linux/drivers/net/wireless/rt2x00/rt2500pci.c
<<
>>
Prefs
   1/*
   2        Copyright (C) 2004 - 2009 Ivo van Doorn <IvDoorn@gmail.com>
   3        <http://rt2x00.serialmonkey.com>
   4
   5        This program is free software; you can redistribute it and/or modify
   6        it under the terms of the GNU General Public License as published by
   7        the Free Software Foundation; either version 2 of the License, or
   8        (at your option) any later version.
   9
  10        This program is distributed in the hope that it will be useful,
  11        but WITHOUT ANY WARRANTY; without even the implied warranty of
  12        MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
  13        GNU General Public License for more details.
  14
  15        You should have received a copy of the GNU General Public License
  16        along with this program; if not, write to the
  17        Free Software Foundation, Inc.,
  18        59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
  19 */
  20
  21/*
  22        Module: rt2500pci
  23        Abstract: rt2500pci device specific routines.
  24        Supported chipsets: RT2560.
  25 */
  26
  27#include <linux/delay.h>
  28#include <linux/etherdevice.h>
  29#include <linux/init.h>
  30#include <linux/kernel.h>
  31#include <linux/module.h>
  32#include <linux/pci.h>
  33#include <linux/eeprom_93cx6.h>
  34#include <linux/slab.h>
  35
  36#include "rt2x00.h"
  37#include "rt2x00pci.h"
  38#include "rt2500pci.h"
  39
  40/*
  41 * Register access.
  42 * All access to the CSR registers will go through the methods
  43 * rt2x00pci_register_read and rt2x00pci_register_write.
  44 * BBP and RF register require indirect register access,
  45 * and use the CSR registers BBPCSR and RFCSR to achieve this.
  46 * These indirect registers work with busy bits,
  47 * and we will try maximal REGISTER_BUSY_COUNT times to access
  48 * the register while taking a REGISTER_BUSY_DELAY us delay
  49 * between each attampt. When the busy bit is still set at that time,
  50 * the access attempt is considered to have failed,
  51 * and we will print an error.
  52 */
  53#define WAIT_FOR_BBP(__dev, __reg) \
  54        rt2x00pci_regbusy_read((__dev), BBPCSR, BBPCSR_BUSY, (__reg))
  55#define WAIT_FOR_RF(__dev, __reg) \
  56        rt2x00pci_regbusy_read((__dev), RFCSR, RFCSR_BUSY, (__reg))
  57
  58static void rt2500pci_bbp_write(struct rt2x00_dev *rt2x00dev,
  59                                const unsigned int word, const u8 value)
  60{
  61        u32 reg;
  62
  63        mutex_lock(&rt2x00dev->csr_mutex);
  64
  65        /*
  66         * Wait until the BBP becomes available, afterwards we
  67         * can safely write the new data into the register.
  68         */
  69        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  70                reg = 0;
  71                rt2x00_set_field32(&reg, BBPCSR_VALUE, value);
  72                rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
  73                rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
  74                rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 1);
  75
  76                rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
  77        }
  78
  79        mutex_unlock(&rt2x00dev->csr_mutex);
  80}
  81
  82static void rt2500pci_bbp_read(struct rt2x00_dev *rt2x00dev,
  83                               const unsigned int word, u8 *value)
  84{
  85        u32 reg;
  86
  87        mutex_lock(&rt2x00dev->csr_mutex);
  88
  89        /*
  90         * Wait until the BBP becomes available, afterwards we
  91         * can safely write the read request into the register.
  92         * After the data has been written, we wait until hardware
  93         * returns the correct value, if at any time the register
  94         * doesn't become available in time, reg will be 0xffffffff
  95         * which means we return 0xff to the caller.
  96         */
  97        if (WAIT_FOR_BBP(rt2x00dev, &reg)) {
  98                reg = 0;
  99                rt2x00_set_field32(&reg, BBPCSR_REGNUM, word);
 100                rt2x00_set_field32(&reg, BBPCSR_BUSY, 1);
 101                rt2x00_set_field32(&reg, BBPCSR_WRITE_CONTROL, 0);
 102
 103                rt2x00pci_register_write(rt2x00dev, BBPCSR, reg);
 104
 105                WAIT_FOR_BBP(rt2x00dev, &reg);
 106        }
 107
 108        *value = rt2x00_get_field32(reg, BBPCSR_VALUE);
 109
 110        mutex_unlock(&rt2x00dev->csr_mutex);
 111}
 112
 113static void rt2500pci_rf_write(struct rt2x00_dev *rt2x00dev,
 114                               const unsigned int word, const u32 value)
 115{
 116        u32 reg;
 117
 118        mutex_lock(&rt2x00dev->csr_mutex);
 119
 120        /*
 121         * Wait until the RF becomes available, afterwards we
 122         * can safely write the new data into the register.
 123         */
 124        if (WAIT_FOR_RF(rt2x00dev, &reg)) {
 125                reg = 0;
 126                rt2x00_set_field32(&reg, RFCSR_VALUE, value);
 127                rt2x00_set_field32(&reg, RFCSR_NUMBER_OF_BITS, 20);
 128                rt2x00_set_field32(&reg, RFCSR_IF_SELECT, 0);
 129                rt2x00_set_field32(&reg, RFCSR_BUSY, 1);
 130
 131                rt2x00pci_register_write(rt2x00dev, RFCSR, reg);
 132                rt2x00_rf_write(rt2x00dev, word, value);
 133        }
 134
 135        mutex_unlock(&rt2x00dev->csr_mutex);
 136}
 137
 138static void rt2500pci_eepromregister_read(struct eeprom_93cx6 *eeprom)
 139{
 140        struct rt2x00_dev *rt2x00dev = eeprom->data;
 141        u32 reg;
 142
 143        rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
 144
 145        eeprom->reg_data_in = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_IN);
 146        eeprom->reg_data_out = !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_OUT);
 147        eeprom->reg_data_clock =
 148            !!rt2x00_get_field32(reg, CSR21_EEPROM_DATA_CLOCK);
 149        eeprom->reg_chip_select =
 150            !!rt2x00_get_field32(reg, CSR21_EEPROM_CHIP_SELECT);
 151}
 152
 153static void rt2500pci_eepromregister_write(struct eeprom_93cx6 *eeprom)
 154{
 155        struct rt2x00_dev *rt2x00dev = eeprom->data;
 156        u32 reg = 0;
 157
 158        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_IN, !!eeprom->reg_data_in);
 159        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_OUT, !!eeprom->reg_data_out);
 160        rt2x00_set_field32(&reg, CSR21_EEPROM_DATA_CLOCK,
 161                           !!eeprom->reg_data_clock);
 162        rt2x00_set_field32(&reg, CSR21_EEPROM_CHIP_SELECT,
 163                           !!eeprom->reg_chip_select);
 164
 165        rt2x00pci_register_write(rt2x00dev, CSR21, reg);
 166}
 167
 168#ifdef CONFIG_RT2X00_LIB_DEBUGFS
 169static const struct rt2x00debug rt2500pci_rt2x00debug = {
 170        .owner  = THIS_MODULE,
 171        .csr    = {
 172                .read           = rt2x00pci_register_read,
 173                .write          = rt2x00pci_register_write,
 174                .flags          = RT2X00DEBUGFS_OFFSET,
 175                .word_base      = CSR_REG_BASE,
 176                .word_size      = sizeof(u32),
 177                .word_count     = CSR_REG_SIZE / sizeof(u32),
 178        },
 179        .eeprom = {
 180                .read           = rt2x00_eeprom_read,
 181                .write          = rt2x00_eeprom_write,
 182                .word_base      = EEPROM_BASE,
 183                .word_size      = sizeof(u16),
 184                .word_count     = EEPROM_SIZE / sizeof(u16),
 185        },
 186        .bbp    = {
 187                .read           = rt2500pci_bbp_read,
 188                .write          = rt2500pci_bbp_write,
 189                .word_base      = BBP_BASE,
 190                .word_size      = sizeof(u8),
 191                .word_count     = BBP_SIZE / sizeof(u8),
 192        },
 193        .rf     = {
 194                .read           = rt2x00_rf_read,
 195                .write          = rt2500pci_rf_write,
 196                .word_base      = RF_BASE,
 197                .word_size      = sizeof(u32),
 198                .word_count     = RF_SIZE / sizeof(u32),
 199        },
 200};
 201#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
 202
 203static int rt2500pci_rfkill_poll(struct rt2x00_dev *rt2x00dev)
 204{
 205        u32 reg;
 206
 207        rt2x00pci_register_read(rt2x00dev, GPIOCSR, &reg);
 208        return rt2x00_get_field32(reg, GPIOCSR_BIT0);
 209}
 210
 211#ifdef CONFIG_RT2X00_LIB_LEDS
 212static void rt2500pci_brightness_set(struct led_classdev *led_cdev,
 213                                     enum led_brightness brightness)
 214{
 215        struct rt2x00_led *led =
 216            container_of(led_cdev, struct rt2x00_led, led_dev);
 217        unsigned int enabled = brightness != LED_OFF;
 218        u32 reg;
 219
 220        rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
 221
 222        if (led->type == LED_TYPE_RADIO || led->type == LED_TYPE_ASSOC)
 223                rt2x00_set_field32(&reg, LEDCSR_LINK, enabled);
 224        else if (led->type == LED_TYPE_ACTIVITY)
 225                rt2x00_set_field32(&reg, LEDCSR_ACTIVITY, enabled);
 226
 227        rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
 228}
 229
 230static int rt2500pci_blink_set(struct led_classdev *led_cdev,
 231                               unsigned long *delay_on,
 232                               unsigned long *delay_off)
 233{
 234        struct rt2x00_led *led =
 235            container_of(led_cdev, struct rt2x00_led, led_dev);
 236        u32 reg;
 237
 238        rt2x00pci_register_read(led->rt2x00dev, LEDCSR, &reg);
 239        rt2x00_set_field32(&reg, LEDCSR_ON_PERIOD, *delay_on);
 240        rt2x00_set_field32(&reg, LEDCSR_OFF_PERIOD, *delay_off);
 241        rt2x00pci_register_write(led->rt2x00dev, LEDCSR, reg);
 242
 243        return 0;
 244}
 245
 246static void rt2500pci_init_led(struct rt2x00_dev *rt2x00dev,
 247                               struct rt2x00_led *led,
 248                               enum led_type type)
 249{
 250        led->rt2x00dev = rt2x00dev;
 251        led->type = type;
 252        led->led_dev.brightness_set = rt2500pci_brightness_set;
 253        led->led_dev.blink_set = rt2500pci_blink_set;
 254        led->flags = LED_INITIALIZED;
 255}
 256#endif /* CONFIG_RT2X00_LIB_LEDS */
 257
 258/*
 259 * Configuration handlers.
 260 */
 261static void rt2500pci_config_filter(struct rt2x00_dev *rt2x00dev,
 262                                    const unsigned int filter_flags)
 263{
 264        u32 reg;
 265
 266        /*
 267         * Start configuration steps.
 268         * Note that the version error will always be dropped
 269         * and broadcast frames will always be accepted since
 270         * there is no filter for it at this time.
 271         */
 272        rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 273        rt2x00_set_field32(&reg, RXCSR0_DROP_CRC,
 274                           !(filter_flags & FIF_FCSFAIL));
 275        rt2x00_set_field32(&reg, RXCSR0_DROP_PHYSICAL,
 276                           !(filter_flags & FIF_PLCPFAIL));
 277        rt2x00_set_field32(&reg, RXCSR0_DROP_CONTROL,
 278                           !(filter_flags & FIF_CONTROL));
 279        rt2x00_set_field32(&reg, RXCSR0_DROP_NOT_TO_ME,
 280                           !(filter_flags & FIF_PROMISC_IN_BSS));
 281        rt2x00_set_field32(&reg, RXCSR0_DROP_TODS,
 282                           !(filter_flags & FIF_PROMISC_IN_BSS) &&
 283                           !rt2x00dev->intf_ap_count);
 284        rt2x00_set_field32(&reg, RXCSR0_DROP_VERSION_ERROR, 1);
 285        rt2x00_set_field32(&reg, RXCSR0_DROP_MCAST,
 286                           !(filter_flags & FIF_ALLMULTI));
 287        rt2x00_set_field32(&reg, RXCSR0_DROP_BCAST, 0);
 288        rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 289}
 290
 291static void rt2500pci_config_intf(struct rt2x00_dev *rt2x00dev,
 292                                  struct rt2x00_intf *intf,
 293                                  struct rt2x00intf_conf *conf,
 294                                  const unsigned int flags)
 295{
 296        struct data_queue *queue = rt2x00dev->bcn;
 297        unsigned int bcn_preload;
 298        u32 reg;
 299
 300        if (flags & CONFIG_UPDATE_TYPE) {
 301                /*
 302                 * Enable beacon config
 303                 */
 304                bcn_preload = PREAMBLE + GET_DURATION(IEEE80211_HEADER, 20);
 305                rt2x00pci_register_read(rt2x00dev, BCNCSR1, &reg);
 306                rt2x00_set_field32(&reg, BCNCSR1_PRELOAD, bcn_preload);
 307                rt2x00_set_field32(&reg, BCNCSR1_BEACON_CWMIN, queue->cw_min);
 308                rt2x00pci_register_write(rt2x00dev, BCNCSR1, reg);
 309
 310                /*
 311                 * Enable synchronisation.
 312                 */
 313                rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 314                rt2x00_set_field32(&reg, CSR14_TSF_SYNC, conf->sync);
 315                rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 316        }
 317
 318        if (flags & CONFIG_UPDATE_MAC)
 319                rt2x00pci_register_multiwrite(rt2x00dev, CSR3,
 320                                              conf->mac, sizeof(conf->mac));
 321
 322        if (flags & CONFIG_UPDATE_BSSID)
 323                rt2x00pci_register_multiwrite(rt2x00dev, CSR5,
 324                                              conf->bssid, sizeof(conf->bssid));
 325}
 326
 327static void rt2500pci_config_erp(struct rt2x00_dev *rt2x00dev,
 328                                 struct rt2x00lib_erp *erp,
 329                                 u32 changed)
 330{
 331        int preamble_mask;
 332        u32 reg;
 333
 334        /*
 335         * When short preamble is enabled, we should set bit 0x08
 336         */
 337        if (changed & BSS_CHANGED_ERP_PREAMBLE) {
 338                preamble_mask = erp->short_preamble << 3;
 339
 340                rt2x00pci_register_read(rt2x00dev, TXCSR1, &reg);
 341                rt2x00_set_field32(&reg, TXCSR1_ACK_TIMEOUT, 0x162);
 342                rt2x00_set_field32(&reg, TXCSR1_ACK_CONSUME_TIME, 0xa2);
 343                rt2x00_set_field32(&reg, TXCSR1_TSF_OFFSET, IEEE80211_HEADER);
 344                rt2x00_set_field32(&reg, TXCSR1_AUTORESPONDER, 1);
 345                rt2x00pci_register_write(rt2x00dev, TXCSR1, reg);
 346
 347                rt2x00pci_register_read(rt2x00dev, ARCSR2, &reg);
 348                rt2x00_set_field32(&reg, ARCSR2_SIGNAL, 0x00);
 349                rt2x00_set_field32(&reg, ARCSR2_SERVICE, 0x04);
 350                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 351                                   GET_DURATION(ACK_SIZE, 10));
 352                rt2x00pci_register_write(rt2x00dev, ARCSR2, reg);
 353
 354                rt2x00pci_register_read(rt2x00dev, ARCSR3, &reg);
 355                rt2x00_set_field32(&reg, ARCSR3_SIGNAL, 0x01 | preamble_mask);
 356                rt2x00_set_field32(&reg, ARCSR3_SERVICE, 0x04);
 357                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 358                                   GET_DURATION(ACK_SIZE, 20));
 359                rt2x00pci_register_write(rt2x00dev, ARCSR3, reg);
 360
 361                rt2x00pci_register_read(rt2x00dev, ARCSR4, &reg);
 362                rt2x00_set_field32(&reg, ARCSR4_SIGNAL, 0x02 | preamble_mask);
 363                rt2x00_set_field32(&reg, ARCSR4_SERVICE, 0x04);
 364                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 365                                   GET_DURATION(ACK_SIZE, 55));
 366                rt2x00pci_register_write(rt2x00dev, ARCSR4, reg);
 367
 368                rt2x00pci_register_read(rt2x00dev, ARCSR5, &reg);
 369                rt2x00_set_field32(&reg, ARCSR5_SIGNAL, 0x03 | preamble_mask);
 370                rt2x00_set_field32(&reg, ARCSR5_SERVICE, 0x84);
 371                rt2x00_set_field32(&reg, ARCSR2_LENGTH,
 372                                   GET_DURATION(ACK_SIZE, 110));
 373                rt2x00pci_register_write(rt2x00dev, ARCSR5, reg);
 374        }
 375
 376        if (changed & BSS_CHANGED_BASIC_RATES)
 377                rt2x00pci_register_write(rt2x00dev, ARCSR1, erp->basic_rates);
 378
 379        if (changed & BSS_CHANGED_ERP_SLOT) {
 380                rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 381                rt2x00_set_field32(&reg, CSR11_SLOT_TIME, erp->slot_time);
 382                rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 383
 384                rt2x00pci_register_read(rt2x00dev, CSR18, &reg);
 385                rt2x00_set_field32(&reg, CSR18_SIFS, erp->sifs);
 386                rt2x00_set_field32(&reg, CSR18_PIFS, erp->pifs);
 387                rt2x00pci_register_write(rt2x00dev, CSR18, reg);
 388
 389                rt2x00pci_register_read(rt2x00dev, CSR19, &reg);
 390                rt2x00_set_field32(&reg, CSR19_DIFS, erp->difs);
 391                rt2x00_set_field32(&reg, CSR19_EIFS, erp->eifs);
 392                rt2x00pci_register_write(rt2x00dev, CSR19, reg);
 393        }
 394
 395        if (changed & BSS_CHANGED_BEACON_INT) {
 396                rt2x00pci_register_read(rt2x00dev, CSR12, &reg);
 397                rt2x00_set_field32(&reg, CSR12_BEACON_INTERVAL,
 398                                   erp->beacon_int * 16);
 399                rt2x00_set_field32(&reg, CSR12_CFP_MAX_DURATION,
 400                                   erp->beacon_int * 16);
 401                rt2x00pci_register_write(rt2x00dev, CSR12, reg);
 402        }
 403
 404}
 405
 406static void rt2500pci_config_ant(struct rt2x00_dev *rt2x00dev,
 407                                 struct antenna_setup *ant)
 408{
 409        u32 reg;
 410        u8 r14;
 411        u8 r2;
 412
 413        /*
 414         * We should never come here because rt2x00lib is supposed
 415         * to catch this and send us the correct antenna explicitely.
 416         */
 417        BUG_ON(ant->rx == ANTENNA_SW_DIVERSITY ||
 418               ant->tx == ANTENNA_SW_DIVERSITY);
 419
 420        rt2x00pci_register_read(rt2x00dev, BBPCSR1, &reg);
 421        rt2500pci_bbp_read(rt2x00dev, 14, &r14);
 422        rt2500pci_bbp_read(rt2x00dev, 2, &r2);
 423
 424        /*
 425         * Configure the TX antenna.
 426         */
 427        switch (ant->tx) {
 428        case ANTENNA_A:
 429                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 0);
 430                rt2x00_set_field32(&reg, BBPCSR1_CCK, 0);
 431                rt2x00_set_field32(&reg, BBPCSR1_OFDM, 0);
 432                break;
 433        case ANTENNA_B:
 434        default:
 435                rt2x00_set_field8(&r2, BBP_R2_TX_ANTENNA, 2);
 436                rt2x00_set_field32(&reg, BBPCSR1_CCK, 2);
 437                rt2x00_set_field32(&reg, BBPCSR1_OFDM, 2);
 438                break;
 439        }
 440
 441        /*
 442         * Configure the RX antenna.
 443         */
 444        switch (ant->rx) {
 445        case ANTENNA_A:
 446                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 0);
 447                break;
 448        case ANTENNA_B:
 449        default:
 450                rt2x00_set_field8(&r14, BBP_R14_RX_ANTENNA, 2);
 451                break;
 452        }
 453
 454        /*
 455         * RT2525E and RT5222 need to flip TX I/Q
 456         */
 457        if (rt2x00_rf(rt2x00dev, RF2525E) || rt2x00_rf(rt2x00dev, RF5222)) {
 458                rt2x00_set_field8(&r2, BBP_R2_TX_IQ_FLIP, 1);
 459                rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 1);
 460                rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 1);
 461
 462                /*
 463                 * RT2525E does not need RX I/Q Flip.
 464                 */
 465                if (rt2x00_rf(rt2x00dev, RF2525E))
 466                        rt2x00_set_field8(&r14, BBP_R14_RX_IQ_FLIP, 0);
 467        } else {
 468                rt2x00_set_field32(&reg, BBPCSR1_CCK_FLIP, 0);
 469                rt2x00_set_field32(&reg, BBPCSR1_OFDM_FLIP, 0);
 470        }
 471
 472        rt2x00pci_register_write(rt2x00dev, BBPCSR1, reg);
 473        rt2500pci_bbp_write(rt2x00dev, 14, r14);
 474        rt2500pci_bbp_write(rt2x00dev, 2, r2);
 475}
 476
 477static void rt2500pci_config_channel(struct rt2x00_dev *rt2x00dev,
 478                                     struct rf_channel *rf, const int txpower)
 479{
 480        u8 r70;
 481
 482        /*
 483         * Set TXpower.
 484         */
 485        rt2x00_set_field32(&rf->rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 486
 487        /*
 488         * Switch on tuning bits.
 489         * For RT2523 devices we do not need to update the R1 register.
 490         */
 491        if (!rt2x00_rf(rt2x00dev, RF2523))
 492                rt2x00_set_field32(&rf->rf1, RF1_TUNER, 1);
 493        rt2x00_set_field32(&rf->rf3, RF3_TUNER, 1);
 494
 495        /*
 496         * For RT2525 we should first set the channel to half band higher.
 497         */
 498        if (rt2x00_rf(rt2x00dev, RF2525)) {
 499                static const u32 vals[] = {
 500                        0x00080cbe, 0x00080d02, 0x00080d06, 0x00080d0a,
 501                        0x00080d0e, 0x00080d12, 0x00080d16, 0x00080d1a,
 502                        0x00080d1e, 0x00080d22, 0x00080d26, 0x00080d2a,
 503                        0x00080d2e, 0x00080d3a
 504                };
 505
 506                rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 507                rt2500pci_rf_write(rt2x00dev, 2, vals[rf->channel - 1]);
 508                rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 509                if (rf->rf4)
 510                        rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 511        }
 512
 513        rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 514        rt2500pci_rf_write(rt2x00dev, 2, rf->rf2);
 515        rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 516        if (rf->rf4)
 517                rt2500pci_rf_write(rt2x00dev, 4, rf->rf4);
 518
 519        /*
 520         * Channel 14 requires the Japan filter bit to be set.
 521         */
 522        r70 = 0x46;
 523        rt2x00_set_field8(&r70, BBP_R70_JAPAN_FILTER, rf->channel == 14);
 524        rt2500pci_bbp_write(rt2x00dev, 70, r70);
 525
 526        msleep(1);
 527
 528        /*
 529         * Switch off tuning bits.
 530         * For RT2523 devices we do not need to update the R1 register.
 531         */
 532        if (!rt2x00_rf(rt2x00dev, RF2523)) {
 533                rt2x00_set_field32(&rf->rf1, RF1_TUNER, 0);
 534                rt2500pci_rf_write(rt2x00dev, 1, rf->rf1);
 535        }
 536
 537        rt2x00_set_field32(&rf->rf3, RF3_TUNER, 0);
 538        rt2500pci_rf_write(rt2x00dev, 3, rf->rf3);
 539
 540        /*
 541         * Clear false CRC during channel switch.
 542         */
 543        rt2x00pci_register_read(rt2x00dev, CNT0, &rf->rf1);
 544}
 545
 546static void rt2500pci_config_txpower(struct rt2x00_dev *rt2x00dev,
 547                                     const int txpower)
 548{
 549        u32 rf3;
 550
 551        rt2x00_rf_read(rt2x00dev, 3, &rf3);
 552        rt2x00_set_field32(&rf3, RF3_TXPOWER, TXPOWER_TO_DEV(txpower));
 553        rt2500pci_rf_write(rt2x00dev, 3, rf3);
 554}
 555
 556static void rt2500pci_config_retry_limit(struct rt2x00_dev *rt2x00dev,
 557                                         struct rt2x00lib_conf *libconf)
 558{
 559        u32 reg;
 560
 561        rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 562        rt2x00_set_field32(&reg, CSR11_LONG_RETRY,
 563                           libconf->conf->long_frame_max_tx_count);
 564        rt2x00_set_field32(&reg, CSR11_SHORT_RETRY,
 565                           libconf->conf->short_frame_max_tx_count);
 566        rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 567}
 568
 569static void rt2500pci_config_ps(struct rt2x00_dev *rt2x00dev,
 570                                struct rt2x00lib_conf *libconf)
 571{
 572        enum dev_state state =
 573            (libconf->conf->flags & IEEE80211_CONF_PS) ?
 574                STATE_SLEEP : STATE_AWAKE;
 575        u32 reg;
 576
 577        if (state == STATE_SLEEP) {
 578                rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
 579                rt2x00_set_field32(&reg, CSR20_DELAY_AFTER_TBCN,
 580                                   (rt2x00dev->beacon_int - 20) * 16);
 581                rt2x00_set_field32(&reg, CSR20_TBCN_BEFORE_WAKEUP,
 582                                   libconf->conf->listen_interval - 1);
 583
 584                /* We must first disable autowake before it can be enabled */
 585                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 586                rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 587
 588                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 1);
 589                rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 590        } else {
 591                rt2x00pci_register_read(rt2x00dev, CSR20, &reg);
 592                rt2x00_set_field32(&reg, CSR20_AUTOWAKE, 0);
 593                rt2x00pci_register_write(rt2x00dev, CSR20, reg);
 594        }
 595
 596        rt2x00dev->ops->lib->set_device_state(rt2x00dev, state);
 597}
 598
 599static void rt2500pci_config(struct rt2x00_dev *rt2x00dev,
 600                             struct rt2x00lib_conf *libconf,
 601                             const unsigned int flags)
 602{
 603        if (flags & IEEE80211_CONF_CHANGE_CHANNEL)
 604                rt2500pci_config_channel(rt2x00dev, &libconf->rf,
 605                                         libconf->conf->power_level);
 606        if ((flags & IEEE80211_CONF_CHANGE_POWER) &&
 607            !(flags & IEEE80211_CONF_CHANGE_CHANNEL))
 608                rt2500pci_config_txpower(rt2x00dev,
 609                                         libconf->conf->power_level);
 610        if (flags & IEEE80211_CONF_CHANGE_RETRY_LIMITS)
 611                rt2500pci_config_retry_limit(rt2x00dev, libconf);
 612        if (flags & IEEE80211_CONF_CHANGE_PS)
 613                rt2500pci_config_ps(rt2x00dev, libconf);
 614}
 615
 616/*
 617 * Link tuning
 618 */
 619static void rt2500pci_link_stats(struct rt2x00_dev *rt2x00dev,
 620                                 struct link_qual *qual)
 621{
 622        u32 reg;
 623
 624        /*
 625         * Update FCS error count from register.
 626         */
 627        rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
 628        qual->rx_failed = rt2x00_get_field32(reg, CNT0_FCS_ERROR);
 629
 630        /*
 631         * Update False CCA count from register.
 632         */
 633        rt2x00pci_register_read(rt2x00dev, CNT3, &reg);
 634        qual->false_cca = rt2x00_get_field32(reg, CNT3_FALSE_CCA);
 635}
 636
 637static inline void rt2500pci_set_vgc(struct rt2x00_dev *rt2x00dev,
 638                                     struct link_qual *qual, u8 vgc_level)
 639{
 640        if (qual->vgc_level_reg != vgc_level) {
 641                rt2500pci_bbp_write(rt2x00dev, 17, vgc_level);
 642                qual->vgc_level = vgc_level;
 643                qual->vgc_level_reg = vgc_level;
 644        }
 645}
 646
 647static void rt2500pci_reset_tuner(struct rt2x00_dev *rt2x00dev,
 648                                  struct link_qual *qual)
 649{
 650        rt2500pci_set_vgc(rt2x00dev, qual, 0x48);
 651}
 652
 653static void rt2500pci_link_tuner(struct rt2x00_dev *rt2x00dev,
 654                                 struct link_qual *qual, const u32 count)
 655{
 656        /*
 657         * To prevent collisions with MAC ASIC on chipsets
 658         * up to version C the link tuning should halt after 20
 659         * seconds while being associated.
 660         */
 661        if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D &&
 662            rt2x00dev->intf_associated && count > 20)
 663                return;
 664
 665        /*
 666         * Chipset versions C and lower should directly continue
 667         * to the dynamic CCA tuning. Chipset version D and higher
 668         * should go straight to dynamic CCA tuning when they
 669         * are not associated.
 670         */
 671        if (rt2x00_rev(rt2x00dev) < RT2560_VERSION_D ||
 672            !rt2x00dev->intf_associated)
 673                goto dynamic_cca_tune;
 674
 675        /*
 676         * A too low RSSI will cause too much false CCA which will
 677         * then corrupt the R17 tuning. To remidy this the tuning should
 678         * be stopped (While making sure the R17 value will not exceed limits)
 679         */
 680        if (qual->rssi < -80 && count > 20) {
 681                if (qual->vgc_level_reg >= 0x41)
 682                        rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 683                return;
 684        }
 685
 686        /*
 687         * Special big-R17 for short distance
 688         */
 689        if (qual->rssi >= -58) {
 690                rt2500pci_set_vgc(rt2x00dev, qual, 0x50);
 691                return;
 692        }
 693
 694        /*
 695         * Special mid-R17 for middle distance
 696         */
 697        if (qual->rssi >= -74) {
 698                rt2500pci_set_vgc(rt2x00dev, qual, 0x41);
 699                return;
 700        }
 701
 702        /*
 703         * Leave short or middle distance condition, restore r17
 704         * to the dynamic tuning range.
 705         */
 706        if (qual->vgc_level_reg >= 0x41) {
 707                rt2500pci_set_vgc(rt2x00dev, qual, qual->vgc_level);
 708                return;
 709        }
 710
 711dynamic_cca_tune:
 712
 713        /*
 714         * R17 is inside the dynamic tuning range,
 715         * start tuning the link based on the false cca counter.
 716         */
 717        if (qual->false_cca > 512 && qual->vgc_level_reg < 0x40)
 718                rt2500pci_set_vgc(rt2x00dev, qual, ++qual->vgc_level_reg);
 719        else if (qual->false_cca < 100 && qual->vgc_level_reg > 0x32)
 720                rt2500pci_set_vgc(rt2x00dev, qual, --qual->vgc_level_reg);
 721}
 722
 723/*
 724 * Queue handlers.
 725 */
 726static void rt2500pci_start_queue(struct data_queue *queue)
 727{
 728        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 729        u32 reg;
 730
 731        switch (queue->qid) {
 732        case QID_RX:
 733                rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 734                rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 0);
 735                rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 736                break;
 737        case QID_BEACON:
 738                /*
 739                 * Allow the tbtt tasklet to be scheduled.
 740                 */
 741                tasklet_enable(&rt2x00dev->tbtt_tasklet);
 742
 743                rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 744                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 1);
 745                rt2x00_set_field32(&reg, CSR14_TBCN, 1);
 746                rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
 747                rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 748                break;
 749        default:
 750                break;
 751        }
 752}
 753
 754static void rt2500pci_kick_queue(struct data_queue *queue)
 755{
 756        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 757        u32 reg;
 758
 759        switch (queue->qid) {
 760        case QID_AC_VO:
 761                rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 762                rt2x00_set_field32(&reg, TXCSR0_KICK_PRIO, 1);
 763                rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 764                break;
 765        case QID_AC_VI:
 766                rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 767                rt2x00_set_field32(&reg, TXCSR0_KICK_TX, 1);
 768                rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 769                break;
 770        case QID_ATIM:
 771                rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 772                rt2x00_set_field32(&reg, TXCSR0_KICK_ATIM, 1);
 773                rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 774                break;
 775        default:
 776                break;
 777        }
 778}
 779
 780static void rt2500pci_stop_queue(struct data_queue *queue)
 781{
 782        struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
 783        u32 reg;
 784
 785        switch (queue->qid) {
 786        case QID_AC_VO:
 787        case QID_AC_VI:
 788        case QID_ATIM:
 789                rt2x00pci_register_read(rt2x00dev, TXCSR0, &reg);
 790                rt2x00_set_field32(&reg, TXCSR0_ABORT, 1);
 791                rt2x00pci_register_write(rt2x00dev, TXCSR0, reg);
 792                break;
 793        case QID_RX:
 794                rt2x00pci_register_read(rt2x00dev, RXCSR0, &reg);
 795                rt2x00_set_field32(&reg, RXCSR0_DISABLE_RX, 1);
 796                rt2x00pci_register_write(rt2x00dev, RXCSR0, reg);
 797                break;
 798        case QID_BEACON:
 799                rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 800                rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 801                rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 802                rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 803                rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 804
 805                /*
 806                 * Wait for possibly running tbtt tasklets.
 807                 */
 808                tasklet_disable(&rt2x00dev->tbtt_tasklet);
 809                break;
 810        default:
 811                break;
 812        }
 813}
 814
 815/*
 816 * Initialization functions.
 817 */
 818static bool rt2500pci_get_entry_state(struct queue_entry *entry)
 819{
 820        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 821        u32 word;
 822
 823        if (entry->queue->qid == QID_RX) {
 824                rt2x00_desc_read(entry_priv->desc, 0, &word);
 825
 826                return rt2x00_get_field32(word, RXD_W0_OWNER_NIC);
 827        } else {
 828                rt2x00_desc_read(entry_priv->desc, 0, &word);
 829
 830                return (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
 831                        rt2x00_get_field32(word, TXD_W0_VALID));
 832        }
 833}
 834
 835static void rt2500pci_clear_entry(struct queue_entry *entry)
 836{
 837        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
 838        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
 839        u32 word;
 840
 841        if (entry->queue->qid == QID_RX) {
 842                rt2x00_desc_read(entry_priv->desc, 1, &word);
 843                rt2x00_set_field32(&word, RXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
 844                rt2x00_desc_write(entry_priv->desc, 1, word);
 845
 846                rt2x00_desc_read(entry_priv->desc, 0, &word);
 847                rt2x00_set_field32(&word, RXD_W0_OWNER_NIC, 1);
 848                rt2x00_desc_write(entry_priv->desc, 0, word);
 849        } else {
 850                rt2x00_desc_read(entry_priv->desc, 0, &word);
 851                rt2x00_set_field32(&word, TXD_W0_VALID, 0);
 852                rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 0);
 853                rt2x00_desc_write(entry_priv->desc, 0, word);
 854        }
 855}
 856
 857static int rt2500pci_init_queues(struct rt2x00_dev *rt2x00dev)
 858{
 859        struct queue_entry_priv_pci *entry_priv;
 860        u32 reg;
 861
 862        /*
 863         * Initialize registers.
 864         */
 865        rt2x00pci_register_read(rt2x00dev, TXCSR2, &reg);
 866        rt2x00_set_field32(&reg, TXCSR2_TXD_SIZE, rt2x00dev->tx[0].desc_size);
 867        rt2x00_set_field32(&reg, TXCSR2_NUM_TXD, rt2x00dev->tx[1].limit);
 868        rt2x00_set_field32(&reg, TXCSR2_NUM_ATIM, rt2x00dev->atim->limit);
 869        rt2x00_set_field32(&reg, TXCSR2_NUM_PRIO, rt2x00dev->tx[0].limit);
 870        rt2x00pci_register_write(rt2x00dev, TXCSR2, reg);
 871
 872        entry_priv = rt2x00dev->tx[1].entries[0].priv_data;
 873        rt2x00pci_register_read(rt2x00dev, TXCSR3, &reg);
 874        rt2x00_set_field32(&reg, TXCSR3_TX_RING_REGISTER,
 875                           entry_priv->desc_dma);
 876        rt2x00pci_register_write(rt2x00dev, TXCSR3, reg);
 877
 878        entry_priv = rt2x00dev->tx[0].entries[0].priv_data;
 879        rt2x00pci_register_read(rt2x00dev, TXCSR5, &reg);
 880        rt2x00_set_field32(&reg, TXCSR5_PRIO_RING_REGISTER,
 881                           entry_priv->desc_dma);
 882        rt2x00pci_register_write(rt2x00dev, TXCSR5, reg);
 883
 884        entry_priv = rt2x00dev->atim->entries[0].priv_data;
 885        rt2x00pci_register_read(rt2x00dev, TXCSR4, &reg);
 886        rt2x00_set_field32(&reg, TXCSR4_ATIM_RING_REGISTER,
 887                           entry_priv->desc_dma);
 888        rt2x00pci_register_write(rt2x00dev, TXCSR4, reg);
 889
 890        entry_priv = rt2x00dev->bcn->entries[0].priv_data;
 891        rt2x00pci_register_read(rt2x00dev, TXCSR6, &reg);
 892        rt2x00_set_field32(&reg, TXCSR6_BEACON_RING_REGISTER,
 893                           entry_priv->desc_dma);
 894        rt2x00pci_register_write(rt2x00dev, TXCSR6, reg);
 895
 896        rt2x00pci_register_read(rt2x00dev, RXCSR1, &reg);
 897        rt2x00_set_field32(&reg, RXCSR1_RXD_SIZE, rt2x00dev->rx->desc_size);
 898        rt2x00_set_field32(&reg, RXCSR1_NUM_RXD, rt2x00dev->rx->limit);
 899        rt2x00pci_register_write(rt2x00dev, RXCSR1, reg);
 900
 901        entry_priv = rt2x00dev->rx->entries[0].priv_data;
 902        rt2x00pci_register_read(rt2x00dev, RXCSR2, &reg);
 903        rt2x00_set_field32(&reg, RXCSR2_RX_RING_REGISTER,
 904                           entry_priv->desc_dma);
 905        rt2x00pci_register_write(rt2x00dev, RXCSR2, reg);
 906
 907        return 0;
 908}
 909
 910static int rt2500pci_init_registers(struct rt2x00_dev *rt2x00dev)
 911{
 912        u32 reg;
 913
 914        rt2x00pci_register_write(rt2x00dev, PSCSR0, 0x00020002);
 915        rt2x00pci_register_write(rt2x00dev, PSCSR1, 0x00000002);
 916        rt2x00pci_register_write(rt2x00dev, PSCSR2, 0x00020002);
 917        rt2x00pci_register_write(rt2x00dev, PSCSR3, 0x00000002);
 918
 919        rt2x00pci_register_read(rt2x00dev, TIMECSR, &reg);
 920        rt2x00_set_field32(&reg, TIMECSR_US_COUNT, 33);
 921        rt2x00_set_field32(&reg, TIMECSR_US_64_COUNT, 63);
 922        rt2x00_set_field32(&reg, TIMECSR_BEACON_EXPECT, 0);
 923        rt2x00pci_register_write(rt2x00dev, TIMECSR, reg);
 924
 925        rt2x00pci_register_read(rt2x00dev, CSR9, &reg);
 926        rt2x00_set_field32(&reg, CSR9_MAX_FRAME_UNIT,
 927                           rt2x00dev->rx->data_size / 128);
 928        rt2x00pci_register_write(rt2x00dev, CSR9, reg);
 929
 930        /*
 931         * Always use CWmin and CWmax set in descriptor.
 932         */
 933        rt2x00pci_register_read(rt2x00dev, CSR11, &reg);
 934        rt2x00_set_field32(&reg, CSR11_CW_SELECT, 0);
 935        rt2x00pci_register_write(rt2x00dev, CSR11, reg);
 936
 937        rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
 938        rt2x00_set_field32(&reg, CSR14_TSF_COUNT, 0);
 939        rt2x00_set_field32(&reg, CSR14_TSF_SYNC, 0);
 940        rt2x00_set_field32(&reg, CSR14_TBCN, 0);
 941        rt2x00_set_field32(&reg, CSR14_TCFP, 0);
 942        rt2x00_set_field32(&reg, CSR14_TATIMW, 0);
 943        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
 944        rt2x00_set_field32(&reg, CSR14_CFP_COUNT_PRELOAD, 0);
 945        rt2x00_set_field32(&reg, CSR14_TBCM_PRELOAD, 0);
 946        rt2x00pci_register_write(rt2x00dev, CSR14, reg);
 947
 948        rt2x00pci_register_write(rt2x00dev, CNT3, 0);
 949
 950        rt2x00pci_register_read(rt2x00dev, TXCSR8, &reg);
 951        rt2x00_set_field32(&reg, TXCSR8_BBP_ID0, 10);
 952        rt2x00_set_field32(&reg, TXCSR8_BBP_ID0_VALID, 1);
 953        rt2x00_set_field32(&reg, TXCSR8_BBP_ID1, 11);
 954        rt2x00_set_field32(&reg, TXCSR8_BBP_ID1_VALID, 1);
 955        rt2x00_set_field32(&reg, TXCSR8_BBP_ID2, 13);
 956        rt2x00_set_field32(&reg, TXCSR8_BBP_ID2_VALID, 1);
 957        rt2x00_set_field32(&reg, TXCSR8_BBP_ID3, 12);
 958        rt2x00_set_field32(&reg, TXCSR8_BBP_ID3_VALID, 1);
 959        rt2x00pci_register_write(rt2x00dev, TXCSR8, reg);
 960
 961        rt2x00pci_register_read(rt2x00dev, ARTCSR0, &reg);
 962        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_1MBS, 112);
 963        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_2MBS, 56);
 964        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_5_5MBS, 20);
 965        rt2x00_set_field32(&reg, ARTCSR0_ACK_CTS_11MBS, 10);
 966        rt2x00pci_register_write(rt2x00dev, ARTCSR0, reg);
 967
 968        rt2x00pci_register_read(rt2x00dev, ARTCSR1, &reg);
 969        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_6MBS, 45);
 970        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_9MBS, 37);
 971        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_12MBS, 33);
 972        rt2x00_set_field32(&reg, ARTCSR1_ACK_CTS_18MBS, 29);
 973        rt2x00pci_register_write(rt2x00dev, ARTCSR1, reg);
 974
 975        rt2x00pci_register_read(rt2x00dev, ARTCSR2, &reg);
 976        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_24MBS, 29);
 977        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_36MBS, 25);
 978        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_48MBS, 25);
 979        rt2x00_set_field32(&reg, ARTCSR2_ACK_CTS_54MBS, 25);
 980        rt2x00pci_register_write(rt2x00dev, ARTCSR2, reg);
 981
 982        rt2x00pci_register_read(rt2x00dev, RXCSR3, &reg);
 983        rt2x00_set_field32(&reg, RXCSR3_BBP_ID0, 47); /* CCK Signal */
 984        rt2x00_set_field32(&reg, RXCSR3_BBP_ID0_VALID, 1);
 985        rt2x00_set_field32(&reg, RXCSR3_BBP_ID1, 51); /* Rssi */
 986        rt2x00_set_field32(&reg, RXCSR3_BBP_ID1_VALID, 1);
 987        rt2x00_set_field32(&reg, RXCSR3_BBP_ID2, 42); /* OFDM Rate */
 988        rt2x00_set_field32(&reg, RXCSR3_BBP_ID2_VALID, 1);
 989        rt2x00_set_field32(&reg, RXCSR3_BBP_ID3, 51); /* RSSI */
 990        rt2x00_set_field32(&reg, RXCSR3_BBP_ID3_VALID, 1);
 991        rt2x00pci_register_write(rt2x00dev, RXCSR3, reg);
 992
 993        rt2x00pci_register_read(rt2x00dev, PCICSR, &reg);
 994        rt2x00_set_field32(&reg, PCICSR_BIG_ENDIAN, 0);
 995        rt2x00_set_field32(&reg, PCICSR_RX_TRESHOLD, 0);
 996        rt2x00_set_field32(&reg, PCICSR_TX_TRESHOLD, 3);
 997        rt2x00_set_field32(&reg, PCICSR_BURST_LENTH, 1);
 998        rt2x00_set_field32(&reg, PCICSR_ENABLE_CLK, 1);
 999        rt2x00_set_field32(&reg, PCICSR_READ_MULTIPLE, 1);
1000        rt2x00_set_field32(&reg, PCICSR_WRITE_INVALID, 1);
1001        rt2x00pci_register_write(rt2x00dev, PCICSR, reg);
1002
1003        rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0x3f3b3100);
1004
1005        rt2x00pci_register_write(rt2x00dev, GPIOCSR, 0x0000ff00);
1006        rt2x00pci_register_write(rt2x00dev, TESTCSR, 0x000000f0);
1007
1008        if (rt2x00dev->ops->lib->set_device_state(rt2x00dev, STATE_AWAKE))
1009                return -EBUSY;
1010
1011        rt2x00pci_register_write(rt2x00dev, MACCSR0, 0x00213223);
1012        rt2x00pci_register_write(rt2x00dev, MACCSR1, 0x00235518);
1013
1014        rt2x00pci_register_read(rt2x00dev, MACCSR2, &reg);
1015        rt2x00_set_field32(&reg, MACCSR2_DELAY, 64);
1016        rt2x00pci_register_write(rt2x00dev, MACCSR2, reg);
1017
1018        rt2x00pci_register_read(rt2x00dev, RALINKCSR, &reg);
1019        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA0, 17);
1020        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID0, 26);
1021        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID0, 1);
1022        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_DATA1, 0);
1023        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_ID1, 26);
1024        rt2x00_set_field32(&reg, RALINKCSR_AR_BBP_VALID1, 1);
1025        rt2x00pci_register_write(rt2x00dev, RALINKCSR, reg);
1026
1027        rt2x00pci_register_write(rt2x00dev, BBPCSR1, 0x82188200);
1028
1029        rt2x00pci_register_write(rt2x00dev, TXACKCSR0, 0x00000020);
1030
1031        rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1032        rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 1);
1033        rt2x00_set_field32(&reg, CSR1_BBP_RESET, 0);
1034        rt2x00_set_field32(&reg, CSR1_HOST_READY, 0);
1035        rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1036
1037        rt2x00pci_register_read(rt2x00dev, CSR1, &reg);
1038        rt2x00_set_field32(&reg, CSR1_SOFT_RESET, 0);
1039        rt2x00_set_field32(&reg, CSR1_HOST_READY, 1);
1040        rt2x00pci_register_write(rt2x00dev, CSR1, reg);
1041
1042        /*
1043         * We must clear the FCS and FIFO error count.
1044         * These registers are cleared on read,
1045         * so we may pass a useless variable to store the value.
1046         */
1047        rt2x00pci_register_read(rt2x00dev, CNT0, &reg);
1048        rt2x00pci_register_read(rt2x00dev, CNT4, &reg);
1049
1050        return 0;
1051}
1052
1053static int rt2500pci_wait_bbp_ready(struct rt2x00_dev *rt2x00dev)
1054{
1055        unsigned int i;
1056        u8 value;
1057
1058        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1059                rt2500pci_bbp_read(rt2x00dev, 0, &value);
1060                if ((value != 0xff) && (value != 0x00))
1061                        return 0;
1062                udelay(REGISTER_BUSY_DELAY);
1063        }
1064
1065        ERROR(rt2x00dev, "BBP register access failed, aborting.\n");
1066        return -EACCES;
1067}
1068
1069static int rt2500pci_init_bbp(struct rt2x00_dev *rt2x00dev)
1070{
1071        unsigned int i;
1072        u16 eeprom;
1073        u8 reg_id;
1074        u8 value;
1075
1076        if (unlikely(rt2500pci_wait_bbp_ready(rt2x00dev)))
1077                return -EACCES;
1078
1079        rt2500pci_bbp_write(rt2x00dev, 3, 0x02);
1080        rt2500pci_bbp_write(rt2x00dev, 4, 0x19);
1081        rt2500pci_bbp_write(rt2x00dev, 14, 0x1c);
1082        rt2500pci_bbp_write(rt2x00dev, 15, 0x30);
1083        rt2500pci_bbp_write(rt2x00dev, 16, 0xac);
1084        rt2500pci_bbp_write(rt2x00dev, 18, 0x18);
1085        rt2500pci_bbp_write(rt2x00dev, 19, 0xff);
1086        rt2500pci_bbp_write(rt2x00dev, 20, 0x1e);
1087        rt2500pci_bbp_write(rt2x00dev, 21, 0x08);
1088        rt2500pci_bbp_write(rt2x00dev, 22, 0x08);
1089        rt2500pci_bbp_write(rt2x00dev, 23, 0x08);
1090        rt2500pci_bbp_write(rt2x00dev, 24, 0x70);
1091        rt2500pci_bbp_write(rt2x00dev, 25, 0x40);
1092        rt2500pci_bbp_write(rt2x00dev, 26, 0x08);
1093        rt2500pci_bbp_write(rt2x00dev, 27, 0x23);
1094        rt2500pci_bbp_write(rt2x00dev, 30, 0x10);
1095        rt2500pci_bbp_write(rt2x00dev, 31, 0x2b);
1096        rt2500pci_bbp_write(rt2x00dev, 32, 0xb9);
1097        rt2500pci_bbp_write(rt2x00dev, 34, 0x12);
1098        rt2500pci_bbp_write(rt2x00dev, 35, 0x50);
1099        rt2500pci_bbp_write(rt2x00dev, 39, 0xc4);
1100        rt2500pci_bbp_write(rt2x00dev, 40, 0x02);
1101        rt2500pci_bbp_write(rt2x00dev, 41, 0x60);
1102        rt2500pci_bbp_write(rt2x00dev, 53, 0x10);
1103        rt2500pci_bbp_write(rt2x00dev, 54, 0x18);
1104        rt2500pci_bbp_write(rt2x00dev, 56, 0x08);
1105        rt2500pci_bbp_write(rt2x00dev, 57, 0x10);
1106        rt2500pci_bbp_write(rt2x00dev, 58, 0x08);
1107        rt2500pci_bbp_write(rt2x00dev, 61, 0x6d);
1108        rt2500pci_bbp_write(rt2x00dev, 62, 0x10);
1109
1110        for (i = 0; i < EEPROM_BBP_SIZE; i++) {
1111                rt2x00_eeprom_read(rt2x00dev, EEPROM_BBP_START + i, &eeprom);
1112
1113                if (eeprom != 0xffff && eeprom != 0x0000) {
1114                        reg_id = rt2x00_get_field16(eeprom, EEPROM_BBP_REG_ID);
1115                        value = rt2x00_get_field16(eeprom, EEPROM_BBP_VALUE);
1116                        rt2500pci_bbp_write(rt2x00dev, reg_id, value);
1117                }
1118        }
1119
1120        return 0;
1121}
1122
1123/*
1124 * Device state switch handlers.
1125 */
1126static void rt2500pci_toggle_irq(struct rt2x00_dev *rt2x00dev,
1127                                 enum dev_state state)
1128{
1129        int mask = (state == STATE_RADIO_IRQ_OFF);
1130        u32 reg;
1131        unsigned long flags;
1132
1133        /*
1134         * When interrupts are being enabled, the interrupt registers
1135         * should clear the register to assure a clean state.
1136         */
1137        if (state == STATE_RADIO_IRQ_ON) {
1138                rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1139                rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1140
1141                /*
1142                 * Enable tasklets.
1143                 */
1144                tasklet_enable(&rt2x00dev->txstatus_tasklet);
1145                tasklet_enable(&rt2x00dev->rxdone_tasklet);
1146        }
1147
1148        /*
1149         * Only toggle the interrupts bits we are going to use.
1150         * Non-checked interrupt bits are disabled by default.
1151         */
1152        spin_lock_irqsave(&rt2x00dev->irqmask_lock, flags);
1153
1154        rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1155        rt2x00_set_field32(&reg, CSR8_TBCN_EXPIRE, mask);
1156        rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, mask);
1157        rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, mask);
1158        rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, mask);
1159        rt2x00_set_field32(&reg, CSR8_RXDONE, mask);
1160        rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1161
1162        spin_unlock_irqrestore(&rt2x00dev->irqmask_lock, flags);
1163
1164        if (state == STATE_RADIO_IRQ_OFF) {
1165                /*
1166                 * Ensure that all tasklets are finished.
1167                 */
1168                tasklet_disable(&rt2x00dev->txstatus_tasklet);
1169                tasklet_disable(&rt2x00dev->rxdone_tasklet);
1170        }
1171}
1172
1173static int rt2500pci_enable_radio(struct rt2x00_dev *rt2x00dev)
1174{
1175        /*
1176         * Initialize all registers.
1177         */
1178        if (unlikely(rt2500pci_init_queues(rt2x00dev) ||
1179                     rt2500pci_init_registers(rt2x00dev) ||
1180                     rt2500pci_init_bbp(rt2x00dev)))
1181                return -EIO;
1182
1183        return 0;
1184}
1185
1186static void rt2500pci_disable_radio(struct rt2x00_dev *rt2x00dev)
1187{
1188        /*
1189         * Disable power
1190         */
1191        rt2x00pci_register_write(rt2x00dev, PWRCSR0, 0);
1192}
1193
1194static int rt2500pci_set_state(struct rt2x00_dev *rt2x00dev,
1195                               enum dev_state state)
1196{
1197        u32 reg, reg2;
1198        unsigned int i;
1199        char put_to_sleep;
1200        char bbp_state;
1201        char rf_state;
1202
1203        put_to_sleep = (state != STATE_AWAKE);
1204
1205        rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg);
1206        rt2x00_set_field32(&reg, PWRCSR1_SET_STATE, 1);
1207        rt2x00_set_field32(&reg, PWRCSR1_BBP_DESIRE_STATE, state);
1208        rt2x00_set_field32(&reg, PWRCSR1_RF_DESIRE_STATE, state);
1209        rt2x00_set_field32(&reg, PWRCSR1_PUT_TO_SLEEP, put_to_sleep);
1210        rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1211
1212        /*
1213         * Device is not guaranteed to be in the requested state yet.
1214         * We must wait until the register indicates that the
1215         * device has entered the correct state.
1216         */
1217        for (i = 0; i < REGISTER_BUSY_COUNT; i++) {
1218                rt2x00pci_register_read(rt2x00dev, PWRCSR1, &reg2);
1219                bbp_state = rt2x00_get_field32(reg2, PWRCSR1_BBP_CURR_STATE);
1220                rf_state = rt2x00_get_field32(reg2, PWRCSR1_RF_CURR_STATE);
1221                if (bbp_state == state && rf_state == state)
1222                        return 0;
1223                rt2x00pci_register_write(rt2x00dev, PWRCSR1, reg);
1224                msleep(10);
1225        }
1226
1227        return -EBUSY;
1228}
1229
1230static int rt2500pci_set_device_state(struct rt2x00_dev *rt2x00dev,
1231                                      enum dev_state state)
1232{
1233        int retval = 0;
1234
1235        switch (state) {
1236        case STATE_RADIO_ON:
1237                retval = rt2500pci_enable_radio(rt2x00dev);
1238                break;
1239        case STATE_RADIO_OFF:
1240                rt2500pci_disable_radio(rt2x00dev);
1241                break;
1242        case STATE_RADIO_IRQ_ON:
1243        case STATE_RADIO_IRQ_OFF:
1244                rt2500pci_toggle_irq(rt2x00dev, state);
1245                break;
1246        case STATE_DEEP_SLEEP:
1247        case STATE_SLEEP:
1248        case STATE_STANDBY:
1249        case STATE_AWAKE:
1250                retval = rt2500pci_set_state(rt2x00dev, state);
1251                break;
1252        default:
1253                retval = -ENOTSUPP;
1254                break;
1255        }
1256
1257        if (unlikely(retval))
1258                ERROR(rt2x00dev, "Device failed to enter state %d (%d).\n",
1259                      state, retval);
1260
1261        return retval;
1262}
1263
1264/*
1265 * TX descriptor initialization
1266 */
1267static void rt2500pci_write_tx_desc(struct queue_entry *entry,
1268                                    struct txentry_desc *txdesc)
1269{
1270        struct skb_frame_desc *skbdesc = get_skb_frame_desc(entry->skb);
1271        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1272        __le32 *txd = entry_priv->desc;
1273        u32 word;
1274
1275        /*
1276         * Start writing the descriptor words.
1277         */
1278        rt2x00_desc_read(txd, 1, &word);
1279        rt2x00_set_field32(&word, TXD_W1_BUFFER_ADDRESS, skbdesc->skb_dma);
1280        rt2x00_desc_write(txd, 1, word);
1281
1282        rt2x00_desc_read(txd, 2, &word);
1283        rt2x00_set_field32(&word, TXD_W2_IV_OFFSET, IEEE80211_HEADER);
1284        rt2x00_set_field32(&word, TXD_W2_AIFS, entry->queue->aifs);
1285        rt2x00_set_field32(&word, TXD_W2_CWMIN, entry->queue->cw_min);
1286        rt2x00_set_field32(&word, TXD_W2_CWMAX, entry->queue->cw_max);
1287        rt2x00_desc_write(txd, 2, word);
1288
1289        rt2x00_desc_read(txd, 3, &word);
1290        rt2x00_set_field32(&word, TXD_W3_PLCP_SIGNAL, txdesc->u.plcp.signal);
1291        rt2x00_set_field32(&word, TXD_W3_PLCP_SERVICE, txdesc->u.plcp.service);
1292        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_LOW,
1293                           txdesc->u.plcp.length_low);
1294        rt2x00_set_field32(&word, TXD_W3_PLCP_LENGTH_HIGH,
1295                           txdesc->u.plcp.length_high);
1296        rt2x00_desc_write(txd, 3, word);
1297
1298        rt2x00_desc_read(txd, 10, &word);
1299        rt2x00_set_field32(&word, TXD_W10_RTS,
1300                           test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags));
1301        rt2x00_desc_write(txd, 10, word);
1302
1303        /*
1304         * Writing TXD word 0 must the last to prevent a race condition with
1305         * the device, whereby the device may take hold of the TXD before we
1306         * finished updating it.
1307         */
1308        rt2x00_desc_read(txd, 0, &word);
1309        rt2x00_set_field32(&word, TXD_W0_OWNER_NIC, 1);
1310        rt2x00_set_field32(&word, TXD_W0_VALID, 1);
1311        rt2x00_set_field32(&word, TXD_W0_MORE_FRAG,
1312                           test_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags));
1313        rt2x00_set_field32(&word, TXD_W0_ACK,
1314                           test_bit(ENTRY_TXD_ACK, &txdesc->flags));
1315        rt2x00_set_field32(&word, TXD_W0_TIMESTAMP,
1316                           test_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags));
1317        rt2x00_set_field32(&word, TXD_W0_OFDM,
1318                           (txdesc->rate_mode == RATE_MODE_OFDM));
1319        rt2x00_set_field32(&word, TXD_W0_CIPHER_OWNER, 1);
1320        rt2x00_set_field32(&word, TXD_W0_IFS, txdesc->u.plcp.ifs);
1321        rt2x00_set_field32(&word, TXD_W0_RETRY_MODE,
1322                           test_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags));
1323        rt2x00_set_field32(&word, TXD_W0_DATABYTE_COUNT, txdesc->length);
1324        rt2x00_set_field32(&word, TXD_W0_CIPHER_ALG, CIPHER_NONE);
1325        rt2x00_desc_write(txd, 0, word);
1326
1327        /*
1328         * Register descriptor details in skb frame descriptor.
1329         */
1330        skbdesc->desc = txd;
1331        skbdesc->desc_len = TXD_DESC_SIZE;
1332}
1333
1334/*
1335 * TX data initialization
1336 */
1337static void rt2500pci_write_beacon(struct queue_entry *entry,
1338                                   struct txentry_desc *txdesc)
1339{
1340        struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
1341        u32 reg;
1342
1343        /*
1344         * Disable beaconing while we are reloading the beacon data,
1345         * otherwise we might be sending out invalid data.
1346         */
1347        rt2x00pci_register_read(rt2x00dev, CSR14, &reg);
1348        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 0);
1349        rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1350
1351        rt2x00queue_map_txskb(entry);
1352
1353        /*
1354         * Write the TX descriptor for the beacon.
1355         */
1356        rt2500pci_write_tx_desc(entry, txdesc);
1357
1358        /*
1359         * Dump beacon to userspace through debugfs.
1360         */
1361        rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_BEACON, entry->skb);
1362
1363        /*
1364         * Enable beaconing again.
1365         */
1366        rt2x00_set_field32(&reg, CSR14_BEACON_GEN, 1);
1367        rt2x00pci_register_write(rt2x00dev, CSR14, reg);
1368}
1369
1370/*
1371 * RX control handlers
1372 */
1373static void rt2500pci_fill_rxdone(struct queue_entry *entry,
1374                                  struct rxdone_entry_desc *rxdesc)
1375{
1376        struct queue_entry_priv_pci *entry_priv = entry->priv_data;
1377        u32 word0;
1378        u32 word2;
1379
1380        rt2x00_desc_read(entry_priv->desc, 0, &word0);
1381        rt2x00_desc_read(entry_priv->desc, 2, &word2);
1382
1383        if (rt2x00_get_field32(word0, RXD_W0_CRC_ERROR))
1384                rxdesc->flags |= RX_FLAG_FAILED_FCS_CRC;
1385        if (rt2x00_get_field32(word0, RXD_W0_PHYSICAL_ERROR))
1386                rxdesc->flags |= RX_FLAG_FAILED_PLCP_CRC;
1387
1388        /*
1389         * Obtain the status about this packet.
1390         * When frame was received with an OFDM bitrate,
1391         * the signal is the PLCP value. If it was received with
1392         * a CCK bitrate the signal is the rate in 100kbit/s.
1393         */
1394        rxdesc->signal = rt2x00_get_field32(word2, RXD_W2_SIGNAL);
1395        rxdesc->rssi = rt2x00_get_field32(word2, RXD_W2_RSSI) -
1396            entry->queue->rt2x00dev->rssi_offset;
1397        rxdesc->size = rt2x00_get_field32(word0, RXD_W0_DATABYTE_COUNT);
1398
1399        if (rt2x00_get_field32(word0, RXD_W0_OFDM))
1400                rxdesc->dev_flags |= RXDONE_SIGNAL_PLCP;
1401        else
1402                rxdesc->dev_flags |= RXDONE_SIGNAL_BITRATE;
1403        if (rt2x00_get_field32(word0, RXD_W0_MY_BSS))
1404                rxdesc->dev_flags |= RXDONE_MY_BSS;
1405}
1406
1407/*
1408 * Interrupt functions.
1409 */
1410static void rt2500pci_txdone(struct rt2x00_dev *rt2x00dev,
1411                             const enum data_queue_qid queue_idx)
1412{
1413        struct data_queue *queue = rt2x00queue_get_tx_queue(rt2x00dev, queue_idx);
1414        struct queue_entry_priv_pci *entry_priv;
1415        struct queue_entry *entry;
1416        struct txdone_entry_desc txdesc;
1417        u32 word;
1418
1419        while (!rt2x00queue_empty(queue)) {
1420                entry = rt2x00queue_get_entry(queue, Q_INDEX_DONE);
1421                entry_priv = entry->priv_data;
1422                rt2x00_desc_read(entry_priv->desc, 0, &word);
1423
1424                if (rt2x00_get_field32(word, TXD_W0_OWNER_NIC) ||
1425                    !rt2x00_get_field32(word, TXD_W0_VALID))
1426                        break;
1427
1428                /*
1429                 * Obtain the status about this packet.
1430                 */
1431                txdesc.flags = 0;
1432                switch (rt2x00_get_field32(word, TXD_W0_RESULT)) {
1433                case 0: /* Success */
1434                case 1: /* Success with retry */
1435                        __set_bit(TXDONE_SUCCESS, &txdesc.flags);
1436                        break;
1437                case 2: /* Failure, excessive retries */
1438                        __set_bit(TXDONE_EXCESSIVE_RETRY, &txdesc.flags);
1439                        /* Don't break, this is a failed frame! */
1440                default: /* Failure */
1441                        __set_bit(TXDONE_FAILURE, &txdesc.flags);
1442                }
1443                txdesc.retry = rt2x00_get_field32(word, TXD_W0_RETRY_COUNT);
1444
1445                rt2x00lib_txdone(entry, &txdesc);
1446        }
1447}
1448
1449static inline void rt2500pci_enable_interrupt(struct rt2x00_dev *rt2x00dev,
1450                                              struct rt2x00_field32 irq_field)
1451{
1452        u32 reg;
1453
1454        /*
1455         * Enable a single interrupt. The interrupt mask register
1456         * access needs locking.
1457         */
1458        spin_lock_irq(&rt2x00dev->irqmask_lock);
1459
1460        rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1461        rt2x00_set_field32(&reg, irq_field, 0);
1462        rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1463
1464        spin_unlock_irq(&rt2x00dev->irqmask_lock);
1465}
1466
1467static void rt2500pci_txstatus_tasklet(unsigned long data)
1468{
1469        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1470        u32 reg;
1471
1472        /*
1473         * Handle all tx queues.
1474         */
1475        rt2500pci_txdone(rt2x00dev, QID_ATIM);
1476        rt2500pci_txdone(rt2x00dev, QID_AC_VO);
1477        rt2500pci_txdone(rt2x00dev, QID_AC_VI);
1478
1479        /*
1480         * Enable all TXDONE interrupts again.
1481         */
1482        spin_lock_irq(&rt2x00dev->irqmask_lock);
1483
1484        rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1485        rt2x00_set_field32(&reg, CSR8_TXDONE_TXRING, 0);
1486        rt2x00_set_field32(&reg, CSR8_TXDONE_ATIMRING, 0);
1487        rt2x00_set_field32(&reg, CSR8_TXDONE_PRIORING, 0);
1488        rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1489
1490        spin_unlock_irq(&rt2x00dev->irqmask_lock);
1491}
1492
1493static void rt2500pci_tbtt_tasklet(unsigned long data)
1494{
1495        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1496        rt2x00lib_beacondone(rt2x00dev);
1497        rt2500pci_enable_interrupt(rt2x00dev, CSR8_TBCN_EXPIRE);
1498}
1499
1500static void rt2500pci_rxdone_tasklet(unsigned long data)
1501{
1502        struct rt2x00_dev *rt2x00dev = (struct rt2x00_dev *)data;
1503        if (rt2x00pci_rxdone(rt2x00dev))
1504                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1505        else
1506                rt2500pci_enable_interrupt(rt2x00dev, CSR8_RXDONE);
1507}
1508
1509static irqreturn_t rt2500pci_interrupt(int irq, void *dev_instance)
1510{
1511        struct rt2x00_dev *rt2x00dev = dev_instance;
1512        u32 reg, mask;
1513
1514        /*
1515         * Get the interrupt sources & saved to local variable.
1516         * Write register value back to clear pending interrupts.
1517         */
1518        rt2x00pci_register_read(rt2x00dev, CSR7, &reg);
1519        rt2x00pci_register_write(rt2x00dev, CSR7, reg);
1520
1521        if (!reg)
1522                return IRQ_NONE;
1523
1524        if (!test_bit(DEVICE_STATE_ENABLED_RADIO, &rt2x00dev->flags))
1525                return IRQ_HANDLED;
1526
1527        mask = reg;
1528
1529        /*
1530         * Schedule tasklets for interrupt handling.
1531         */
1532        if (rt2x00_get_field32(reg, CSR7_TBCN_EXPIRE))
1533                tasklet_hi_schedule(&rt2x00dev->tbtt_tasklet);
1534
1535        if (rt2x00_get_field32(reg, CSR7_RXDONE))
1536                tasklet_schedule(&rt2x00dev->rxdone_tasklet);
1537
1538        if (rt2x00_get_field32(reg, CSR7_TXDONE_ATIMRING) ||
1539            rt2x00_get_field32(reg, CSR7_TXDONE_PRIORING) ||
1540            rt2x00_get_field32(reg, CSR7_TXDONE_TXRING)) {
1541                tasklet_schedule(&rt2x00dev->txstatus_tasklet);
1542                /*
1543                 * Mask out all txdone interrupts.
1544                 */
1545                rt2x00_set_field32(&mask, CSR8_TXDONE_TXRING, 1);
1546                rt2x00_set_field32(&mask, CSR8_TXDONE_ATIMRING, 1);
1547                rt2x00_set_field32(&mask, CSR8_TXDONE_PRIORING, 1);
1548        }
1549
1550        /*
1551         * Disable all interrupts for which a tasklet was scheduled right now,
1552         * the tasklet will reenable the appropriate interrupts.
1553         */
1554        spin_lock(&rt2x00dev->irqmask_lock);
1555
1556        rt2x00pci_register_read(rt2x00dev, CSR8, &reg);
1557        reg |= mask;
1558        rt2x00pci_register_write(rt2x00dev, CSR8, reg);
1559
1560        spin_unlock(&rt2x00dev->irqmask_lock);
1561
1562        return IRQ_HANDLED;
1563}
1564
1565/*
1566 * Device probe functions.
1567 */
1568static int rt2500pci_validate_eeprom(struct rt2x00_dev *rt2x00dev)
1569{
1570        struct eeprom_93cx6 eeprom;
1571        u32 reg;
1572        u16 word;
1573        u8 *mac;
1574
1575        rt2x00pci_register_read(rt2x00dev, CSR21, &reg);
1576
1577        eeprom.data = rt2x00dev;
1578        eeprom.register_read = rt2500pci_eepromregister_read;
1579        eeprom.register_write = rt2500pci_eepromregister_write;
1580        eeprom.width = rt2x00_get_field32(reg, CSR21_TYPE_93C46) ?
1581            PCI_EEPROM_WIDTH_93C46 : PCI_EEPROM_WIDTH_93C66;
1582        eeprom.reg_data_in = 0;
1583        eeprom.reg_data_out = 0;
1584        eeprom.reg_data_clock = 0;
1585        eeprom.reg_chip_select = 0;
1586
1587        eeprom_93cx6_multiread(&eeprom, EEPROM_BASE, rt2x00dev->eeprom,
1588                               EEPROM_SIZE / sizeof(u16));
1589
1590        /*
1591         * Start validation of the data that has been read.
1592         */
1593        mac = rt2x00_eeprom_addr(rt2x00dev, EEPROM_MAC_ADDR_0);
1594        if (!is_valid_ether_addr(mac)) {
1595                random_ether_addr(mac);
1596                EEPROM(rt2x00dev, "MAC: %pM\n", mac);
1597        }
1598
1599        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &word);
1600        if (word == 0xffff) {
1601                rt2x00_set_field16(&word, EEPROM_ANTENNA_NUM, 2);
1602                rt2x00_set_field16(&word, EEPROM_ANTENNA_TX_DEFAULT,
1603                                   ANTENNA_SW_DIVERSITY);
1604                rt2x00_set_field16(&word, EEPROM_ANTENNA_RX_DEFAULT,
1605                                   ANTENNA_SW_DIVERSITY);
1606                rt2x00_set_field16(&word, EEPROM_ANTENNA_LED_MODE,
1607                                   LED_MODE_DEFAULT);
1608                rt2x00_set_field16(&word, EEPROM_ANTENNA_DYN_TXAGC, 0);
1609                rt2x00_set_field16(&word, EEPROM_ANTENNA_HARDWARE_RADIO, 0);
1610                rt2x00_set_field16(&word, EEPROM_ANTENNA_RF_TYPE, RF2522);
1611                rt2x00_eeprom_write(rt2x00dev, EEPROM_ANTENNA, word);
1612                EEPROM(rt2x00dev, "Antenna: 0x%04x\n", word);
1613        }
1614
1615        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &word);
1616        if (word == 0xffff) {
1617                rt2x00_set_field16(&word, EEPROM_NIC_CARDBUS_ACCEL, 0);
1618                rt2x00_set_field16(&word, EEPROM_NIC_DYN_BBP_TUNE, 0);
1619                rt2x00_set_field16(&word, EEPROM_NIC_CCK_TX_POWER, 0);
1620                rt2x00_eeprom_write(rt2x00dev, EEPROM_NIC, word);
1621                EEPROM(rt2x00dev, "NIC: 0x%04x\n", word);
1622        }
1623
1624        rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &word);
1625        if (word == 0xffff) {
1626                rt2x00_set_field16(&word, EEPROM_CALIBRATE_OFFSET_RSSI,
1627                                   DEFAULT_RSSI_OFFSET);
1628                rt2x00_eeprom_write(rt2x00dev, EEPROM_CALIBRATE_OFFSET, word);
1629                EEPROM(rt2x00dev, "Calibrate offset: 0x%04x\n", word);
1630        }
1631
1632        return 0;
1633}
1634
1635static int rt2500pci_init_eeprom(struct rt2x00_dev *rt2x00dev)
1636{
1637        u32 reg;
1638        u16 value;
1639        u16 eeprom;
1640
1641        /*
1642         * Read EEPROM word for configuration.
1643         */
1644        rt2x00_eeprom_read(rt2x00dev, EEPROM_ANTENNA, &eeprom);
1645
1646        /*
1647         * Identify RF chipset.
1648         */
1649        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RF_TYPE);
1650        rt2x00pci_register_read(rt2x00dev, CSR0, &reg);
1651        rt2x00_set_chip(rt2x00dev, RT2560, value,
1652                        rt2x00_get_field32(reg, CSR0_REVISION));
1653
1654        if (!rt2x00_rf(rt2x00dev, RF2522) &&
1655            !rt2x00_rf(rt2x00dev, RF2523) &&
1656            !rt2x00_rf(rt2x00dev, RF2524) &&
1657            !rt2x00_rf(rt2x00dev, RF2525) &&
1658            !rt2x00_rf(rt2x00dev, RF2525E) &&
1659            !rt2x00_rf(rt2x00dev, RF5222)) {
1660                ERROR(rt2x00dev, "Invalid RF chipset detected.\n");
1661                return -ENODEV;
1662        }
1663
1664        /*
1665         * Identify default antenna configuration.
1666         */
1667        rt2x00dev->default_ant.tx =
1668            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_TX_DEFAULT);
1669        rt2x00dev->default_ant.rx =
1670            rt2x00_get_field16(eeprom, EEPROM_ANTENNA_RX_DEFAULT);
1671
1672        /*
1673         * Store led mode, for correct led behaviour.
1674         */
1675#ifdef CONFIG_RT2X00_LIB_LEDS
1676        value = rt2x00_get_field16(eeprom, EEPROM_ANTENNA_LED_MODE);
1677
1678        rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_radio, LED_TYPE_RADIO);
1679        if (value == LED_MODE_TXRX_ACTIVITY ||
1680            value == LED_MODE_DEFAULT ||
1681            value == LED_MODE_ASUS)
1682                rt2500pci_init_led(rt2x00dev, &rt2x00dev->led_qual,
1683                                   LED_TYPE_ACTIVITY);
1684#endif /* CONFIG_RT2X00_LIB_LEDS */
1685
1686        /*
1687         * Detect if this device has an hardware controlled radio.
1688         */
1689        if (rt2x00_get_field16(eeprom, EEPROM_ANTENNA_HARDWARE_RADIO))
1690                __set_bit(CAPABILITY_HW_BUTTON, &rt2x00dev->cap_flags);
1691
1692        /*
1693         * Check if the BBP tuning should be enabled.
1694         */
1695        rt2x00_eeprom_read(rt2x00dev, EEPROM_NIC, &eeprom);
1696        if (!rt2x00_get_field16(eeprom, EEPROM_NIC_DYN_BBP_TUNE))
1697                __set_bit(CAPABILITY_LINK_TUNING, &rt2x00dev->cap_flags);
1698
1699        /*
1700         * Read the RSSI <-> dBm offset information.
1701         */
1702        rt2x00_eeprom_read(rt2x00dev, EEPROM_CALIBRATE_OFFSET, &eeprom);
1703        rt2x00dev->rssi_offset =
1704            rt2x00_get_field16(eeprom, EEPROM_CALIBRATE_OFFSET_RSSI);
1705
1706        return 0;
1707}
1708
1709/*
1710 * RF value list for RF2522
1711 * Supports: 2.4 GHz
1712 */
1713static const struct rf_channel rf_vals_bg_2522[] = {
1714        { 1,  0x00002050, 0x000c1fda, 0x00000101, 0 },
1715        { 2,  0x00002050, 0x000c1fee, 0x00000101, 0 },
1716        { 3,  0x00002050, 0x000c2002, 0x00000101, 0 },
1717        { 4,  0x00002050, 0x000c2016, 0x00000101, 0 },
1718        { 5,  0x00002050, 0x000c202a, 0x00000101, 0 },
1719        { 6,  0x00002050, 0x000c203e, 0x00000101, 0 },
1720        { 7,  0x00002050, 0x000c2052, 0x00000101, 0 },
1721        { 8,  0x00002050, 0x000c2066, 0x00000101, 0 },
1722        { 9,  0x00002050, 0x000c207a, 0x00000101, 0 },
1723        { 10, 0x00002050, 0x000c208e, 0x00000101, 0 },
1724        { 11, 0x00002050, 0x000c20a2, 0x00000101, 0 },
1725        { 12, 0x00002050, 0x000c20b6, 0x00000101, 0 },
1726        { 13, 0x00002050, 0x000c20ca, 0x00000101, 0 },
1727        { 14, 0x00002050, 0x000c20fa, 0x00000101, 0 },
1728};
1729
1730/*
1731 * RF value list for RF2523
1732 * Supports: 2.4 GHz
1733 */
1734static const struct rf_channel rf_vals_bg_2523[] = {
1735        { 1,  0x00022010, 0x00000c9e, 0x000e0111, 0x00000a1b },
1736        { 2,  0x00022010, 0x00000ca2, 0x000e0111, 0x00000a1b },
1737        { 3,  0x00022010, 0x00000ca6, 0x000e0111, 0x00000a1b },
1738        { 4,  0x00022010, 0x00000caa, 0x000e0111, 0x00000a1b },
1739        { 5,  0x00022010, 0x00000cae, 0x000e0111, 0x00000a1b },
1740        { 6,  0x00022010, 0x00000cb2, 0x000e0111, 0x00000a1b },
1741        { 7,  0x00022010, 0x00000cb6, 0x000e0111, 0x00000a1b },
1742        { 8,  0x00022010, 0x00000cba, 0x000e0111, 0x00000a1b },
1743        { 9,  0x00022010, 0x00000cbe, 0x000e0111, 0x00000a1b },
1744        { 10, 0x00022010, 0x00000d02, 0x000e0111, 0x00000a1b },
1745        { 11, 0x00022010, 0x00000d06, 0x000e0111, 0x00000a1b },
1746        { 12, 0x00022010, 0x00000d0a, 0x000e0111, 0x00000a1b },
1747        { 13, 0x00022010, 0x00000d0e, 0x000e0111, 0x00000a1b },
1748        { 14, 0x00022010, 0x00000d1a, 0x000e0111, 0x00000a03 },
1749};
1750
1751/*
1752 * RF value list for RF2524
1753 * Supports: 2.4 GHz
1754 */
1755static const struct rf_channel rf_vals_bg_2524[] = {
1756        { 1,  0x00032020, 0x00000c9e, 0x00000101, 0x00000a1b },
1757        { 2,  0x00032020, 0x00000ca2, 0x00000101, 0x00000a1b },
1758        { 3,  0x00032020, 0x00000ca6, 0x00000101, 0x00000a1b },
1759        { 4,  0x00032020, 0x00000caa, 0x00000101, 0x00000a1b },
1760        { 5,  0x00032020, 0x00000cae, 0x00000101, 0x00000a1b },
1761        { 6,  0x00032020, 0x00000cb2, 0x00000101, 0x00000a1b },
1762        { 7,  0x00032020, 0x00000cb6, 0x00000101, 0x00000a1b },
1763        { 8,  0x00032020, 0x00000cba, 0x00000101, 0x00000a1b },
1764        { 9,  0x00032020, 0x00000cbe, 0x00000101, 0x00000a1b },
1765        { 10, 0x00032020, 0x00000d02, 0x00000101, 0x00000a1b },
1766        { 11, 0x00032020, 0x00000d06, 0x00000101, 0x00000a1b },
1767        { 12, 0x00032020, 0x00000d0a, 0x00000101, 0x00000a1b },
1768        { 13, 0x00032020, 0x00000d0e, 0x00000101, 0x00000a1b },
1769        { 14, 0x00032020, 0x00000d1a, 0x00000101, 0x00000a03 },
1770};
1771
1772/*
1773 * RF value list for RF2525
1774 * Supports: 2.4 GHz
1775 */
1776static const struct rf_channel rf_vals_bg_2525[] = {
1777        { 1,  0x00022020, 0x00080c9e, 0x00060111, 0x00000a1b },
1778        { 2,  0x00022020, 0x00080ca2, 0x00060111, 0x00000a1b },
1779        { 3,  0x00022020, 0x00080ca6, 0x00060111, 0x00000a1b },
1780        { 4,  0x00022020, 0x00080caa, 0x00060111, 0x00000a1b },
1781        { 5,  0x00022020, 0x00080cae, 0x00060111, 0x00000a1b },
1782        { 6,  0x00022020, 0x00080cb2, 0x00060111, 0x00000a1b },
1783        { 7,  0x00022020, 0x00080cb6, 0x00060111, 0x00000a1b },
1784        { 8,  0x00022020, 0x00080cba, 0x00060111, 0x00000a1b },
1785        { 9,  0x00022020, 0x00080cbe, 0x00060111, 0x00000a1b },
1786        { 10, 0x00022020, 0x00080d02, 0x00060111, 0x00000a1b },
1787        { 11, 0x00022020, 0x00080d06, 0x00060111, 0x00000a1b },
1788        { 12, 0x00022020, 0x00080d0a, 0x00060111, 0x00000a1b },
1789        { 13, 0x00022020, 0x00080d0e, 0x00060111, 0x00000a1b },
1790        { 14, 0x00022020, 0x00080d1a, 0x00060111, 0x00000a03 },
1791};
1792
1793/*
1794 * RF value list for RF2525e
1795 * Supports: 2.4 GHz
1796 */
1797static const struct rf_channel rf_vals_bg_2525e[] = {
1798        { 1,  0x00022020, 0x00081136, 0x00060111, 0x00000a0b },
1799        { 2,  0x00022020, 0x0008113a, 0x00060111, 0x00000a0b },
1800        { 3,  0x00022020, 0x0008113e, 0x00060111, 0x00000a0b },
1801        { 4,  0x00022020, 0x00081182, 0x00060111, 0x00000a0b },
1802        { 5,  0x00022020, 0x00081186, 0x00060111, 0x00000a0b },
1803        { 6,  0x00022020, 0x0008118a, 0x00060111, 0x00000a0b },
1804        { 7,  0x00022020, 0x0008118e, 0x00060111, 0x00000a0b },
1805        { 8,  0x00022020, 0x00081192, 0x00060111, 0x00000a0b },
1806        { 9,  0x00022020, 0x00081196, 0x00060111, 0x00000a0b },
1807        { 10, 0x00022020, 0x0008119a, 0x00060111, 0x00000a0b },
1808        { 11, 0x00022020, 0x0008119e, 0x00060111, 0x00000a0b },
1809        { 12, 0x00022020, 0x000811a2, 0x00060111, 0x00000a0b },
1810        { 13, 0x00022020, 0x000811a6, 0x00060111, 0x00000a0b },
1811        { 14, 0x00022020, 0x000811ae, 0x00060111, 0x00000a1b },
1812};
1813
1814/*
1815 * RF value list for RF5222
1816 * Supports: 2.4 GHz & 5.2 GHz
1817 */
1818static const struct rf_channel rf_vals_5222[] = {
1819        { 1,  0x00022020, 0x00001136, 0x00000101, 0x00000a0b },
1820        { 2,  0x00022020, 0x0000113a, 0x00000101, 0x00000a0b },
1821        { 3,  0x00022020, 0x0000113e, 0x00000101, 0x00000a0b },
1822        { 4,  0x00022020, 0x00001182, 0x00000101, 0x00000a0b },
1823        { 5,  0x00022020, 0x00001186, 0x00000101, 0x00000a0b },
1824        { 6,  0x00022020, 0x0000118a, 0x00000101, 0x00000a0b },
1825        { 7,  0x00022020, 0x0000118e, 0x00000101, 0x00000a0b },
1826        { 8,  0x00022020, 0x00001192, 0x00000101, 0x00000a0b },
1827        { 9,  0x00022020, 0x00001196, 0x00000101, 0x00000a0b },
1828        { 10, 0x00022020, 0x0000119a, 0x00000101, 0x00000a0b },
1829        { 11, 0x00022020, 0x0000119e, 0x00000101, 0x00000a0b },
1830        { 12, 0x00022020, 0x000011a2, 0x00000101, 0x00000a0b },
1831        { 13, 0x00022020, 0x000011a6, 0x00000101, 0x00000a0b },
1832        { 14, 0x00022020, 0x000011ae, 0x00000101, 0x00000a1b },
1833
1834        /* 802.11 UNI / HyperLan 2 */
1835        { 36, 0x00022010, 0x00018896, 0x00000101, 0x00000a1f },
1836        { 40, 0x00022010, 0x0001889a, 0x00000101, 0x00000a1f },
1837        { 44, 0x00022010, 0x0001889e, 0x00000101, 0x00000a1f },
1838        { 48, 0x00022010, 0x000188a2, 0x00000101, 0x00000a1f },
1839        { 52, 0x00022010, 0x000188a6, 0x00000101, 0x00000a1f },
1840        { 66, 0x00022010, 0x000188aa, 0x00000101, 0x00000a1f },
1841        { 60, 0x00022010, 0x000188ae, 0x00000101, 0x00000a1f },
1842        { 64, 0x00022010, 0x000188b2, 0x00000101, 0x00000a1f },
1843
1844        /* 802.11 HyperLan 2 */
1845        { 100, 0x00022010, 0x00008802, 0x00000101, 0x00000a0f },
1846        { 104, 0x00022010, 0x00008806, 0x00000101, 0x00000a0f },
1847        { 108, 0x00022010, 0x0000880a, 0x00000101, 0x00000a0f },
1848        { 112, 0x00022010, 0x0000880e, 0x00000101, 0x00000a0f },
1849        { 116, 0x00022010, 0x00008812, 0x00000101, 0x00000a0f },
1850        { 120, 0x00022010, 0x00008816, 0x00000101, 0x00000a0f },
1851        { 124, 0x00022010, 0x0000881a, 0x00000101, 0x00000a0f },
1852        { 128, 0x00022010, 0x0000881e, 0x00000101, 0x00000a0f },
1853        { 132, 0x00022010, 0x00008822, 0x00000101, 0x00000a0f },
1854        { 136, 0x00022010, 0x00008826, 0x00000101, 0x00000a0f },
1855
1856        /* 802.11 UNII */
1857        { 140, 0x00022010, 0x0000882a, 0x00000101, 0x00000a0f },
1858        { 149, 0x00022020, 0x000090a6, 0x00000101, 0x00000a07 },
1859        { 153, 0x00022020, 0x000090ae, 0x00000101, 0x00000a07 },
1860        { 157, 0x00022020, 0x000090b6, 0x00000101, 0x00000a07 },
1861        { 161, 0x00022020, 0x000090be, 0x00000101, 0x00000a07 },
1862};
1863
1864static int rt2500pci_probe_hw_mode(struct rt2x00_dev *rt2x00dev)
1865{
1866        struct hw_mode_spec *spec = &rt2x00dev->spec;
1867        struct channel_info *info;
1868        char *tx_power;
1869        unsigned int i;
1870
1871        /*
1872         * Initialize all hw fields.
1873         */
1874        rt2x00dev->hw->flags = IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
1875                               IEEE80211_HW_SIGNAL_DBM |
1876                               IEEE80211_HW_SUPPORTS_PS |
1877                               IEEE80211_HW_PS_NULLFUNC_STACK;
1878
1879        SET_IEEE80211_DEV(rt2x00dev->hw, rt2x00dev->dev);
1880        SET_IEEE80211_PERM_ADDR(rt2x00dev->hw,
1881                                rt2x00_eeprom_addr(rt2x00dev,
1882                                                   EEPROM_MAC_ADDR_0));
1883
1884        /*
1885         * Initialize hw_mode information.
1886         */
1887        spec->supported_bands = SUPPORT_BAND_2GHZ;
1888        spec->supported_rates = SUPPORT_RATE_CCK | SUPPORT_RATE_OFDM;
1889
1890        if (rt2x00_rf(rt2x00dev, RF2522)) {
1891                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2522);
1892                spec->channels = rf_vals_bg_2522;
1893        } else if (rt2x00_rf(rt2x00dev, RF2523)) {
1894                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2523);
1895                spec->channels = rf_vals_bg_2523;
1896        } else if (rt2x00_rf(rt2x00dev, RF2524)) {
1897                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2524);
1898                spec->channels = rf_vals_bg_2524;
1899        } else if (rt2x00_rf(rt2x00dev, RF2525)) {
1900                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525);
1901                spec->channels = rf_vals_bg_2525;
1902        } else if (rt2x00_rf(rt2x00dev, RF2525E)) {
1903                spec->num_channels = ARRAY_SIZE(rf_vals_bg_2525e);
1904                spec->channels = rf_vals_bg_2525e;
1905        } else if (rt2x00_rf(rt2x00dev, RF5222)) {
1906                spec->supported_bands |= SUPPORT_BAND_5GHZ;
1907                spec->num_channels = ARRAY_SIZE(rf_vals_5222);
1908                spec->channels = rf_vals_5222;
1909        }
1910
1911        /*
1912         * Create channel information array
1913         */
1914        info = kcalloc(spec->num_channels, sizeof(*info), GFP_KERNEL);
1915        if (!info)
1916                return -ENOMEM;
1917
1918        spec->channels_info = info;
1919
1920        tx_power = rt2x00_eeprom_addr(rt2x00dev, EEPROM_TXPOWER_START);
1921        for (i = 0; i < 14; i++) {
1922                info[i].max_power = MAX_TXPOWER;
1923                info[i].default_power1 = TXPOWER_FROM_DEV(tx_power[i]);
1924        }
1925
1926        if (spec->num_channels > 14) {
1927                for (i = 14; i < spec->num_channels; i++) {
1928                        info[i].max_power = MAX_TXPOWER;
1929                        info[i].default_power1 = DEFAULT_TXPOWER;
1930                }
1931        }
1932
1933        return 0;
1934}
1935
1936static int rt2500pci_probe_hw(struct rt2x00_dev *rt2x00dev)
1937{
1938        int retval;
1939
1940        /*
1941         * Allocate eeprom data.
1942         */
1943        retval = rt2500pci_validate_eeprom(rt2x00dev);
1944        if (retval)
1945                return retval;
1946
1947        retval = rt2500pci_init_eeprom(rt2x00dev);
1948        if (retval)
1949                return retval;
1950
1951        /*
1952         * Initialize hw specifications.
1953         */
1954        retval = rt2500pci_probe_hw_mode(rt2x00dev);
1955        if (retval)
1956                return retval;
1957
1958        /*
1959         * This device requires the atim queue and DMA-mapped skbs.
1960         */
1961        __set_bit(REQUIRE_ATIM_QUEUE, &rt2x00dev->cap_flags);
1962        __set_bit(REQUIRE_DMA, &rt2x00dev->cap_flags);
1963        __set_bit(REQUIRE_SW_SEQNO, &rt2x00dev->cap_flags);
1964
1965        /*
1966         * Set the rssi offset.
1967         */
1968        rt2x00dev->rssi_offset = DEFAULT_RSSI_OFFSET;
1969
1970        return 0;
1971}
1972
1973/*
1974 * IEEE80211 stack callback functions.
1975 */
1976static u64 rt2500pci_get_tsf(struct ieee80211_hw *hw)
1977{
1978        struct rt2x00_dev *rt2x00dev = hw->priv;
1979        u64 tsf;
1980        u32 reg;
1981
1982        rt2x00pci_register_read(rt2x00dev, CSR17, &reg);
1983        tsf = (u64) rt2x00_get_field32(reg, CSR17_HIGH_TSFTIMER) << 32;
1984        rt2x00pci_register_read(rt2x00dev, CSR16, &reg);
1985        tsf |= rt2x00_get_field32(reg, CSR16_LOW_TSFTIMER);
1986
1987        return tsf;
1988}
1989
1990static int rt2500pci_tx_last_beacon(struct ieee80211_hw *hw)
1991{
1992        struct rt2x00_dev *rt2x00dev = hw->priv;
1993        u32 reg;
1994
1995        rt2x00pci_register_read(rt2x00dev, CSR15, &reg);
1996        return rt2x00_get_field32(reg, CSR15_BEACON_SENT);
1997}
1998
1999static const struct ieee80211_ops rt2500pci_mac80211_ops = {
2000        .tx                     = rt2x00mac_tx,
2001        .start                  = rt2x00mac_start,
2002        .stop                   = rt2x00mac_stop,
2003        .add_interface          = rt2x00mac_add_interface,
2004        .remove_interface       = rt2x00mac_remove_interface,
2005        .config                 = rt2x00mac_config,
2006        .configure_filter       = rt2x00mac_configure_filter,
2007        .sw_scan_start          = rt2x00mac_sw_scan_start,
2008        .sw_scan_complete       = rt2x00mac_sw_scan_complete,
2009        .get_stats              = rt2x00mac_get_stats,
2010        .bss_info_changed       = rt2x00mac_bss_info_changed,
2011        .conf_tx                = rt2x00mac_conf_tx,
2012        .get_tsf                = rt2500pci_get_tsf,
2013        .tx_last_beacon         = rt2500pci_tx_last_beacon,
2014        .rfkill_poll            = rt2x00mac_rfkill_poll,
2015        .flush                  = rt2x00mac_flush,
2016        .set_antenna            = rt2x00mac_set_antenna,
2017        .get_antenna            = rt2x00mac_get_antenna,
2018        .get_ringparam          = rt2x00mac_get_ringparam,
2019        .tx_frames_pending      = rt2x00mac_tx_frames_pending,
2020};
2021
2022static const struct rt2x00lib_ops rt2500pci_rt2x00_ops = {
2023        .irq_handler            = rt2500pci_interrupt,
2024        .txstatus_tasklet       = rt2500pci_txstatus_tasklet,
2025        .tbtt_tasklet           = rt2500pci_tbtt_tasklet,
2026        .rxdone_tasklet         = rt2500pci_rxdone_tasklet,
2027        .probe_hw               = rt2500pci_probe_hw,
2028        .initialize             = rt2x00pci_initialize,
2029        .uninitialize           = rt2x00pci_uninitialize,
2030        .get_entry_state        = rt2500pci_get_entry_state,
2031        .clear_entry            = rt2500pci_clear_entry,
2032        .set_device_state       = rt2500pci_set_device_state,
2033        .rfkill_poll            = rt2500pci_rfkill_poll,
2034        .link_stats             = rt2500pci_link_stats,
2035        .reset_tuner            = rt2500pci_reset_tuner,
2036        .link_tuner             = rt2500pci_link_tuner,
2037        .start_queue            = rt2500pci_start_queue,
2038        .kick_queue             = rt2500pci_kick_queue,
2039        .stop_queue             = rt2500pci_stop_queue,
2040        .flush_queue            = rt2x00pci_flush_queue,
2041        .write_tx_desc          = rt2500pci_write_tx_desc,
2042        .write_beacon           = rt2500pci_write_beacon,
2043        .fill_rxdone            = rt2500pci_fill_rxdone,
2044        .config_filter          = rt2500pci_config_filter,
2045        .config_intf            = rt2500pci_config_intf,
2046        .config_erp             = rt2500pci_config_erp,
2047        .config_ant             = rt2500pci_config_ant,
2048        .config                 = rt2500pci_config,
2049};
2050
2051static const struct data_queue_desc rt2500pci_queue_rx = {
2052        .entry_num              = 32,
2053        .data_size              = DATA_FRAME_SIZE,
2054        .desc_size              = RXD_DESC_SIZE,
2055        .priv_size              = sizeof(struct queue_entry_priv_pci),
2056};
2057
2058static const struct data_queue_desc rt2500pci_queue_tx = {
2059        .entry_num              = 32,
2060        .data_size              = DATA_FRAME_SIZE,
2061        .desc_size              = TXD_DESC_SIZE,
2062        .priv_size              = sizeof(struct queue_entry_priv_pci),
2063};
2064
2065static const struct data_queue_desc rt2500pci_queue_bcn = {
2066        .entry_num              = 1,
2067        .data_size              = MGMT_FRAME_SIZE,
2068        .desc_size              = TXD_DESC_SIZE,
2069        .priv_size              = sizeof(struct queue_entry_priv_pci),
2070};
2071
2072static const struct data_queue_desc rt2500pci_queue_atim = {
2073        .entry_num              = 8,
2074        .data_size              = DATA_FRAME_SIZE,
2075        .desc_size              = TXD_DESC_SIZE,
2076        .priv_size              = sizeof(struct queue_entry_priv_pci),
2077};
2078
2079static const struct rt2x00_ops rt2500pci_ops = {
2080        .name                   = KBUILD_MODNAME,
2081        .max_sta_intf           = 1,
2082        .max_ap_intf            = 1,
2083        .eeprom_size            = EEPROM_SIZE,
2084        .rf_size                = RF_SIZE,
2085        .tx_queues              = NUM_TX_QUEUES,
2086        .extra_tx_headroom      = 0,
2087        .rx                     = &rt2500pci_queue_rx,
2088        .tx                     = &rt2500pci_queue_tx,
2089        .bcn                    = &rt2500pci_queue_bcn,
2090        .atim                   = &rt2500pci_queue_atim,
2091        .lib                    = &rt2500pci_rt2x00_ops,
2092        .hw                     = &rt2500pci_mac80211_ops,
2093#ifdef CONFIG_RT2X00_LIB_DEBUGFS
2094        .debugfs                = &rt2500pci_rt2x00debug,
2095#endif /* CONFIG_RT2X00_LIB_DEBUGFS */
2096};
2097
2098/*
2099 * RT2500pci module information.
2100 */
2101static DEFINE_PCI_DEVICE_TABLE(rt2500pci_device_table) = {
2102        { PCI_DEVICE(0x1814, 0x0201) },
2103        { 0, }
2104};
2105
2106MODULE_AUTHOR(DRV_PROJECT);
2107MODULE_VERSION(DRV_VERSION);
2108MODULE_DESCRIPTION("Ralink RT2500 PCI & PCMCIA Wireless LAN driver.");
2109MODULE_SUPPORTED_DEVICE("Ralink RT2560 PCI & PCMCIA chipset based cards");
2110MODULE_DEVICE_TABLE(pci, rt2500pci_device_table);
2111MODULE_LICENSE("GPL");
2112
2113static int rt2500pci_probe(struct pci_dev *pci_dev,
2114                           const struct pci_device_id *id)
2115{
2116        return rt2x00pci_probe(pci_dev, &rt2500pci_ops);
2117}
2118
2119static struct pci_driver rt2500pci_driver = {
2120        .name           = KBUILD_MODNAME,
2121        .id_table       = rt2500pci_device_table,
2122        .probe          = rt2500pci_probe,
2123        .remove         = __devexit_p(rt2x00pci_remove),
2124        .suspend        = rt2x00pci_suspend,
2125        .resume         = rt2x00pci_resume,
2126};
2127
2128static int __init rt2500pci_init(void)
2129{
2130        return pci_register_driver(&rt2500pci_driver);
2131}
2132
2133static void __exit rt2500pci_exit(void)
2134{
2135        pci_unregister_driver(&rt2500pci_driver);
2136}
2137
2138module_init(rt2500pci_init);
2139module_exit(rt2500pci_exit);
2140