linux/drivers/net/sb1250-mac.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2001,2002,2003,2004 Broadcom Corporation
   3 * Copyright (c) 2006, 2007  Maciej W. Rozycki
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version 2
   8 * of the License, or (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
  18 *
  19 *
  20 * This driver is designed for the Broadcom SiByte SOC built-in
  21 * Ethernet controllers. Written by Mitch Lichtenberg at Broadcom Corp.
  22 *
  23 * Updated to the driver model and the PHY abstraction layer
  24 * by Maciej W. Rozycki.
  25 */
  26
  27#include <linux/bug.h>
  28#include <linux/module.h>
  29#include <linux/kernel.h>
  30#include <linux/string.h>
  31#include <linux/timer.h>
  32#include <linux/errno.h>
  33#include <linux/ioport.h>
  34#include <linux/slab.h>
  35#include <linux/interrupt.h>
  36#include <linux/netdevice.h>
  37#include <linux/etherdevice.h>
  38#include <linux/skbuff.h>
  39#include <linux/init.h>
  40#include <linux/bitops.h>
  41#include <linux/err.h>
  42#include <linux/ethtool.h>
  43#include <linux/mii.h>
  44#include <linux/phy.h>
  45#include <linux/platform_device.h>
  46#include <linux/prefetch.h>
  47
  48#include <asm/cache.h>
  49#include <asm/io.h>
  50#include <asm/processor.h>      /* Processor type for cache alignment. */
  51
  52/* Operational parameters that usually are not changed. */
  53
  54#define CONFIG_SBMAC_COALESCE
  55
  56/* Time in jiffies before concluding the transmitter is hung. */
  57#define TX_TIMEOUT  (2*HZ)
  58
  59
  60MODULE_AUTHOR("Mitch Lichtenberg (Broadcom Corp.)");
  61MODULE_DESCRIPTION("Broadcom SiByte SOC GB Ethernet driver");
  62
  63/* A few user-configurable values which may be modified when a driver
  64   module is loaded. */
  65
  66/* 1 normal messages, 0 quiet .. 7 verbose. */
  67static int debug = 1;
  68module_param(debug, int, S_IRUGO);
  69MODULE_PARM_DESC(debug, "Debug messages");
  70
  71#ifdef CONFIG_SBMAC_COALESCE
  72static int int_pktcnt_tx = 255;
  73module_param(int_pktcnt_tx, int, S_IRUGO);
  74MODULE_PARM_DESC(int_pktcnt_tx, "TX packet count");
  75
  76static int int_timeout_tx = 255;
  77module_param(int_timeout_tx, int, S_IRUGO);
  78MODULE_PARM_DESC(int_timeout_tx, "TX timeout value");
  79
  80static int int_pktcnt_rx = 64;
  81module_param(int_pktcnt_rx, int, S_IRUGO);
  82MODULE_PARM_DESC(int_pktcnt_rx, "RX packet count");
  83
  84static int int_timeout_rx = 64;
  85module_param(int_timeout_rx, int, S_IRUGO);
  86MODULE_PARM_DESC(int_timeout_rx, "RX timeout value");
  87#endif
  88
  89#include <asm/sibyte/board.h>
  90#include <asm/sibyte/sb1250.h>
  91#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
  92#include <asm/sibyte/bcm1480_regs.h>
  93#include <asm/sibyte/bcm1480_int.h>
  94#define R_MAC_DMA_OODPKTLOST_RX R_MAC_DMA_OODPKTLOST
  95#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
  96#include <asm/sibyte/sb1250_regs.h>
  97#include <asm/sibyte/sb1250_int.h>
  98#else
  99#error invalid SiByte MAC configuration
 100#endif
 101#include <asm/sibyte/sb1250_scd.h>
 102#include <asm/sibyte/sb1250_mac.h>
 103#include <asm/sibyte/sb1250_dma.h>
 104
 105#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
 106#define UNIT_INT(n)             (K_BCM1480_INT_MAC_0 + ((n) * 2))
 107#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
 108#define UNIT_INT(n)             (K_INT_MAC_0 + (n))
 109#else
 110#error invalid SiByte MAC configuration
 111#endif
 112
 113#ifdef K_INT_PHY
 114#define SBMAC_PHY_INT                   K_INT_PHY
 115#else
 116#define SBMAC_PHY_INT                   PHY_POLL
 117#endif
 118
 119/**********************************************************************
 120 *  Simple types
 121 ********************************************************************* */
 122
 123enum sbmac_speed {
 124        sbmac_speed_none = 0,
 125        sbmac_speed_10 = SPEED_10,
 126        sbmac_speed_100 = SPEED_100,
 127        sbmac_speed_1000 = SPEED_1000,
 128};
 129
 130enum sbmac_duplex {
 131        sbmac_duplex_none = -1,
 132        sbmac_duplex_half = DUPLEX_HALF,
 133        sbmac_duplex_full = DUPLEX_FULL,
 134};
 135
 136enum sbmac_fc {
 137        sbmac_fc_none,
 138        sbmac_fc_disabled,
 139        sbmac_fc_frame,
 140        sbmac_fc_collision,
 141        sbmac_fc_carrier,
 142};
 143
 144enum sbmac_state {
 145        sbmac_state_uninit,
 146        sbmac_state_off,
 147        sbmac_state_on,
 148        sbmac_state_broken,
 149};
 150
 151
 152/**********************************************************************
 153 *  Macros
 154 ********************************************************************* */
 155
 156
 157#define SBDMA_NEXTBUF(d,f) ((((d)->f+1) == (d)->sbdma_dscrtable_end) ? \
 158                          (d)->sbdma_dscrtable : (d)->f+1)
 159
 160
 161#define NUMCACHEBLKS(x) (((x)+SMP_CACHE_BYTES-1)/SMP_CACHE_BYTES)
 162
 163#define SBMAC_MAX_TXDESCR       256
 164#define SBMAC_MAX_RXDESCR       256
 165
 166#define ETHER_ADDR_LEN          6
 167#define ENET_PACKET_SIZE        1518
 168/*#define ENET_PACKET_SIZE      9216 */
 169
 170/**********************************************************************
 171 *  DMA Descriptor structure
 172 ********************************************************************* */
 173
 174struct sbdmadscr {
 175        uint64_t  dscr_a;
 176        uint64_t  dscr_b;
 177};
 178
 179/**********************************************************************
 180 *  DMA Controller structure
 181 ********************************************************************* */
 182
 183struct sbmacdma {
 184
 185        /*
 186         * This stuff is used to identify the channel and the registers
 187         * associated with it.
 188         */
 189        struct sbmac_softc      *sbdma_eth;     /* back pointer to associated
 190                                                   MAC */
 191        int                     sbdma_channel;  /* channel number */
 192        int                     sbdma_txdir;    /* direction (1=transmit) */
 193        int                     sbdma_maxdescr; /* total # of descriptors
 194                                                   in ring */
 195#ifdef CONFIG_SBMAC_COALESCE
 196        int                     sbdma_int_pktcnt;
 197                                                /* # descriptors rx/tx
 198                                                   before interrupt */
 199        int                     sbdma_int_timeout;
 200                                                /* # usec rx/tx interrupt */
 201#endif
 202        void __iomem            *sbdma_config0; /* DMA config register 0 */
 203        void __iomem            *sbdma_config1; /* DMA config register 1 */
 204        void __iomem            *sbdma_dscrbase;
 205                                                /* descriptor base address */
 206        void __iomem            *sbdma_dscrcnt; /* descriptor count register */
 207        void __iomem            *sbdma_curdscr; /* current descriptor
 208                                                   address */
 209        void __iomem            *sbdma_oodpktlost;
 210                                                /* pkt drop (rx only) */
 211
 212        /*
 213         * This stuff is for maintenance of the ring
 214         */
 215        void                    *sbdma_dscrtable_unaligned;
 216        struct sbdmadscr        *sbdma_dscrtable;
 217                                                /* base of descriptor table */
 218        struct sbdmadscr        *sbdma_dscrtable_end;
 219                                                /* end of descriptor table */
 220        struct sk_buff          **sbdma_ctxtable;
 221                                                /* context table, one
 222                                                   per descr */
 223        dma_addr_t              sbdma_dscrtable_phys;
 224                                                /* and also the phys addr */
 225        struct sbdmadscr        *sbdma_addptr;  /* next dscr for sw to add */
 226        struct sbdmadscr        *sbdma_remptr;  /* next dscr for sw
 227                                                   to remove */
 228};
 229
 230
 231/**********************************************************************
 232 *  Ethernet softc structure
 233 ********************************************************************* */
 234
 235struct sbmac_softc {
 236
 237        /*
 238         * Linux-specific things
 239         */
 240        struct net_device       *sbm_dev;       /* pointer to linux device */
 241        struct napi_struct      napi;
 242        struct phy_device       *phy_dev;       /* the associated PHY device */
 243        struct mii_bus          *mii_bus;       /* the MII bus */
 244        int                     phy_irq[PHY_MAX_ADDR];
 245        spinlock_t              sbm_lock;       /* spin lock */
 246        int                     sbm_devflags;   /* current device flags */
 247
 248        /*
 249         * Controller-specific things
 250         */
 251        void __iomem            *sbm_base;      /* MAC's base address */
 252        enum sbmac_state        sbm_state;      /* current state */
 253
 254        void __iomem            *sbm_macenable; /* MAC Enable Register */
 255        void __iomem            *sbm_maccfg;    /* MAC Config Register */
 256        void __iomem            *sbm_fifocfg;   /* FIFO Config Register */
 257        void __iomem            *sbm_framecfg;  /* Frame Config Register */
 258        void __iomem            *sbm_rxfilter;  /* Receive Filter Register */
 259        void __iomem            *sbm_isr;       /* Interrupt Status Register */
 260        void __iomem            *sbm_imr;       /* Interrupt Mask Register */
 261        void __iomem            *sbm_mdio;      /* MDIO Register */
 262
 263        enum sbmac_speed        sbm_speed;      /* current speed */
 264        enum sbmac_duplex       sbm_duplex;     /* current duplex */
 265        enum sbmac_fc           sbm_fc;         /* cur. flow control setting */
 266        int                     sbm_pause;      /* current pause setting */
 267        int                     sbm_link;       /* current link state */
 268
 269        unsigned char           sbm_hwaddr[ETHER_ADDR_LEN];
 270
 271        struct sbmacdma         sbm_txdma;      /* only channel 0 for now */
 272        struct sbmacdma         sbm_rxdma;
 273        int                     rx_hw_checksum;
 274        int                     sbe_idx;
 275};
 276
 277
 278/**********************************************************************
 279 *  Externs
 280 ********************************************************************* */
 281
 282/**********************************************************************
 283 *  Prototypes
 284 ********************************************************************* */
 285
 286static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 287                          int txrx, int maxdescr);
 288static void sbdma_channel_start(struct sbmacdma *d, int rxtx);
 289static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 290                               struct sk_buff *m);
 291static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *m);
 292static void sbdma_emptyring(struct sbmacdma *d);
 293static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d);
 294static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 295                            int work_to_do, int poll);
 296static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
 297                             int poll);
 298static int sbmac_initctx(struct sbmac_softc *s);
 299static void sbmac_channel_start(struct sbmac_softc *s);
 300static void sbmac_channel_stop(struct sbmac_softc *s);
 301static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *,
 302                                                enum sbmac_state);
 303static void sbmac_promiscuous_mode(struct sbmac_softc *sc, int onoff);
 304static uint64_t sbmac_addr2reg(unsigned char *ptr);
 305static irqreturn_t sbmac_intr(int irq, void *dev_instance);
 306static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev);
 307static void sbmac_setmulti(struct sbmac_softc *sc);
 308static int sbmac_init(struct platform_device *pldev, long long base);
 309static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed);
 310static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
 311                            enum sbmac_fc fc);
 312
 313static int sbmac_open(struct net_device *dev);
 314static void sbmac_tx_timeout (struct net_device *dev);
 315static void sbmac_set_rx_mode(struct net_device *dev);
 316static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 317static int sbmac_close(struct net_device *dev);
 318static int sbmac_poll(struct napi_struct *napi, int budget);
 319
 320static void sbmac_mii_poll(struct net_device *dev);
 321static int sbmac_mii_probe(struct net_device *dev);
 322
 323static void sbmac_mii_sync(void __iomem *sbm_mdio);
 324static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 325                               int bitcnt);
 326static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx);
 327static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 328                           u16 val);
 329
 330
 331/**********************************************************************
 332 *  Globals
 333 ********************************************************************* */
 334
 335static char sbmac_string[] = "sb1250-mac";
 336
 337static char sbmac_mdio_string[] = "sb1250-mac-mdio";
 338
 339
 340/**********************************************************************
 341 *  MDIO constants
 342 ********************************************************************* */
 343
 344#define MII_COMMAND_START       0x01
 345#define MII_COMMAND_READ        0x02
 346#define MII_COMMAND_WRITE       0x01
 347#define MII_COMMAND_ACK         0x02
 348
 349#define M_MAC_MDIO_DIR_OUTPUT   0               /* for clarity */
 350
 351#define ENABLE          1
 352#define DISABLE         0
 353
 354/**********************************************************************
 355 *  SBMAC_MII_SYNC(sbm_mdio)
 356 *
 357 *  Synchronize with the MII - send a pattern of bits to the MII
 358 *  that will guarantee that it is ready to accept a command.
 359 *
 360 *  Input parameters:
 361 *         sbm_mdio - address of the MAC's MDIO register
 362 *
 363 *  Return value:
 364 *         nothing
 365 ********************************************************************* */
 366
 367static void sbmac_mii_sync(void __iomem *sbm_mdio)
 368{
 369        int cnt;
 370        uint64_t bits;
 371        int mac_mdio_genc;
 372
 373        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 374
 375        bits = M_MAC_MDIO_DIR_OUTPUT | M_MAC_MDIO_OUT;
 376
 377        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 378
 379        for (cnt = 0; cnt < 32; cnt++) {
 380                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 381                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 382        }
 383}
 384
 385/**********************************************************************
 386 *  SBMAC_MII_SENDDATA(sbm_mdio, data, bitcnt)
 387 *
 388 *  Send some bits to the MII.  The bits to be sent are right-
 389 *  justified in the 'data' parameter.
 390 *
 391 *  Input parameters:
 392 *         sbm_mdio - address of the MAC's MDIO register
 393 *         data     - data to send
 394 *         bitcnt   - number of bits to send
 395 ********************************************************************* */
 396
 397static void sbmac_mii_senddata(void __iomem *sbm_mdio, unsigned int data,
 398                               int bitcnt)
 399{
 400        int i;
 401        uint64_t bits;
 402        unsigned int curmask;
 403        int mac_mdio_genc;
 404
 405        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 406
 407        bits = M_MAC_MDIO_DIR_OUTPUT;
 408        __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 409
 410        curmask = 1 << (bitcnt - 1);
 411
 412        for (i = 0; i < bitcnt; i++) {
 413                if (data & curmask)
 414                        bits |= M_MAC_MDIO_OUT;
 415                else bits &= ~M_MAC_MDIO_OUT;
 416                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 417                __raw_writeq(bits | M_MAC_MDC | mac_mdio_genc, sbm_mdio);
 418                __raw_writeq(bits | mac_mdio_genc, sbm_mdio);
 419                curmask >>= 1;
 420        }
 421}
 422
 423
 424
 425/**********************************************************************
 426 *  SBMAC_MII_READ(bus, phyaddr, regidx)
 427 *  Read a PHY register.
 428 *
 429 *  Input parameters:
 430 *         bus     - MDIO bus handle
 431 *         phyaddr - PHY's address
 432 *         regnum  - index of register to read
 433 *
 434 *  Return value:
 435 *         value read, or 0xffff if an error occurred.
 436 ********************************************************************* */
 437
 438static int sbmac_mii_read(struct mii_bus *bus, int phyaddr, int regidx)
 439{
 440        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 441        void __iomem *sbm_mdio = sc->sbm_mdio;
 442        int idx;
 443        int error;
 444        int regval;
 445        int mac_mdio_genc;
 446
 447        /*
 448         * Synchronize ourselves so that the PHY knows the next
 449         * thing coming down is a command
 450         */
 451        sbmac_mii_sync(sbm_mdio);
 452
 453        /*
 454         * Send the data to the PHY.  The sequence is
 455         * a "start" command (2 bits)
 456         * a "read" command (2 bits)
 457         * the PHY addr (5 bits)
 458         * the register index (5 bits)
 459         */
 460        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 461        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_READ, 2);
 462        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 463        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 464
 465        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 466
 467        /*
 468         * Switch the port around without a clock transition.
 469         */
 470        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 471
 472        /*
 473         * Send out a clock pulse to signal we want the status
 474         */
 475        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 476                     sbm_mdio);
 477        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 478
 479        /*
 480         * If an error occurred, the PHY will signal '1' back
 481         */
 482        error = __raw_readq(sbm_mdio) & M_MAC_MDIO_IN;
 483
 484        /*
 485         * Issue an 'idle' clock pulse, but keep the direction
 486         * the same.
 487         */
 488        __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 489                     sbm_mdio);
 490        __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 491
 492        regval = 0;
 493
 494        for (idx = 0; idx < 16; idx++) {
 495                regval <<= 1;
 496
 497                if (error == 0) {
 498                        if (__raw_readq(sbm_mdio) & M_MAC_MDIO_IN)
 499                                regval |= 1;
 500                }
 501
 502                __raw_writeq(M_MAC_MDIO_DIR_INPUT | M_MAC_MDC | mac_mdio_genc,
 503                             sbm_mdio);
 504                __raw_writeq(M_MAC_MDIO_DIR_INPUT | mac_mdio_genc, sbm_mdio);
 505        }
 506
 507        /* Switch back to output */
 508        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 509
 510        if (error == 0)
 511                return regval;
 512        return 0xffff;
 513}
 514
 515
 516/**********************************************************************
 517 *  SBMAC_MII_WRITE(bus, phyaddr, regidx, regval)
 518 *
 519 *  Write a value to a PHY register.
 520 *
 521 *  Input parameters:
 522 *         bus     - MDIO bus handle
 523 *         phyaddr - PHY to use
 524 *         regidx  - register within the PHY
 525 *         regval  - data to write to register
 526 *
 527 *  Return value:
 528 *         0 for success
 529 ********************************************************************* */
 530
 531static int sbmac_mii_write(struct mii_bus *bus, int phyaddr, int regidx,
 532                           u16 regval)
 533{
 534        struct sbmac_softc *sc = (struct sbmac_softc *)bus->priv;
 535        void __iomem *sbm_mdio = sc->sbm_mdio;
 536        int mac_mdio_genc;
 537
 538        sbmac_mii_sync(sbm_mdio);
 539
 540        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_START, 2);
 541        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_WRITE, 2);
 542        sbmac_mii_senddata(sbm_mdio, phyaddr, 5);
 543        sbmac_mii_senddata(sbm_mdio, regidx, 5);
 544        sbmac_mii_senddata(sbm_mdio, MII_COMMAND_ACK, 2);
 545        sbmac_mii_senddata(sbm_mdio, regval, 16);
 546
 547        mac_mdio_genc = __raw_readq(sbm_mdio) & M_MAC_GENC;
 548
 549        __raw_writeq(M_MAC_MDIO_DIR_OUTPUT | mac_mdio_genc, sbm_mdio);
 550
 551        return 0;
 552}
 553
 554
 555
 556/**********************************************************************
 557 *  SBDMA_INITCTX(d,s,chan,txrx,maxdescr)
 558 *
 559 *  Initialize a DMA channel context.  Since there are potentially
 560 *  eight DMA channels per MAC, it's nice to do this in a standard
 561 *  way.
 562 *
 563 *  Input parameters:
 564 *         d - struct sbmacdma (DMA channel context)
 565 *         s - struct sbmac_softc (pointer to a MAC)
 566 *         chan - channel number (0..1 right now)
 567 *         txrx - Identifies DMA_TX or DMA_RX for channel direction
 568 *      maxdescr - number of descriptors
 569 *
 570 *  Return value:
 571 *         nothing
 572 ********************************************************************* */
 573
 574static void sbdma_initctx(struct sbmacdma *d, struct sbmac_softc *s, int chan,
 575                          int txrx, int maxdescr)
 576{
 577#ifdef CONFIG_SBMAC_COALESCE
 578        int int_pktcnt, int_timeout;
 579#endif
 580
 581        /*
 582         * Save away interesting stuff in the structure
 583         */
 584
 585        d->sbdma_eth       = s;
 586        d->sbdma_channel   = chan;
 587        d->sbdma_txdir     = txrx;
 588
 589#if 0
 590        /* RMON clearing */
 591        s->sbe_idx =(s->sbm_base - A_MAC_BASE_0)/MAC_SPACING;
 592#endif
 593
 594        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BYTES);
 595        __raw_writeq(0, s->sbm_base + R_MAC_RMON_COLLISIONS);
 596        __raw_writeq(0, s->sbm_base + R_MAC_RMON_LATE_COL);
 597        __raw_writeq(0, s->sbm_base + R_MAC_RMON_EX_COL);
 598        __raw_writeq(0, s->sbm_base + R_MAC_RMON_FCS_ERROR);
 599        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_ABORT);
 600        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_BAD);
 601        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_GOOD);
 602        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_RUNT);
 603        __raw_writeq(0, s->sbm_base + R_MAC_RMON_TX_OVERSIZE);
 604        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BYTES);
 605        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_MCAST);
 606        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BCAST);
 607        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_BAD);
 608        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_GOOD);
 609        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_RUNT);
 610        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_OVERSIZE);
 611        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_FCS_ERROR);
 612        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_LENGTH_ERROR);
 613        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_CODE_ERROR);
 614        __raw_writeq(0, s->sbm_base + R_MAC_RMON_RX_ALIGN_ERROR);
 615
 616        /*
 617         * initialize register pointers
 618         */
 619
 620        d->sbdma_config0 =
 621                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG0);
 622        d->sbdma_config1 =
 623                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CONFIG1);
 624        d->sbdma_dscrbase =
 625                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_BASE);
 626        d->sbdma_dscrcnt =
 627                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_DSCR_CNT);
 628        d->sbdma_curdscr =
 629                s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_CUR_DSCRADDR);
 630        if (d->sbdma_txdir)
 631                d->sbdma_oodpktlost = NULL;
 632        else
 633                d->sbdma_oodpktlost =
 634                        s->sbm_base + R_MAC_DMA_REGISTER(txrx,chan,R_MAC_DMA_OODPKTLOST_RX);
 635
 636        /*
 637         * Allocate memory for the ring
 638         */
 639
 640        d->sbdma_maxdescr = maxdescr;
 641
 642        d->sbdma_dscrtable_unaligned = kcalloc(d->sbdma_maxdescr + 1,
 643                                               sizeof(*d->sbdma_dscrtable),
 644                                               GFP_KERNEL);
 645
 646        /*
 647         * The descriptor table must be aligned to at least 16 bytes or the
 648         * MAC will corrupt it.
 649         */
 650        d->sbdma_dscrtable = (struct sbdmadscr *)
 651                             ALIGN((unsigned long)d->sbdma_dscrtable_unaligned,
 652                                   sizeof(*d->sbdma_dscrtable));
 653
 654        d->sbdma_dscrtable_end = d->sbdma_dscrtable + d->sbdma_maxdescr;
 655
 656        d->sbdma_dscrtable_phys = virt_to_phys(d->sbdma_dscrtable);
 657
 658        /*
 659         * And context table
 660         */
 661
 662        d->sbdma_ctxtable = kcalloc(d->sbdma_maxdescr,
 663                                    sizeof(*d->sbdma_ctxtable), GFP_KERNEL);
 664
 665#ifdef CONFIG_SBMAC_COALESCE
 666        /*
 667         * Setup Rx/Tx DMA coalescing defaults
 668         */
 669
 670        int_pktcnt = (txrx == DMA_TX) ? int_pktcnt_tx : int_pktcnt_rx;
 671        if ( int_pktcnt ) {
 672                d->sbdma_int_pktcnt = int_pktcnt;
 673        } else {
 674                d->sbdma_int_pktcnt = 1;
 675        }
 676
 677        int_timeout = (txrx == DMA_TX) ? int_timeout_tx : int_timeout_rx;
 678        if ( int_timeout ) {
 679                d->sbdma_int_timeout = int_timeout;
 680        } else {
 681                d->sbdma_int_timeout = 0;
 682        }
 683#endif
 684
 685}
 686
 687/**********************************************************************
 688 *  SBDMA_CHANNEL_START(d)
 689 *
 690 *  Initialize the hardware registers for a DMA channel.
 691 *
 692 *  Input parameters:
 693 *         d - DMA channel to init (context must be previously init'd
 694 *         rxtx - DMA_RX or DMA_TX depending on what type of channel
 695 *
 696 *  Return value:
 697 *         nothing
 698 ********************************************************************* */
 699
 700static void sbdma_channel_start(struct sbmacdma *d, int rxtx)
 701{
 702        /*
 703         * Turn on the DMA channel
 704         */
 705
 706#ifdef CONFIG_SBMAC_COALESCE
 707        __raw_writeq(V_DMA_INT_TIMEOUT(d->sbdma_int_timeout) |
 708                       0, d->sbdma_config1);
 709        __raw_writeq(M_DMA_EOP_INT_EN |
 710                       V_DMA_RINGSZ(d->sbdma_maxdescr) |
 711                       V_DMA_INT_PKTCNT(d->sbdma_int_pktcnt) |
 712                       0, d->sbdma_config0);
 713#else
 714        __raw_writeq(0, d->sbdma_config1);
 715        __raw_writeq(V_DMA_RINGSZ(d->sbdma_maxdescr) |
 716                       0, d->sbdma_config0);
 717#endif
 718
 719        __raw_writeq(d->sbdma_dscrtable_phys, d->sbdma_dscrbase);
 720
 721        /*
 722         * Initialize ring pointers
 723         */
 724
 725        d->sbdma_addptr = d->sbdma_dscrtable;
 726        d->sbdma_remptr = d->sbdma_dscrtable;
 727}
 728
 729/**********************************************************************
 730 *  SBDMA_CHANNEL_STOP(d)
 731 *
 732 *  Initialize the hardware registers for a DMA channel.
 733 *
 734 *  Input parameters:
 735 *         d - DMA channel to init (context must be previously init'd
 736 *
 737 *  Return value:
 738 *         nothing
 739 ********************************************************************* */
 740
 741static void sbdma_channel_stop(struct sbmacdma *d)
 742{
 743        /*
 744         * Turn off the DMA channel
 745         */
 746
 747        __raw_writeq(0, d->sbdma_config1);
 748
 749        __raw_writeq(0, d->sbdma_dscrbase);
 750
 751        __raw_writeq(0, d->sbdma_config0);
 752
 753        /*
 754         * Zero ring pointers
 755         */
 756
 757        d->sbdma_addptr = NULL;
 758        d->sbdma_remptr = NULL;
 759}
 760
 761static inline void sbdma_align_skb(struct sk_buff *skb,
 762                                   unsigned int power2, unsigned int offset)
 763{
 764        unsigned char *addr = skb->data;
 765        unsigned char *newaddr = PTR_ALIGN(addr, power2);
 766
 767        skb_reserve(skb, newaddr - addr + offset);
 768}
 769
 770
 771/**********************************************************************
 772 *  SBDMA_ADD_RCVBUFFER(d,sb)
 773 *
 774 *  Add a buffer to the specified DMA channel.   For receive channels,
 775 *  this queues a buffer for inbound packets.
 776 *
 777 *  Input parameters:
 778 *         sc - softc structure
 779 *          d - DMA channel descriptor
 780 *         sb - sk_buff to add, or NULL if we should allocate one
 781 *
 782 *  Return value:
 783 *         0 if buffer could not be added (ring is full)
 784 *         1 if buffer added successfully
 785 ********************************************************************* */
 786
 787
 788static int sbdma_add_rcvbuffer(struct sbmac_softc *sc, struct sbmacdma *d,
 789                               struct sk_buff *sb)
 790{
 791        struct net_device *dev = sc->sbm_dev;
 792        struct sbdmadscr *dsc;
 793        struct sbdmadscr *nextdsc;
 794        struct sk_buff *sb_new = NULL;
 795        int pktsize = ENET_PACKET_SIZE;
 796
 797        /* get pointer to our current place in the ring */
 798
 799        dsc = d->sbdma_addptr;
 800        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 801
 802        /*
 803         * figure out if the ring is full - if the next descriptor
 804         * is the same as the one that we're going to remove from
 805         * the ring, the ring is full
 806         */
 807
 808        if (nextdsc == d->sbdma_remptr) {
 809                return -ENOSPC;
 810        }
 811
 812        /*
 813         * Allocate a sk_buff if we don't already have one.
 814         * If we do have an sk_buff, reset it so that it's empty.
 815         *
 816         * Note: sk_buffs don't seem to be guaranteed to have any sort
 817         * of alignment when they are allocated.  Therefore, allocate enough
 818         * extra space to make sure that:
 819         *
 820         *    1. the data does not start in the middle of a cache line.
 821         *    2. The data does not end in the middle of a cache line
 822         *    3. The buffer can be aligned such that the IP addresses are
 823         *       naturally aligned.
 824         *
 825         *  Remember, the SOCs MAC writes whole cache lines at a time,
 826         *  without reading the old contents first.  So, if the sk_buff's
 827         *  data portion starts in the middle of a cache line, the SOC
 828         *  DMA will trash the beginning (and ending) portions.
 829         */
 830
 831        if (sb == NULL) {
 832                sb_new = netdev_alloc_skb(dev, ENET_PACKET_SIZE +
 833                                               SMP_CACHE_BYTES * 2 +
 834                                               NET_IP_ALIGN);
 835                if (sb_new == NULL) {
 836                        pr_info("%s: sk_buff allocation failed\n",
 837                               d->sbdma_eth->sbm_dev->name);
 838                        return -ENOBUFS;
 839                }
 840
 841                sbdma_align_skb(sb_new, SMP_CACHE_BYTES, NET_IP_ALIGN);
 842        }
 843        else {
 844                sb_new = sb;
 845                /*
 846                 * nothing special to reinit buffer, it's already aligned
 847                 * and sb->data already points to a good place.
 848                 */
 849        }
 850
 851        /*
 852         * fill in the descriptor
 853         */
 854
 855#ifdef CONFIG_SBMAC_COALESCE
 856        /*
 857         * Do not interrupt per DMA transfer.
 858         */
 859        dsc->dscr_a = virt_to_phys(sb_new->data) |
 860                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) | 0;
 861#else
 862        dsc->dscr_a = virt_to_phys(sb_new->data) |
 863                V_DMA_DSCRA_A_SIZE(NUMCACHEBLKS(pktsize + NET_IP_ALIGN)) |
 864                M_DMA_DSCRA_INTERRUPT;
 865#endif
 866
 867        /* receiving: no options */
 868        dsc->dscr_b = 0;
 869
 870        /*
 871         * fill in the context
 872         */
 873
 874        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb_new;
 875
 876        /*
 877         * point at next packet
 878         */
 879
 880        d->sbdma_addptr = nextdsc;
 881
 882        /*
 883         * Give the buffer to the DMA engine.
 884         */
 885
 886        __raw_writeq(1, d->sbdma_dscrcnt);
 887
 888        return 0;                                       /* we did it */
 889}
 890
 891/**********************************************************************
 892 *  SBDMA_ADD_TXBUFFER(d,sb)
 893 *
 894 *  Add a transmit buffer to the specified DMA channel, causing a
 895 *  transmit to start.
 896 *
 897 *  Input parameters:
 898 *         d - DMA channel descriptor
 899 *         sb - sk_buff to add
 900 *
 901 *  Return value:
 902 *         0 transmit queued successfully
 903 *         otherwise error code
 904 ********************************************************************* */
 905
 906
 907static int sbdma_add_txbuffer(struct sbmacdma *d, struct sk_buff *sb)
 908{
 909        struct sbdmadscr *dsc;
 910        struct sbdmadscr *nextdsc;
 911        uint64_t phys;
 912        uint64_t ncb;
 913        int length;
 914
 915        /* get pointer to our current place in the ring */
 916
 917        dsc = d->sbdma_addptr;
 918        nextdsc = SBDMA_NEXTBUF(d,sbdma_addptr);
 919
 920        /*
 921         * figure out if the ring is full - if the next descriptor
 922         * is the same as the one that we're going to remove from
 923         * the ring, the ring is full
 924         */
 925
 926        if (nextdsc == d->sbdma_remptr) {
 927                return -ENOSPC;
 928        }
 929
 930        /*
 931         * Under Linux, it's not necessary to copy/coalesce buffers
 932         * like it is on NetBSD.  We think they're all contiguous,
 933         * but that may not be true for GBE.
 934         */
 935
 936        length = sb->len;
 937
 938        /*
 939         * fill in the descriptor.  Note that the number of cache
 940         * blocks in the descriptor is the number of blocks
 941         * *spanned*, so we need to add in the offset (if any)
 942         * while doing the calculation.
 943         */
 944
 945        phys = virt_to_phys(sb->data);
 946        ncb = NUMCACHEBLKS(length+(phys & (SMP_CACHE_BYTES - 1)));
 947
 948        dsc->dscr_a = phys |
 949                V_DMA_DSCRA_A_SIZE(ncb) |
 950#ifndef CONFIG_SBMAC_COALESCE
 951                M_DMA_DSCRA_INTERRUPT |
 952#endif
 953                M_DMA_ETHTX_SOP;
 954
 955        /* transmitting: set outbound options and length */
 956
 957        dsc->dscr_b = V_DMA_DSCRB_OPTIONS(K_DMA_ETHTX_APPENDCRC_APPENDPAD) |
 958                V_DMA_DSCRB_PKT_SIZE(length);
 959
 960        /*
 961         * fill in the context
 962         */
 963
 964        d->sbdma_ctxtable[dsc-d->sbdma_dscrtable] = sb;
 965
 966        /*
 967         * point at next packet
 968         */
 969
 970        d->sbdma_addptr = nextdsc;
 971
 972        /*
 973         * Give the buffer to the DMA engine.
 974         */
 975
 976        __raw_writeq(1, d->sbdma_dscrcnt);
 977
 978        return 0;                                       /* we did it */
 979}
 980
 981
 982
 983
 984/**********************************************************************
 985 *  SBDMA_EMPTYRING(d)
 986 *
 987 *  Free all allocated sk_buffs on the specified DMA channel;
 988 *
 989 *  Input parameters:
 990 *         d  - DMA channel
 991 *
 992 *  Return value:
 993 *         nothing
 994 ********************************************************************* */
 995
 996static void sbdma_emptyring(struct sbmacdma *d)
 997{
 998        int idx;
 999        struct sk_buff *sb;
1000
1001        for (idx = 0; idx < d->sbdma_maxdescr; idx++) {
1002                sb = d->sbdma_ctxtable[idx];
1003                if (sb) {
1004                        dev_kfree_skb(sb);
1005                        d->sbdma_ctxtable[idx] = NULL;
1006                }
1007        }
1008}
1009
1010
1011/**********************************************************************
1012 *  SBDMA_FILLRING(d)
1013 *
1014 *  Fill the specified DMA channel (must be receive channel)
1015 *  with sk_buffs
1016 *
1017 *  Input parameters:
1018 *         sc - softc structure
1019 *          d - DMA channel
1020 *
1021 *  Return value:
1022 *         nothing
1023 ********************************************************************* */
1024
1025static void sbdma_fillring(struct sbmac_softc *sc, struct sbmacdma *d)
1026{
1027        int idx;
1028
1029        for (idx = 0; idx < SBMAC_MAX_RXDESCR - 1; idx++) {
1030                if (sbdma_add_rcvbuffer(sc, d, NULL) != 0)
1031                        break;
1032        }
1033}
1034
1035#ifdef CONFIG_NET_POLL_CONTROLLER
1036static void sbmac_netpoll(struct net_device *netdev)
1037{
1038        struct sbmac_softc *sc = netdev_priv(netdev);
1039        int irq = sc->sbm_dev->irq;
1040
1041        __raw_writeq(0, sc->sbm_imr);
1042
1043        sbmac_intr(irq, netdev);
1044
1045#ifdef CONFIG_SBMAC_COALESCE
1046        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1047        ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
1048        sc->sbm_imr);
1049#else
1050        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1051        (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
1052#endif
1053}
1054#endif
1055
1056/**********************************************************************
1057 *  SBDMA_RX_PROCESS(sc,d,work_to_do,poll)
1058 *
1059 *  Process "completed" receive buffers on the specified DMA channel.
1060 *
1061 *  Input parameters:
1062 *            sc - softc structure
1063 *             d - DMA channel context
1064 *    work_to_do - no. of packets to process before enabling interrupt
1065 *                 again (for NAPI)
1066 *          poll - 1: using polling (for NAPI)
1067 *
1068 *  Return value:
1069 *         nothing
1070 ********************************************************************* */
1071
1072static int sbdma_rx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1073                            int work_to_do, int poll)
1074{
1075        struct net_device *dev = sc->sbm_dev;
1076        int curidx;
1077        int hwidx;
1078        struct sbdmadscr *dsc;
1079        struct sk_buff *sb;
1080        int len;
1081        int work_done = 0;
1082        int dropped = 0;
1083
1084        prefetch(d);
1085
1086again:
1087        /* Check if the HW dropped any frames */
1088        dev->stats.rx_fifo_errors
1089            += __raw_readq(sc->sbm_rxdma.sbdma_oodpktlost) & 0xffff;
1090        __raw_writeq(0, sc->sbm_rxdma.sbdma_oodpktlost);
1091
1092        while (work_to_do-- > 0) {
1093                /*
1094                 * figure out where we are (as an index) and where
1095                 * the hardware is (also as an index)
1096                 *
1097                 * This could be done faster if (for example) the
1098                 * descriptor table was page-aligned and contiguous in
1099                 * both virtual and physical memory -- you could then
1100                 * just compare the low-order bits of the virtual address
1101                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1102                 */
1103
1104                dsc = d->sbdma_remptr;
1105                curidx = dsc - d->sbdma_dscrtable;
1106
1107                prefetch(dsc);
1108                prefetch(&d->sbdma_ctxtable[curidx]);
1109
1110                hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1111                         d->sbdma_dscrtable_phys) /
1112                        sizeof(*d->sbdma_dscrtable);
1113
1114                /*
1115                 * If they're the same, that means we've processed all
1116                 * of the descriptors up to (but not including) the one that
1117                 * the hardware is working on right now.
1118                 */
1119
1120                if (curidx == hwidx)
1121                        goto done;
1122
1123                /*
1124                 * Otherwise, get the packet's sk_buff ptr back
1125                 */
1126
1127                sb = d->sbdma_ctxtable[curidx];
1128                d->sbdma_ctxtable[curidx] = NULL;
1129
1130                len = (int)G_DMA_DSCRB_PKT_SIZE(dsc->dscr_b) - 4;
1131
1132                /*
1133                 * Check packet status.  If good, process it.
1134                 * If not, silently drop it and put it back on the
1135                 * receive ring.
1136                 */
1137
1138                if (likely (!(dsc->dscr_a & M_DMA_ETHRX_BAD))) {
1139
1140                        /*
1141                         * Add a new buffer to replace the old one.  If we fail
1142                         * to allocate a buffer, we're going to drop this
1143                         * packet and put it right back on the receive ring.
1144                         */
1145
1146                        if (unlikely(sbdma_add_rcvbuffer(sc, d, NULL) ==
1147                                     -ENOBUFS)) {
1148                                dev->stats.rx_dropped++;
1149                                /* Re-add old buffer */
1150                                sbdma_add_rcvbuffer(sc, d, sb);
1151                                /* No point in continuing at the moment */
1152                                printk(KERN_ERR "dropped packet (1)\n");
1153                                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1154                                goto done;
1155                        } else {
1156                                /*
1157                                 * Set length into the packet
1158                                 */
1159                                skb_put(sb,len);
1160
1161                                /*
1162                                 * Buffer has been replaced on the
1163                                 * receive ring.  Pass the buffer to
1164                                 * the kernel
1165                                 */
1166                                sb->protocol = eth_type_trans(sb,d->sbdma_eth->sbm_dev);
1167                                /* Check hw IPv4/TCP checksum if supported */
1168                                if (sc->rx_hw_checksum == ENABLE) {
1169                                        if (!((dsc->dscr_a) & M_DMA_ETHRX_BADIP4CS) &&
1170                                            !((dsc->dscr_a) & M_DMA_ETHRX_BADTCPCS)) {
1171                                                sb->ip_summed = CHECKSUM_UNNECESSARY;
1172                                                /* don't need to set sb->csum */
1173                                        } else {
1174                                                skb_checksum_none_assert(sb);
1175                                        }
1176                                }
1177                                prefetch(sb->data);
1178                                prefetch((const void *)(((char *)sb->data)+32));
1179                                if (poll)
1180                                        dropped = netif_receive_skb(sb);
1181                                else
1182                                        dropped = netif_rx(sb);
1183
1184                                if (dropped == NET_RX_DROP) {
1185                                        dev->stats.rx_dropped++;
1186                                        d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1187                                        goto done;
1188                                }
1189                                else {
1190                                        dev->stats.rx_bytes += len;
1191                                        dev->stats.rx_packets++;
1192                                }
1193                        }
1194                } else {
1195                        /*
1196                         * Packet was mangled somehow.  Just drop it and
1197                         * put it back on the receive ring.
1198                         */
1199                        dev->stats.rx_errors++;
1200                        sbdma_add_rcvbuffer(sc, d, sb);
1201                }
1202
1203
1204                /*
1205                 * .. and advance to the next buffer.
1206                 */
1207
1208                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1209                work_done++;
1210        }
1211        if (!poll) {
1212                work_to_do = 32;
1213                goto again; /* collect fifo drop statistics again */
1214        }
1215done:
1216        return work_done;
1217}
1218
1219/**********************************************************************
1220 *  SBDMA_TX_PROCESS(sc,d)
1221 *
1222 *  Process "completed" transmit buffers on the specified DMA channel.
1223 *  This is normally called within the interrupt service routine.
1224 *  Note that this isn't really ideal for priority channels, since
1225 *  it processes all of the packets on a given channel before
1226 *  returning.
1227 *
1228 *  Input parameters:
1229 *      sc - softc structure
1230 *       d - DMA channel context
1231 *    poll - 1: using polling (for NAPI)
1232 *
1233 *  Return value:
1234 *         nothing
1235 ********************************************************************* */
1236
1237static void sbdma_tx_process(struct sbmac_softc *sc, struct sbmacdma *d,
1238                             int poll)
1239{
1240        struct net_device *dev = sc->sbm_dev;
1241        int curidx;
1242        int hwidx;
1243        struct sbdmadscr *dsc;
1244        struct sk_buff *sb;
1245        unsigned long flags;
1246        int packets_handled = 0;
1247
1248        spin_lock_irqsave(&(sc->sbm_lock), flags);
1249
1250        if (d->sbdma_remptr == d->sbdma_addptr)
1251          goto end_unlock;
1252
1253        hwidx = ((__raw_readq(d->sbdma_curdscr) & M_DMA_CURDSCR_ADDR) -
1254                 d->sbdma_dscrtable_phys) / sizeof(*d->sbdma_dscrtable);
1255
1256        for (;;) {
1257                /*
1258                 * figure out where we are (as an index) and where
1259                 * the hardware is (also as an index)
1260                 *
1261                 * This could be done faster if (for example) the
1262                 * descriptor table was page-aligned and contiguous in
1263                 * both virtual and physical memory -- you could then
1264                 * just compare the low-order bits of the virtual address
1265                 * (sbdma_remptr) and the physical address (sbdma_curdscr CSR)
1266                 */
1267
1268                curidx = d->sbdma_remptr - d->sbdma_dscrtable;
1269
1270                /*
1271                 * If they're the same, that means we've processed all
1272                 * of the descriptors up to (but not including) the one that
1273                 * the hardware is working on right now.
1274                 */
1275
1276                if (curidx == hwidx)
1277                        break;
1278
1279                /*
1280                 * Otherwise, get the packet's sk_buff ptr back
1281                 */
1282
1283                dsc = &(d->sbdma_dscrtable[curidx]);
1284                sb = d->sbdma_ctxtable[curidx];
1285                d->sbdma_ctxtable[curidx] = NULL;
1286
1287                /*
1288                 * Stats
1289                 */
1290
1291                dev->stats.tx_bytes += sb->len;
1292                dev->stats.tx_packets++;
1293
1294                /*
1295                 * for transmits, we just free buffers.
1296                 */
1297
1298                dev_kfree_skb_irq(sb);
1299
1300                /*
1301                 * .. and advance to the next buffer.
1302                 */
1303
1304                d->sbdma_remptr = SBDMA_NEXTBUF(d,sbdma_remptr);
1305
1306                packets_handled++;
1307
1308        }
1309
1310        /*
1311         * Decide if we should wake up the protocol or not.
1312         * Other drivers seem to do this when we reach a low
1313         * watermark on the transmit queue.
1314         */
1315
1316        if (packets_handled)
1317                netif_wake_queue(d->sbdma_eth->sbm_dev);
1318
1319end_unlock:
1320        spin_unlock_irqrestore(&(sc->sbm_lock), flags);
1321
1322}
1323
1324
1325
1326/**********************************************************************
1327 *  SBMAC_INITCTX(s)
1328 *
1329 *  Initialize an Ethernet context structure - this is called
1330 *  once per MAC on the 1250.  Memory is allocated here, so don't
1331 *  call it again from inside the ioctl routines that bring the
1332 *  interface up/down
1333 *
1334 *  Input parameters:
1335 *         s - sbmac context structure
1336 *
1337 *  Return value:
1338 *         0
1339 ********************************************************************* */
1340
1341static int sbmac_initctx(struct sbmac_softc *s)
1342{
1343
1344        /*
1345         * figure out the addresses of some ports
1346         */
1347
1348        s->sbm_macenable = s->sbm_base + R_MAC_ENABLE;
1349        s->sbm_maccfg    = s->sbm_base + R_MAC_CFG;
1350        s->sbm_fifocfg   = s->sbm_base + R_MAC_THRSH_CFG;
1351        s->sbm_framecfg  = s->sbm_base + R_MAC_FRAMECFG;
1352        s->sbm_rxfilter  = s->sbm_base + R_MAC_ADFILTER_CFG;
1353        s->sbm_isr       = s->sbm_base + R_MAC_STATUS;
1354        s->sbm_imr       = s->sbm_base + R_MAC_INT_MASK;
1355        s->sbm_mdio      = s->sbm_base + R_MAC_MDIO;
1356
1357        /*
1358         * Initialize the DMA channels.  Right now, only one per MAC is used
1359         * Note: Only do this _once_, as it allocates memory from the kernel!
1360         */
1361
1362        sbdma_initctx(&(s->sbm_txdma),s,0,DMA_TX,SBMAC_MAX_TXDESCR);
1363        sbdma_initctx(&(s->sbm_rxdma),s,0,DMA_RX,SBMAC_MAX_RXDESCR);
1364
1365        /*
1366         * initial state is OFF
1367         */
1368
1369        s->sbm_state = sbmac_state_off;
1370
1371        return 0;
1372}
1373
1374
1375static void sbdma_uninitctx(struct sbmacdma *d)
1376{
1377        if (d->sbdma_dscrtable_unaligned) {
1378                kfree(d->sbdma_dscrtable_unaligned);
1379                d->sbdma_dscrtable_unaligned = d->sbdma_dscrtable = NULL;
1380        }
1381
1382        if (d->sbdma_ctxtable) {
1383                kfree(d->sbdma_ctxtable);
1384                d->sbdma_ctxtable = NULL;
1385        }
1386}
1387
1388
1389static void sbmac_uninitctx(struct sbmac_softc *sc)
1390{
1391        sbdma_uninitctx(&(sc->sbm_txdma));
1392        sbdma_uninitctx(&(sc->sbm_rxdma));
1393}
1394
1395
1396/**********************************************************************
1397 *  SBMAC_CHANNEL_START(s)
1398 *
1399 *  Start packet processing on this MAC.
1400 *
1401 *  Input parameters:
1402 *         s - sbmac structure
1403 *
1404 *  Return value:
1405 *         nothing
1406 ********************************************************************* */
1407
1408static void sbmac_channel_start(struct sbmac_softc *s)
1409{
1410        uint64_t reg;
1411        void __iomem *port;
1412        uint64_t cfg,fifo,framecfg;
1413        int idx, th_value;
1414
1415        /*
1416         * Don't do this if running
1417         */
1418
1419        if (s->sbm_state == sbmac_state_on)
1420                return;
1421
1422        /*
1423         * Bring the controller out of reset, but leave it off.
1424         */
1425
1426        __raw_writeq(0, s->sbm_macenable);
1427
1428        /*
1429         * Ignore all received packets
1430         */
1431
1432        __raw_writeq(0, s->sbm_rxfilter);
1433
1434        /*
1435         * Calculate values for various control registers.
1436         */
1437
1438        cfg = M_MAC_RETRY_EN |
1439                M_MAC_TX_HOLD_SOP_EN |
1440                V_MAC_TX_PAUSE_CNT_16K |
1441                M_MAC_AP_STAT_EN |
1442                M_MAC_FAST_SYNC |
1443                M_MAC_SS_EN |
1444                0;
1445
1446        /*
1447         * Be sure that RD_THRSH+WR_THRSH <= 32 for pass1 pars
1448         * and make sure that RD_THRSH + WR_THRSH <=128 for pass2 and above
1449         * Use a larger RD_THRSH for gigabit
1450         */
1451        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2)
1452                th_value = 28;
1453        else
1454                th_value = 64;
1455
1456        fifo = V_MAC_TX_WR_THRSH(4) |   /* Must be '4' or '8' */
1457                ((s->sbm_speed == sbmac_speed_1000)
1458                 ? V_MAC_TX_RD_THRSH(th_value) : V_MAC_TX_RD_THRSH(4)) |
1459                V_MAC_TX_RL_THRSH(4) |
1460                V_MAC_RX_PL_THRSH(4) |
1461                V_MAC_RX_RD_THRSH(4) |  /* Must be '4' */
1462                V_MAC_RX_RL_THRSH(8) |
1463                0;
1464
1465        framecfg = V_MAC_MIN_FRAMESZ_DEFAULT |
1466                V_MAC_MAX_FRAMESZ_DEFAULT |
1467                V_MAC_BACKOFF_SEL(1);
1468
1469        /*
1470         * Clear out the hash address map
1471         */
1472
1473        port = s->sbm_base + R_MAC_HASH_BASE;
1474        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
1475                __raw_writeq(0, port);
1476                port += sizeof(uint64_t);
1477        }
1478
1479        /*
1480         * Clear out the exact-match table
1481         */
1482
1483        port = s->sbm_base + R_MAC_ADDR_BASE;
1484        for (idx = 0; idx < MAC_ADDR_COUNT; idx++) {
1485                __raw_writeq(0, port);
1486                port += sizeof(uint64_t);
1487        }
1488
1489        /*
1490         * Clear out the DMA Channel mapping table registers
1491         */
1492
1493        port = s->sbm_base + R_MAC_CHUP0_BASE;
1494        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1495                __raw_writeq(0, port);
1496                port += sizeof(uint64_t);
1497        }
1498
1499
1500        port = s->sbm_base + R_MAC_CHLO0_BASE;
1501        for (idx = 0; idx < MAC_CHMAP_COUNT; idx++) {
1502                __raw_writeq(0, port);
1503                port += sizeof(uint64_t);
1504        }
1505
1506        /*
1507         * Program the hardware address.  It goes into the hardware-address
1508         * register as well as the first filter register.
1509         */
1510
1511        reg = sbmac_addr2reg(s->sbm_hwaddr);
1512
1513        port = s->sbm_base + R_MAC_ADDR_BASE;
1514        __raw_writeq(reg, port);
1515        port = s->sbm_base + R_MAC_ETHERNET_ADDR;
1516
1517#ifdef CONFIG_SB1_PASS_1_WORKAROUNDS
1518        /*
1519         * Pass1 SOCs do not receive packets addressed to the
1520         * destination address in the R_MAC_ETHERNET_ADDR register.
1521         * Set the value to zero.
1522         */
1523        __raw_writeq(0, port);
1524#else
1525        __raw_writeq(reg, port);
1526#endif
1527
1528        /*
1529         * Set the receive filter for no packets, and write values
1530         * to the various config registers
1531         */
1532
1533        __raw_writeq(0, s->sbm_rxfilter);
1534        __raw_writeq(0, s->sbm_imr);
1535        __raw_writeq(framecfg, s->sbm_framecfg);
1536        __raw_writeq(fifo, s->sbm_fifocfg);
1537        __raw_writeq(cfg, s->sbm_maccfg);
1538
1539        /*
1540         * Initialize DMA channels (rings should be ok now)
1541         */
1542
1543        sbdma_channel_start(&(s->sbm_rxdma), DMA_RX);
1544        sbdma_channel_start(&(s->sbm_txdma), DMA_TX);
1545
1546        /*
1547         * Configure the speed, duplex, and flow control
1548         */
1549
1550        sbmac_set_speed(s,s->sbm_speed);
1551        sbmac_set_duplex(s,s->sbm_duplex,s->sbm_fc);
1552
1553        /*
1554         * Fill the receive ring
1555         */
1556
1557        sbdma_fillring(s, &(s->sbm_rxdma));
1558
1559        /*
1560         * Turn on the rest of the bits in the enable register
1561         */
1562
1563#if defined(CONFIG_SIBYTE_BCM1x55) || defined(CONFIG_SIBYTE_BCM1x80)
1564        __raw_writeq(M_MAC_RXDMA_EN0 |
1565                       M_MAC_TXDMA_EN0, s->sbm_macenable);
1566#elif defined(CONFIG_SIBYTE_SB1250) || defined(CONFIG_SIBYTE_BCM112X)
1567        __raw_writeq(M_MAC_RXDMA_EN0 |
1568                       M_MAC_TXDMA_EN0 |
1569                       M_MAC_RX_ENABLE |
1570                       M_MAC_TX_ENABLE, s->sbm_macenable);
1571#else
1572#error invalid SiByte MAC configuration
1573#endif
1574
1575#ifdef CONFIG_SBMAC_COALESCE
1576        __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
1577                       ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0), s->sbm_imr);
1578#else
1579        __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
1580                       (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), s->sbm_imr);
1581#endif
1582
1583        /*
1584         * Enable receiving unicasts and broadcasts
1585         */
1586
1587        __raw_writeq(M_MAC_UCAST_EN | M_MAC_BCAST_EN, s->sbm_rxfilter);
1588
1589        /*
1590         * we're running now.
1591         */
1592
1593        s->sbm_state = sbmac_state_on;
1594
1595        /*
1596         * Program multicast addresses
1597         */
1598
1599        sbmac_setmulti(s);
1600
1601        /*
1602         * If channel was in promiscuous mode before, turn that on
1603         */
1604
1605        if (s->sbm_devflags & IFF_PROMISC) {
1606                sbmac_promiscuous_mode(s,1);
1607        }
1608
1609}
1610
1611
1612/**********************************************************************
1613 *  SBMAC_CHANNEL_STOP(s)
1614 *
1615 *  Stop packet processing on this MAC.
1616 *
1617 *  Input parameters:
1618 *         s - sbmac structure
1619 *
1620 *  Return value:
1621 *         nothing
1622 ********************************************************************* */
1623
1624static void sbmac_channel_stop(struct sbmac_softc *s)
1625{
1626        /* don't do this if already stopped */
1627
1628        if (s->sbm_state == sbmac_state_off)
1629                return;
1630
1631        /* don't accept any packets, disable all interrupts */
1632
1633        __raw_writeq(0, s->sbm_rxfilter);
1634        __raw_writeq(0, s->sbm_imr);
1635
1636        /* Turn off ticker */
1637
1638        /* XXX */
1639
1640        /* turn off receiver and transmitter */
1641
1642        __raw_writeq(0, s->sbm_macenable);
1643
1644        /* We're stopped now. */
1645
1646        s->sbm_state = sbmac_state_off;
1647
1648        /*
1649         * Stop DMA channels (rings should be ok now)
1650         */
1651
1652        sbdma_channel_stop(&(s->sbm_rxdma));
1653        sbdma_channel_stop(&(s->sbm_txdma));
1654
1655        /* Empty the receive and transmit rings */
1656
1657        sbdma_emptyring(&(s->sbm_rxdma));
1658        sbdma_emptyring(&(s->sbm_txdma));
1659
1660}
1661
1662/**********************************************************************
1663 *  SBMAC_SET_CHANNEL_STATE(state)
1664 *
1665 *  Set the channel's state ON or OFF
1666 *
1667 *  Input parameters:
1668 *         state - new state
1669 *
1670 *  Return value:
1671 *         old state
1672 ********************************************************************* */
1673static enum sbmac_state sbmac_set_channel_state(struct sbmac_softc *sc,
1674                                                enum sbmac_state state)
1675{
1676        enum sbmac_state oldstate = sc->sbm_state;
1677
1678        /*
1679         * If same as previous state, return
1680         */
1681
1682        if (state == oldstate) {
1683                return oldstate;
1684        }
1685
1686        /*
1687         * If new state is ON, turn channel on
1688         */
1689
1690        if (state == sbmac_state_on) {
1691                sbmac_channel_start(sc);
1692        }
1693        else {
1694                sbmac_channel_stop(sc);
1695        }
1696
1697        /*
1698         * Return previous state
1699         */
1700
1701        return oldstate;
1702}
1703
1704
1705/**********************************************************************
1706 *  SBMAC_PROMISCUOUS_MODE(sc,onoff)
1707 *
1708 *  Turn on or off promiscuous mode
1709 *
1710 *  Input parameters:
1711 *         sc - softc
1712 *      onoff - 1 to turn on, 0 to turn off
1713 *
1714 *  Return value:
1715 *         nothing
1716 ********************************************************************* */
1717
1718static void sbmac_promiscuous_mode(struct sbmac_softc *sc,int onoff)
1719{
1720        uint64_t reg;
1721
1722        if (sc->sbm_state != sbmac_state_on)
1723                return;
1724
1725        if (onoff) {
1726                reg = __raw_readq(sc->sbm_rxfilter);
1727                reg |= M_MAC_ALLPKT_EN;
1728                __raw_writeq(reg, sc->sbm_rxfilter);
1729        }
1730        else {
1731                reg = __raw_readq(sc->sbm_rxfilter);
1732                reg &= ~M_MAC_ALLPKT_EN;
1733                __raw_writeq(reg, sc->sbm_rxfilter);
1734        }
1735}
1736
1737/**********************************************************************
1738 *  SBMAC_SETIPHDR_OFFSET(sc,onoff)
1739 *
1740 *  Set the iphdr offset as 15 assuming ethernet encapsulation
1741 *
1742 *  Input parameters:
1743 *         sc - softc
1744 *
1745 *  Return value:
1746 *         nothing
1747 ********************************************************************* */
1748
1749static void sbmac_set_iphdr_offset(struct sbmac_softc *sc)
1750{
1751        uint64_t reg;
1752
1753        /* Hard code the off set to 15 for now */
1754        reg = __raw_readq(sc->sbm_rxfilter);
1755        reg &= ~M_MAC_IPHDR_OFFSET | V_MAC_IPHDR_OFFSET(15);
1756        __raw_writeq(reg, sc->sbm_rxfilter);
1757
1758        /* BCM1250 pass1 didn't have hardware checksum.  Everything
1759           later does.  */
1760        if (soc_type == K_SYS_SOC_TYPE_BCM1250 && periph_rev < 2) {
1761                sc->rx_hw_checksum = DISABLE;
1762        } else {
1763                sc->rx_hw_checksum = ENABLE;
1764        }
1765}
1766
1767
1768/**********************************************************************
1769 *  SBMAC_ADDR2REG(ptr)
1770 *
1771 *  Convert six bytes into the 64-bit register value that
1772 *  we typically write into the SBMAC's address/mcast registers
1773 *
1774 *  Input parameters:
1775 *         ptr - pointer to 6 bytes
1776 *
1777 *  Return value:
1778 *         register value
1779 ********************************************************************* */
1780
1781static uint64_t sbmac_addr2reg(unsigned char *ptr)
1782{
1783        uint64_t reg = 0;
1784
1785        ptr += 6;
1786
1787        reg |= (uint64_t) *(--ptr);
1788        reg <<= 8;
1789        reg |= (uint64_t) *(--ptr);
1790        reg <<= 8;
1791        reg |= (uint64_t) *(--ptr);
1792        reg <<= 8;
1793        reg |= (uint64_t) *(--ptr);
1794        reg <<= 8;
1795        reg |= (uint64_t) *(--ptr);
1796        reg <<= 8;
1797        reg |= (uint64_t) *(--ptr);
1798
1799        return reg;
1800}
1801
1802
1803/**********************************************************************
1804 *  SBMAC_SET_SPEED(s,speed)
1805 *
1806 *  Configure LAN speed for the specified MAC.
1807 *  Warning: must be called when MAC is off!
1808 *
1809 *  Input parameters:
1810 *         s - sbmac structure
1811 *         speed - speed to set MAC to (see enum sbmac_speed)
1812 *
1813 *  Return value:
1814 *         1 if successful
1815 *      0 indicates invalid parameters
1816 ********************************************************************* */
1817
1818static int sbmac_set_speed(struct sbmac_softc *s, enum sbmac_speed speed)
1819{
1820        uint64_t cfg;
1821        uint64_t framecfg;
1822
1823        /*
1824         * Save new current values
1825         */
1826
1827        s->sbm_speed = speed;
1828
1829        if (s->sbm_state == sbmac_state_on)
1830                return 0;       /* save for next restart */
1831
1832        /*
1833         * Read current register values
1834         */
1835
1836        cfg = __raw_readq(s->sbm_maccfg);
1837        framecfg = __raw_readq(s->sbm_framecfg);
1838
1839        /*
1840         * Mask out the stuff we want to change
1841         */
1842
1843        cfg &= ~(M_MAC_BURST_EN | M_MAC_SPEED_SEL);
1844        framecfg &= ~(M_MAC_IFG_RX | M_MAC_IFG_TX | M_MAC_IFG_THRSH |
1845                      M_MAC_SLOT_SIZE);
1846
1847        /*
1848         * Now add in the new bits
1849         */
1850
1851        switch (speed) {
1852        case sbmac_speed_10:
1853                framecfg |= V_MAC_IFG_RX_10 |
1854                        V_MAC_IFG_TX_10 |
1855                        K_MAC_IFG_THRSH_10 |
1856                        V_MAC_SLOT_SIZE_10;
1857                cfg |= V_MAC_SPEED_SEL_10MBPS;
1858                break;
1859
1860        case sbmac_speed_100:
1861                framecfg |= V_MAC_IFG_RX_100 |
1862                        V_MAC_IFG_TX_100 |
1863                        V_MAC_IFG_THRSH_100 |
1864                        V_MAC_SLOT_SIZE_100;
1865                cfg |= V_MAC_SPEED_SEL_100MBPS ;
1866                break;
1867
1868        case sbmac_speed_1000:
1869                framecfg |= V_MAC_IFG_RX_1000 |
1870                        V_MAC_IFG_TX_1000 |
1871                        V_MAC_IFG_THRSH_1000 |
1872                        V_MAC_SLOT_SIZE_1000;
1873                cfg |= V_MAC_SPEED_SEL_1000MBPS | M_MAC_BURST_EN;
1874                break;
1875
1876        default:
1877                return 0;
1878        }
1879
1880        /*
1881         * Send the bits back to the hardware
1882         */
1883
1884        __raw_writeq(framecfg, s->sbm_framecfg);
1885        __raw_writeq(cfg, s->sbm_maccfg);
1886
1887        return 1;
1888}
1889
1890/**********************************************************************
1891 *  SBMAC_SET_DUPLEX(s,duplex,fc)
1892 *
1893 *  Set Ethernet duplex and flow control options for this MAC
1894 *  Warning: must be called when MAC is off!
1895 *
1896 *  Input parameters:
1897 *         s - sbmac structure
1898 *         duplex - duplex setting (see enum sbmac_duplex)
1899 *         fc - flow control setting (see enum sbmac_fc)
1900 *
1901 *  Return value:
1902 *         1 if ok
1903 *         0 if an invalid parameter combination was specified
1904 ********************************************************************* */
1905
1906static int sbmac_set_duplex(struct sbmac_softc *s, enum sbmac_duplex duplex,
1907                            enum sbmac_fc fc)
1908{
1909        uint64_t cfg;
1910
1911        /*
1912         * Save new current values
1913         */
1914
1915        s->sbm_duplex = duplex;
1916        s->sbm_fc = fc;
1917
1918        if (s->sbm_state == sbmac_state_on)
1919                return 0;       /* save for next restart */
1920
1921        /*
1922         * Read current register values
1923         */
1924
1925        cfg = __raw_readq(s->sbm_maccfg);
1926
1927        /*
1928         * Mask off the stuff we're about to change
1929         */
1930
1931        cfg &= ~(M_MAC_FC_SEL | M_MAC_FC_CMD | M_MAC_HDX_EN);
1932
1933
1934        switch (duplex) {
1935        case sbmac_duplex_half:
1936                switch (fc) {
1937                case sbmac_fc_disabled:
1938                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_DISABLED;
1939                        break;
1940
1941                case sbmac_fc_collision:
1942                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENABLED;
1943                        break;
1944
1945                case sbmac_fc_carrier:
1946                        cfg |= M_MAC_HDX_EN | V_MAC_FC_CMD_ENAB_FALSECARR;
1947                        break;
1948
1949                case sbmac_fc_frame:            /* not valid in half duplex */
1950                default:                        /* invalid selection */
1951                        return 0;
1952                }
1953                break;
1954
1955        case sbmac_duplex_full:
1956                switch (fc) {
1957                case sbmac_fc_disabled:
1958                        cfg |= V_MAC_FC_CMD_DISABLED;
1959                        break;
1960
1961                case sbmac_fc_frame:
1962                        cfg |= V_MAC_FC_CMD_ENABLED;
1963                        break;
1964
1965                case sbmac_fc_collision:        /* not valid in full duplex */
1966                case sbmac_fc_carrier:          /* not valid in full duplex */
1967                default:
1968                        return 0;
1969                }
1970                break;
1971        default:
1972                return 0;
1973        }
1974
1975        /*
1976         * Send the bits back to the hardware
1977         */
1978
1979        __raw_writeq(cfg, s->sbm_maccfg);
1980
1981        return 1;
1982}
1983
1984
1985
1986
1987/**********************************************************************
1988 *  SBMAC_INTR()
1989 *
1990 *  Interrupt handler for MAC interrupts
1991 *
1992 *  Input parameters:
1993 *         MAC structure
1994 *
1995 *  Return value:
1996 *         nothing
1997 ********************************************************************* */
1998static irqreturn_t sbmac_intr(int irq,void *dev_instance)
1999{
2000        struct net_device *dev = (struct net_device *) dev_instance;
2001        struct sbmac_softc *sc = netdev_priv(dev);
2002        uint64_t isr;
2003        int handled = 0;
2004
2005        /*
2006         * Read the ISR (this clears the bits in the real
2007         * register, except for counter addr)
2008         */
2009
2010        isr = __raw_readq(sc->sbm_isr) & ~M_MAC_COUNTER_ADDR;
2011
2012        if (isr == 0)
2013                return IRQ_RETVAL(0);
2014        handled = 1;
2015
2016        /*
2017         * Transmits on channel 0
2018         */
2019
2020        if (isr & (M_MAC_INT_CHANNEL << S_MAC_TX_CH0))
2021                sbdma_tx_process(sc,&(sc->sbm_txdma), 0);
2022
2023        if (isr & (M_MAC_INT_CHANNEL << S_MAC_RX_CH0)) {
2024                if (napi_schedule_prep(&sc->napi)) {
2025                        __raw_writeq(0, sc->sbm_imr);
2026                        __napi_schedule(&sc->napi);
2027                        /* Depend on the exit from poll to reenable intr */
2028                }
2029                else {
2030                        /* may leave some packets behind */
2031                        sbdma_rx_process(sc,&(sc->sbm_rxdma),
2032                                         SBMAC_MAX_RXDESCR * 2, 0);
2033                }
2034        }
2035        return IRQ_RETVAL(handled);
2036}
2037
2038/**********************************************************************
2039 *  SBMAC_START_TX(skb,dev)
2040 *
2041 *  Start output on the specified interface.  Basically, we
2042 *  queue as many buffers as we can until the ring fills up, or
2043 *  we run off the end of the queue, whichever comes first.
2044 *
2045 *  Input parameters:
2046 *
2047 *
2048 *  Return value:
2049 *         nothing
2050 ********************************************************************* */
2051static int sbmac_start_tx(struct sk_buff *skb, struct net_device *dev)
2052{
2053        struct sbmac_softc *sc = netdev_priv(dev);
2054        unsigned long flags;
2055
2056        /* lock eth irq */
2057        spin_lock_irqsave(&sc->sbm_lock, flags);
2058
2059        /*
2060         * Put the buffer on the transmit ring.  If we
2061         * don't have room, stop the queue.
2062         */
2063
2064        if (sbdma_add_txbuffer(&(sc->sbm_txdma),skb)) {
2065                /* XXX save skb that we could not send */
2066                netif_stop_queue(dev);
2067                spin_unlock_irqrestore(&sc->sbm_lock, flags);
2068
2069                return NETDEV_TX_BUSY;
2070        }
2071
2072        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2073
2074        return NETDEV_TX_OK;
2075}
2076
2077/**********************************************************************
2078 *  SBMAC_SETMULTI(sc)
2079 *
2080 *  Reprogram the multicast table into the hardware, given
2081 *  the list of multicasts associated with the interface
2082 *  structure.
2083 *
2084 *  Input parameters:
2085 *         sc - softc
2086 *
2087 *  Return value:
2088 *         nothing
2089 ********************************************************************* */
2090
2091static void sbmac_setmulti(struct sbmac_softc *sc)
2092{
2093        uint64_t reg;
2094        void __iomem *port;
2095        int idx;
2096        struct netdev_hw_addr *ha;
2097        struct net_device *dev = sc->sbm_dev;
2098
2099        /*
2100         * Clear out entire multicast table.  We do this by nuking
2101         * the entire hash table and all the direct matches except
2102         * the first one, which is used for our station address
2103         */
2104
2105        for (idx = 1; idx < MAC_ADDR_COUNT; idx++) {
2106                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx*sizeof(uint64_t));
2107                __raw_writeq(0, port);
2108        }
2109
2110        for (idx = 0; idx < MAC_HASH_COUNT; idx++) {
2111                port = sc->sbm_base + R_MAC_HASH_BASE+(idx*sizeof(uint64_t));
2112                __raw_writeq(0, port);
2113        }
2114
2115        /*
2116         * Clear the filter to say we don't want any multicasts.
2117         */
2118
2119        reg = __raw_readq(sc->sbm_rxfilter);
2120        reg &= ~(M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2121        __raw_writeq(reg, sc->sbm_rxfilter);
2122
2123        if (dev->flags & IFF_ALLMULTI) {
2124                /*
2125                 * Enable ALL multicasts.  Do this by inverting the
2126                 * multicast enable bit.
2127                 */
2128                reg = __raw_readq(sc->sbm_rxfilter);
2129                reg |= (M_MAC_MCAST_INV | M_MAC_MCAST_EN);
2130                __raw_writeq(reg, sc->sbm_rxfilter);
2131                return;
2132        }
2133
2134
2135        /*
2136         * Progam new multicast entries.  For now, only use the
2137         * perfect filter.  In the future we'll need to use the
2138         * hash filter if the perfect filter overflows
2139         */
2140
2141        /* XXX only using perfect filter for now, need to use hash
2142         * XXX if the table overflows */
2143
2144        idx = 1;                /* skip station address */
2145        netdev_for_each_mc_addr(ha, dev) {
2146                if (idx == MAC_ADDR_COUNT)
2147                        break;
2148                reg = sbmac_addr2reg(ha->addr);
2149                port = sc->sbm_base + R_MAC_ADDR_BASE+(idx * sizeof(uint64_t));
2150                __raw_writeq(reg, port);
2151                idx++;
2152        }
2153
2154        /*
2155         * Enable the "accept multicast bits" if we programmed at least one
2156         * multicast.
2157         */
2158
2159        if (idx > 1) {
2160                reg = __raw_readq(sc->sbm_rxfilter);
2161                reg |= M_MAC_MCAST_EN;
2162                __raw_writeq(reg, sc->sbm_rxfilter);
2163        }
2164}
2165
2166static int sb1250_change_mtu(struct net_device *_dev, int new_mtu)
2167{
2168        if (new_mtu >  ENET_PACKET_SIZE)
2169                return -EINVAL;
2170        _dev->mtu = new_mtu;
2171        pr_info("changing the mtu to %d\n", new_mtu);
2172        return 0;
2173}
2174
2175static const struct net_device_ops sbmac_netdev_ops = {
2176        .ndo_open               = sbmac_open,
2177        .ndo_stop               = sbmac_close,
2178        .ndo_start_xmit         = sbmac_start_tx,
2179        .ndo_set_multicast_list = sbmac_set_rx_mode,
2180        .ndo_tx_timeout         = sbmac_tx_timeout,
2181        .ndo_do_ioctl           = sbmac_mii_ioctl,
2182        .ndo_change_mtu         = sb1250_change_mtu,
2183        .ndo_validate_addr      = eth_validate_addr,
2184        .ndo_set_mac_address    = eth_mac_addr,
2185#ifdef CONFIG_NET_POLL_CONTROLLER
2186        .ndo_poll_controller    = sbmac_netpoll,
2187#endif
2188};
2189
2190/**********************************************************************
2191 *  SBMAC_INIT(dev)
2192 *
2193 *  Attach routine - init hardware and hook ourselves into linux
2194 *
2195 *  Input parameters:
2196 *         dev - net_device structure
2197 *
2198 *  Return value:
2199 *         status
2200 ********************************************************************* */
2201
2202static int sbmac_init(struct platform_device *pldev, long long base)
2203{
2204        struct net_device *dev = dev_get_drvdata(&pldev->dev);
2205        int idx = pldev->id;
2206        struct sbmac_softc *sc = netdev_priv(dev);
2207        unsigned char *eaddr;
2208        uint64_t ea_reg;
2209        int i;
2210        int err;
2211
2212        sc->sbm_dev = dev;
2213        sc->sbe_idx = idx;
2214
2215        eaddr = sc->sbm_hwaddr;
2216
2217        /*
2218         * Read the ethernet address.  The firmware left this programmed
2219         * for us in the ethernet address register for each mac.
2220         */
2221
2222        ea_reg = __raw_readq(sc->sbm_base + R_MAC_ETHERNET_ADDR);
2223        __raw_writeq(0, sc->sbm_base + R_MAC_ETHERNET_ADDR);
2224        for (i = 0; i < 6; i++) {
2225                eaddr[i] = (uint8_t) (ea_reg & 0xFF);
2226                ea_reg >>= 8;
2227        }
2228
2229        for (i = 0; i < 6; i++) {
2230                dev->dev_addr[i] = eaddr[i];
2231        }
2232
2233        /*
2234         * Initialize context (get pointers to registers and stuff), then
2235         * allocate the memory for the descriptor tables.
2236         */
2237
2238        sbmac_initctx(sc);
2239
2240        /*
2241         * Set up Linux device callins
2242         */
2243
2244        spin_lock_init(&(sc->sbm_lock));
2245
2246        dev->netdev_ops = &sbmac_netdev_ops;
2247        dev->watchdog_timeo = TX_TIMEOUT;
2248
2249        netif_napi_add(dev, &sc->napi, sbmac_poll, 16);
2250
2251        dev->irq                = UNIT_INT(idx);
2252
2253        /* This is needed for PASS2 for Rx H/W checksum feature */
2254        sbmac_set_iphdr_offset(sc);
2255
2256        sc->mii_bus = mdiobus_alloc();
2257        if (sc->mii_bus == NULL) {
2258                err = -ENOMEM;
2259                goto uninit_ctx;
2260        }
2261
2262        sc->mii_bus->name = sbmac_mdio_string;
2263        snprintf(sc->mii_bus->id, MII_BUS_ID_SIZE, "%x", idx);
2264        sc->mii_bus->priv = sc;
2265        sc->mii_bus->read = sbmac_mii_read;
2266        sc->mii_bus->write = sbmac_mii_write;
2267        sc->mii_bus->irq = sc->phy_irq;
2268        for (i = 0; i < PHY_MAX_ADDR; ++i)
2269                sc->mii_bus->irq[i] = SBMAC_PHY_INT;
2270
2271        sc->mii_bus->parent = &pldev->dev;
2272        /*
2273         * Probe PHY address
2274         */
2275        err = mdiobus_register(sc->mii_bus);
2276        if (err) {
2277                printk(KERN_ERR "%s: unable to register MDIO bus\n",
2278                       dev->name);
2279                goto free_mdio;
2280        }
2281        dev_set_drvdata(&pldev->dev, sc->mii_bus);
2282
2283        err = register_netdev(dev);
2284        if (err) {
2285                printk(KERN_ERR "%s.%d: unable to register netdev\n",
2286                       sbmac_string, idx);
2287                goto unreg_mdio;
2288        }
2289
2290        pr_info("%s.%d: registered as %s\n", sbmac_string, idx, dev->name);
2291
2292        if (sc->rx_hw_checksum == ENABLE)
2293                pr_info("%s: enabling TCP rcv checksum\n", dev->name);
2294
2295        /*
2296         * Display Ethernet address (this is called during the config
2297         * process so we need to finish off the config message that
2298         * was being displayed)
2299         */
2300        pr_info("%s: SiByte Ethernet at 0x%08Lx, address: %pM\n",
2301               dev->name, base, eaddr);
2302
2303        return 0;
2304unreg_mdio:
2305        mdiobus_unregister(sc->mii_bus);
2306        dev_set_drvdata(&pldev->dev, NULL);
2307free_mdio:
2308        mdiobus_free(sc->mii_bus);
2309uninit_ctx:
2310        sbmac_uninitctx(sc);
2311        return err;
2312}
2313
2314
2315static int sbmac_open(struct net_device *dev)
2316{
2317        struct sbmac_softc *sc = netdev_priv(dev);
2318        int err;
2319
2320        if (debug > 1)
2321                pr_debug("%s: sbmac_open() irq %d.\n", dev->name, dev->irq);
2322
2323        /*
2324         * map/route interrupt (clear status first, in case something
2325         * weird is pending; we haven't initialized the mac registers
2326         * yet)
2327         */
2328
2329        __raw_readq(sc->sbm_isr);
2330        err = request_irq(dev->irq, sbmac_intr, IRQF_SHARED, dev->name, dev);
2331        if (err) {
2332                printk(KERN_ERR "%s: unable to get IRQ %d\n", dev->name,
2333                       dev->irq);
2334                goto out_err;
2335        }
2336
2337        sc->sbm_speed = sbmac_speed_none;
2338        sc->sbm_duplex = sbmac_duplex_none;
2339        sc->sbm_fc = sbmac_fc_none;
2340        sc->sbm_pause = -1;
2341        sc->sbm_link = 0;
2342
2343        /*
2344         * Attach to the PHY
2345         */
2346        err = sbmac_mii_probe(dev);
2347        if (err)
2348                goto out_unregister;
2349
2350        /*
2351         * Turn on the channel
2352         */
2353
2354        sbmac_set_channel_state(sc,sbmac_state_on);
2355
2356        netif_start_queue(dev);
2357
2358        sbmac_set_rx_mode(dev);
2359
2360        phy_start(sc->phy_dev);
2361
2362        napi_enable(&sc->napi);
2363
2364        return 0;
2365
2366out_unregister:
2367        free_irq(dev->irq, dev);
2368out_err:
2369        return err;
2370}
2371
2372static int sbmac_mii_probe(struct net_device *dev)
2373{
2374        struct sbmac_softc *sc = netdev_priv(dev);
2375        struct phy_device *phy_dev;
2376        int i;
2377
2378        for (i = 0; i < PHY_MAX_ADDR; i++) {
2379                phy_dev = sc->mii_bus->phy_map[i];
2380                if (phy_dev)
2381                        break;
2382        }
2383        if (!phy_dev) {
2384                printk(KERN_ERR "%s: no PHY found\n", dev->name);
2385                return -ENXIO;
2386        }
2387
2388        phy_dev = phy_connect(dev, dev_name(&phy_dev->dev), &sbmac_mii_poll, 0,
2389                              PHY_INTERFACE_MODE_GMII);
2390        if (IS_ERR(phy_dev)) {
2391                printk(KERN_ERR "%s: could not attach to PHY\n", dev->name);
2392                return PTR_ERR(phy_dev);
2393        }
2394
2395        /* Remove any features not supported by the controller */
2396        phy_dev->supported &= SUPPORTED_10baseT_Half |
2397                              SUPPORTED_10baseT_Full |
2398                              SUPPORTED_100baseT_Half |
2399                              SUPPORTED_100baseT_Full |
2400                              SUPPORTED_1000baseT_Half |
2401                              SUPPORTED_1000baseT_Full |
2402                              SUPPORTED_Autoneg |
2403                              SUPPORTED_MII |
2404                              SUPPORTED_Pause |
2405                              SUPPORTED_Asym_Pause;
2406        phy_dev->advertising = phy_dev->supported;
2407
2408        pr_info("%s: attached PHY driver [%s] (mii_bus:phy_addr=%s, irq=%d)\n",
2409                dev->name, phy_dev->drv->name,
2410                dev_name(&phy_dev->dev), phy_dev->irq);
2411
2412        sc->phy_dev = phy_dev;
2413
2414        return 0;
2415}
2416
2417
2418static void sbmac_mii_poll(struct net_device *dev)
2419{
2420        struct sbmac_softc *sc = netdev_priv(dev);
2421        struct phy_device *phy_dev = sc->phy_dev;
2422        unsigned long flags;
2423        enum sbmac_fc fc;
2424        int link_chg, speed_chg, duplex_chg, pause_chg, fc_chg;
2425
2426        link_chg = (sc->sbm_link != phy_dev->link);
2427        speed_chg = (sc->sbm_speed != phy_dev->speed);
2428        duplex_chg = (sc->sbm_duplex != phy_dev->duplex);
2429        pause_chg = (sc->sbm_pause != phy_dev->pause);
2430
2431        if (!link_chg && !speed_chg && !duplex_chg && !pause_chg)
2432                return;                                 /* Hmmm... */
2433
2434        if (!phy_dev->link) {
2435                if (link_chg) {
2436                        sc->sbm_link = phy_dev->link;
2437                        sc->sbm_speed = sbmac_speed_none;
2438                        sc->sbm_duplex = sbmac_duplex_none;
2439                        sc->sbm_fc = sbmac_fc_disabled;
2440                        sc->sbm_pause = -1;
2441                        pr_info("%s: link unavailable\n", dev->name);
2442                }
2443                return;
2444        }
2445
2446        if (phy_dev->duplex == DUPLEX_FULL) {
2447                if (phy_dev->pause)
2448                        fc = sbmac_fc_frame;
2449                else
2450                        fc = sbmac_fc_disabled;
2451        } else
2452                fc = sbmac_fc_collision;
2453        fc_chg = (sc->sbm_fc != fc);
2454
2455        pr_info("%s: link available: %dbase-%cD\n", dev->name, phy_dev->speed,
2456                phy_dev->duplex == DUPLEX_FULL ? 'F' : 'H');
2457
2458        spin_lock_irqsave(&sc->sbm_lock, flags);
2459
2460        sc->sbm_speed = phy_dev->speed;
2461        sc->sbm_duplex = phy_dev->duplex;
2462        sc->sbm_fc = fc;
2463        sc->sbm_pause = phy_dev->pause;
2464        sc->sbm_link = phy_dev->link;
2465
2466        if ((speed_chg || duplex_chg || fc_chg) &&
2467            sc->sbm_state != sbmac_state_off) {
2468                /*
2469                 * something changed, restart the channel
2470                 */
2471                if (debug > 1)
2472                        pr_debug("%s: restarting channel "
2473                                 "because PHY state changed\n", dev->name);
2474                sbmac_channel_stop(sc);
2475                sbmac_channel_start(sc);
2476        }
2477
2478        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2479}
2480
2481
2482static void sbmac_tx_timeout (struct net_device *dev)
2483{
2484        struct sbmac_softc *sc = netdev_priv(dev);
2485        unsigned long flags;
2486
2487        spin_lock_irqsave(&sc->sbm_lock, flags);
2488
2489
2490        dev->trans_start = jiffies; /* prevent tx timeout */
2491        dev->stats.tx_errors++;
2492
2493        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2494
2495        printk (KERN_WARNING "%s: Transmit timed out\n",dev->name);
2496}
2497
2498
2499
2500
2501static void sbmac_set_rx_mode(struct net_device *dev)
2502{
2503        unsigned long flags;
2504        struct sbmac_softc *sc = netdev_priv(dev);
2505
2506        spin_lock_irqsave(&sc->sbm_lock, flags);
2507        if ((dev->flags ^ sc->sbm_devflags) & IFF_PROMISC) {
2508                /*
2509                 * Promiscuous changed.
2510                 */
2511
2512                if (dev->flags & IFF_PROMISC) {
2513                        sbmac_promiscuous_mode(sc,1);
2514                }
2515                else {
2516                        sbmac_promiscuous_mode(sc,0);
2517                }
2518        }
2519        spin_unlock_irqrestore(&sc->sbm_lock, flags);
2520
2521        /*
2522         * Program the multicasts.  Do this every time.
2523         */
2524
2525        sbmac_setmulti(sc);
2526
2527}
2528
2529static int sbmac_mii_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2530{
2531        struct sbmac_softc *sc = netdev_priv(dev);
2532
2533        if (!netif_running(dev) || !sc->phy_dev)
2534                return -EINVAL;
2535
2536        return phy_mii_ioctl(sc->phy_dev, rq, cmd);
2537}
2538
2539static int sbmac_close(struct net_device *dev)
2540{
2541        struct sbmac_softc *sc = netdev_priv(dev);
2542
2543        napi_disable(&sc->napi);
2544
2545        phy_stop(sc->phy_dev);
2546
2547        sbmac_set_channel_state(sc, sbmac_state_off);
2548
2549        netif_stop_queue(dev);
2550
2551        if (debug > 1)
2552                pr_debug("%s: Shutting down ethercard\n", dev->name);
2553
2554        phy_disconnect(sc->phy_dev);
2555        sc->phy_dev = NULL;
2556        free_irq(dev->irq, dev);
2557
2558        sbdma_emptyring(&(sc->sbm_txdma));
2559        sbdma_emptyring(&(sc->sbm_rxdma));
2560
2561        return 0;
2562}
2563
2564static int sbmac_poll(struct napi_struct *napi, int budget)
2565{
2566        struct sbmac_softc *sc = container_of(napi, struct sbmac_softc, napi);
2567        int work_done;
2568
2569        work_done = sbdma_rx_process(sc, &(sc->sbm_rxdma), budget, 1);
2570        sbdma_tx_process(sc, &(sc->sbm_txdma), 1);
2571
2572        if (work_done < budget) {
2573                napi_complete(napi);
2574
2575#ifdef CONFIG_SBMAC_COALESCE
2576                __raw_writeq(((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_TX_CH0) |
2577                             ((M_MAC_INT_EOP_COUNT | M_MAC_INT_EOP_TIMER) << S_MAC_RX_CH0),
2578                             sc->sbm_imr);
2579#else
2580                __raw_writeq((M_MAC_INT_CHANNEL << S_MAC_TX_CH0) |
2581                             (M_MAC_INT_CHANNEL << S_MAC_RX_CH0), sc->sbm_imr);
2582#endif
2583        }
2584
2585        return work_done;
2586}
2587
2588
2589static int __devinit sbmac_probe(struct platform_device *pldev)
2590{
2591        struct net_device *dev;
2592        struct sbmac_softc *sc;
2593        void __iomem *sbm_base;
2594        struct resource *res;
2595        u64 sbmac_orig_hwaddr;
2596        int err;
2597
2598        res = platform_get_resource(pldev, IORESOURCE_MEM, 0);
2599        BUG_ON(!res);
2600        sbm_base = ioremap_nocache(res->start, resource_size(res));
2601        if (!sbm_base) {
2602                printk(KERN_ERR "%s: unable to map device registers\n",
2603                       dev_name(&pldev->dev));
2604                err = -ENOMEM;
2605                goto out_out;
2606        }
2607
2608        /*
2609         * The R_MAC_ETHERNET_ADDR register will be set to some nonzero
2610         * value for us by the firmware if we're going to use this MAC.
2611         * If we find a zero, skip this MAC.
2612         */
2613        sbmac_orig_hwaddr = __raw_readq(sbm_base + R_MAC_ETHERNET_ADDR);
2614        pr_debug("%s: %sconfiguring MAC at 0x%08Lx\n", dev_name(&pldev->dev),
2615                 sbmac_orig_hwaddr ? "" : "not ", (long long)res->start);
2616        if (sbmac_orig_hwaddr == 0) {
2617                err = 0;
2618                goto out_unmap;
2619        }
2620
2621        /*
2622         * Okay, cool.  Initialize this MAC.
2623         */
2624        dev = alloc_etherdev(sizeof(struct sbmac_softc));
2625        if (!dev) {
2626                printk(KERN_ERR "%s: unable to allocate etherdev\n",
2627                       dev_name(&pldev->dev));
2628                err = -ENOMEM;
2629                goto out_unmap;
2630        }
2631
2632        dev_set_drvdata(&pldev->dev, dev);
2633        SET_NETDEV_DEV(dev, &pldev->dev);
2634
2635        sc = netdev_priv(dev);
2636        sc->sbm_base = sbm_base;
2637
2638        err = sbmac_init(pldev, res->start);
2639        if (err)
2640                goto out_kfree;
2641
2642        return 0;
2643
2644out_kfree:
2645        free_netdev(dev);
2646        __raw_writeq(sbmac_orig_hwaddr, sbm_base + R_MAC_ETHERNET_ADDR);
2647
2648out_unmap:
2649        iounmap(sbm_base);
2650
2651out_out:
2652        return err;
2653}
2654
2655static int __exit sbmac_remove(struct platform_device *pldev)
2656{
2657        struct net_device *dev = dev_get_drvdata(&pldev->dev);
2658        struct sbmac_softc *sc = netdev_priv(dev);
2659
2660        unregister_netdev(dev);
2661        sbmac_uninitctx(sc);
2662        mdiobus_unregister(sc->mii_bus);
2663        mdiobus_free(sc->mii_bus);
2664        iounmap(sc->sbm_base);
2665        free_netdev(dev);
2666
2667        return 0;
2668}
2669
2670static struct platform_driver sbmac_driver = {
2671        .probe = sbmac_probe,
2672        .remove = __exit_p(sbmac_remove),
2673        .driver = {
2674                .name = sbmac_string,
2675                .owner  = THIS_MODULE,
2676        },
2677};
2678
2679static int __init sbmac_init_module(void)
2680{
2681        return platform_driver_register(&sbmac_driver);
2682}
2683
2684static void __exit sbmac_cleanup_module(void)
2685{
2686        platform_driver_unregister(&sbmac_driver);
2687}
2688
2689module_init(sbmac_init_module);
2690module_exit(sbmac_cleanup_module);
2691