linux/drivers/spi/spi-pl022.c
<<
>>
Prefs
   1/*
   2 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
   3 *
   4 * Copyright (C) 2008-2009 ST-Ericsson AB
   5 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
   6 *
   7 * Author: Linus Walleij <linus.walleij@stericsson.com>
   8 *
   9 * Initial version inspired by:
  10 *      linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
  11 * Initial adoption to PL022 by:
  12 *      Sachin Verma <sachin.verma@st.com>
  13 *
  14 * This program is free software; you can redistribute it and/or modify
  15 * it under the terms of the GNU General Public License as published by
  16 * the Free Software Foundation; either version 2 of the License, or
  17 * (at your option) any later version.
  18 *
  19 * This program is distributed in the hope that it will be useful,
  20 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  22 * GNU General Public License for more details.
  23 */
  24
  25#include <linux/init.h>
  26#include <linux/module.h>
  27#include <linux/device.h>
  28#include <linux/ioport.h>
  29#include <linux/errno.h>
  30#include <linux/interrupt.h>
  31#include <linux/spi/spi.h>
  32#include <linux/workqueue.h>
  33#include <linux/delay.h>
  34#include <linux/clk.h>
  35#include <linux/err.h>
  36#include <linux/amba/bus.h>
  37#include <linux/amba/pl022.h>
  38#include <linux/io.h>
  39#include <linux/slab.h>
  40#include <linux/dmaengine.h>
  41#include <linux/dma-mapping.h>
  42#include <linux/scatterlist.h>
  43#include <linux/pm_runtime.h>
  44
  45/*
  46 * This macro is used to define some register default values.
  47 * reg is masked with mask, the OR:ed with an (again masked)
  48 * val shifted sb steps to the left.
  49 */
  50#define SSP_WRITE_BITS(reg, val, mask, sb) \
  51 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
  52
  53/*
  54 * This macro is also used to define some default values.
  55 * It will just shift val by sb steps to the left and mask
  56 * the result with mask.
  57 */
  58#define GEN_MASK_BITS(val, mask, sb) \
  59 (((val)<<(sb)) & (mask))
  60
  61#define DRIVE_TX                0
  62#define DO_NOT_DRIVE_TX         1
  63
  64#define DO_NOT_QUEUE_DMA        0
  65#define QUEUE_DMA               1
  66
  67#define RX_TRANSFER             1
  68#define TX_TRANSFER             2
  69
  70/*
  71 * Macros to access SSP Registers with their offsets
  72 */
  73#define SSP_CR0(r)      (r + 0x000)
  74#define SSP_CR1(r)      (r + 0x004)
  75#define SSP_DR(r)       (r + 0x008)
  76#define SSP_SR(r)       (r + 0x00C)
  77#define SSP_CPSR(r)     (r + 0x010)
  78#define SSP_IMSC(r)     (r + 0x014)
  79#define SSP_RIS(r)      (r + 0x018)
  80#define SSP_MIS(r)      (r + 0x01C)
  81#define SSP_ICR(r)      (r + 0x020)
  82#define SSP_DMACR(r)    (r + 0x024)
  83#define SSP_ITCR(r)     (r + 0x080)
  84#define SSP_ITIP(r)     (r + 0x084)
  85#define SSP_ITOP(r)     (r + 0x088)
  86#define SSP_TDR(r)      (r + 0x08C)
  87
  88#define SSP_PID0(r)     (r + 0xFE0)
  89#define SSP_PID1(r)     (r + 0xFE4)
  90#define SSP_PID2(r)     (r + 0xFE8)
  91#define SSP_PID3(r)     (r + 0xFEC)
  92
  93#define SSP_CID0(r)     (r + 0xFF0)
  94#define SSP_CID1(r)     (r + 0xFF4)
  95#define SSP_CID2(r)     (r + 0xFF8)
  96#define SSP_CID3(r)     (r + 0xFFC)
  97
  98/*
  99 * SSP Control Register 0  - SSP_CR0
 100 */
 101#define SSP_CR0_MASK_DSS        (0x0FUL << 0)
 102#define SSP_CR0_MASK_FRF        (0x3UL << 4)
 103#define SSP_CR0_MASK_SPO        (0x1UL << 6)
 104#define SSP_CR0_MASK_SPH        (0x1UL << 7)
 105#define SSP_CR0_MASK_SCR        (0xFFUL << 8)
 106
 107/*
 108 * The ST version of this block moves som bits
 109 * in SSP_CR0 and extends it to 32 bits
 110 */
 111#define SSP_CR0_MASK_DSS_ST     (0x1FUL << 0)
 112#define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5)
 113#define SSP_CR0_MASK_CSS_ST     (0x1FUL << 16)
 114#define SSP_CR0_MASK_FRF_ST     (0x3UL << 21)
 115
 116
 117/*
 118 * SSP Control Register 0  - SSP_CR1
 119 */
 120#define SSP_CR1_MASK_LBM        (0x1UL << 0)
 121#define SSP_CR1_MASK_SSE        (0x1UL << 1)
 122#define SSP_CR1_MASK_MS         (0x1UL << 2)
 123#define SSP_CR1_MASK_SOD        (0x1UL << 3)
 124
 125/*
 126 * The ST version of this block adds some bits
 127 * in SSP_CR1
 128 */
 129#define SSP_CR1_MASK_RENDN_ST   (0x1UL << 4)
 130#define SSP_CR1_MASK_TENDN_ST   (0x1UL << 5)
 131#define SSP_CR1_MASK_MWAIT_ST   (0x1UL << 6)
 132#define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
 133#define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
 134/* This one is only in the PL023 variant */
 135#define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
 136
 137/*
 138 * SSP Status Register - SSP_SR
 139 */
 140#define SSP_SR_MASK_TFE         (0x1UL << 0) /* Transmit FIFO empty */
 141#define SSP_SR_MASK_TNF         (0x1UL << 1) /* Transmit FIFO not full */
 142#define SSP_SR_MASK_RNE         (0x1UL << 2) /* Receive FIFO not empty */
 143#define SSP_SR_MASK_RFF         (0x1UL << 3) /* Receive FIFO full */
 144#define SSP_SR_MASK_BSY         (0x1UL << 4) /* Busy Flag */
 145
 146/*
 147 * SSP Clock Prescale Register  - SSP_CPSR
 148 */
 149#define SSP_CPSR_MASK_CPSDVSR   (0xFFUL << 0)
 150
 151/*
 152 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
 153 */
 154#define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
 155#define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
 156#define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
 157#define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
 158
 159/*
 160 * SSP Raw Interrupt Status Register - SSP_RIS
 161 */
 162/* Receive Overrun Raw Interrupt status */
 163#define SSP_RIS_MASK_RORRIS             (0x1UL << 0)
 164/* Receive Timeout Raw Interrupt status */
 165#define SSP_RIS_MASK_RTRIS              (0x1UL << 1)
 166/* Receive FIFO Raw Interrupt status */
 167#define SSP_RIS_MASK_RXRIS              (0x1UL << 2)
 168/* Transmit FIFO Raw Interrupt status */
 169#define SSP_RIS_MASK_TXRIS              (0x1UL << 3)
 170
 171/*
 172 * SSP Masked Interrupt Status Register - SSP_MIS
 173 */
 174/* Receive Overrun Masked Interrupt status */
 175#define SSP_MIS_MASK_RORMIS             (0x1UL << 0)
 176/* Receive Timeout Masked Interrupt status */
 177#define SSP_MIS_MASK_RTMIS              (0x1UL << 1)
 178/* Receive FIFO Masked Interrupt status */
 179#define SSP_MIS_MASK_RXMIS              (0x1UL << 2)
 180/* Transmit FIFO Masked Interrupt status */
 181#define SSP_MIS_MASK_TXMIS              (0x1UL << 3)
 182
 183/*
 184 * SSP Interrupt Clear Register - SSP_ICR
 185 */
 186/* Receive Overrun Raw Clear Interrupt bit */
 187#define SSP_ICR_MASK_RORIC              (0x1UL << 0)
 188/* Receive Timeout Clear Interrupt bit */
 189#define SSP_ICR_MASK_RTIC               (0x1UL << 1)
 190
 191/*
 192 * SSP DMA Control Register - SSP_DMACR
 193 */
 194/* Receive DMA Enable bit */
 195#define SSP_DMACR_MASK_RXDMAE           (0x1UL << 0)
 196/* Transmit DMA Enable bit */
 197#define SSP_DMACR_MASK_TXDMAE           (0x1UL << 1)
 198
 199/*
 200 * SSP Integration Test control Register - SSP_ITCR
 201 */
 202#define SSP_ITCR_MASK_ITEN              (0x1UL << 0)
 203#define SSP_ITCR_MASK_TESTFIFO          (0x1UL << 1)
 204
 205/*
 206 * SSP Integration Test Input Register - SSP_ITIP
 207 */
 208#define ITIP_MASK_SSPRXD                 (0x1UL << 0)
 209#define ITIP_MASK_SSPFSSIN               (0x1UL << 1)
 210#define ITIP_MASK_SSPCLKIN               (0x1UL << 2)
 211#define ITIP_MASK_RXDMAC                 (0x1UL << 3)
 212#define ITIP_MASK_TXDMAC                 (0x1UL << 4)
 213#define ITIP_MASK_SSPTXDIN               (0x1UL << 5)
 214
 215/*
 216 * SSP Integration Test output Register - SSP_ITOP
 217 */
 218#define ITOP_MASK_SSPTXD                 (0x1UL << 0)
 219#define ITOP_MASK_SSPFSSOUT              (0x1UL << 1)
 220#define ITOP_MASK_SSPCLKOUT              (0x1UL << 2)
 221#define ITOP_MASK_SSPOEn                 (0x1UL << 3)
 222#define ITOP_MASK_SSPCTLOEn              (0x1UL << 4)
 223#define ITOP_MASK_RORINTR                (0x1UL << 5)
 224#define ITOP_MASK_RTINTR                 (0x1UL << 6)
 225#define ITOP_MASK_RXINTR                 (0x1UL << 7)
 226#define ITOP_MASK_TXINTR                 (0x1UL << 8)
 227#define ITOP_MASK_INTR                   (0x1UL << 9)
 228#define ITOP_MASK_RXDMABREQ              (0x1UL << 10)
 229#define ITOP_MASK_RXDMASREQ              (0x1UL << 11)
 230#define ITOP_MASK_TXDMABREQ              (0x1UL << 12)
 231#define ITOP_MASK_TXDMASREQ              (0x1UL << 13)
 232
 233/*
 234 * SSP Test Data Register - SSP_TDR
 235 */
 236#define TDR_MASK_TESTDATA               (0xFFFFFFFF)
 237
 238/*
 239 * Message State
 240 * we use the spi_message.state (void *) pointer to
 241 * hold a single state value, that's why all this
 242 * (void *) casting is done here.
 243 */
 244#define STATE_START                     ((void *) 0)
 245#define STATE_RUNNING                   ((void *) 1)
 246#define STATE_DONE                      ((void *) 2)
 247#define STATE_ERROR                     ((void *) -1)
 248
 249/*
 250 * SSP State - Whether Enabled or Disabled
 251 */
 252#define SSP_DISABLED                    (0)
 253#define SSP_ENABLED                     (1)
 254
 255/*
 256 * SSP DMA State - Whether DMA Enabled or Disabled
 257 */
 258#define SSP_DMA_DISABLED                (0)
 259#define SSP_DMA_ENABLED                 (1)
 260
 261/*
 262 * SSP Clock Defaults
 263 */
 264#define SSP_DEFAULT_CLKRATE 0x2
 265#define SSP_DEFAULT_PRESCALE 0x40
 266
 267/*
 268 * SSP Clock Parameter ranges
 269 */
 270#define CPSDVR_MIN 0x02
 271#define CPSDVR_MAX 0xFE
 272#define SCR_MIN 0x00
 273#define SCR_MAX 0xFF
 274
 275/*
 276 * SSP Interrupt related Macros
 277 */
 278#define DEFAULT_SSP_REG_IMSC  0x0UL
 279#define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
 280#define ENABLE_ALL_INTERRUPTS (~DEFAULT_SSP_REG_IMSC)
 281
 282#define CLEAR_ALL_INTERRUPTS  0x3
 283
 284#define SPI_POLLING_TIMEOUT 1000
 285
 286
 287/*
 288 * The type of reading going on on this chip
 289 */
 290enum ssp_reading {
 291        READING_NULL,
 292        READING_U8,
 293        READING_U16,
 294        READING_U32
 295};
 296
 297/**
 298 * The type of writing going on on this chip
 299 */
 300enum ssp_writing {
 301        WRITING_NULL,
 302        WRITING_U8,
 303        WRITING_U16,
 304        WRITING_U32
 305};
 306
 307/**
 308 * struct vendor_data - vendor-specific config parameters
 309 * for PL022 derivates
 310 * @fifodepth: depth of FIFOs (both)
 311 * @max_bpw: maximum number of bits per word
 312 * @unidir: supports unidirection transfers
 313 * @extended_cr: 32 bit wide control register 0 with extra
 314 * features and extra features in CR1 as found in the ST variants
 315 * @pl023: supports a subset of the ST extensions called "PL023"
 316 */
 317struct vendor_data {
 318        int fifodepth;
 319        int max_bpw;
 320        bool unidir;
 321        bool extended_cr;
 322        bool pl023;
 323        bool loopback;
 324};
 325
 326/**
 327 * struct pl022 - This is the private SSP driver data structure
 328 * @adev: AMBA device model hookup
 329 * @vendor: vendor data for the IP block
 330 * @phybase: the physical memory where the SSP device resides
 331 * @virtbase: the virtual memory where the SSP is mapped
 332 * @clk: outgoing clock "SPICLK" for the SPI bus
 333 * @master: SPI framework hookup
 334 * @master_info: controller-specific data from machine setup
 335 * @workqueue: a workqueue on which any spi_message request is queued
 336 * @pump_messages: work struct for scheduling work to the workqueue
 337 * @queue_lock: spinlock to syncronise access to message queue
 338 * @queue: message queue
 339 * @busy: workqueue is busy
 340 * @running: workqueue is running
 341 * @pump_transfers: Tasklet used in Interrupt Transfer mode
 342 * @cur_msg: Pointer to current spi_message being processed
 343 * @cur_transfer: Pointer to current spi_transfer
 344 * @cur_chip: pointer to current clients chip(assigned from controller_state)
 345 * @tx: current position in TX buffer to be read
 346 * @tx_end: end position in TX buffer to be read
 347 * @rx: current position in RX buffer to be written
 348 * @rx_end: end position in RX buffer to be written
 349 * @read: the type of read currently going on
 350 * @write: the type of write currently going on
 351 * @exp_fifo_level: expected FIFO level
 352 * @dma_rx_channel: optional channel for RX DMA
 353 * @dma_tx_channel: optional channel for TX DMA
 354 * @sgt_rx: scattertable for the RX transfer
 355 * @sgt_tx: scattertable for the TX transfer
 356 * @dummypage: a dummy page used for driving data on the bus with DMA
 357 */
 358struct pl022 {
 359        struct amba_device              *adev;
 360        struct vendor_data              *vendor;
 361        resource_size_t                 phybase;
 362        void __iomem                    *virtbase;
 363        struct clk                      *clk;
 364        struct spi_master               *master;
 365        struct pl022_ssp_controller     *master_info;
 366        /* Driver message queue */
 367        struct workqueue_struct         *workqueue;
 368        struct work_struct              pump_messages;
 369        spinlock_t                      queue_lock;
 370        struct list_head                queue;
 371        bool                            busy;
 372        bool                            running;
 373        /* Message transfer pump */
 374        struct tasklet_struct           pump_transfers;
 375        struct spi_message              *cur_msg;
 376        struct spi_transfer             *cur_transfer;
 377        struct chip_data                *cur_chip;
 378        void                            *tx;
 379        void                            *tx_end;
 380        void                            *rx;
 381        void                            *rx_end;
 382        enum ssp_reading                read;
 383        enum ssp_writing                write;
 384        u32                             exp_fifo_level;
 385        enum ssp_rx_level_trig          rx_lev_trig;
 386        enum ssp_tx_level_trig          tx_lev_trig;
 387        /* DMA settings */
 388#ifdef CONFIG_DMA_ENGINE
 389        struct dma_chan                 *dma_rx_channel;
 390        struct dma_chan                 *dma_tx_channel;
 391        struct sg_table                 sgt_rx;
 392        struct sg_table                 sgt_tx;
 393        char                            *dummypage;
 394#endif
 395};
 396
 397/**
 398 * struct chip_data - To maintain runtime state of SSP for each client chip
 399 * @cr0: Value of control register CR0 of SSP - on later ST variants this
 400 *       register is 32 bits wide rather than just 16
 401 * @cr1: Value of control register CR1 of SSP
 402 * @dmacr: Value of DMA control Register of SSP
 403 * @cpsr: Value of Clock prescale register
 404 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
 405 * @enable_dma: Whether to enable DMA or not
 406 * @read: function ptr to be used to read when doing xfer for this chip
 407 * @write: function ptr to be used to write when doing xfer for this chip
 408 * @cs_control: chip select callback provided by chip
 409 * @xfer_type: polling/interrupt/DMA
 410 *
 411 * Runtime state of the SSP controller, maintained per chip,
 412 * This would be set according to the current message that would be served
 413 */
 414struct chip_data {
 415        u32 cr0;
 416        u16 cr1;
 417        u16 dmacr;
 418        u16 cpsr;
 419        u8 n_bytes;
 420        bool enable_dma;
 421        enum ssp_reading read;
 422        enum ssp_writing write;
 423        void (*cs_control) (u32 command);
 424        int xfer_type;
 425};
 426
 427/**
 428 * null_cs_control - Dummy chip select function
 429 * @command: select/delect the chip
 430 *
 431 * If no chip select function is provided by client this is used as dummy
 432 * chip select
 433 */
 434static void null_cs_control(u32 command)
 435{
 436        pr_debug("pl022: dummy chip select control, CS=0x%x\n", command);
 437}
 438
 439/**
 440 * giveback - current spi_message is over, schedule next message and call
 441 * callback of this message. Assumes that caller already
 442 * set message->status; dma and pio irqs are blocked
 443 * @pl022: SSP driver private data structure
 444 */
 445static void giveback(struct pl022 *pl022)
 446{
 447        struct spi_transfer *last_transfer;
 448        unsigned long flags;
 449        struct spi_message *msg;
 450        void (*curr_cs_control) (u32 command);
 451
 452        /*
 453         * This local reference to the chip select function
 454         * is needed because we set curr_chip to NULL
 455         * as a step toward termininating the message.
 456         */
 457        curr_cs_control = pl022->cur_chip->cs_control;
 458        spin_lock_irqsave(&pl022->queue_lock, flags);
 459        msg = pl022->cur_msg;
 460        pl022->cur_msg = NULL;
 461        pl022->cur_transfer = NULL;
 462        pl022->cur_chip = NULL;
 463        queue_work(pl022->workqueue, &pl022->pump_messages);
 464        spin_unlock_irqrestore(&pl022->queue_lock, flags);
 465
 466        last_transfer = list_entry(msg->transfers.prev,
 467                                        struct spi_transfer,
 468                                        transfer_list);
 469
 470        /* Delay if requested before any change in chip select */
 471        if (last_transfer->delay_usecs)
 472                /*
 473                 * FIXME: This runs in interrupt context.
 474                 * Is this really smart?
 475                 */
 476                udelay(last_transfer->delay_usecs);
 477
 478        /*
 479         * Drop chip select UNLESS cs_change is true or we are returning
 480         * a message with an error, or next message is for another chip
 481         */
 482        if (!last_transfer->cs_change)
 483                curr_cs_control(SSP_CHIP_DESELECT);
 484        else {
 485                struct spi_message *next_msg;
 486
 487                /* Holding of cs was hinted, but we need to make sure
 488                 * the next message is for the same chip.  Don't waste
 489                 * time with the following tests unless this was hinted.
 490                 *
 491                 * We cannot postpone this until pump_messages, because
 492                 * after calling msg->complete (below) the driver that
 493                 * sent the current message could be unloaded, which
 494                 * could invalidate the cs_control() callback...
 495                 */
 496
 497                /* get a pointer to the next message, if any */
 498                spin_lock_irqsave(&pl022->queue_lock, flags);
 499                if (list_empty(&pl022->queue))
 500                        next_msg = NULL;
 501                else
 502                        next_msg = list_entry(pl022->queue.next,
 503                                        struct spi_message, queue);
 504                spin_unlock_irqrestore(&pl022->queue_lock, flags);
 505
 506                /* see if the next and current messages point
 507                 * to the same chip
 508                 */
 509                if (next_msg && next_msg->spi != msg->spi)
 510                        next_msg = NULL;
 511                if (!next_msg || msg->state == STATE_ERROR)
 512                        curr_cs_control(SSP_CHIP_DESELECT);
 513        }
 514        msg->state = NULL;
 515        if (msg->complete)
 516                msg->complete(msg->context);
 517        /* This message is completed, so let's turn off the clocks & power */
 518        clk_disable(pl022->clk);
 519        amba_pclk_disable(pl022->adev);
 520        amba_vcore_disable(pl022->adev);
 521        pm_runtime_put(&pl022->adev->dev);
 522}
 523
 524/**
 525 * flush - flush the FIFO to reach a clean state
 526 * @pl022: SSP driver private data structure
 527 */
 528static int flush(struct pl022 *pl022)
 529{
 530        unsigned long limit = loops_per_jiffy << 1;
 531
 532        dev_dbg(&pl022->adev->dev, "flush\n");
 533        do {
 534                while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 535                        readw(SSP_DR(pl022->virtbase));
 536        } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
 537
 538        pl022->exp_fifo_level = 0;
 539
 540        return limit;
 541}
 542
 543/**
 544 * restore_state - Load configuration of current chip
 545 * @pl022: SSP driver private data structure
 546 */
 547static void restore_state(struct pl022 *pl022)
 548{
 549        struct chip_data *chip = pl022->cur_chip;
 550
 551        if (pl022->vendor->extended_cr)
 552                writel(chip->cr0, SSP_CR0(pl022->virtbase));
 553        else
 554                writew(chip->cr0, SSP_CR0(pl022->virtbase));
 555        writew(chip->cr1, SSP_CR1(pl022->virtbase));
 556        writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
 557        writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
 558        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 559        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 560}
 561
 562/*
 563 * Default SSP Register Values
 564 */
 565#define DEFAULT_SSP_REG_CR0 ( \
 566        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)    | \
 567        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
 568        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 569        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 570        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 571)
 572
 573/* ST versions have slightly different bit layout */
 574#define DEFAULT_SSP_REG_CR0_ST ( \
 575        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 576        GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
 577        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 578        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 579        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
 580        GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)      | \
 581        GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
 582)
 583
 584/* The PL023 version is slightly different again */
 585#define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
 586        GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \
 587        GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
 588        GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
 589        GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
 590)
 591
 592#define DEFAULT_SSP_REG_CR1 ( \
 593        GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
 594        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 595        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 596        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
 597)
 598
 599/* ST versions extend this register to use all 16 bits */
 600#define DEFAULT_SSP_REG_CR1_ST ( \
 601        DEFAULT_SSP_REG_CR1 | \
 602        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 603        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 604        GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
 605        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 606        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
 607)
 608
 609/*
 610 * The PL023 variant has further differences: no loopback mode, no microwire
 611 * support, and a new clock feedback delay setting.
 612 */
 613#define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
 614        GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
 615        GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
 616        GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
 617        GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
 618        GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
 619        GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
 620        GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
 621        GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
 622)
 623
 624#define DEFAULT_SSP_REG_CPSR ( \
 625        GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
 626)
 627
 628#define DEFAULT_SSP_REG_DMACR (\
 629        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
 630        GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
 631)
 632
 633/**
 634 * load_ssp_default_config - Load default configuration for SSP
 635 * @pl022: SSP driver private data structure
 636 */
 637static void load_ssp_default_config(struct pl022 *pl022)
 638{
 639        if (pl022->vendor->pl023) {
 640                writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
 641                writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
 642        } else if (pl022->vendor->extended_cr) {
 643                writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
 644                writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
 645        } else {
 646                writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
 647                writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
 648        }
 649        writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
 650        writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
 651        writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
 652        writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
 653}
 654
 655/**
 656 * This will write to TX and read from RX according to the parameters
 657 * set in pl022.
 658 */
 659static void readwriter(struct pl022 *pl022)
 660{
 661
 662        /*
 663         * The FIFO depth is different between primecell variants.
 664         * I believe filling in too much in the FIFO might cause
 665         * errons in 8bit wide transfers on ARM variants (just 8 words
 666         * FIFO, means only 8x8 = 64 bits in FIFO) at least.
 667         *
 668         * To prevent this issue, the TX FIFO is only filled to the
 669         * unused RX FIFO fill length, regardless of what the TX
 670         * FIFO status flag indicates.
 671         */
 672        dev_dbg(&pl022->adev->dev,
 673                "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
 674                __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
 675
 676        /* Read as much as you can */
 677        while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 678               && (pl022->rx < pl022->rx_end)) {
 679                switch (pl022->read) {
 680                case READING_NULL:
 681                        readw(SSP_DR(pl022->virtbase));
 682                        break;
 683                case READING_U8:
 684                        *(u8 *) (pl022->rx) =
 685                                readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 686                        break;
 687                case READING_U16:
 688                        *(u16 *) (pl022->rx) =
 689                                (u16) readw(SSP_DR(pl022->virtbase));
 690                        break;
 691                case READING_U32:
 692                        *(u32 *) (pl022->rx) =
 693                                readl(SSP_DR(pl022->virtbase));
 694                        break;
 695                }
 696                pl022->rx += (pl022->cur_chip->n_bytes);
 697                pl022->exp_fifo_level--;
 698        }
 699        /*
 700         * Write as much as possible up to the RX FIFO size
 701         */
 702        while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
 703               && (pl022->tx < pl022->tx_end)) {
 704                switch (pl022->write) {
 705                case WRITING_NULL:
 706                        writew(0x0, SSP_DR(pl022->virtbase));
 707                        break;
 708                case WRITING_U8:
 709                        writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
 710                        break;
 711                case WRITING_U16:
 712                        writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
 713                        break;
 714                case WRITING_U32:
 715                        writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
 716                        break;
 717                }
 718                pl022->tx += (pl022->cur_chip->n_bytes);
 719                pl022->exp_fifo_level++;
 720                /*
 721                 * This inner reader takes care of things appearing in the RX
 722                 * FIFO as we're transmitting. This will happen a lot since the
 723                 * clock starts running when you put things into the TX FIFO,
 724                 * and then things are continuously clocked into the RX FIFO.
 725                 */
 726                while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
 727                       && (pl022->rx < pl022->rx_end)) {
 728                        switch (pl022->read) {
 729                        case READING_NULL:
 730                                readw(SSP_DR(pl022->virtbase));
 731                                break;
 732                        case READING_U8:
 733                                *(u8 *) (pl022->rx) =
 734                                        readw(SSP_DR(pl022->virtbase)) & 0xFFU;
 735                                break;
 736                        case READING_U16:
 737                                *(u16 *) (pl022->rx) =
 738                                        (u16) readw(SSP_DR(pl022->virtbase));
 739                                break;
 740                        case READING_U32:
 741                                *(u32 *) (pl022->rx) =
 742                                        readl(SSP_DR(pl022->virtbase));
 743                                break;
 744                        }
 745                        pl022->rx += (pl022->cur_chip->n_bytes);
 746                        pl022->exp_fifo_level--;
 747                }
 748        }
 749        /*
 750         * When we exit here the TX FIFO should be full and the RX FIFO
 751         * should be empty
 752         */
 753}
 754
 755
 756/**
 757 * next_transfer - Move to the Next transfer in the current spi message
 758 * @pl022: SSP driver private data structure
 759 *
 760 * This function moves though the linked list of spi transfers in the
 761 * current spi message and returns with the state of current spi
 762 * message i.e whether its last transfer is done(STATE_DONE) or
 763 * Next transfer is ready(STATE_RUNNING)
 764 */
 765static void *next_transfer(struct pl022 *pl022)
 766{
 767        struct spi_message *msg = pl022->cur_msg;
 768        struct spi_transfer *trans = pl022->cur_transfer;
 769
 770        /* Move to next transfer */
 771        if (trans->transfer_list.next != &msg->transfers) {
 772                pl022->cur_transfer =
 773                    list_entry(trans->transfer_list.next,
 774                               struct spi_transfer, transfer_list);
 775                return STATE_RUNNING;
 776        }
 777        return STATE_DONE;
 778}
 779
 780/*
 781 * This DMA functionality is only compiled in if we have
 782 * access to the generic DMA devices/DMA engine.
 783 */
 784#ifdef CONFIG_DMA_ENGINE
 785static void unmap_free_dma_scatter(struct pl022 *pl022)
 786{
 787        /* Unmap and free the SG tables */
 788        dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
 789                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
 790        dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
 791                     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
 792        sg_free_table(&pl022->sgt_rx);
 793        sg_free_table(&pl022->sgt_tx);
 794}
 795
 796static void dma_callback(void *data)
 797{
 798        struct pl022 *pl022 = data;
 799        struct spi_message *msg = pl022->cur_msg;
 800
 801        BUG_ON(!pl022->sgt_rx.sgl);
 802
 803#ifdef VERBOSE_DEBUG
 804        /*
 805         * Optionally dump out buffers to inspect contents, this is
 806         * good if you want to convince yourself that the loopback
 807         * read/write contents are the same, when adopting to a new
 808         * DMA engine.
 809         */
 810        {
 811                struct scatterlist *sg;
 812                unsigned int i;
 813
 814                dma_sync_sg_for_cpu(&pl022->adev->dev,
 815                                    pl022->sgt_rx.sgl,
 816                                    pl022->sgt_rx.nents,
 817                                    DMA_FROM_DEVICE);
 818
 819                for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
 820                        dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
 821                        print_hex_dump(KERN_ERR, "SPI RX: ",
 822                                       DUMP_PREFIX_OFFSET,
 823                                       16,
 824                                       1,
 825                                       sg_virt(sg),
 826                                       sg_dma_len(sg),
 827                                       1);
 828                }
 829                for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
 830                        dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
 831                        print_hex_dump(KERN_ERR, "SPI TX: ",
 832                                       DUMP_PREFIX_OFFSET,
 833                                       16,
 834                                       1,
 835                                       sg_virt(sg),
 836                                       sg_dma_len(sg),
 837                                       1);
 838                }
 839        }
 840#endif
 841
 842        unmap_free_dma_scatter(pl022);
 843
 844        /* Update total bytes transferred */
 845        msg->actual_length += pl022->cur_transfer->len;
 846        if (pl022->cur_transfer->cs_change)
 847                pl022->cur_chip->
 848                        cs_control(SSP_CHIP_DESELECT);
 849
 850        /* Move to next transfer */
 851        msg->state = next_transfer(pl022);
 852        tasklet_schedule(&pl022->pump_transfers);
 853}
 854
 855static void setup_dma_scatter(struct pl022 *pl022,
 856                              void *buffer,
 857                              unsigned int length,
 858                              struct sg_table *sgtab)
 859{
 860        struct scatterlist *sg;
 861        int bytesleft = length;
 862        void *bufp = buffer;
 863        int mapbytes;
 864        int i;
 865
 866        if (buffer) {
 867                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 868                        /*
 869                         * If there are less bytes left than what fits
 870                         * in the current page (plus page alignment offset)
 871                         * we just feed in this, else we stuff in as much
 872                         * as we can.
 873                         */
 874                        if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
 875                                mapbytes = bytesleft;
 876                        else
 877                                mapbytes = PAGE_SIZE - offset_in_page(bufp);
 878                        sg_set_page(sg, virt_to_page(bufp),
 879                                    mapbytes, offset_in_page(bufp));
 880                        bufp += mapbytes;
 881                        bytesleft -= mapbytes;
 882                        dev_dbg(&pl022->adev->dev,
 883                                "set RX/TX target page @ %p, %d bytes, %d left\n",
 884                                bufp, mapbytes, bytesleft);
 885                }
 886        } else {
 887                /* Map the dummy buffer on every page */
 888                for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
 889                        if (bytesleft < PAGE_SIZE)
 890                                mapbytes = bytesleft;
 891                        else
 892                                mapbytes = PAGE_SIZE;
 893                        sg_set_page(sg, virt_to_page(pl022->dummypage),
 894                                    mapbytes, 0);
 895                        bytesleft -= mapbytes;
 896                        dev_dbg(&pl022->adev->dev,
 897                                "set RX/TX to dummy page %d bytes, %d left\n",
 898                                mapbytes, bytesleft);
 899
 900                }
 901        }
 902        BUG_ON(bytesleft);
 903}
 904
 905/**
 906 * configure_dma - configures the channels for the next transfer
 907 * @pl022: SSP driver's private data structure
 908 */
 909static int configure_dma(struct pl022 *pl022)
 910{
 911        struct dma_slave_config rx_conf = {
 912                .src_addr = SSP_DR(pl022->phybase),
 913                .direction = DMA_FROM_DEVICE,
 914        };
 915        struct dma_slave_config tx_conf = {
 916                .dst_addr = SSP_DR(pl022->phybase),
 917                .direction = DMA_TO_DEVICE,
 918        };
 919        unsigned int pages;
 920        int ret;
 921        int rx_sglen, tx_sglen;
 922        struct dma_chan *rxchan = pl022->dma_rx_channel;
 923        struct dma_chan *txchan = pl022->dma_tx_channel;
 924        struct dma_async_tx_descriptor *rxdesc;
 925        struct dma_async_tx_descriptor *txdesc;
 926
 927        /* Check that the channels are available */
 928        if (!rxchan || !txchan)
 929                return -ENODEV;
 930
 931        /*
 932         * If supplied, the DMA burstsize should equal the FIFO trigger level.
 933         * Notice that the DMA engine uses one-to-one mapping. Since we can
 934         * not trigger on 2 elements this needs explicit mapping rather than
 935         * calculation.
 936         */
 937        switch (pl022->rx_lev_trig) {
 938        case SSP_RX_1_OR_MORE_ELEM:
 939                rx_conf.src_maxburst = 1;
 940                break;
 941        case SSP_RX_4_OR_MORE_ELEM:
 942                rx_conf.src_maxburst = 4;
 943                break;
 944        case SSP_RX_8_OR_MORE_ELEM:
 945                rx_conf.src_maxburst = 8;
 946                break;
 947        case SSP_RX_16_OR_MORE_ELEM:
 948                rx_conf.src_maxburst = 16;
 949                break;
 950        case SSP_RX_32_OR_MORE_ELEM:
 951                rx_conf.src_maxburst = 32;
 952                break;
 953        default:
 954                rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
 955                break;
 956        }
 957
 958        switch (pl022->tx_lev_trig) {
 959        case SSP_TX_1_OR_MORE_EMPTY_LOC:
 960                tx_conf.dst_maxburst = 1;
 961                break;
 962        case SSP_TX_4_OR_MORE_EMPTY_LOC:
 963                tx_conf.dst_maxburst = 4;
 964                break;
 965        case SSP_TX_8_OR_MORE_EMPTY_LOC:
 966                tx_conf.dst_maxburst = 8;
 967                break;
 968        case SSP_TX_16_OR_MORE_EMPTY_LOC:
 969                tx_conf.dst_maxburst = 16;
 970                break;
 971        case SSP_TX_32_OR_MORE_EMPTY_LOC:
 972                tx_conf.dst_maxburst = 32;
 973                break;
 974        default:
 975                tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
 976                break;
 977        }
 978
 979        switch (pl022->read) {
 980        case READING_NULL:
 981                /* Use the same as for writing */
 982                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 983                break;
 984        case READING_U8:
 985                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
 986                break;
 987        case READING_U16:
 988                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
 989                break;
 990        case READING_U32:
 991                rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
 992                break;
 993        }
 994
 995        switch (pl022->write) {
 996        case WRITING_NULL:
 997                /* Use the same as for reading */
 998                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
 999                break;
1000        case WRITING_U8:
1001                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1002                break;
1003        case WRITING_U16:
1004                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1005                break;
1006        case WRITING_U32:
1007                tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1008                break;
1009        }
1010
1011        /* SPI pecularity: we need to read and write the same width */
1012        if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1013                rx_conf.src_addr_width = tx_conf.dst_addr_width;
1014        if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1015                tx_conf.dst_addr_width = rx_conf.src_addr_width;
1016        BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1017
1018        dmaengine_slave_config(rxchan, &rx_conf);
1019        dmaengine_slave_config(txchan, &tx_conf);
1020
1021        /* Create sglists for the transfers */
1022        pages = (pl022->cur_transfer->len >> PAGE_SHIFT) + 1;
1023        dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1024
1025        ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_KERNEL);
1026        if (ret)
1027                goto err_alloc_rx_sg;
1028
1029        ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_KERNEL);
1030        if (ret)
1031                goto err_alloc_tx_sg;
1032
1033        /* Fill in the scatterlists for the RX+TX buffers */
1034        setup_dma_scatter(pl022, pl022->rx,
1035                          pl022->cur_transfer->len, &pl022->sgt_rx);
1036        setup_dma_scatter(pl022, pl022->tx,
1037                          pl022->cur_transfer->len, &pl022->sgt_tx);
1038
1039        /* Map DMA buffers */
1040        rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1041                           pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1042        if (!rx_sglen)
1043                goto err_rx_sgmap;
1044
1045        tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1046                           pl022->sgt_tx.nents, DMA_TO_DEVICE);
1047        if (!tx_sglen)
1048                goto err_tx_sgmap;
1049
1050        /* Send both scatterlists */
1051        rxdesc = rxchan->device->device_prep_slave_sg(rxchan,
1052                                      pl022->sgt_rx.sgl,
1053                                      rx_sglen,
1054                                      DMA_FROM_DEVICE,
1055                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1056        if (!rxdesc)
1057                goto err_rxdesc;
1058
1059        txdesc = txchan->device->device_prep_slave_sg(txchan,
1060                                      pl022->sgt_tx.sgl,
1061                                      tx_sglen,
1062                                      DMA_TO_DEVICE,
1063                                      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1064        if (!txdesc)
1065                goto err_txdesc;
1066
1067        /* Put the callback on the RX transfer only, that should finish last */
1068        rxdesc->callback = dma_callback;
1069        rxdesc->callback_param = pl022;
1070
1071        /* Submit and fire RX and TX with TX last so we're ready to read! */
1072        dmaengine_submit(rxdesc);
1073        dmaengine_submit(txdesc);
1074        dma_async_issue_pending(rxchan);
1075        dma_async_issue_pending(txchan);
1076
1077        return 0;
1078
1079err_txdesc:
1080        dmaengine_terminate_all(txchan);
1081err_rxdesc:
1082        dmaengine_terminate_all(rxchan);
1083        dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1084                     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1085err_tx_sgmap:
1086        dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1087                     pl022->sgt_tx.nents, DMA_FROM_DEVICE);
1088err_rx_sgmap:
1089        sg_free_table(&pl022->sgt_tx);
1090err_alloc_tx_sg:
1091        sg_free_table(&pl022->sgt_rx);
1092err_alloc_rx_sg:
1093        return -ENOMEM;
1094}
1095
1096static int __init pl022_dma_probe(struct pl022 *pl022)
1097{
1098        dma_cap_mask_t mask;
1099
1100        /* Try to acquire a generic DMA engine slave channel */
1101        dma_cap_zero(mask);
1102        dma_cap_set(DMA_SLAVE, mask);
1103        /*
1104         * We need both RX and TX channels to do DMA, else do none
1105         * of them.
1106         */
1107        pl022->dma_rx_channel = dma_request_channel(mask,
1108                                            pl022->master_info->dma_filter,
1109                                            pl022->master_info->dma_rx_param);
1110        if (!pl022->dma_rx_channel) {
1111                dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1112                goto err_no_rxchan;
1113        }
1114
1115        pl022->dma_tx_channel = dma_request_channel(mask,
1116                                            pl022->master_info->dma_filter,
1117                                            pl022->master_info->dma_tx_param);
1118        if (!pl022->dma_tx_channel) {
1119                dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1120                goto err_no_txchan;
1121        }
1122
1123        pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1124        if (!pl022->dummypage) {
1125                dev_dbg(&pl022->adev->dev, "no DMA dummypage!\n");
1126                goto err_no_dummypage;
1127        }
1128
1129        dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1130                 dma_chan_name(pl022->dma_rx_channel),
1131                 dma_chan_name(pl022->dma_tx_channel));
1132
1133        return 0;
1134
1135err_no_dummypage:
1136        dma_release_channel(pl022->dma_tx_channel);
1137err_no_txchan:
1138        dma_release_channel(pl022->dma_rx_channel);
1139        pl022->dma_rx_channel = NULL;
1140err_no_rxchan:
1141        dev_err(&pl022->adev->dev,
1142                        "Failed to work in dma mode, work without dma!\n");
1143        return -ENODEV;
1144}
1145
1146static void terminate_dma(struct pl022 *pl022)
1147{
1148        struct dma_chan *rxchan = pl022->dma_rx_channel;
1149        struct dma_chan *txchan = pl022->dma_tx_channel;
1150
1151        dmaengine_terminate_all(rxchan);
1152        dmaengine_terminate_all(txchan);
1153        unmap_free_dma_scatter(pl022);
1154}
1155
1156static void pl022_dma_remove(struct pl022 *pl022)
1157{
1158        if (pl022->busy)
1159                terminate_dma(pl022);
1160        if (pl022->dma_tx_channel)
1161                dma_release_channel(pl022->dma_tx_channel);
1162        if (pl022->dma_rx_channel)
1163                dma_release_channel(pl022->dma_rx_channel);
1164        kfree(pl022->dummypage);
1165}
1166
1167#else
1168static inline int configure_dma(struct pl022 *pl022)
1169{
1170        return -ENODEV;
1171}
1172
1173static inline int pl022_dma_probe(struct pl022 *pl022)
1174{
1175        return 0;
1176}
1177
1178static inline void pl022_dma_remove(struct pl022 *pl022)
1179{
1180}
1181#endif
1182
1183/**
1184 * pl022_interrupt_handler - Interrupt handler for SSP controller
1185 *
1186 * This function handles interrupts generated for an interrupt based transfer.
1187 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1188 * current message's state as STATE_ERROR and schedule the tasklet
1189 * pump_transfers which will do the postprocessing of the current message by
1190 * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1191 * more data, and writes data in TX FIFO till it is not full. If we complete
1192 * the transfer we move to the next transfer and schedule the tasklet.
1193 */
1194static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1195{
1196        struct pl022 *pl022 = dev_id;
1197        struct spi_message *msg = pl022->cur_msg;
1198        u16 irq_status = 0;
1199        u16 flag = 0;
1200
1201        if (unlikely(!msg)) {
1202                dev_err(&pl022->adev->dev,
1203                        "bad message state in interrupt handler");
1204                /* Never fail */
1205                return IRQ_HANDLED;
1206        }
1207
1208        /* Read the Interrupt Status Register */
1209        irq_status = readw(SSP_MIS(pl022->virtbase));
1210
1211        if (unlikely(!irq_status))
1212                return IRQ_NONE;
1213
1214        /*
1215         * This handles the FIFO interrupts, the timeout
1216         * interrupts are flatly ignored, they cannot be
1217         * trusted.
1218         */
1219        if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1220                /*
1221                 * Overrun interrupt - bail out since our Data has been
1222                 * corrupted
1223                 */
1224                dev_err(&pl022->adev->dev, "FIFO overrun\n");
1225                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1226                        dev_err(&pl022->adev->dev,
1227                                "RXFIFO is full\n");
1228                if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_TNF)
1229                        dev_err(&pl022->adev->dev,
1230                                "TXFIFO is full\n");
1231
1232                /*
1233                 * Disable and clear interrupts, disable SSP,
1234                 * mark message with bad status so it can be
1235                 * retried.
1236                 */
1237                writew(DISABLE_ALL_INTERRUPTS,
1238                       SSP_IMSC(pl022->virtbase));
1239                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1240                writew((readw(SSP_CR1(pl022->virtbase)) &
1241                        (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1242                msg->state = STATE_ERROR;
1243
1244                /* Schedule message queue handler */
1245                tasklet_schedule(&pl022->pump_transfers);
1246                return IRQ_HANDLED;
1247        }
1248
1249        readwriter(pl022);
1250
1251        if ((pl022->tx == pl022->tx_end) && (flag == 0)) {
1252                flag = 1;
1253                /* Disable Transmit interrupt */
1254                writew(readw(SSP_IMSC(pl022->virtbase)) &
1255                       (~SSP_IMSC_MASK_TXIM),
1256                       SSP_IMSC(pl022->virtbase));
1257        }
1258
1259        /*
1260         * Since all transactions must write as much as shall be read,
1261         * we can conclude the entire transaction once RX is complete.
1262         * At this point, all TX will always be finished.
1263         */
1264        if (pl022->rx >= pl022->rx_end) {
1265                writew(DISABLE_ALL_INTERRUPTS,
1266                       SSP_IMSC(pl022->virtbase));
1267                writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1268                if (unlikely(pl022->rx > pl022->rx_end)) {
1269                        dev_warn(&pl022->adev->dev, "read %u surplus "
1270                                 "bytes (did you request an odd "
1271                                 "number of bytes on a 16bit bus?)\n",
1272                                 (u32) (pl022->rx - pl022->rx_end));
1273                }
1274                /* Update total bytes transferred */
1275                msg->actual_length += pl022->cur_transfer->len;
1276                if (pl022->cur_transfer->cs_change)
1277                        pl022->cur_chip->
1278                                cs_control(SSP_CHIP_DESELECT);
1279                /* Move to next transfer */
1280                msg->state = next_transfer(pl022);
1281                tasklet_schedule(&pl022->pump_transfers);
1282                return IRQ_HANDLED;
1283        }
1284
1285        return IRQ_HANDLED;
1286}
1287
1288/**
1289 * This sets up the pointers to memory for the next message to
1290 * send out on the SPI bus.
1291 */
1292static int set_up_next_transfer(struct pl022 *pl022,
1293                                struct spi_transfer *transfer)
1294{
1295        int residue;
1296
1297        /* Sanity check the message for this bus width */
1298        residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1299        if (unlikely(residue != 0)) {
1300                dev_err(&pl022->adev->dev,
1301                        "message of %u bytes to transmit but the current "
1302                        "chip bus has a data width of %u bytes!\n",
1303                        pl022->cur_transfer->len,
1304                        pl022->cur_chip->n_bytes);
1305                dev_err(&pl022->adev->dev, "skipping this message\n");
1306                return -EIO;
1307        }
1308        pl022->tx = (void *)transfer->tx_buf;
1309        pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1310        pl022->rx = (void *)transfer->rx_buf;
1311        pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1312        pl022->write =
1313            pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1314        pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1315        return 0;
1316}
1317
1318/**
1319 * pump_transfers - Tasklet function which schedules next transfer
1320 * when running in interrupt or DMA transfer mode.
1321 * @data: SSP driver private data structure
1322 *
1323 */
1324static void pump_transfers(unsigned long data)
1325{
1326        struct pl022 *pl022 = (struct pl022 *) data;
1327        struct spi_message *message = NULL;
1328        struct spi_transfer *transfer = NULL;
1329        struct spi_transfer *previous = NULL;
1330
1331        /* Get current state information */
1332        message = pl022->cur_msg;
1333        transfer = pl022->cur_transfer;
1334
1335        /* Handle for abort */
1336        if (message->state == STATE_ERROR) {
1337                message->status = -EIO;
1338                giveback(pl022);
1339                return;
1340        }
1341
1342        /* Handle end of message */
1343        if (message->state == STATE_DONE) {
1344                message->status = 0;
1345                giveback(pl022);
1346                return;
1347        }
1348
1349        /* Delay if requested at end of transfer before CS change */
1350        if (message->state == STATE_RUNNING) {
1351                previous = list_entry(transfer->transfer_list.prev,
1352                                        struct spi_transfer,
1353                                        transfer_list);
1354                if (previous->delay_usecs)
1355                        /*
1356                         * FIXME: This runs in interrupt context.
1357                         * Is this really smart?
1358                         */
1359                        udelay(previous->delay_usecs);
1360
1361                /* Drop chip select only if cs_change is requested */
1362                if (previous->cs_change)
1363                        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1364        } else {
1365                /* STATE_START */
1366                message->state = STATE_RUNNING;
1367        }
1368
1369        if (set_up_next_transfer(pl022, transfer)) {
1370                message->state = STATE_ERROR;
1371                message->status = -EIO;
1372                giveback(pl022);
1373                return;
1374        }
1375        /* Flush the FIFOs and let's go! */
1376        flush(pl022);
1377
1378        if (pl022->cur_chip->enable_dma) {
1379                if (configure_dma(pl022)) {
1380                        dev_dbg(&pl022->adev->dev,
1381                                "configuration of DMA failed, fall back to interrupt mode\n");
1382                        goto err_config_dma;
1383                }
1384                return;
1385        }
1386
1387err_config_dma:
1388        writew(ENABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1389}
1390
1391static void do_interrupt_dma_transfer(struct pl022 *pl022)
1392{
1393        u32 irqflags = ENABLE_ALL_INTERRUPTS;
1394
1395        /* Enable target chip */
1396        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1397        if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1398                /* Error path */
1399                pl022->cur_msg->state = STATE_ERROR;
1400                pl022->cur_msg->status = -EIO;
1401                giveback(pl022);
1402                return;
1403        }
1404        /* If we're using DMA, set up DMA here */
1405        if (pl022->cur_chip->enable_dma) {
1406                /* Configure DMA transfer */
1407                if (configure_dma(pl022)) {
1408                        dev_dbg(&pl022->adev->dev,
1409                                "configuration of DMA failed, fall back to interrupt mode\n");
1410                        goto err_config_dma;
1411                }
1412                /* Disable interrupts in DMA mode, IRQ from DMA controller */
1413                irqflags = DISABLE_ALL_INTERRUPTS;
1414        }
1415err_config_dma:
1416        /* Enable SSP, turn on interrupts */
1417        writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1418               SSP_CR1(pl022->virtbase));
1419        writew(irqflags, SSP_IMSC(pl022->virtbase));
1420}
1421
1422static void do_polling_transfer(struct pl022 *pl022)
1423{
1424        struct spi_message *message = NULL;
1425        struct spi_transfer *transfer = NULL;
1426        struct spi_transfer *previous = NULL;
1427        struct chip_data *chip;
1428        unsigned long time, timeout;
1429
1430        chip = pl022->cur_chip;
1431        message = pl022->cur_msg;
1432
1433        while (message->state != STATE_DONE) {
1434                /* Handle for abort */
1435                if (message->state == STATE_ERROR)
1436                        break;
1437                transfer = pl022->cur_transfer;
1438
1439                /* Delay if requested at end of transfer */
1440                if (message->state == STATE_RUNNING) {
1441                        previous =
1442                            list_entry(transfer->transfer_list.prev,
1443                                       struct spi_transfer, transfer_list);
1444                        if (previous->delay_usecs)
1445                                udelay(previous->delay_usecs);
1446                        if (previous->cs_change)
1447                                pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1448                } else {
1449                        /* STATE_START */
1450                        message->state = STATE_RUNNING;
1451                        pl022->cur_chip->cs_control(SSP_CHIP_SELECT);
1452                }
1453
1454                /* Configuration Changing Per Transfer */
1455                if (set_up_next_transfer(pl022, transfer)) {
1456                        /* Error path */
1457                        message->state = STATE_ERROR;
1458                        break;
1459                }
1460                /* Flush FIFOs and enable SSP */
1461                flush(pl022);
1462                writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1463                       SSP_CR1(pl022->virtbase));
1464
1465                dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1466
1467                timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1468                while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1469                        time = jiffies;
1470                        readwriter(pl022);
1471                        if (time_after(time, timeout)) {
1472                                dev_warn(&pl022->adev->dev,
1473                                "%s: timeout!\n", __func__);
1474                                message->state = STATE_ERROR;
1475                                goto out;
1476                        }
1477                        cpu_relax();
1478                }
1479
1480                /* Update total byte transferred */
1481                message->actual_length += pl022->cur_transfer->len;
1482                if (pl022->cur_transfer->cs_change)
1483                        pl022->cur_chip->cs_control(SSP_CHIP_DESELECT);
1484                /* Move to next transfer */
1485                message->state = next_transfer(pl022);
1486        }
1487out:
1488        /* Handle end of message */
1489        if (message->state == STATE_DONE)
1490                message->status = 0;
1491        else
1492                message->status = -EIO;
1493
1494        giveback(pl022);
1495        return;
1496}
1497
1498/**
1499 * pump_messages - Workqueue function which processes spi message queue
1500 * @data: pointer to private data of SSP driver
1501 *
1502 * This function checks if there is any spi message in the queue that
1503 * needs processing and delegate control to appropriate function
1504 * do_polling_transfer()/do_interrupt_dma_transfer()
1505 * based on the kind of the transfer
1506 *
1507 */
1508static void pump_messages(struct work_struct *work)
1509{
1510        struct pl022 *pl022 =
1511                container_of(work, struct pl022, pump_messages);
1512        unsigned long flags;
1513
1514        /* Lock queue and check for queue work */
1515        spin_lock_irqsave(&pl022->queue_lock, flags);
1516        if (list_empty(&pl022->queue) || !pl022->running) {
1517                pl022->busy = false;
1518                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1519                return;
1520        }
1521        /* Make sure we are not already running a message */
1522        if (pl022->cur_msg) {
1523                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1524                return;
1525        }
1526        /* Extract head of queue */
1527        pl022->cur_msg =
1528            list_entry(pl022->queue.next, struct spi_message, queue);
1529
1530        list_del_init(&pl022->cur_msg->queue);
1531        pl022->busy = true;
1532        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1533
1534        /* Initial message state */
1535        pl022->cur_msg->state = STATE_START;
1536        pl022->cur_transfer = list_entry(pl022->cur_msg->transfers.next,
1537                                            struct spi_transfer,
1538                                            transfer_list);
1539
1540        /* Setup the SPI using the per chip configuration */
1541        pl022->cur_chip = spi_get_ctldata(pl022->cur_msg->spi);
1542        /*
1543         * We enable the core voltage and clocks here, then the clocks
1544         * and core will be disabled when giveback() is called in each method
1545         * (poll/interrupt/DMA)
1546         */
1547        pm_runtime_get_sync(&pl022->adev->dev);
1548        amba_vcore_enable(pl022->adev);
1549        amba_pclk_enable(pl022->adev);
1550        clk_enable(pl022->clk);
1551        restore_state(pl022);
1552        flush(pl022);
1553
1554        if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1555                do_polling_transfer(pl022);
1556        else
1557                do_interrupt_dma_transfer(pl022);
1558}
1559
1560
1561static int __init init_queue(struct pl022 *pl022)
1562{
1563        INIT_LIST_HEAD(&pl022->queue);
1564        spin_lock_init(&pl022->queue_lock);
1565
1566        pl022->running = false;
1567        pl022->busy = false;
1568
1569        tasklet_init(&pl022->pump_transfers,
1570                        pump_transfers, (unsigned long)pl022);
1571
1572        INIT_WORK(&pl022->pump_messages, pump_messages);
1573        pl022->workqueue = create_singlethread_workqueue(
1574                                        dev_name(pl022->master->dev.parent));
1575        if (pl022->workqueue == NULL)
1576                return -EBUSY;
1577
1578        return 0;
1579}
1580
1581
1582static int start_queue(struct pl022 *pl022)
1583{
1584        unsigned long flags;
1585
1586        spin_lock_irqsave(&pl022->queue_lock, flags);
1587
1588        if (pl022->running || pl022->busy) {
1589                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1590                return -EBUSY;
1591        }
1592
1593        pl022->running = true;
1594        pl022->cur_msg = NULL;
1595        pl022->cur_transfer = NULL;
1596        pl022->cur_chip = NULL;
1597        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1598
1599        queue_work(pl022->workqueue, &pl022->pump_messages);
1600
1601        return 0;
1602}
1603
1604
1605static int stop_queue(struct pl022 *pl022)
1606{
1607        unsigned long flags;
1608        unsigned limit = 500;
1609        int status = 0;
1610
1611        spin_lock_irqsave(&pl022->queue_lock, flags);
1612
1613        /* This is a bit lame, but is optimized for the common execution path.
1614         * A wait_queue on the pl022->busy could be used, but then the common
1615         * execution path (pump_messages) would be required to call wake_up or
1616         * friends on every SPI message. Do this instead */
1617        while ((!list_empty(&pl022->queue) || pl022->busy) && limit--) {
1618                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1619                msleep(10);
1620                spin_lock_irqsave(&pl022->queue_lock, flags);
1621        }
1622
1623        if (!list_empty(&pl022->queue) || pl022->busy)
1624                status = -EBUSY;
1625        else
1626                pl022->running = false;
1627
1628        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1629
1630        return status;
1631}
1632
1633static int destroy_queue(struct pl022 *pl022)
1634{
1635        int status;
1636
1637        status = stop_queue(pl022);
1638        /* we are unloading the module or failing to load (only two calls
1639         * to this routine), and neither call can handle a return value.
1640         * However, destroy_workqueue calls flush_workqueue, and that will
1641         * block until all work is done.  If the reason that stop_queue
1642         * timed out is that the work will never finish, then it does no
1643         * good to call destroy_workqueue, so return anyway. */
1644        if (status != 0)
1645                return status;
1646
1647        destroy_workqueue(pl022->workqueue);
1648
1649        return 0;
1650}
1651
1652static int verify_controller_parameters(struct pl022 *pl022,
1653                                struct pl022_config_chip const *chip_info)
1654{
1655        if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1656            || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1657                dev_err(&pl022->adev->dev,
1658                        "interface is configured incorrectly\n");
1659                return -EINVAL;
1660        }
1661        if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1662            (!pl022->vendor->unidir)) {
1663                dev_err(&pl022->adev->dev,
1664                        "unidirectional mode not supported in this "
1665                        "hardware version\n");
1666                return -EINVAL;
1667        }
1668        if ((chip_info->hierarchy != SSP_MASTER)
1669            && (chip_info->hierarchy != SSP_SLAVE)) {
1670                dev_err(&pl022->adev->dev,
1671                        "hierarchy is configured incorrectly\n");
1672                return -EINVAL;
1673        }
1674        if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1675            && (chip_info->com_mode != DMA_TRANSFER)
1676            && (chip_info->com_mode != POLLING_TRANSFER)) {
1677                dev_err(&pl022->adev->dev,
1678                        "Communication mode is configured incorrectly\n");
1679                return -EINVAL;
1680        }
1681        switch (chip_info->rx_lev_trig) {
1682        case SSP_RX_1_OR_MORE_ELEM:
1683        case SSP_RX_4_OR_MORE_ELEM:
1684        case SSP_RX_8_OR_MORE_ELEM:
1685                /* These are always OK, all variants can handle this */
1686                break;
1687        case SSP_RX_16_OR_MORE_ELEM:
1688                if (pl022->vendor->fifodepth < 16) {
1689                        dev_err(&pl022->adev->dev,
1690                        "RX FIFO Trigger Level is configured incorrectly\n");
1691                        return -EINVAL;
1692                }
1693                break;
1694        case SSP_RX_32_OR_MORE_ELEM:
1695                if (pl022->vendor->fifodepth < 32) {
1696                        dev_err(&pl022->adev->dev,
1697                        "RX FIFO Trigger Level is configured incorrectly\n");
1698                        return -EINVAL;
1699                }
1700                break;
1701        default:
1702                dev_err(&pl022->adev->dev,
1703                        "RX FIFO Trigger Level is configured incorrectly\n");
1704                return -EINVAL;
1705                break;
1706        }
1707        switch (chip_info->tx_lev_trig) {
1708        case SSP_TX_1_OR_MORE_EMPTY_LOC:
1709        case SSP_TX_4_OR_MORE_EMPTY_LOC:
1710        case SSP_TX_8_OR_MORE_EMPTY_LOC:
1711                /* These are always OK, all variants can handle this */
1712                break;
1713        case SSP_TX_16_OR_MORE_EMPTY_LOC:
1714                if (pl022->vendor->fifodepth < 16) {
1715                        dev_err(&pl022->adev->dev,
1716                        "TX FIFO Trigger Level is configured incorrectly\n");
1717                        return -EINVAL;
1718                }
1719                break;
1720        case SSP_TX_32_OR_MORE_EMPTY_LOC:
1721                if (pl022->vendor->fifodepth < 32) {
1722                        dev_err(&pl022->adev->dev,
1723                        "TX FIFO Trigger Level is configured incorrectly\n");
1724                        return -EINVAL;
1725                }
1726                break;
1727        default:
1728                dev_err(&pl022->adev->dev,
1729                        "TX FIFO Trigger Level is configured incorrectly\n");
1730                return -EINVAL;
1731                break;
1732        }
1733        if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1734                if ((chip_info->ctrl_len < SSP_BITS_4)
1735                    || (chip_info->ctrl_len > SSP_BITS_32)) {
1736                        dev_err(&pl022->adev->dev,
1737                                "CTRL LEN is configured incorrectly\n");
1738                        return -EINVAL;
1739                }
1740                if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1741                    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1742                        dev_err(&pl022->adev->dev,
1743                                "Wait State is configured incorrectly\n");
1744                        return -EINVAL;
1745                }
1746                /* Half duplex is only available in the ST Micro version */
1747                if (pl022->vendor->extended_cr) {
1748                        if ((chip_info->duplex !=
1749                             SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1750                            && (chip_info->duplex !=
1751                                SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1752                                dev_err(&pl022->adev->dev,
1753                                        "Microwire duplex mode is configured incorrectly\n");
1754                                return -EINVAL;
1755                        }
1756                } else {
1757                        if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1758                                dev_err(&pl022->adev->dev,
1759                                        "Microwire half duplex mode requested,"
1760                                        " but this is only available in the"
1761                                        " ST version of PL022\n");
1762                        return -EINVAL;
1763                }
1764        }
1765        return 0;
1766}
1767
1768/**
1769 * pl022_transfer - transfer function registered to SPI master framework
1770 * @spi: spi device which is requesting transfer
1771 * @msg: spi message which is to handled is queued to driver queue
1772 *
1773 * This function is registered to the SPI framework for this SPI master
1774 * controller. It will queue the spi_message in the queue of driver if
1775 * the queue is not stopped and return.
1776 */
1777static int pl022_transfer(struct spi_device *spi, struct spi_message *msg)
1778{
1779        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1780        unsigned long flags;
1781
1782        spin_lock_irqsave(&pl022->queue_lock, flags);
1783
1784        if (!pl022->running) {
1785                spin_unlock_irqrestore(&pl022->queue_lock, flags);
1786                return -ESHUTDOWN;
1787        }
1788        msg->actual_length = 0;
1789        msg->status = -EINPROGRESS;
1790        msg->state = STATE_START;
1791
1792        list_add_tail(&msg->queue, &pl022->queue);
1793        if (pl022->running && !pl022->busy)
1794                queue_work(pl022->workqueue, &pl022->pump_messages);
1795
1796        spin_unlock_irqrestore(&pl022->queue_lock, flags);
1797        return 0;
1798}
1799
1800static int calculate_effective_freq(struct pl022 *pl022,
1801                                    int freq,
1802                                    struct ssp_clock_params *clk_freq)
1803{
1804        /* Lets calculate the frequency parameters */
1805        u16 cpsdvsr = 2;
1806        u16 scr = 0;
1807        bool freq_found = false;
1808        u32 rate;
1809        u32 max_tclk;
1810        u32 min_tclk;
1811
1812        rate = clk_get_rate(pl022->clk);
1813        /* cpsdvscr = 2 & scr 0 */
1814        max_tclk = (rate / (CPSDVR_MIN * (1 + SCR_MIN)));
1815        /* cpsdvsr = 254 & scr = 255 */
1816        min_tclk = (rate / (CPSDVR_MAX * (1 + SCR_MAX)));
1817
1818        if ((freq <= max_tclk) && (freq >= min_tclk)) {
1819                while (cpsdvsr <= CPSDVR_MAX && !freq_found) {
1820                        while (scr <= SCR_MAX && !freq_found) {
1821                                if ((rate /
1822                                     (cpsdvsr * (1 + scr))) > freq)
1823                                        scr += 1;
1824                                else {
1825                                        /*
1826                                         * This bool is made true when
1827                                         * effective frequency >=
1828                                         * target frequency is found
1829                                         */
1830                                        freq_found = true;
1831                                        if ((rate /
1832                                             (cpsdvsr * (1 + scr))) != freq) {
1833                                                if (scr == SCR_MIN) {
1834                                                        cpsdvsr -= 2;
1835                                                        scr = SCR_MAX;
1836                                                } else
1837                                                        scr -= 1;
1838                                        }
1839                                }
1840                        }
1841                        if (!freq_found) {
1842                                cpsdvsr += 2;
1843                                scr = SCR_MIN;
1844                        }
1845                }
1846                if (cpsdvsr != 0) {
1847                        dev_dbg(&pl022->adev->dev,
1848                                "SSP Effective Frequency is %u\n",
1849                                (rate / (cpsdvsr * (1 + scr))));
1850                        clk_freq->cpsdvsr = (u8) (cpsdvsr & 0xFF);
1851                        clk_freq->scr = (u8) (scr & 0xFF);
1852                        dev_dbg(&pl022->adev->dev,
1853                                "SSP cpsdvsr = %d, scr = %d\n",
1854                                clk_freq->cpsdvsr, clk_freq->scr);
1855                }
1856        } else {
1857                dev_err(&pl022->adev->dev,
1858                        "controller data is incorrect: out of range frequency");
1859                return -EINVAL;
1860        }
1861        return 0;
1862}
1863
1864
1865/*
1866 * A piece of default chip info unless the platform
1867 * supplies it.
1868 */
1869static const struct pl022_config_chip pl022_default_chip_info = {
1870        .com_mode = POLLING_TRANSFER,
1871        .iface = SSP_INTERFACE_MOTOROLA_SPI,
1872        .hierarchy = SSP_SLAVE,
1873        .slave_tx_disable = DO_NOT_DRIVE_TX,
1874        .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1875        .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1876        .ctrl_len = SSP_BITS_8,
1877        .wait_state = SSP_MWIRE_WAIT_ZERO,
1878        .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1879        .cs_control = null_cs_control,
1880};
1881
1882
1883/**
1884 * pl022_setup - setup function registered to SPI master framework
1885 * @spi: spi device which is requesting setup
1886 *
1887 * This function is registered to the SPI framework for this SPI master
1888 * controller. If it is the first time when setup is called by this device,
1889 * this function will initialize the runtime state for this chip and save
1890 * the same in the device structure. Else it will update the runtime info
1891 * with the updated chip info. Nothing is really being written to the
1892 * controller hardware here, that is not done until the actual transfer
1893 * commence.
1894 */
1895static int pl022_setup(struct spi_device *spi)
1896{
1897        struct pl022_config_chip const *chip_info;
1898        struct chip_data *chip;
1899        struct ssp_clock_params clk_freq = {0, };
1900        int status = 0;
1901        struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1902        unsigned int bits = spi->bits_per_word;
1903        u32 tmp;
1904
1905        if (!spi->max_speed_hz)
1906                return -EINVAL;
1907
1908        /* Get controller_state if one is supplied */
1909        chip = spi_get_ctldata(spi);
1910
1911        if (chip == NULL) {
1912                chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1913                if (!chip) {
1914                        dev_err(&spi->dev,
1915                                "cannot allocate controller state\n");
1916                        return -ENOMEM;
1917                }
1918                dev_dbg(&spi->dev,
1919                        "allocated memory for controller's runtime state\n");
1920        }
1921
1922        /* Get controller data if one is supplied */
1923        chip_info = spi->controller_data;
1924
1925        if (chip_info == NULL) {
1926                chip_info = &pl022_default_chip_info;
1927                /* spi_board_info.controller_data not is supplied */
1928                dev_dbg(&spi->dev,
1929                        "using default controller_data settings\n");
1930        } else
1931                dev_dbg(&spi->dev,
1932                        "using user supplied controller_data settings\n");
1933
1934        /*
1935         * We can override with custom divisors, else we use the board
1936         * frequency setting
1937         */
1938        if ((0 == chip_info->clk_freq.cpsdvsr)
1939            && (0 == chip_info->clk_freq.scr)) {
1940                status = calculate_effective_freq(pl022,
1941                                                  spi->max_speed_hz,
1942                                                  &clk_freq);
1943                if (status < 0)
1944                        goto err_config_params;
1945        } else {
1946                memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1947                if ((clk_freq.cpsdvsr % 2) != 0)
1948                        clk_freq.cpsdvsr =
1949                                clk_freq.cpsdvsr - 1;
1950        }
1951        if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1952            || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1953                status = -EINVAL;
1954                dev_err(&spi->dev,
1955                        "cpsdvsr is configured incorrectly\n");
1956                goto err_config_params;
1957        }
1958
1959
1960        status = verify_controller_parameters(pl022, chip_info);
1961        if (status) {
1962                dev_err(&spi->dev, "controller data is incorrect");
1963                goto err_config_params;
1964        }
1965
1966        pl022->rx_lev_trig = chip_info->rx_lev_trig;
1967        pl022->tx_lev_trig = chip_info->tx_lev_trig;
1968
1969        /* Now set controller state based on controller data */
1970        chip->xfer_type = chip_info->com_mode;
1971        if (!chip_info->cs_control) {
1972                chip->cs_control = null_cs_control;
1973                dev_warn(&spi->dev,
1974                         "chip select function is NULL for this chip\n");
1975        } else
1976                chip->cs_control = chip_info->cs_control;
1977
1978        if (bits <= 3) {
1979                /* PL022 doesn't support less than 4-bits */
1980                status = -ENOTSUPP;
1981                goto err_config_params;
1982        } else if (bits <= 8) {
1983                dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1984                chip->n_bytes = 1;
1985                chip->read = READING_U8;
1986                chip->write = WRITING_U8;
1987        } else if (bits <= 16) {
1988                dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1989                chip->n_bytes = 2;
1990                chip->read = READING_U16;
1991                chip->write = WRITING_U16;
1992        } else {
1993                if (pl022->vendor->max_bpw >= 32) {
1994                        dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1995                        chip->n_bytes = 4;
1996                        chip->read = READING_U32;
1997                        chip->write = WRITING_U32;
1998                } else {
1999                        dev_err(&spi->dev,
2000                                "illegal data size for this controller!\n");
2001                        dev_err(&spi->dev,
2002                                "a standard pl022 can only handle "
2003                                "1 <= n <= 16 bit words\n");
2004                        status = -ENOTSUPP;
2005                        goto err_config_params;
2006                }
2007        }
2008
2009        /* Now Initialize all register settings required for this chip */
2010        chip->cr0 = 0;
2011        chip->cr1 = 0;
2012        chip->dmacr = 0;
2013        chip->cpsr = 0;
2014        if ((chip_info->com_mode == DMA_TRANSFER)
2015            && ((pl022->master_info)->enable_dma)) {
2016                chip->enable_dma = true;
2017                dev_dbg(&spi->dev, "DMA mode set in controller state\n");
2018                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2019                               SSP_DMACR_MASK_RXDMAE, 0);
2020                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
2021                               SSP_DMACR_MASK_TXDMAE, 1);
2022        } else {
2023                chip->enable_dma = false;
2024                dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
2025                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2026                               SSP_DMACR_MASK_RXDMAE, 0);
2027                SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
2028                               SSP_DMACR_MASK_TXDMAE, 1);
2029        }
2030
2031        chip->cpsr = clk_freq.cpsdvsr;
2032
2033        /* Special setup for the ST micro extended control registers */
2034        if (pl022->vendor->extended_cr) {
2035                u32 etx;
2036
2037                if (pl022->vendor->pl023) {
2038                        /* These bits are only in the PL023 */
2039                        SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
2040                                       SSP_CR1_MASK_FBCLKDEL_ST, 13);
2041                } else {
2042                        /* These bits are in the PL022 but not PL023 */
2043                        SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
2044                                       SSP_CR0_MASK_HALFDUP_ST, 5);
2045                        SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
2046                                       SSP_CR0_MASK_CSS_ST, 16);
2047                        SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2048                                       SSP_CR0_MASK_FRF_ST, 21);
2049                        SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2050                                       SSP_CR1_MASK_MWAIT_ST, 6);
2051                }
2052                SSP_WRITE_BITS(chip->cr0, bits - 1,
2053                               SSP_CR0_MASK_DSS_ST, 0);
2054
2055                if (spi->mode & SPI_LSB_FIRST) {
2056                        tmp = SSP_RX_LSB;
2057                        etx = SSP_TX_LSB;
2058                } else {
2059                        tmp = SSP_RX_MSB;
2060                        etx = SSP_TX_MSB;
2061                }
2062                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2063                SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2064                SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2065                               SSP_CR1_MASK_RXIFLSEL_ST, 7);
2066                SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2067                               SSP_CR1_MASK_TXIFLSEL_ST, 10);
2068        } else {
2069                SSP_WRITE_BITS(chip->cr0, bits - 1,
2070                               SSP_CR0_MASK_DSS, 0);
2071                SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2072                               SSP_CR0_MASK_FRF, 4);
2073        }
2074
2075        /* Stuff that is common for all versions */
2076        if (spi->mode & SPI_CPOL)
2077                tmp = SSP_CLK_POL_IDLE_HIGH;
2078        else
2079                tmp = SSP_CLK_POL_IDLE_LOW;
2080        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2081
2082        if (spi->mode & SPI_CPHA)
2083                tmp = SSP_CLK_SECOND_EDGE;
2084        else
2085                tmp = SSP_CLK_FIRST_EDGE;
2086        SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2087
2088        SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2089        /* Loopback is available on all versions except PL023 */
2090        if (pl022->vendor->loopback) {
2091                if (spi->mode & SPI_LOOP)
2092                        tmp = LOOPBACK_ENABLED;
2093                else
2094                        tmp = LOOPBACK_DISABLED;
2095                SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2096        }
2097        SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2098        SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2099        SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 3);
2100
2101        /* Save controller_state */
2102        spi_set_ctldata(spi, chip);
2103        return status;
2104 err_config_params:
2105        spi_set_ctldata(spi, NULL);
2106        kfree(chip);
2107        return status;
2108}
2109
2110/**
2111 * pl022_cleanup - cleanup function registered to SPI master framework
2112 * @spi: spi device which is requesting cleanup
2113 *
2114 * This function is registered to the SPI framework for this SPI master
2115 * controller. It will free the runtime state of chip.
2116 */
2117static void pl022_cleanup(struct spi_device *spi)
2118{
2119        struct chip_data *chip = spi_get_ctldata(spi);
2120
2121        spi_set_ctldata(spi, NULL);
2122        kfree(chip);
2123}
2124
2125
2126static int __devinit
2127pl022_probe(struct amba_device *adev, const struct amba_id *id)
2128{
2129        struct device *dev = &adev->dev;
2130        struct pl022_ssp_controller *platform_info = adev->dev.platform_data;
2131        struct spi_master *master;
2132        struct pl022 *pl022 = NULL;     /*Data for this driver */
2133        int status = 0;
2134
2135        dev_info(&adev->dev,
2136                 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2137        if (platform_info == NULL) {
2138                dev_err(&adev->dev, "probe - no platform data supplied\n");
2139                status = -ENODEV;
2140                goto err_no_pdata;
2141        }
2142
2143        /* Allocate master with space for data */
2144        master = spi_alloc_master(dev, sizeof(struct pl022));
2145        if (master == NULL) {
2146                dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2147                status = -ENOMEM;
2148                goto err_no_master;
2149        }
2150
2151        pl022 = spi_master_get_devdata(master);
2152        pl022->master = master;
2153        pl022->master_info = platform_info;
2154        pl022->adev = adev;
2155        pl022->vendor = id->data;
2156
2157        /*
2158         * Bus Number Which has been Assigned to this SSP controller
2159         * on this board
2160         */
2161        master->bus_num = platform_info->bus_id;
2162        master->num_chipselect = platform_info->num_chipselect;
2163        master->cleanup = pl022_cleanup;
2164        master->setup = pl022_setup;
2165        master->transfer = pl022_transfer;
2166
2167        /*
2168         * Supports mode 0-3, loopback, and active low CS. Transfers are
2169         * always MS bit first on the original pl022.
2170         */
2171        master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2172        if (pl022->vendor->extended_cr)
2173                master->mode_bits |= SPI_LSB_FIRST;
2174
2175        dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2176
2177        status = amba_request_regions(adev, NULL);
2178        if (status)
2179                goto err_no_ioregion;
2180
2181        pl022->phybase = adev->res.start;
2182        pl022->virtbase = ioremap(adev->res.start, resource_size(&adev->res));
2183        if (pl022->virtbase == NULL) {
2184                status = -ENOMEM;
2185                goto err_no_ioremap;
2186        }
2187        printk(KERN_INFO "pl022: mapped registers from 0x%08x to %p\n",
2188               adev->res.start, pl022->virtbase);
2189        pm_runtime_enable(dev);
2190        pm_runtime_resume(dev);
2191
2192        pl022->clk = clk_get(&adev->dev, NULL);
2193        if (IS_ERR(pl022->clk)) {
2194                status = PTR_ERR(pl022->clk);
2195                dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2196                goto err_no_clk;
2197        }
2198
2199        /* Disable SSP */
2200        writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2201               SSP_CR1(pl022->virtbase));
2202        load_ssp_default_config(pl022);
2203
2204        status = request_irq(adev->irq[0], pl022_interrupt_handler, 0, "pl022",
2205                             pl022);
2206        if (status < 0) {
2207                dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2208                goto err_no_irq;
2209        }
2210
2211        /* Get DMA channels */
2212        if (platform_info->enable_dma) {
2213                status = pl022_dma_probe(pl022);
2214                if (status != 0)
2215                        platform_info->enable_dma = 0;
2216        }
2217
2218        /* Initialize and start queue */
2219        status = init_queue(pl022);
2220        if (status != 0) {
2221                dev_err(&adev->dev, "probe - problem initializing queue\n");
2222                goto err_init_queue;
2223        }
2224        status = start_queue(pl022);
2225        if (status != 0) {
2226                dev_err(&adev->dev, "probe - problem starting queue\n");
2227                goto err_start_queue;
2228        }
2229        /* Register with the SPI framework */
2230        amba_set_drvdata(adev, pl022);
2231        status = spi_register_master(master);
2232        if (status != 0) {
2233                dev_err(&adev->dev,
2234                        "probe - problem registering spi master\n");
2235                goto err_spi_register;
2236        }
2237        dev_dbg(dev, "probe succeeded\n");
2238        /*
2239         * Disable the silicon block pclk and any voltage domain and just
2240         * power it up and clock it when it's needed
2241         */
2242        amba_pclk_disable(adev);
2243        amba_vcore_disable(adev);
2244        return 0;
2245
2246 err_spi_register:
2247 err_start_queue:
2248 err_init_queue:
2249        destroy_queue(pl022);
2250        pl022_dma_remove(pl022);
2251        free_irq(adev->irq[0], pl022);
2252        pm_runtime_disable(&adev->dev);
2253 err_no_irq:
2254        clk_put(pl022->clk);
2255 err_no_clk:
2256        iounmap(pl022->virtbase);
2257 err_no_ioremap:
2258        amba_release_regions(adev);
2259 err_no_ioregion:
2260        spi_master_put(master);
2261 err_no_master:
2262 err_no_pdata:
2263        return status;
2264}
2265
2266static int __devexit
2267pl022_remove(struct amba_device *adev)
2268{
2269        struct pl022 *pl022 = amba_get_drvdata(adev);
2270
2271        if (!pl022)
2272                return 0;
2273
2274        /* Remove the queue */
2275        if (destroy_queue(pl022) != 0)
2276                dev_err(&adev->dev, "queue remove failed\n");
2277        load_ssp_default_config(pl022);
2278        pl022_dma_remove(pl022);
2279        free_irq(adev->irq[0], pl022);
2280        clk_disable(pl022->clk);
2281        clk_put(pl022->clk);
2282        iounmap(pl022->virtbase);
2283        amba_release_regions(adev);
2284        tasklet_disable(&pl022->pump_transfers);
2285        spi_unregister_master(pl022->master);
2286        spi_master_put(pl022->master);
2287        amba_set_drvdata(adev, NULL);
2288        return 0;
2289}
2290
2291#ifdef CONFIG_PM
2292static int pl022_suspend(struct amba_device *adev, pm_message_t state)
2293{
2294        struct pl022 *pl022 = amba_get_drvdata(adev);
2295        int status = 0;
2296
2297        status = stop_queue(pl022);
2298        if (status) {
2299                dev_warn(&adev->dev, "suspend cannot stop queue\n");
2300                return status;
2301        }
2302
2303        amba_vcore_enable(adev);
2304        amba_pclk_enable(adev);
2305        load_ssp_default_config(pl022);
2306        amba_pclk_disable(adev);
2307        amba_vcore_disable(adev);
2308        dev_dbg(&adev->dev, "suspended\n");
2309        return 0;
2310}
2311
2312static int pl022_resume(struct amba_device *adev)
2313{
2314        struct pl022 *pl022 = amba_get_drvdata(adev);
2315        int status = 0;
2316
2317        /* Start the queue running */
2318        status = start_queue(pl022);
2319        if (status)
2320                dev_err(&adev->dev, "problem starting queue (%d)\n", status);
2321        else
2322                dev_dbg(&adev->dev, "resumed\n");
2323
2324        return status;
2325}
2326#else
2327#define pl022_suspend NULL
2328#define pl022_resume NULL
2329#endif  /* CONFIG_PM */
2330
2331static struct vendor_data vendor_arm = {
2332        .fifodepth = 8,
2333        .max_bpw = 16,
2334        .unidir = false,
2335        .extended_cr = false,
2336        .pl023 = false,
2337        .loopback = true,
2338};
2339
2340
2341static struct vendor_data vendor_st = {
2342        .fifodepth = 32,
2343        .max_bpw = 32,
2344        .unidir = false,
2345        .extended_cr = true,
2346        .pl023 = false,
2347        .loopback = true,
2348};
2349
2350static struct vendor_data vendor_st_pl023 = {
2351        .fifodepth = 32,
2352        .max_bpw = 32,
2353        .unidir = false,
2354        .extended_cr = true,
2355        .pl023 = true,
2356        .loopback = false,
2357};
2358
2359static struct vendor_data vendor_db5500_pl023 = {
2360        .fifodepth = 32,
2361        .max_bpw = 32,
2362        .unidir = false,
2363        .extended_cr = true,
2364        .pl023 = true,
2365        .loopback = true,
2366};
2367
2368static struct amba_id pl022_ids[] = {
2369        {
2370                /*
2371                 * ARM PL022 variant, this has a 16bit wide
2372                 * and 8 locations deep TX/RX FIFO
2373                 */
2374                .id     = 0x00041022,
2375                .mask   = 0x000fffff,
2376                .data   = &vendor_arm,
2377        },
2378        {
2379                /*
2380                 * ST Micro derivative, this has 32bit wide
2381                 * and 32 locations deep TX/RX FIFO
2382                 */
2383                .id     = 0x01080022,
2384                .mask   = 0xffffffff,
2385                .data   = &vendor_st,
2386        },
2387        {
2388                /*
2389                 * ST-Ericsson derivative "PL023" (this is not
2390                 * an official ARM number), this is a PL022 SSP block
2391                 * stripped to SPI mode only, it has 32bit wide
2392                 * and 32 locations deep TX/RX FIFO but no extended
2393                 * CR0/CR1 register
2394                 */
2395                .id     = 0x00080023,
2396                .mask   = 0xffffffff,
2397                .data   = &vendor_st_pl023,
2398        },
2399        {
2400                .id     = 0x10080023,
2401                .mask   = 0xffffffff,
2402                .data   = &vendor_db5500_pl023,
2403        },
2404        { 0, 0 },
2405};
2406
2407static struct amba_driver pl022_driver = {
2408        .drv = {
2409                .name   = "ssp-pl022",
2410        },
2411        .id_table       = pl022_ids,
2412        .probe          = pl022_probe,
2413        .remove         = __devexit_p(pl022_remove),
2414        .suspend        = pl022_suspend,
2415        .resume         = pl022_resume,
2416};
2417
2418
2419static int __init pl022_init(void)
2420{
2421        return amba_driver_register(&pl022_driver);
2422}
2423
2424subsys_initcall(pl022_init);
2425
2426static void __exit pl022_exit(void)
2427{
2428        amba_driver_unregister(&pl022_driver);
2429}
2430
2431module_exit(pl022_exit);
2432
2433MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2434MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2435MODULE_LICENSE("GPL");
2436