev_priv(dev);
1630        void __iomem * ioaddr = ns_ioaddr(dev);
1631
1632        if (dev->if_port != PORT_TP)
1633                return;
1634
1635        if (np->srr >= SRR_DP83816_A5)
1636                return;
1637
1638        writew(1, ioaddr + PGSEL);
1639        /* make sure the lock bit is clear */
1640        data = readw(ioaddr + DSPCFG);
1641        np->dspcfg = data & ~DSPCFG_LOCK;
1642        writew(np->dspcfg, ioaddr + DSPCFG);
1643        writew(0, ioaddr + PGSEL);
1644}
1645
1646static void check_link(struct net_device *dev)
1647{
1648        struct netdev_private *np = netdev_priv(dev);
1649        void __iomem * ioaddr = ns_ioaddr(dev);
1650        int duplex = np->duplex;
1651        u16 bmsr;
1652
1653        /* If we are ignoring the PHY then don't try reading it. */
1654        if (np->ignore_phy)
1655                goto propagate_state;
1656
1657        /* The link status field is latched: it remains low after a temporary
1658         * link failure until it's read. We need the current link status,
1659         * thus read twice.
1660         */
1661        mdio_read(dev, MII_BMSR);
1662        bmsr = mdio_read(dev, MII_BMSR);
1663
1664        if (!(bmsr & BMSR_LSTATUS)) {
1665                if (netif_carrier_ok(dev)) {
1666                        if (netif_msg_link(np))
1667                                printk(KERN_NOTICE "%s: link down.\n",
1668                                       dev->name);
1669                        netif_carrier_off(dev);
1670                        undo_cable_magic(dev);
1671                }
1672                return;
1673        }
1674        if (!netif_carrier_ok(dev)) {
1675                if (netif_msg_link(np))
1676                        printk(KERN_NOTICE "%s: link up.\n", dev->name);
1677                netif_carrier_on(dev);
1678                do_cable_magic(dev);
1679        }
1680
1681        duplex = np->full_duplex;
1682        if (!duplex) {
1683                if (bmsr & BMSR_ANEGCOMPLETE) {
1684                        int tmp = mii_nway_result(
1685                                np->advertising & mdio_read(dev, MII_LPA));
1686                        if (tmp == LPA_100FULL || tmp == LPA_10FULL)
1687                                duplex = 1;
1688                } else if (mdio_read(dev, MII_BMCR) & BMCR_FULLDPLX)
1689                        duplex = 1;
1690        }
1691
1692propagate_state:
1693        /* if duplex is set then bit 28 must be set, too */
1694        if (duplex ^ !!(np->rx_config & RxAcceptTx)) {
1695                if (netif_msg_link(np))
1696                        printk(KERN_INFO
1697                                "%s: Setting %s-duplex based on negotiated "
1698                                "link capability.\n", dev->name,
1699                                duplex ? "full" : "half");
1700                if (duplex) {
1701                        np->rx_config |= RxAcceptTx;
1702                        np->tx_config |= TxCarrierIgn | TxHeartIgn;
1703                } else {
1704                        np->rx_config &= ~RxAcceptTx;
1705                        np->tx_config &= ~(TxCarrierIgn | TxHeartIgn);
1706                }
1707                writel(np->tx_config, ioaddr + TxConfig);
1708                writel(np->rx_config, ioaddr + RxConfig);
1709        }
1710}
1711
1712static void init_registers(struct net_device *dev)
1713{
1714        struct netdev_private *np = netdev_priv(dev);
1715        void __iomem * ioaddr = ns_ioaddr(dev);
1716
1717        init_phy_fixup(dev);
1718
1719        /* clear any interrupts that are pending, such as wake events */
1720        readl(ioaddr + IntrStatus);
1721
1722        writel(np->ring_dma, ioaddr + RxRingPtr);
1723        writel(np->ring_dma + RX_RING_SIZE * sizeof(struct netdev_desc),
1724                ioaddr + TxRingPtr);
1725
1726        /* Initialize other registers.
1727         * Configure the PCI bus bursts and FIFO thresholds.
1728         * Configure for standard, in-spec Ethernet.
1729         * Start with half-duplex. check_link will update
1730         * to the correct settings.
1731         */
1732
1733        /* DRTH: 2: start tx if 64 bytes are in the fifo
1734         * FLTH: 0x10: refill with next packet if 512 bytes are free
1735         * MXDMA: 0: up to 256 byte bursts.
1736         *      MXDMA must be <= FLTH
1737         * ECRETRY=1
1738         * ATP=1
1739         */
1740        np->tx_config = TxAutoPad | TxCollRetry | TxMxdma_256 |
1741                                TX_FLTH_VAL | TX_DRTH_VAL_START;
1742        writel(np->tx_config, ioaddr + TxConfig);
1743
1744        /* DRTH 0x10: start copying to memory if 128 bytes are in the fifo
1745         * MXDMA 0: up to 256 byte bursts
1746         */
1747        np->rx_config = RxMxdma_256 | RX_DRTH_VAL;
1748        /* if receive ring now has bigger buffers than normal, enable jumbo */
1749        if (np->rx_buf_sz > NATSEMI_LONGPKT)
1750                np->rx_config |= RxAcceptLong;
1751
1752        writel(np->rx_config, ioaddr + RxConfig);
1753
1754        /* Disable PME:
1755         * The PME bit is initialized from the EEPROM contents.
1756         * PCI cards probably have PME disabled, but motherboard
1757         * implementations may have PME set to enable WakeOnLan.
1758         * With PME set the chip will scan incoming packets but
1759         * nothing will be written to memory. */
1760        np->SavedClkRun = readl(ioaddr + ClkRun);
1761        writel(np->SavedClkRun & ~PMEEnable, ioaddr + ClkRun);
1762        if (np->SavedClkRun & PMEStatus && netif_msg_wol(np)) {
1763                printk(KERN_NOTICE "%s: Wake-up event %#08x\n",
1764                        dev->name, readl(ioaddr + WOLCmd));
1765        }
1766
1767        check_link(dev);
1768        __set_rx_mode(dev);
1769
1770        /* Enable interrupts by setting the interrupt mask. */
1771        writel(DEFAULT_INTR, ioaddr + IntrMask);
1772        natsemi_irq_enable(dev);
1773
1774        writel(RxOn | TxOn, ioaddr + ChipCmd);
1775        writel(StatsClear, ioaddr + StatsCtrl); /* Clear Stats */
1776}
1777
1778/*
1779 * netdev_timer:
1780 * Purpose:
1781 * 1) check for link changes. Usually they are handled by the MII interrupt
1782 *    but it doesn't hurt to check twice.
1783 * 2) check for sudden death of the NIC:
1784 *    It seems that a reference set for this chip went out with incorrect info,
1785 *    and there exist boards that aren't quite right.  An unexpected voltage
1786 *    drop can cause the PHY to get itself in a weird state (basically reset).
1787 *    NOTE: this only seems to affect revC chips.  The user can disable
1788 *    this check via dspcfg_workaround sysfs option.
1789 * 3) check of death of the RX path due to OOM
1790 */
1791static void netdev_timer(unsigned long data)
1792{
1793        struct net_device *dev = (struct net_device *)data;
1794        struct netdev_private *np = netdev_priv(dev);
1795        void __iomem * ioaddr = ns_ioaddr(dev);
1796        int next_tick = NATSEMI_TIMER_FREQ;
1797
1798        if (netif_msg_timer(np)) {
1799                /* DO NOT read the IntrStatus register,
1800                 * a read clears any pending interrupts.
1801                 */
1802                printk(KERN_DEBUG "%s: Media selection timer tick.\n",
1803                        dev->name);
1804        }
1805
1806        if (dev->if_port == PORT_TP) {
1807                u16 dspcfg;
1808
1809                spin_lock_irq(&np->lock);
1810                /* check for a nasty random phy-reset - use dspcfg as a flag */
1811                writew(1, ioaddr+PGSEL);
1812                dspcfg = readw(ioaddr+DSPCFG);
1813                writew(0, ioaddr+PGSEL);
1814                if (np->dspcfg_workaround && dspcfg != np->dspcfg) {
1815                        if (!netif_queue_stopped(dev)) {
1816                                spin_unlock_irq(&np->lock);
1817                                if (netif_msg_drv(np))
1818                                        printk(KERN_NOTICE "%s: possible phy reset: "
1819                                                "re-initializing\n", dev->name);
1820                                disable_irq(dev->irq);
1821                                spin_lock_irq(&np->lock);
1822                                natsemi_stop_rxtx(dev);
1823                                dump_ring(dev);
1824                                reinit_ring(dev);
1825                                init_registers(dev);
1826                                spin_unlock_irq(&np->lock);
1827                                enable_irq(dev->irq);
1828                        } else {
1829                                /* hurry back */
1830                                next_tick = HZ;
1831                                spin_unlock_irq(&np->lock);
1832                        }
1833                } else {
1834                        /* init_registers() calls check_link() for the above case */
1835                        check_link(dev);
1836                        spin_unlock_irq(&np->lock);
1837                }
1838        } else {
1839                spin_lock_irq(&np->lock);
1840                check_link(dev);
1841                spin_unlock_irq(&np->lock);
1842        }
1843        if (np->oom) {
1844                disable_irq(dev->irq);
1845                np->oom = 0;
1846                refill_rx(dev);
1847                enable_irq(dev->irq);
1848                if (!np->oom) {
1849                        writel(RxOn, ioaddr + ChipCmd);
1850                } else {
1851                        next_tick = 1;
1852                }
1853        }
1854
1855        if (next_tick > 1)
1856                mod_timer(&np->timer, round_jiffies(jiffies + next_tick));
1857        else
1858                mod_timer(&np->timer, jiffies + next_tick);
1859}
1860
1861static void dump_ring(struct net_device *dev)
1862{
1863        struct netdev_private *np = netdev_priv(dev);
1864
1865        if (netif_msg_pktdata(np)) {
1866                int i;
1867                printk(KERN_DEBUG "  Tx ring at %p:\n", np->tx_ring);
1868                for (i = 0; i < TX_RING_SIZE; i++) {
1869                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1870                                i, np->tx_ring[i].next_desc,
1871                                np->tx_ring[i].cmd_status,
1872                                np->tx_ring[i].addr);
1873                }
1874                printk(KERN_DEBUG "  Rx ring %p:\n", np->rx_ring);
1875                for (i = 0; i < RX_RING_SIZE; i++) {
1876                        printk(KERN_DEBUG " #%d desc. %#08x %#08x %#08x.\n",
1877                                i, np->rx_ring[i].next_desc,
1878                                np->rx_ring[i].cmd_status,
1879                                np->rx_ring[i].addr);
1880                }
1881        }
1882}
1883
1884static void ns_tx_timeout(struct net_device *dev)
1885{
1886        struct netdev_private *np = netdev_priv(dev);
1887        void __iomem * ioaddr = ns_ioaddr(dev);
1888
1889        disable_irq(dev->irq);
1890        spin_lock_irq(&np->lock);
1891        if (!np->hands_off) {
1892                if (netif_msg_tx_err(np))
1893                        printk(KERN_WARNING
1894                                "%s: Transmit timed out, status %#08x,"
1895                                " resetting...\n",
1896                                dev->name, readl(ioaddr + IntrStatus));
1897                dump_ring(dev);
1898
1899                natsemi_reset(dev);
1900                reinit_ring(dev);
1901                init_registers(dev);
1902        } else {
1903                printk(KERN_WARNING
1904                        "%s: tx_timeout while in hands_off state?\n",
1905                        dev->name);
1906        }
1907        spin_unlock_irq(&np->lock);
1908        enable_irq(dev->irq);
1909
1910        dev->trans_start = jiffies; /* prevent tx timeout */
1911        dev->stats.tx_errors++;
1912        netif_wake_queue(dev);
1913}
1914
1915static int alloc_ring(struct net_device *dev)
1916{
1917        struct netdev_private *np = netdev_priv(dev);
1918        np->rx_ring = pci_alloc_consistent(np->pci_dev,
1919                sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
1920                &np->ring_dma);
1921        if (!np->rx_ring)
1922                return -ENOMEM;
1923        np->tx_ring = &np->rx_ring[RX_RING_SIZE];
1924        return 0;
1925}
1926
1927static void refill_rx(struct net_device *dev)
1928{
1929        struct netdev_private *np = netdev_priv(dev);
1930
1931        /* Refill the Rx ring buffers. */
1932        for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1933                struct sk_buff *skb;
1934                int entry = np->dirty_rx % RX_RING_SIZE;
1935                if (np->rx_skbuff[entry] == NULL) {
1936                        unsigned int buflen = np->rx_buf_sz+NATSEMI_PADDING;
1937                        skb = dev_alloc_skb(buflen);
1938                        np->rx_skbuff[entry] = skb;
1939                        if (skb == NULL)
1940                                break; /* Better luck next round. */
1941                        skb->dev = dev; /* Mark as being used by this device. */
1942                        np->rx_dma[entry] = pci_map_single(np->pci_dev,
1943                                skb->data, buflen, PCI_DMA_FROMDEVICE);
1944                        np->rx_ring[entry].addr = cpu_to_le32(np->rx_dma[entry]);
1945                }
1946                np->rx_ring[entry].cmd_status = cpu_to_le32(np->rx_buf_sz);
1947        }
1948        if (np->cur_rx - np->dirty_rx == RX_RING_SIZE) {
1949                if (netif_msg_rx_err(np))
1950                        printk(KERN_WARNING "%s: going OOM.\n", dev->name);
1951                np->oom = 1;
1952        }
1953}
1954
1955static void set_bufsize(struct net_device *dev)
1956{
1957        struct netdev_private *np = netdev_priv(dev);
1958        if (dev->mtu <= ETH_DATA_LEN)
1959                np->rx_buf_sz = ETH_DATA_LEN + NATSEMI_HEADERS;
1960        else
1961                np->rx_buf_sz = dev->mtu + NATSEMI_HEADERS;
1962}
1963
1964/* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1965static void init_ring(struct net_device *dev)
1966{
1967        struct netdev_private *np = netdev_priv(dev);
1968        int i;
1969
1970        /* 1) TX ring */
1971        np->dirty_tx = np->cur_tx = 0;
1972        for (i = 0; i < TX_RING_SIZE; i++) {
1973                np->tx_skbuff[i] = NULL;
1974                np->tx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1975                        +sizeof(struct netdev_desc)
1976                        *((i+1)%TX_RING_SIZE+RX_RING_SIZE));
1977                np->tx_ring[i].cmd_status = 0;
1978        }
1979
1980        /* 2) RX ring */
1981        np->dirty_rx = 0;
1982        np->cur_rx = RX_RING_SIZE;
1983        np->oom = 0;
1984        set_bufsize(dev);
1985
1986        np->rx_head_desc = &np->rx_ring[0];
1987
1988        /* Please be careful before changing this loop - at least gcc-2.95.1
1989         * miscompiles it otherwise.
1990         */
1991        /* Initialize all Rx descriptors. */
1992        for (i = 0; i < RX_RING_SIZE; i++) {
1993                np->rx_ring[i].next_desc = cpu_to_le32(np->ring_dma
1994                                +sizeof(struct netdev_desc)
1995                                *((i+1)%RX_RING_SIZE));
1996                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
1997                np->rx_skbuff[i] = NULL;
1998        }
1999        refill_rx(dev);
2000        dump_ring(dev);
2001}
2002
2003static void drain_tx(struct net_device *dev)
2004{
2005        struct netdev_private *np = netdev_priv(dev);
2006        int i;
2007
2008        for (i = 0; i < TX_RING_SIZE; i++) {
2009                if (np->tx_skbuff[i]) {
2010                        pci_unmap_single(np->pci_dev,
2011                                np->tx_dma[i], np->tx_skbuff[i]->len,
2012                                PCI_DMA_TODEVICE);
2013                        dev_kfree_skb(np->tx_skbuff[i]);
2014                        dev->stats.tx_dropped++;
2015                }
2016                np->tx_skbuff[i] = NULL;
2017        }
2018}
2019
2020static void drain_rx(struct net_device *dev)
2021{
2022        struct netdev_private *np = netdev_priv(dev);
2023        unsigned int buflen = np->rx_buf_sz;
2024        int i;
2025
2026        /* Free all the skbuffs in the Rx queue. */
2027        for (i = 0; i < RX_RING_SIZE; i++) {
2028                np->rx_ring[i].cmd_status = 0;
2029                np->rx_ring[i].addr = cpu_to_le32(0xBADF00D0); /* An invalid address. */
2030                if (np->rx_skbuff[i]) {
2031                        pci_unmap_single(np->pci_dev, np->rx_dma[i],
2032                                buflen + NATSEMI_PADDING,
2033                                PCI_DMA_FROMDEVICE);
2034                        dev_kfree_skb(np->rx_skbuff[i]);
2035                }
2036                np->rx_skbuff[i] = NULL;
2037        }
2038}
2039
2040static void drain_ring(struct net_device *dev)
2041{
2042        drain_rx(dev);
2043        drain_tx(dev);
2044}
2045
2046static void free_ring(struct net_device *dev)
2047{
2048        struct netdev_private *np = netdev_priv(dev);
2049        pci_free_consistent(np->pci_dev,
2050                sizeof(struct netdev_desc) * (RX_RING_SIZE+TX_RING_SIZE),
2051                np->rx_ring, np->ring_dma);
2052}
2053
2054static void reinit_rx(struct net_device *dev)
2055{
2056        struct netdev_private *np = netdev_priv(dev);
2057        int i;
2058
2059        /* RX Ring */
2060        np->dirty_rx = 0;
2061        np->cur_rx = RX_RING_SIZE;
2062        np->rx_head_desc = &np->rx_ring[0];
2063        /* Initialize all Rx descriptors. */
2064        for (i = 0; i < RX_RING_SIZE; i++)
2065                np->rx_ring[i].cmd_status = cpu_to_le32(DescOwn);
2066
2067        refill_rx(dev);
2068}
2069
2070static void reinit_ring(struct net_device *dev)
2071{
2072        struct netdev_private *np = netdev_priv(dev);
2073        int i;
2074
2075        /* drain TX ring */
2076        drain_tx(dev);
2077        np->dirty_tx = np->cur_tx = 0;
2078        for (i=0;i<TX_RING_SIZE;i++)
2079                np->tx_ring[i].cmd_status = 0;
2080
2081        reinit_rx(dev);
2082}
2083
2084static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
2085{
2086        struct netdev_private *np = netdev_priv(dev);
2087        void __iomem * ioaddr = ns_ioaddr(dev);
2088        unsigned entry;
2089        unsigned long flags;
2090
2091        /* Note: Ordering is important here, set the field with the
2092           "ownership" bit last, and only then increment cur_tx. */
2093
2094        /* Calculate the next Tx descriptor entry. */
2095        entry = np->cur_tx % TX_RING_SIZE;
2096
2097        np->tx_skbuff[entry] = skb;
2098        np->tx_dma[entry] = pci_map_single(np->pci_dev,
2099                                skb->data,skb->len, PCI_DMA_TODEVICE);
2100
2101        np->tx_ring[entry].addr = cpu_to_le32(np->tx_dma[entry]);
2102
2103        spin_lock_irqsave(&np->lock, flags);
2104
2105        if (!np->hands_off) {
2106                np->tx_ring[entry].cmd_status = cpu_to_le32(DescOwn | skb->len);
2107                /* StrongARM: Explicitly cache flush np->tx_ring and
2108                 * skb->data,skb->len. */
2109                wmb();
2110                np->cur_tx++;
2111                if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1) {
2112                        netdev_tx_done(dev);
2113                        if (np->cur_tx - np->dirty_tx >= TX_QUEUE_LEN - 1)
2114                                netif_stop_queue(dev);
2115                }
2116                /* Wake the potentially-idle transmit channel. */
2117                writel(TxOn, ioaddr + ChipCmd);
2118        } else {
2119                dev_kfree_skb_irq(skb);
2120                dev->stats.tx_dropped++;
2121        }
2122        spin_unlock_irqrestore(&np->lock, flags);
2123
2124        if (netif_msg_tx_queued(np)) {
2125                printk(KERN_DEBUG "%s: Transmit frame #%d queued in slot %d.\n",
2126                        dev->name, np->cur_tx, entry);
2127        }
2128        return NETDEV_TX_OK;
2129}
2130
2131static void netdev_tx_done(struct net_device *dev)
2132{
2133        struct netdev_private *np = netdev_priv(dev);
2134
2135        for (; np->cur_tx - np->dirty_tx > 0; np->dirty_tx++) {
2136                int entry = np->dirty_tx % TX_RING_SIZE;
2137                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescOwn))
2138                        break;
2139                if (netif_msg_tx_done(np))
2140                        printk(KERN_DEBUG
2141                                "%s: tx frame #%d finished, status %#08x.\n",
2142                                        dev->name, np->dirty_tx,
2143                                        le32_to_cpu(np->tx_ring[entry].cmd_status));
2144                if (np->tx_ring[entry].cmd_status & cpu_to_le32(DescPktOK)) {
2145                        dev->stats.tx_packets++;
2146                        dev->stats.tx_bytes += np->tx_skbuff[entry]->len;
2147                } else { /* Various Tx errors */
2148                        int tx_status =
2149                                le32_to_cpu(np->tx_ring[entry].cmd_status);
2150                        if (tx_status & (DescTxAbort|DescTxExcColl))
2151                                dev->stats.tx_aborted_errors++;
2152                        if (tx_status & DescTxFIFO)
2153                                dev->stats.tx_fifo_errors++;
2154                        if (tx_status & DescTxCarrier)
2155                                dev->stats.tx_carrier_errors++;
2156                        if (tx_status & DescTxOOWCol)
2157                                dev->stats.tx_window_errors++;
2158                        dev->stats.tx_errors++;
2159                }
2160                pci_unmap_single(np->pci_dev,np->tx_dma[entry],
2161                                        np->tx_skbuff[entry]->len,
2162                                        PCI_DMA_TODEVICE);
2163                /* Free the original skb. */
2164                dev_kfree_skb_irq(np->tx_skbuff[entry]);
2165                np->tx_skbuff[entry] = NULL;
2166        }
2167        if (netif_queue_stopped(dev) &&
2168            np->cur_tx - np->dirty_tx < TX_QUEUE_LEN - 4) {
2169                /* The ring is no longer full, wake queue. */
2170                netif_wake_queue(dev);
2171        }
2172}
2173
2174/* The interrupt handler doesn't actually handle interrupts itself, it
2175 * schedules a NAPI poll if there is anything to do. */
2176static irqreturn_t intr_handler(int irq, void *dev_instance)
2177{
2178        struct net_device *dev = dev_instance;
2179        struct netdev_private *np = netdev_priv(dev);
2180        void __iomem * ioaddr = ns_ioaddr(dev);
2181
2182        /* Reading IntrStatus automatically acknowledges so don't do
2183         * that while interrupts are disabled, (for example, while a
2184         * poll is scheduled).  */
2185        if (np->hands_off || !readl(ioaddr + IntrEnable))
2186                return IRQ_NONE;
2187
2188        np->intr_status = readl(ioaddr + IntrStatus);
2189
2190        if (!np->intr_status)
2191                return IRQ_NONE;
2192
2193        if (netif_msg_intr(np))
2194                printk(KERN_DEBUG
2195                       "%s: Interrupt, status %#08x, mask %#08x.\n",
2196                       dev->name, np->intr_status,
2197                       readl(ioaddr + IntrMask));
2198
2199        prefetch(&np->rx_skbuff[np->cur_rx % RX_RING_SIZE]);
2200
2201        if (napi_schedule_prep(&np->napi)) {
2202                /* Disable interrupts and register for poll */
2203                natsemi_irq_disable(dev);
2204                __napi_schedule(&np->napi);
2205        } else
2206                printk(KERN_WARNING
2207                       "%s: Ignoring interrupt, status %#08x, mask %#08x.\n",
2208                       dev->name, np->intr_status,
2209                       readl(ioaddr + IntrMask));
2210
2211        return IRQ_HANDLED;
2212}
2213
2214/* This is the NAPI poll routine.  As well as the standard RX handling
2215 * it also handles all other interrupts that the chip might raise.
2216 */
2217static int natsemi_poll(struct napi_struct *napi, int budget)
2218{
2219        struct netdev_private *np = container_of(napi, struct netdev_private, napi);
2220        struct net_device *dev = np->dev;
2221        void __iomem * ioaddr = ns_ioaddr(dev);
2222        int work_done = 0;
2223
2224        do {
2225                if (netif_msg_intr(np))
2226                        printk(KERN_DEBUG
2227                               "%s: Poll, status %#08x, mask %#08x.\n",
2228                               dev->name, np->intr_status,
2229                               readl(ioaddr + IntrMask));
2230
2231                /* netdev_rx() may read IntrStatus again if the RX state
2232                 * machine falls over so do it first. */
2233                if (np->intr_status &
2234                    (IntrRxDone | IntrRxIntr | RxStatusFIFOOver |
2235                     IntrRxErr | IntrRxOverrun)) {
2236                        netdev_rx(dev, &work_done, budget);
2237                }
2238
2239                if (np->intr_status &
2240                    (IntrTxDone | IntrTxIntr | IntrTxIdle | IntrTxErr)) {
2241                        spin_lock(&np->lock);
2242                        netdev_tx_done(dev);
2243                        spin_unlock(&np->lock);
2244                }
2245
2246                /* Abnormal error summary/uncommon events handlers. */
2247                if (np->intr_status & IntrAbnormalSummary)
2248                        netdev_error(dev, np->intr_status);
2249
2250                if (work_done >= budget)
2251                        return work_done;
2252
2253                np->intr_status = readl(ioaddr + IntrStatus);
2254        } while (np->intr_status);
2255
2256        napi_complete(napi);
2257
2258        /* Reenable interrupts providing nothing is trying to shut
2259         * the chip down. */
2260        spin_lock(&np->lock);
2261        if (!np->hands_off)
2262                natsemi_irq_enable(dev);
2263        spin_unlock(&np->lock);
2264
2265        return work_done;
2266}
2267
2268/* This routine is logically part of the interrupt handler, but separated
2269   for clarity and better register allocation. */
2270static void netdev_rx(struct net_device *dev, int *work_done, int work_to_do)
2271{
2272        struct netdev_private *np = netdev_priv(dev);
2273        int entry = np->cur_rx % RX_RING_SIZE;
2274        int boguscnt = np->dirty_rx + RX_RING_SIZE - np->cur_rx;
2275        s32 desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2276        unsigned int buflen = np->rx_buf_sz;
2277        void __iomem * ioaddr = ns_ioaddr(dev);
2278
2279        /* If the driver owns the next entry it's a new packet. Send it up. */
2280        while (desc_status < 0) { /* e.g. & DescOwn */
2281                int pkt_len;
2282                if (netif_msg_rx_status(np))
2283                        printk(KERN_DEBUG
2284                                "  netdev_rx() entry %d status was %#08x.\n",
2285                                entry, desc_status);
2286                if (--boguscnt < 0)
2287                        break;
2288
2289                if (*work_done >= work_to_do)
2290                        break;
2291
2292                (*work_done)++;
2293
2294                pkt_len = (desc_status & DescSizeMask) - 4;
2295                if ((desc_status&(DescMore|DescPktOK|DescRxLong)) != DescPktOK){
2296                        if (desc_status & DescMore) {
2297                                unsigned long flags;
2298
2299                                if (netif_msg_rx_err(np))
2300                                        printk(KERN_WARNING
2301                                                "%s: Oversized(?) Ethernet "
2302                                                "frame spanned multiple "
2303                                                "buffers, entry %#08x "
2304                                                "status %#08x.\n", dev->name,
2305                                                np->cur_rx, desc_status);
2306                                dev->stats.rx_length_errors++;
2307
2308                                /* The RX state machine has probably
2309                                 * locked up beneath us.  Follow the
2310                                 * reset procedure documented in
2311                                 * AN-1287. */
2312
2313                                spin_lock_irqsave(&np->lock, flags);
2314                                reset_rx(dev);
2315                                reinit_rx(dev);
2316                                writel(np->ring_dma, ioaddr + RxRingPtr);
2317                                check_link(dev);
2318                                spin_unlock_irqrestore(&np->lock, flags);
2319
2320                                /* We'll enable RX on exit from this
2321                                 * function. */
2322                                break;
2323
2324                        } else {
2325                                /* There was an error. */
2326                                dev->stats.rx_errors++;
2327                                if (desc_status & (DescRxAbort|DescRxOver))
2328                                        dev->stats.rx_over_errors++;
2329                                if (desc_status & (DescRxLong|DescRxRunt))
2330                                        dev->stats.rx_length_errors++;
2331                                if (desc_status & (DescRxInvalid|DescRxAlign))
2332                                        dev->stats.rx_frame_errors++;
2333                                if (desc_status & DescRxCRC)
2334                                        dev->stats.rx_crc_errors++;
2335                        }
2336                } else if (pkt_len > np->rx_buf_sz) {
2337                        /* if this is the tail of a double buffer
2338                         * packet, we've already counted the error
2339                         * on the first part.  Ignore the second half.
2340                         */
2341                } else {
2342                        struct sk_buff *skb;
2343                        /* Omit CRC size. */
2344                        /* Check if the packet is long enough to accept
2345                         * without copying to a minimally-sized skbuff. */
2346                        if (pkt_len < rx_copybreak &&
2347                            (skb = dev_alloc_skb(pkt_len + RX_OFFSET)) != NULL) {
2348                                /* 16 byte align the IP header */
2349                                skb_reserve(skb, RX_OFFSET);
2350                                pci_dma_sync_single_for_cpu(np->pci_dev,
2351                                        np->rx_dma[entry],
2352                                        buflen,
2353                                        PCI_DMA_FROMDEVICE);
2354                                skb_copy_to_linear_data(skb,
2355                                        np->rx_skbuff[entry]->data, pkt_len);
2356                                skb_put(skb, pkt_len);
2357                                pci_dma_sync_single_for_device(np->pci_dev,
2358                                        np->rx_dma[entry],
2359                                        buflen,
2360                                        PCI_DMA_FROMDEVICE);
2361                        } else {
2362                                pci_unmap_single(np->pci_dev, np->rx_dma[entry],
2363                                                 buflen + NATSEMI_PADDING,
2364                                                 PCI_DMA_FROMDEVICE);
2365                                skb_put(skb = np->rx_skbuff[entry], pkt_len);
2366                                np->rx_skbuff[entry] = NULL;
2367                        }
2368                        skb->protocol = eth_type_trans(skb, dev);
2369                        netif_receive_skb(skb);
2370                        dev->stats.rx_packets++;
2371                        dev->stats.rx_bytes += pkt_len;
2372                }
2373                entry = (++np->cur_rx) % RX_RING_SIZE;
2374                np->rx_head_desc = &np->rx_ring[entry];
2375                desc_status = le32_to_cpu(np->rx_head_desc->cmd_status);
2376        }
2377        refill_rx(dev);
2378
2379        /* Restart Rx engine if stopped. */
2380        if (np->oom)
2381                mod_timer(&np->timer, jiffies + 1);
2382        else
2383                writel(RxOn, ioaddr + ChipCmd);
2384}
2385
2386static void netdev_error(struct net_device *dev, int intr_status)
2387{
2388        struct netdev_private *np = netdev_priv(dev);
2389        void __iomem * ioaddr = ns_ioaddr(dev);
2390
2391        spin_lock(&np->lock);
2392        if (intr_status & LinkChange) {
2393                u16 lpa = mdio_read(dev, MII_LPA);
2394                if (mdio_read(dev, MII_BMCR) & BMCR_ANENABLE &&
2395                    netif_msg_link(np)) {
2396                        printk(KERN_INFO
2397                                "%s: Autonegotiation advertising"
2398                                " %#04x  partner %#04x.\n", dev->name,
2399                                np->advertising, lpa);
2400                }
2401
2402                /* read MII int status to clear the flag */
2403                readw(ioaddr + MIntrStatus);
2404                check_link(dev);
2405        }
2406        if (intr_status & StatsMax) {
2407                __get_stats(dev);
2408        }
2409        if (intr_status & IntrTxUnderrun) {
2410                if ((np->tx_config & TxDrthMask) < TX_DRTH_VAL_LIMIT) {
2411                        np->tx_config += TX_DRTH_VAL_INC;
2412                        if (netif_msg_tx_err(np))
2413                                printk(KERN_NOTICE
2414                                        "%s: increased tx threshold, txcfg %#08x.\n",
2415                                        dev->name, np->tx_config);
2416                } else {
2417                        if (netif_msg_tx_err(np))
2418                                printk(KERN_NOTICE
2419                                        "%s: tx underrun with maximum tx threshold, txcfg %#08x.\n",
2420                                        dev->name, np->tx_config);
2421                }
2422                writel(np->tx_config, ioaddr + TxConfig);
2423        }
2424        if (intr_status & WOLPkt && netif_msg_wol(np)) {
2425                int wol_status = readl(ioaddr + WOLCmd);
2426                printk(KERN_NOTICE "%s: Link wake-up event %#08x\n",
2427                        dev->name, wol_status);
2428        }
2429        if (intr_status & RxStatusFIFOOver) {
2430                if (netif_msg_rx_err(np) && netif_msg_intr(np)) {
2431                        printk(KERN_NOTICE "%s: Rx status FIFO overrun\n",
2432                                dev->name);
2433                }
2434                dev->stats.rx_fifo_errors++;
2435                dev->stats.rx_errors++;
2436        }
2437        /* Hmmmmm, it's not clear how to recover from PCI faults. */
2438        if (intr_status & IntrPCIErr) {
2439                printk(KERN_NOTICE "%s: PCI error %#08x\n", dev->name,
2440                        intr_status & IntrPCIErr);
2441                dev->stats.tx_fifo_errors++;
2442                dev->stats.tx_errors++;
2443                dev->stats.rx_fifo_errors++;
2444                dev->stats.rx_errors++;
2445        }
2446        spin_unlock(&np->lock);
2447}
2448
2449static void __get_stats(struct net_device *dev)
2450{
2451        void __iomem * ioaddr = ns_ioaddr(dev);
2452
2453        /* The chip only need report frame silently dropped. */
2454        dev->stats.rx_crc_errors += readl(ioaddr + RxCRCErrs);
2455        dev->stats.rx_missed_errors += readl(ioaddr + RxMissed);
2456}
2457
2458static struct net_device_stats *get_stats(struct net_device *dev)
2459{
2460        struct netdev_private *np = netdev_priv(dev);
2461
2462        /* The chip only need report frame silently dropped. */
2463        spin_lock_irq(&np->lock);
2464        if (netif_running(dev) && !np->hands_off)
2465                __get_stats(dev);
2466        spin_unlock_irq(&np->lock);
2467
2468        return &dev->stats;
2469}
2470
2471#ifdef CONFIG_NET_POLL_CONTROLLER
2472static void natsemi_poll_controller(struct net_device *dev)
2473{
2474        disable_irq(dev->irq);
2475        intr_handler(dev->irq, dev);
2476        enable_irq(dev->irq);
2477}
2478#endif
2479
2480#define HASH_TABLE      0x200
2481static void __set_rx_mode(struct net_device *dev)
2482{
2483        void __iomem * ioaddr = ns_ioaddr(dev);
2484        struct netdev_private *np = netdev_priv(dev);
2485        u8 mc_filter[64]; /* Multicast hash filter */
2486        u32 rx_mode;
2487
2488        if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */
2489                rx_mode = RxFilterEnable | AcceptBroadcast
2490                        | AcceptAllMulticast | AcceptAllPhys | AcceptMyPhys;
2491        } else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
2492                   (dev->flags & IFF_ALLMULTI)) {
2493                rx_mode = RxFilterEnable | AcceptBroadcast
2494                        | AcceptAllMulticast | AcceptMyPhys;
2495        } else {
2496                struct netdev_hw_addr *ha;
2497                int i;
2498
2499                memset(mc_filter, 0, sizeof(mc_filter));
2500                netdev_for_each_mc_addr(ha, dev) {
2501                        int b = (ether_crc(ETH_ALEN, ha->addr) >> 23) & 0x1ff;
2502                        mc_filter[b/8] |= (1 << (b & 0x07));
2503                }
2504                rx_mode = RxFilterEnable | AcceptBroadcast
2505                        | AcceptMulticast | AcceptMyPhys;
2506                for (i = 0; i < 64; i += 2) {
2507                        writel(HASH_TABLE + i, ioaddr + RxFilterAddr);
2508                        writel((mc_filter[i + 1] << 8) + mc_filter[i],
2509                               ioaddr + RxFilterData);
2510                }
2511        }
2512        writel(rx_mode, ioaddr + RxFilterAddr);
2513        np->cur_rx_mode = rx_mode;
2514}
2515
2516static int natsemi_change_mtu(struct net_device *dev, int new_mtu)
2517{
2518        if (new_mtu < 64 || new_mtu > NATSEMI_RX_LIMIT-NATSEMI_HEADERS)
2519                return -EINVAL;
2520
2521        dev->mtu = new_mtu;
2522
2523        /* synchronized against open : rtnl_lock() held by caller */
2524        if (netif_running(dev)) {
2525                struct netdev_private *np = netdev_priv(dev);
2526                void __iomem * ioaddr = ns_ioaddr(dev);
2527
2528                disable_irq(dev->irq);
2529                spin_lock(&np->lock);
2530                /* stop engines */
2531                natsemi_stop_rxtx(dev);
2532                /* drain rx queue */
2533                drain_rx(dev);
2534                /* change buffers */
2535                set_bufsize(dev);
2536                reinit_rx(dev);
2537                writel(np->ring_dma, ioaddr + RxRingPtr);
2538                /* restart engines */
2539                writel(RxOn | TxOn, ioaddr + ChipCmd);
2540                spin_unlock(&np->lock);
2541                enable_irq(dev->irq);
2542        }
2543        return 0;
2544}
2545
2546static void set_rx_mode(struct net_device *dev)
2547{
2548        struct netdev_private *np = netdev_priv(dev);
2549        spin_lock_irq(&np->lock);
2550        if (!np->hands_off)
2551                __set_rx_mode(dev);
2552        spin_unlock_irq(&np->lock);
2553}
2554
2555static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
2556{
2557        struct netdev_private *np = netdev_priv(dev);
2558        strncpy(info->driver, DRV_NAME, ETHTOOL_BUSINFO_LEN);
2559        strncpy(info->version, DRV_VERSION, ETHTOOL_BUSINFO_LEN);
2560        strncpy(info->bus_info, pci_name(np->pci_dev), ETHTOOL_BUSINFO_LEN);
2561}
2562
2563static int get_regs_len(struct net_device *dev)
2564{
2565        return NATSEMI_REGS_SIZE;
2566}
2567
2568static int get_eeprom_len(struct net_device *dev)
2569{
2570        struct netdev_private *np = netdev_priv(dev);
2571        return np->eeprom_size;
2572}
2573
2574static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2575{
2576        struct netdev_private *np = netdev_priv(dev);
2577        spin_lock_irq(&np->lock);
2578        netdev_get_ecmd(dev, ecmd);
2579        spin_unlock_irq(&np->lock);
2580        return 0;
2581}
2582
2583static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2584{
2585        struct netdev_private *np = netdev_priv(dev);
2586        int res;
2587        spin_lock_irq(&np->lock);
2588        res = netdev_set_ecmd(dev, ecmd);
2589        spin_unlock_irq(&np->lock);
2590        return res;
2591}
2592
2593static void get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2594{
2595        struct netdev_private *np = netdev_priv(dev);
2596        spin_lock_irq(&np->lock);
2597        netdev_get_wol(dev, &wol->supported, &wol->wolopts);
2598        netdev_get_sopass(dev, wol->sopass);
2599        spin_unlock_irq(&np->lock);
2600}
2601
2602static int set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2603{
2604        struct netdev_private *np = netdev_priv(dev);
2605        int res;
2606        spin_lock_irq(&np->lock);
2607        netdev_set_wol(dev, wol->wolopts);
2608        res = netdev_set_sopass(dev, wol->sopass);
2609        spin_unlock_irq(&np->lock);
2610        return res;
2611}
2612
2613static void get_regs(struct net_device *dev, struct ethtool_regs *regs, void *buf)
2614{
2615        struct netdev_private *np = netdev_priv(dev);
2616        regs->version = NATSEMI_REGS_VER;
2617        spin_lock_irq(&np->lock);
2618        netdev_get_regs(dev, buf);
2619        spin_unlock_irq(&np->lock);
2620}
2621
2622static u32 get_msglevel(struct net_device *dev)
2623{
2624        struct netdev_private *np = netdev_priv(dev);
2625        return np->msg_enable;
2626}
2627
2628static void set_msglevel(struct net_device *dev, u32 val)
2629{
2630        struct netdev_private *np = netdev_priv(dev);
2631        np->msg_enable = val;
2632}
2633
2634static int nway_reset(struct net_device *dev)
2635{
2636        int tmp;
2637        int r = -EINVAL;
2638        /* if autoneg is off, it's an error */
2639        tmp = mdio_read(dev, MII_BMCR);
2640        if (tmp & BMCR_ANENABLE) {
2641                tmp |= (BMCR_ANRESTART);
2642                mdio_write(dev, MII_BMCR, tmp);
2643                r = 0;
2644        }
2645        return r;
2646}
2647
2648static u32 get_link(struct net_device *dev)
2649{
2650        /* LSTATUS is latched low until a read - so read twice */
2651        mdio_read(dev, MII_BMSR);
2652        return (mdio_read(dev, MII_BMSR)&BMSR_LSTATUS) ? 1:0;
2653}
2654
2655static int get_eeprom(struct net_device *dev, struct ethtool_eeprom *eeprom, u8 *data)
2656{
2657        struct netdev_private *np = netdev_priv(dev);
2658        u8 *eebuf;
2659        int res;
2660
2661        eebuf = kmalloc(np->eeprom_size, GFP_KERNEL);
2662        if (!eebuf)
2663                return -ENOMEM;
2664
2665        eeprom->magic = PCI_VENDOR_ID_NS | (PCI_DEVICE_ID_NS_83815<<16);
2666        spin_lock_irq(&np->lock);
2667        res = netdev_get_eeprom(dev, eebuf);
2668        spin_unlock_irq(&np->lock);
2669        if (!res)
2670                memcpy(data, eebuf+eeprom->offset, eeprom->len);
2671        kfree(eebuf);
2672        return res;
2673}
2674
2675static const struct ethtool_ops ethtool_ops = {
2676        .get_drvinfo = get_drvinfo,
2677        .get_regs_len = get_regs_len,
2678        .get_eeprom_len = get_eeprom_len,
2679        .get_settings = get_settings,
2680        .set_settings = set_settings,
2681        .get_wol = get_wol,
2682        .set_wol = set_wol,
2683        .get_regs = get_regs,
2684        .get_msglevel = get_msglevel,
2685        .set_msglevel = set_msglevel,
2686        .nway_reset = nway_reset,
2687        .get_link = get_link,
2688        .get_eeprom = get_eeprom,
2689};
2690
2691static int netdev_set_wol(struct net_device *dev, u32 newval)
2692{
2693        struct netdev_private *np = netdev_priv(dev);
2694        void __iomem * ioaddr = ns_ioaddr(dev);
2695        u32 data = readl(ioaddr + WOLCmd) & ~WakeOptsSummary;
2696
2697        /* translate to bitmasks this chip understands */
2698        if (newval & WAKE_PHY)
2699                data |= WakePhy;
2700        if (newval & WAKE_UCAST)
2701                data |= WakeUnicast;
2702        if (newval & WAKE_MCAST)
2703                data |= WakeMulticast;
2704        if (newval & WAKE_BCAST)
2705                data |= WakeBroadcast;
2706        if (newval & WAKE_ARP)
2707                data |= WakeArp;
2708        if (newval & WAKE_MAGIC)
2709                data |= WakeMagic;
2710        if (np->srr >= SRR_DP83815_D) {
2711                if (newval & WAKE_MAGICSECURE) {
2712                        data |= WakeMagicSecure;
2713                }
2714        }
2715
2716        writel(data, ioaddr + WOLCmd);
2717
2718        return 0;
2719}
2720
2721static int netdev_get_wol(struct net_device *dev, u32 *supported, u32 *cur)
2722{
2723        struct netdev_private *np = netdev_priv(dev);
2724        void __iomem * ioaddr = ns_ioaddr(dev);
2725        u32 regval = readl(ioaddr + WOLCmd);
2726
2727        *supported = (WAKE_PHY | WAKE_UCAST | WAKE_MCAST | WAKE_BCAST
2728                        | WAKE_ARP | WAKE_MAGIC);
2729
2730        if (np->srr >= SRR_DP83815_D) {
2731                /* SOPASS works on revD and higher */
2732                *supported |= WAKE_MAGICSECURE;
2733        }
2734        *cur = 0;
2735
2736        /* translate from chip bitmasks */
2737        if (regval & WakePhy)
2738                *cur |= WAKE_PHY;
2739        if (regval & WakeUnicast)
2740                *cur |= WAKE_UCAST;
2741        if (regval & WakeMulticast)
2742                *cur |= WAKE_MCAST;
2743        if (regval & WakeBroadcast)
2744                *cur |= WAKE_BCAST;
2745        if (regval & WakeArp)
2746                *cur |= WAKE_ARP;
2747        if (regval & WakeMagic)
2748                *cur |= WAKE_MAGIC;
2749        if (regval & WakeMagicSecure) {
2750                /* this can be on in revC, but it's broken */
2751                *cur |= WAKE_MAGICSECURE;
2752        }
2753
2754        return 0;
2755}
2756
2757static int netdev_set_sopass(struct net_device *dev, u8 *newval)
2758{
2759        struct netdev_private *np = netdev_priv(dev);
2760        void __iomem * ioaddr = ns_ioaddr(dev);
2761        u16 *sval = (u16 *)newval;
2762        u32 addr;
2763
2764        if (np->srr < SRR_DP83815_D) {
2765                return 0;
2766        }
2767
2768        /* enable writing to these registers by disabling the RX filter */
2769        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2770        addr &= ~RxFilterEnable;
2771        writel(addr, ioaddr + RxFilterAddr);
2772
2773        /* write the three words to (undocumented) RFCR vals 0xa, 0xc, 0xe */
2774        writel(addr | 0xa, ioaddr + RxFilterAddr);
2775        writew(sval[0], ioaddr + RxFilterData);
2776
2777        writel(addr | 0xc, ioaddr + RxFilterAddr);
2778        writew(sval[1], ioaddr + RxFilterData);
2779
2780        writel(addr | 0xe, ioaddr + RxFilterAddr);
2781        writew(sval[2], ioaddr + RxFilterData);
2782
2783        /* re-enable the RX filter */
2784        writel(addr | RxFilterEnable, ioaddr + RxFilterAddr);
2785
2786        return 0;
2787}
2788
2789static int netdev_get_sopass(struct net_device *dev, u8 *data)
2790{
2791        struct netdev_private *np = netdev_priv(dev);
2792        void __iomem * ioaddr = ns_ioaddr(dev);
2793        u16 *sval = (u16 *)data;
2794        u32 addr;
2795
2796        if (np->srr < SRR_DP83815_D) {
2797                sval[0] = sval[1] = sval[2] = 0;
2798                return 0;
2799        }
2800
2801        /* read the three words from (undocumented) RFCR vals 0xa, 0xc, 0xe */
2802        addr = readl(ioaddr + RxFilterAddr) & ~RFCRAddressMask;
2803
2804        writel(addr | 0xa, ioaddr + RxFilterAddr);
2805        sval[0] = readw(ioaddr + RxFilterData);
2806
2807        writel(addr | 0xc, ioaddr + RxFilterAddr);
2808        sval[1] = readw(ioaddr + RxFilterData);
2809
2810        writel(addr | 0xe, ioaddr + RxFilterAddr);
2811        sval[2] = readw(ioaddr + RxFilterData);
2812
2813        writel(addr, ioaddr + RxFilterAddr);
2814
2815        return 0;
2816}
2817
2818static int netdev_get_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2819{
2820        struct netdev_private *np = netdev_priv(dev);
2821        u32 tmp;
2822
2823        ecmd->port        = dev->if_port;
2824        ethtool_cmd_speed_set(ecmd, np->speed);
2825        ecmd->duplex      = np->duplex;
2826        ecmd->autoneg     = np->autoneg;
2827        ecmd->advertising = 0;
2828        if (np->advertising & ADVERTISE_10HALF)
2829                ecmd->advertising |= ADVERTISED_10baseT_Half;
2830        if (np->advertising & ADVERTISE_10FULL)
2831                ecmd->advertising |= ADVERTISED_10baseT_Full;
2832        if (np->advertising & ADVERTISE_100HALF)
2833                ecmd->advertising |= ADVERTISED_100baseT_Half;
2834        if (np->advertising & ADVERTISE_100FULL)
2835                ecmd->advertising |= ADVERTISED_100baseT_Full;
2836        ecmd->supported   = (SUPPORTED_Autoneg |
2837                SUPPORTED_10baseT_Half  | SUPPORTED_10baseT_Full  |
2838                SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2839                SUPPORTED_TP | SUPPORTED_MII | SUPPORTED_FIBRE);
2840        ecmd->phy_address = np->phy_addr_external;
2841        /*
2842         * We intentionally report the phy address of the external
2843         * phy, even if the internal phy is used. This is necessary
2844         * to work around a deficiency of the ethtool interface:
2845         * It's only possible to query the settings of the active
2846         * port. Therefore
2847         * # ethtool -s ethX port mii
2848         * actually sends an ioctl to switch to port mii with the
2849         * settings that are used for the current active port.
2850         * If we would report a different phy address in this
2851         * command, then
2852         * # ethtool -s ethX port tp;ethtool -s ethX port mii
2853         * would unintentionally change the phy address.
2854         *
2855         * Fortunately the phy address doesn't matter with the
2856         * internal phy...
2857         */
2858
2859        /* set information based on active port type */
2860        switch (ecmd->port) {
2861        default:
2862        case PORT_TP:
2863                ecmd->advertising |= ADVERTISED_TP;
2864                ecmd->transceiver = XCVR_INTERNAL;
2865                break;
2866        case PORT_MII:
2867                ecmd->advertising |= ADVERTISED_MII;
2868                ecmd->transceiver = XCVR_EXTERNAL;
2869                break;
2870        case PORT_FIBRE:
2871                ecmd->advertising |= ADVERTISED_FIBRE;
2872                ecmd->transceiver = XCVR_EXTERNAL;
2873                break;
2874        }
2875
2876        /* if autonegotiation is on, try to return the active speed/duplex */
2877        if (ecmd->autoneg == AUTONEG_ENABLE) {
2878                ecmd->advertising |= ADVERTISED_Autoneg;
2879                tmp = mii_nway_result(
2880                        np->advertising & mdio_read(dev, MII_LPA));
2881                if (tmp == LPA_100FULL || tmp == LPA_100HALF)
2882                        ethtool_cmd_speed_set(ecmd, SPEED_100);
2883                else
2884                        ethtool_cmd_speed_set(ecmd, SPEED_10);
2885                if (tmp == LPA_100FULL || tmp == LPA_10FULL)
2886                        ecmd->duplex = DUPLEX_FULL;
2887                else
2888                        ecmd->duplex = DUPLEX_HALF;
2889        }
2890
2891        /* ignore maxtxpkt, maxrxpkt for now */
2892
2893        return 0;
2894}
2895
2896static int netdev_set_ecmd(struct net_device *dev, struct ethtool_cmd *ecmd)
2897{
2898        struct netdev_private *np = netdev_priv(dev);
2899
2900        if (ecmd->port != PORT_TP && ecmd->port != PORT_MII && ecmd->port != PORT_FIBRE)
2901                return -EINVAL;
2902        if (ecmd->transceiver != XCVR_INTERNAL && ecmd->transceiver != XCVR_EXTERNAL)
2903                return -EINVAL;
2904        if (ecmd->autoneg == AUTONEG_ENABLE) {
2905                if ((ecmd->advertising & (ADVERTISED_10baseT_Half |
2906                                          ADVERTISED_10baseT_Full |
2907                                          ADVERTISED_100baseT_Half |
2908                                          ADVERTISED_100baseT_Full)) == 0) {
2909                        return -EINVAL;
2910                }
2911        } else if (ecmd->autoneg == AUTONEG_DISABLE) {
2912                u32 speed = ethtool_cmd_speed(ecmd);
2913                if (speed != SPEED_10 && speed != SPEED_100)
2914                        return -EINVAL;
2915                if (ecmd->duplex != DUPLEX_HALF && ecmd->duplex != DUPLEX_FULL)
2916                        return -EINVAL;
2917        } else {
2918                return -EINVAL;
2919        }
2920
2921        /*
2922         * If we're ignoring the PHY then autoneg and the internal
2923         * transceiver are really not going to work so don't let the
2924         * user select them.
2925         */
2926        if (np->ignore_phy && (ecmd->autoneg == AUTONEG_ENABLE ||
2927                               ecmd->port == PORT_TP))
2928                return -EINVAL;
2929
2930        /*
2931         * maxtxpkt, maxrxpkt: ignored for now.
2932         *
2933         * transceiver:
2934         * PORT_TP is always XCVR_INTERNAL, PORT_MII and PORT_FIBRE are always
2935         * XCVR_EXTERNAL. The implementation thus ignores ecmd->transceiver and
2936         * selects based on ecmd->port.
2937         *
2938         * Actually PORT_FIBRE is nearly identical to PORT_MII: it's for fibre
2939         * phys that are connected to the mii bus. It's used to apply fibre
2940         * specific updates.
2941         */
2942
2943        /* WHEW! now lets bang some bits */
2944
2945        /* save the parms */
2946        dev->if_port          = ecmd->port;
2947        np->autoneg           = ecmd->autoneg;
2948        np->phy_addr_external = ecmd->phy_address & PhyAddrMask;
2949        if (np->autoneg == AUTONEG_ENABLE) {
2950                /* advertise only what has been requested */
2951                np->advertising &= ~(ADVERTISE_ALL | ADVERTISE_100BASE4);
2952                if (ecmd->advertising & ADVERTISED_10baseT_Half)
2953                        np->advertising |= ADVERTISE_10HALF;
2954                if (ecmd->advertising & ADVERTISED_10baseT_Full)
2955                        np->advertising |= ADVERTISE_10FULL;
2956                if (ecmd->advertising & ADVERTISED_100baseT_Half)
2957                        np->advertising |= ADVERTISE_100HALF;
2958                if (ecmd->advertising & ADVERTISED_100baseT_Full)
2959                        np->advertising |= ADVERTISE_100FULL;
2960        } else {
2961                np->speed  = ethtool_cmd_speed(ecmd);
2962                np->duplex = ecmd->duplex;
2963                /* user overriding the initial full duplex parm? */
2964                if (np->duplex == DUPLEX_HALF)
2965                        np->full_duplex = 0;
2966        }
2967
2968        /* get the right phy enabled */
2969        if (ecmd->port == PORT_TP)
2970                switch_port_internal(dev);
2971        else
2972                switch_port_external(dev);
2973
2974        /* set parms and see how this affected our link status */
2975        init_phy_fixup(dev);
2976        check_link(dev);
2977        return 0;
2978}
2979
2980static int netdev_get_regs(struct net_device *dev, u8 *buf)
2981{
2982        int i;
2983        int j;
2984        u32 rfcr;
2985        u32 *rbuf = (u32 *)buf;
2986        void __iomem * ioaddr = ns_ioaddr(dev);
2987
2988        /* read non-mii page 0 of registers */
2989        for (i = 0; i < NATSEMI_PG0_NREGS/2; i++) {
2990                rbuf[i] = readl(ioaddr + i*4);
2991        }
2992
2993        /* read current mii registers */
2994        for (i = NATSEMI_PG0_NREGS/2; i < NATSEMI_PG0_NREGS; i++)
2995                rbuf[i] = mdio_read(dev, i & 0x1f);
2996
2997        /* read only the 'magic' registers from page 1 */
2998        writew(1, ioaddr + PGSEL);
2999        rbuf[i++] = readw(ioaddr + PMDCSR);
3000        rbuf[i++] = readw(ioaddr + TSTDAT);
3001        rbuf[i++] = readw(ioaddr + DSPCFG);
3002        rbuf[i++] = readw(ioaddr + SDCFG);
3003        writew(0, ioaddr + PGSEL);
3004
3005        /* read RFCR indexed registers */
3006        rfcr = readl(ioaddr + RxFilterAddr);
3007        for (j = 0; j < NATSEMI_RFDR_NREGS; j++) {
3008                writel(j*2, ioaddr + RxFilterAddr);
3009                rbuf[i++] = readw(ioaddr + RxFilterData);
3010        }
3011        writel(rfcr, ioaddr + RxFilterAddr);
3012
3013        /* the interrupt status is clear-on-read - see if we missed any */
3014        if (rbuf[4] & rbuf[5]) {
3015                printk(KERN_WARNING
3016                        "%s: shoot, we dropped an interrupt (%#08x)\n",
3017                        dev->name, rbuf[4] & rbuf[5]);
3018        }
3019
3020        return 0;
3021}
3022
3023#define SWAP_BITS(x)    ( (((x) & 0x0001) << 15) | (((x) & 0x0002) << 13) \
3024                        | (((x) & 0x0004) << 11) | (((x) & 0x0008) << 9)  \
3025                        | (((x) & 0x0010) << 7)  | (((x) & 0x0020) << 5)  \
3026                        | (((x) & 0x0040) << 3)  | (((x) & 0x0080) << 1)  \
3027                        | (((x) & 0x0100) >> 1)  | (((x) & 0x0200) >> 3)  \
3028                        | (((x) & 0x0400) >> 5)  | (((x) & 0x0800) >> 7)  \
3029                        | (((x) & 0x1000) >> 9)  | (((x) & 0x2000) >> 11) \
3030                        | (((x) & 0x4000) >> 13) | (((x) & 0x8000) >> 15) )
3031
3032static int netdev_get_eeprom(struct net_device *dev, u8 *buf)
3033{
3034        int i;
3035        u16 *ebuf = (u16 *)buf;
3036        void __iomem * ioaddr = ns_ioaddr(dev);
3037        struct netdev_private *np = netdev_priv(dev);
3038
3039        /* eeprom_read reads 16 bits, and indexes by 16 bits */
3040        for (i = 0; i < np->eeprom_size/2; i++) {
3041                ebuf[i] = eeprom_read(ioaddr, i);
3042                /* The EEPROM itself stores data bit-swapped, but eeprom_read
3043                 * reads it back "sanely". So we swap it back here in order to
3044                 * present it to userland as it is stored. */
3045                ebuf[i] = SWAP_BITS(ebuf[i]);
3046        }
3047        return 0;
3048}
3049
3050static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3051{
3052        struct mii_ioctl_data *data = if_mii(rq);
3053        struct netdev_private *np = netdev_priv(dev);
3054
3055        switch(cmd) {
3056        case SIOCGMIIPHY:               /* Get address of MII PHY in use. */
3057                data->phy_id = np->phy_addr_external;
3058                /* Fall Through */
3059
3060        case SIOCGMIIREG:               /* Read MII PHY register. */
3061                /* The phy_id is not enough to uniquely identify
3062                 * the intended target. Therefore the command is sent to
3063                 * the given mii on the current port.
3064                 */
3065                if (dev->if_port == PORT_TP) {
3066                        if ((data->phy_id & 0x1f) == np->phy_addr_external)
3067                                data->val_out = mdio_read(dev,
3068                                                        data->reg_num & 0x1f);
3069                        else
3070                                data->val_out = 0;
3071                } else {
3072                        move_int_phy(dev, data->phy_id & 0x1f);
3073                        data->val_out = miiport_read(dev, data->phy_id & 0x1f,
3074                                                        data->reg_num & 0x1f);
3075                }
3076                return 0;
3077
3078        case SIOCSMIIREG:               /* Write MII PHY register. */
3079                if (dev->if_port == PORT_TP) {
3080                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3081                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3082                                        np->advertising = data->val_in;
3083                                mdio_write(dev, data->reg_num & 0x1f,
3084                                                        data->val_in);
3085                        }
3086                } else {
3087                        if ((data->phy_id & 0x1f) == np->phy_addr_external) {
3088                                if ((data->reg_num & 0x1f) == MII_ADVERTISE)
3089                                        np->advertising = data->val_in;
3090                        }
3091                        move_int_phy(dev, data->phy_id & 0x1f);
3092                        miiport_write(dev, data->phy_id & 0x1f,
3093                                                data->reg_num & 0x1f,
3094                                                data->val_in);
3095                }
3096                return 0;
3097        default:
3098                return -EOPNOTSUPP;
3099        }
3100}
3101
3102static void enable_wol_mode(struct net_device *dev, int enable_intr)
3103{
3104        void __iomem * ioaddr = ns_ioaddr(dev);
3105        struct netdev_private *np = netdev_priv(dev);
3106
3107        if (netif_msg_wol(np))
3108                printk(KERN_INFO "%s: remaining active for wake-on-lan\n",
3109                        dev->name);
3110
3111        /* For WOL we must restart the rx process in silent mode.
3112         * Write NULL to the RxRingPtr. Only possible if
3113         * rx process is stopped
3114         */
3115        writel(0, ioaddr + RxRingPtr);
3116
3117        /* read WoL status to clear */
3118        readl(ioaddr + WOLCmd);
3119
3120        /* PME on, clear status */
3121        writel(np->SavedClkRun | PMEEnable | PMEStatus, ioaddr + ClkRun);
3122
3123        /* and restart the rx process */
3124        writel(RxOn, ioaddr + ChipCmd);
3125
3126        if (enable_intr) {
3127                /* enable the WOL interrupt.
3128                 * Could be used to send a netlink message.
3129                 */
3130                writel(WOLPkt | LinkChange, ioaddr + IntrMask);
3131                natsemi_irq_enable(dev);
3132        }
3133}
3134
3135static int netdev_close(struct net_device *dev)
3136{
3137        void __iomem * ioaddr = ns_ioaddr(dev);
3138        struct netdev_private *np = netdev_priv(dev);
3139
3140        if (netif_msg_ifdown(np))
3141                printk(KERN_DEBUG
3142                        "%s: Shutting down ethercard, status was %#04x.\n",
3143                        dev->name, (int)readl(ioaddr + ChipCmd));
3144        if (netif_msg_pktdata(np))
3145                printk(KERN_DEBUG
3146                        "%s: Queue pointers were Tx %d / %d,  Rx %d / %d.\n",
3147                        dev->name, np->cur_tx, np->dirty_tx,
3148                        np->cur_rx, np->dirty_rx);
3149
3150        napi_disable(&np->napi);
3151
3152        /*
3153         * FIXME: what if someone tries to close a device
3154         * that is suspended?
3155         * Should we reenable the nic to switch to
3156         * the final WOL settings?
3157         */
3158
3159        del_timer_sync(&np->timer);
3160        disable_irq(dev->irq);
3161        spin_lock_irq(&np->lock);
3162        natsemi_irq_disable(dev);
3163        np->hands_off = 1;
3164        spin_unlock_irq(&np->lock);
3165        enable_irq(dev->irq);
3166
3167        free_irq(dev->irq, dev);
3168
3169        /* Interrupt disabled, interrupt handler released,
3170         * queue stopped, timer deleted, rtnl_lock held
3171         * All async codepaths that access the driver are disabled.
3172         */
3173        spin_lock_irq(&np->lock);
3174        np->hands_off = 0;
3175        readl(ioaddr + IntrMask);
3176        readw(ioaddr + MIntrStatus);
3177
3178        /* Freeze Stats */
3179        writel(StatsFreeze, ioaddr + StatsCtrl);
3180
3181        /* Stop the chip's Tx and Rx processes. */
3182        natsemi_stop_rxtx(dev);
3183
3184        __get_stats(dev);
3185        spin_unlock_irq(&np->lock);
3186
3187        /* clear the carrier last - an interrupt could reenable it otherwise */
3188        netif_carrier_off(dev);
3189        netif_stop_queue(dev);
3190
3191        dump_ring(dev);
3192        drain_ring(dev);
3193        free_ring(dev);
3194
3195        {
3196                u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3197                if (wol) {
3198                        /* restart the NIC in WOL mode.
3199                         * The nic must be stopped for this.
3200                         */
3201                        enable_wol_mode(dev, 0);
3202                } else {
3203                        /* Restore PME enable bit unmolested */
3204                        writel(np->SavedClkRun, ioaddr + ClkRun);
3205                }
3206        }
3207        return 0;
3208}
3209
3210
3211static void __devexit natsemi_remove1 (struct pci_dev *pdev)
3212{
3213        struct net_device *dev = pci_get_drvdata(pdev);
3214        void __iomem * ioaddr = ns_ioaddr(dev);
3215
3216        NATSEMI_REMOVE_FILE(pdev, dspcfg_workaround);
3217        unregister_netdev (dev);
3218        pci_release_regions (pdev);
3219        iounmap(ioaddr);
3220        free_netdev (dev);
3221        pci_set_drvdata(pdev, NULL);
3222}
3223
3224#ifdef CONFIG_PM
3225
3226/*
3227 * The ns83815 chip doesn't have explicit RxStop bits.
3228 * Kicking the Rx or Tx process for a new packet reenables the Rx process
3229 * of the nic, thus this function must be very careful:
3230 *
3231 * suspend/resume synchronization:
3232 * entry points:
3233 *   netdev_open, netdev_close, netdev_ioctl, set_rx_mode, intr_handler,
3234 *   start_tx, ns_tx_timeout
3235 *
3236 * No function accesses the hardware without checking np->hands_off.
3237 *      the check occurs under spin_lock_irq(&np->lock);
3238 * exceptions:
3239 *      * netdev_ioctl: noncritical access.
3240 *      * netdev_open: cannot happen due to the device_detach
3241 *      * netdev_close: doesn't hurt.
3242 *      * netdev_timer: timer stopped by natsemi_suspend.
3243 *      * intr_handler: doesn't acquire the spinlock. suspend calls
3244 *              disable_irq() to enforce synchronization.
3245 *      * natsemi_poll: checks before reenabling interrupts.  suspend
3246 *              sets hands_off, disables interrupts and then waits with
3247 *              napi_disable().
3248 *
3249 * Interrupts must be disabled, otherwise hands_off can cause irq storms.
3250 */
3251
3252static int natsemi_suspend (struct pci_dev *pdev, pm_message_t state)
3253{
3254        struct net_device *dev = pci_get_drvdata (pdev);
3255        struct netdev_private *np = netdev_priv(dev);
3256        void __iomem * ioaddr = ns_ioaddr(dev);
3257
3258        rtnl_lock();
3259        if (netif_running (dev)) {
3260                del_timer_sync(&np->timer);
3261
3262                disable_irq(dev->irq);
3263                spin_lock_irq(&np->lock);
3264
3265                natsemi_irq_disable(dev);
3266                np->hands_off = 1;
3267                natsemi_stop_rxtx(dev);
3268                netif_stop_queue(dev);
3269
3270                spin_unlock_irq(&np->lock);
3271                enable_irq(dev->irq);
3272
3273                napi_disable(&np->napi);
3274
3275                /* Update the error counts. */
3276                __get_stats(dev);
3277
3278                /* pci_power_off(pdev, -1); */
3279                drain_ring(dev);
3280                {
3281                        u32 wol = readl(ioaddr + WOLCmd) & WakeOptsSummary;
3282                        /* Restore PME enable bit */
3283                        if (wol) {
3284                                /* restart the NIC in WOL mode.
3285                                 * The nic must be stopped for this.
3286                                 * FIXME: use the WOL interrupt
3287                                 */
3288                                enable_wol_mode(dev, 0);
3289                        } else {
3290                                /* Restore PME enable bit unmolested */
3291                                writel(np->SavedClkRun, ioaddr + ClkRun);
3292                        }
3293                }
3294        }
3295        netif_device_detach(dev);
3296        rtnl_unlock();
3297        return 0;
3298}
3299
3300
3301static int natsemi_resume (struct pci_dev *pdev)
3302{
3303        struct net_device *dev = pci_get_drvdata (pdev);
3304        struct netdev_private *np = netdev_priv(dev);
3305        int ret = 0;
3306
3307        rtnl_lock();
3308        if (netif_device_present(dev))
3309                goto out;
3310        if (netif_running(dev)) {
3311                BUG_ON(!np->hands_off);
3312                ret = pci_enable_device(pdev);
3313                if (ret < 0) {
3314                        dev_err(&pdev->dev,
3315                                "pci_enable_device() failed: %d\n", ret);
3316                        goto out;
3317                }
3318        /*      pci_power_on(pdev); */
3319
3320                napi_enable(&np->napi);
3321
3322                natsemi_reset(dev);
3323                init_ring(dev);
3324                disable_irq(dev->irq);
3325                spin_lock_irq(&np->lock);
3326                np->hands_off = 0;
3327                init_registers(dev);
3328                netif_device_attach(dev);
3329                spin_unlock_irq(&np->lock);
3330                enable_irq(dev->irq);
3331
3332                mod_timer(&np->timer, round_jiffies(jiffies + 1*HZ));
3333        }
3334        netif_device_attach(dev);
3335out:
3336        rtnl_unlock();
3337        return ret;
3338}
3339
3340#endif /* CONFIG_PM */
3341
3342static struct pci_driver natsemi_driver = {
3343        .name           = DRV_NAME,
3344        .id_table       = natsemi_pci_tbl,
3345        .probe          = natsemi_probe1,
3346        .remove         = __devexit_p(natsemi_remove1),
3347#ifdef CONFIG_PM
3348        .suspend        = natsemi_suspend,
3349        .resume         = natsemi_resume,
3350#endif
3351};
3352
3353static int __init natsemi_init_mod (void)
3354{
3355/* when a module, this is printed whether or not devices are found in probe */
3356#ifdef MODULE
3357        printk(version);
3358#endif
3359
3360        return pci_register_driver(&natsemi_driver);
3361}
3362
3363static void __exit natsemi_exit_mod (void)
3364{
3365        pci_unregister_driver (&natsemi_driver);
3366}
3367
3368module_init(natsemi_init_mod);
3369module_exit(natsemi_exit_mod);
3370
3371