linux/fs/btrfs/compression.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2008 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/bit_spinlock.h>
  34#include <linux/slab.h>
  35#include "compat.h"
  36#include "ctree.h"
  37#include "disk-io.h"
  38#include "transaction.h"
  39#include "btrfs_inode.h"
  40#include "volumes.h"
  41#include "ordered-data.h"
  42#include "compression.h"
  43#include "extent_io.h"
  44#include "extent_map.h"
  45
  46struct compressed_bio {
  47        /* number of bios pending for this compressed extent */
  48        atomic_t pending_bios;
  49
  50        /* the pages with the compressed data on them */
  51        struct page **compressed_pages;
  52
  53        /* inode that owns this data */
  54        struct inode *inode;
  55
  56        /* starting offset in the inode for our pages */
  57        u64 start;
  58
  59        /* number of bytes in the inode we're working on */
  60        unsigned long len;
  61
  62        /* number of bytes on disk */
  63        unsigned long compressed_len;
  64
  65        /* the compression algorithm for this bio */
  66        int compress_type;
  67
  68        /* number of compressed pages in the array */
  69        unsigned long nr_pages;
  70
  71        /* IO errors */
  72        int errors;
  73        int mirror_num;
  74
  75        /* for reads, this is the bio we are copying the data into */
  76        struct bio *orig_bio;
  77
  78        /*
  79         * the start of a variable length array of checksums only
  80         * used by reads
  81         */
  82        u32 sums;
  83};
  84
  85static inline int compressed_bio_size(struct btrfs_root *root,
  86                                      unsigned long disk_size)
  87{
  88        u16 csum_size = btrfs_super_csum_size(&root->fs_info->super_copy);
  89        return sizeof(struct compressed_bio) +
  90                ((disk_size + root->sectorsize - 1) / root->sectorsize) *
  91                csum_size;
  92}
  93
  94static struct bio *compressed_bio_alloc(struct block_device *bdev,
  95                                        u64 first_byte, gfp_t gfp_flags)
  96{
  97        int nr_vecs;
  98
  99        nr_vecs = bio_get_nr_vecs(bdev);
 100        return btrfs_bio_alloc(bdev, first_byte >> 9, nr_vecs, gfp_flags);
 101}
 102
 103static int check_compressed_csum(struct inode *inode,
 104                                 struct compressed_bio *cb,
 105                                 u64 disk_start)
 106{
 107        int ret;
 108        struct btrfs_root *root = BTRFS_I(inode)->root;
 109        struct page *page;
 110        unsigned long i;
 111        char *kaddr;
 112        u32 csum;
 113        u32 *cb_sum = &cb->sums;
 114
 115        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
 116                return 0;
 117
 118        for (i = 0; i < cb->nr_pages; i++) {
 119                page = cb->compressed_pages[i];
 120                csum = ~(u32)0;
 121
 122                kaddr = kmap_atomic(page, KM_USER0);
 123                csum = btrfs_csum_data(root, kaddr, csum, PAGE_CACHE_SIZE);
 124                btrfs_csum_final(csum, (char *)&csum);
 125                kunmap_atomic(kaddr, KM_USER0);
 126
 127                if (csum != *cb_sum) {
 128                        printk(KERN_INFO "btrfs csum failed ino %llu "
 129                               "extent %llu csum %u "
 130                               "wanted %u mirror %d\n",
 131                               (unsigned long long)btrfs_ino(inode),
 132                               (unsigned long long)disk_start,
 133                               csum, *cb_sum, cb->mirror_num);
 134                        ret = -EIO;
 135                        goto fail;
 136                }
 137                cb_sum++;
 138
 139        }
 140        ret = 0;
 141fail:
 142        return ret;
 143}
 144
 145/* when we finish reading compressed pages from the disk, we
 146 * decompress them and then run the bio end_io routines on the
 147 * decompressed pages (in the inode address space).
 148 *
 149 * This allows the checksumming and other IO error handling routines
 150 * to work normally
 151 *
 152 * The compressed pages are freed here, and it must be run
 153 * in process context
 154 */
 155static void end_compressed_bio_read(struct bio *bio, int err)
 156{
 157        struct compressed_bio *cb = bio->bi_private;
 158        struct inode *inode;
 159        struct page *page;
 160        unsigned long index;
 161        int ret;
 162
 163        if (err)
 164                cb->errors = 1;
 165
 166        /* if there are more bios still pending for this compressed
 167         * extent, just exit
 168         */
 169        if (!atomic_dec_and_test(&cb->pending_bios))
 170                goto out;
 171
 172        inode = cb->inode;
 173        ret = check_compressed_csum(inode, cb, (u64)bio->bi_sector << 9);
 174        if (ret)
 175                goto csum_failed;
 176
 177        /* ok, we're the last bio for this extent, lets start
 178         * the decompression.
 179         */
 180        ret = btrfs_decompress_biovec(cb->compress_type,
 181                                      cb->compressed_pages,
 182                                      cb->start,
 183                                      cb->orig_bio->bi_io_vec,
 184                                      cb->orig_bio->bi_vcnt,
 185                                      cb->compressed_len);
 186csum_failed:
 187        if (ret)
 188                cb->errors = 1;
 189
 190        /* release the compressed pages */
 191        index = 0;
 192        for (index = 0; index < cb->nr_pages; index++) {
 193                page = cb->compressed_pages[index];
 194                page->mapping = NULL;
 195                page_cache_release(page);
 196        }
 197
 198        /* do io completion on the original bio */
 199        if (cb->errors) {
 200                bio_io_error(cb->orig_bio);
 201        } else {
 202                int bio_index = 0;
 203                struct bio_vec *bvec = cb->orig_bio->bi_io_vec;
 204
 205                /*
 206                 * we have verified the checksum already, set page
 207                 * checked so the end_io handlers know about it
 208                 */
 209                while (bio_index < cb->orig_bio->bi_vcnt) {
 210                        SetPageChecked(bvec->bv_page);
 211                        bvec++;
 212                        bio_index++;
 213                }
 214                bio_endio(cb->orig_bio, 0);
 215        }
 216
 217        /* finally free the cb struct */
 218        kfree(cb->compressed_pages);
 219        kfree(cb);
 220out:
 221        bio_put(bio);
 222}
 223
 224/*
 225 * Clear the writeback bits on all of the file
 226 * pages for a compressed write
 227 */
 228static noinline int end_compressed_writeback(struct inode *inode, u64 start,
 229                                             unsigned long ram_size)
 230{
 231        unsigned long index = start >> PAGE_CACHE_SHIFT;
 232        unsigned long end_index = (start + ram_size - 1) >> PAGE_CACHE_SHIFT;
 233        struct page *pages[16];
 234        unsigned long nr_pages = end_index - index + 1;
 235        int i;
 236        int ret;
 237
 238        while (nr_pages > 0) {
 239                ret = find_get_pages_contig(inode->i_mapping, index,
 240                                     min_t(unsigned long,
 241                                     nr_pages, ARRAY_SIZE(pages)), pages);
 242                if (ret == 0) {
 243                        nr_pages -= 1;
 244                        index += 1;
 245                        continue;
 246                }
 247                for (i = 0; i < ret; i++) {
 248                        end_page_writeback(pages[i]);
 249                        page_cache_release(pages[i]);
 250                }
 251                nr_pages -= ret;
 252                index += ret;
 253        }
 254        /* the inode may be gone now */
 255        return 0;
 256}
 257
 258/*
 259 * do the cleanup once all the compressed pages hit the disk.
 260 * This will clear writeback on the file pages and free the compressed
 261 * pages.
 262 *
 263 * This also calls the writeback end hooks for the file pages so that
 264 * metadata and checksums can be updated in the file.
 265 */
 266static void end_compressed_bio_write(struct bio *bio, int err)
 267{
 268        struct extent_io_tree *tree;
 269        struct compressed_bio *cb = bio->bi_private;
 270        struct inode *inode;
 271        struct page *page;
 272        unsigned long index;
 273
 274        if (err)
 275                cb->errors = 1;
 276
 277        /* if there are more bios still pending for this compressed
 278         * extent, just exit
 279         */
 280        if (!atomic_dec_and_test(&cb->pending_bios))
 281                goto out;
 282
 283        /* ok, we're the last bio for this extent, step one is to
 284         * call back into the FS and do all the end_io operations
 285         */
 286        inode = cb->inode;
 287        tree = &BTRFS_I(inode)->io_tree;
 288        cb->compressed_pages[0]->mapping = cb->inode->i_mapping;
 289        tree->ops->writepage_end_io_hook(cb->compressed_pages[0],
 290                                         cb->start,
 291                                         cb->start + cb->len - 1,
 292                                         NULL, 1);
 293        cb->compressed_pages[0]->mapping = NULL;
 294
 295        end_compressed_writeback(inode, cb->start, cb->len);
 296        /* note, our inode could be gone now */
 297
 298        /*
 299         * release the compressed pages, these came from alloc_page and
 300         * are not attached to the inode at all
 301         */
 302        index = 0;
 303        for (index = 0; index < cb->nr_pages; index++) {
 304                page = cb->compressed_pages[index];
 305                page->mapping = NULL;
 306                page_cache_release(page);
 307        }
 308
 309        /* finally free the cb struct */
 310        kfree(cb->compressed_pages);
 311        kfree(cb);
 312out:
 313        bio_put(bio);
 314}
 315
 316/*
 317 * worker function to build and submit bios for previously compressed pages.
 318 * The corresponding pages in the inode should be marked for writeback
 319 * and the compressed pages should have a reference on them for dropping
 320 * when the IO is complete.
 321 *
 322 * This also checksums the file bytes and gets things ready for
 323 * the end io hooks.
 324 */
 325int btrfs_submit_compressed_write(struct inode *inode, u64 start,
 326                                 unsigned long len, u64 disk_start,
 327                                 unsigned long compressed_len,
 328                                 struct page **compressed_pages,
 329                                 unsigned long nr_pages)
 330{
 331        struct bio *bio = NULL;
 332        struct btrfs_root *root = BTRFS_I(inode)->root;
 333        struct compressed_bio *cb;
 334        unsigned long bytes_left;
 335        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
 336        int pg_index = 0;
 337        struct page *page;
 338        u64 first_byte = disk_start;
 339        struct block_device *bdev;
 340        int ret;
 341        int skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
 342
 343        WARN_ON(start & ((u64)PAGE_CACHE_SIZE - 1));
 344        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 345        if (!cb)
 346                return -ENOMEM;
 347        atomic_set(&cb->pending_bios, 0);
 348        cb->errors = 0;
 349        cb->inode = inode;
 350        cb->start = start;
 351        cb->len = len;
 352        cb->mirror_num = 0;
 353        cb->compressed_pages = compressed_pages;
 354        cb->compressed_len = compressed_len;
 355        cb->orig_bio = NULL;
 356        cb->nr_pages = nr_pages;
 357
 358        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 359
 360        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 361        if(!bio) {
 362                kfree(cb);
 363                return -ENOMEM;
 364        }
 365        bio->bi_private = cb;
 366        bio->bi_end_io = end_compressed_bio_write;
 367        atomic_inc(&cb->pending_bios);
 368
 369        /* create and submit bios for the compressed pages */
 370        bytes_left = compressed_len;
 371        for (pg_index = 0; pg_index < cb->nr_pages; pg_index++) {
 372                page = compressed_pages[pg_index];
 373                page->mapping = inode->i_mapping;
 374                if (bio->bi_size)
 375                        ret = io_tree->ops->merge_bio_hook(page, 0,
 376                                                           PAGE_CACHE_SIZE,
 377                                                           bio, 0);
 378                else
 379                        ret = 0;
 380
 381                page->mapping = NULL;
 382                if (ret || bio_add_page(bio, page, PAGE_CACHE_SIZE, 0) <
 383                    PAGE_CACHE_SIZE) {
 384                        bio_get(bio);
 385
 386                        /*
 387                         * inc the count before we submit the bio so
 388                         * we know the end IO handler won't happen before
 389                         * we inc the count.  Otherwise, the cb might get
 390                         * freed before we're done setting it up
 391                         */
 392                        atomic_inc(&cb->pending_bios);
 393                        ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 394                        BUG_ON(ret);
 395
 396                        if (!skip_sum) {
 397                                ret = btrfs_csum_one_bio(root, inode, bio,
 398                                                         start, 1);
 399                                BUG_ON(ret);
 400                        }
 401
 402                        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 403                        BUG_ON(ret);
 404
 405                        bio_put(bio);
 406
 407                        bio = compressed_bio_alloc(bdev, first_byte, GFP_NOFS);
 408                        bio->bi_private = cb;
 409                        bio->bi_end_io = end_compressed_bio_write;
 410                        bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
 411                }
 412                if (bytes_left < PAGE_CACHE_SIZE) {
 413                        printk("bytes left %lu compress len %lu nr %lu\n",
 414                               bytes_left, cb->compressed_len, cb->nr_pages);
 415                }
 416                bytes_left -= PAGE_CACHE_SIZE;
 417                first_byte += PAGE_CACHE_SIZE;
 418                cond_resched();
 419        }
 420        bio_get(bio);
 421
 422        ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
 423        BUG_ON(ret);
 424
 425        if (!skip_sum) {
 426                ret = btrfs_csum_one_bio(root, inode, bio, start, 1);
 427                BUG_ON(ret);
 428        }
 429
 430        ret = btrfs_map_bio(root, WRITE, bio, 0, 1);
 431        BUG_ON(ret);
 432
 433        bio_put(bio);
 434        return 0;
 435}
 436
 437static noinline int add_ra_bio_pages(struct inode *inode,
 438                                     u64 compressed_end,
 439                                     struct compressed_bio *cb)
 440{
 441        unsigned long end_index;
 442        unsigned long pg_index;
 443        u64 last_offset;
 444        u64 isize = i_size_read(inode);
 445        int ret;
 446        struct page *page;
 447        unsigned long nr_pages = 0;
 448        struct extent_map *em;
 449        struct address_space *mapping = inode->i_mapping;
 450        struct extent_map_tree *em_tree;
 451        struct extent_io_tree *tree;
 452        u64 end;
 453        int misses = 0;
 454
 455        page = cb->orig_bio->bi_io_vec[cb->orig_bio->bi_vcnt - 1].bv_page;
 456        last_offset = (page_offset(page) + PAGE_CACHE_SIZE);
 457        em_tree = &BTRFS_I(inode)->extent_tree;
 458        tree = &BTRFS_I(inode)->io_tree;
 459
 460        if (isize == 0)
 461                return 0;
 462
 463        end_index = (i_size_read(inode) - 1) >> PAGE_CACHE_SHIFT;
 464
 465        while (last_offset < compressed_end) {
 466                pg_index = last_offset >> PAGE_CACHE_SHIFT;
 467
 468                if (pg_index > end_index)
 469                        break;
 470
 471                rcu_read_lock();
 472                page = radix_tree_lookup(&mapping->page_tree, pg_index);
 473                rcu_read_unlock();
 474                if (page) {
 475                        misses++;
 476                        if (misses > 4)
 477                                break;
 478                        goto next;
 479                }
 480
 481                page = __page_cache_alloc(mapping_gfp_mask(mapping) &
 482                                                                ~__GFP_FS);
 483                if (!page)
 484                        break;
 485
 486                if (add_to_page_cache_lru(page, mapping, pg_index,
 487                                                                GFP_NOFS)) {
 488                        page_cache_release(page);
 489                        goto next;
 490                }
 491
 492                end = last_offset + PAGE_CACHE_SIZE - 1;
 493                /*
 494                 * at this point, we have a locked page in the page cache
 495                 * for these bytes in the file.  But, we have to make
 496                 * sure they map to this compressed extent on disk.
 497                 */
 498                set_page_extent_mapped(page);
 499                lock_extent(tree, last_offset, end, GFP_NOFS);
 500                read_lock(&em_tree->lock);
 501                em = lookup_extent_mapping(em_tree, last_offset,
 502                                           PAGE_CACHE_SIZE);
 503                read_unlock(&em_tree->lock);
 504
 505                if (!em || last_offset < em->start ||
 506                    (last_offset + PAGE_CACHE_SIZE > extent_map_end(em)) ||
 507                    (em->block_start >> 9) != cb->orig_bio->bi_sector) {
 508                        free_extent_map(em);
 509                        unlock_extent(tree, last_offset, end, GFP_NOFS);
 510                        unlock_page(page);
 511                        page_cache_release(page);
 512                        break;
 513                }
 514                free_extent_map(em);
 515
 516                if (page->index == end_index) {
 517                        char *userpage;
 518                        size_t zero_offset = isize & (PAGE_CACHE_SIZE - 1);
 519
 520                        if (zero_offset) {
 521                                int zeros;
 522                                zeros = PAGE_CACHE_SIZE - zero_offset;
 523                                userpage = kmap_atomic(page, KM_USER0);
 524                                memset(userpage + zero_offset, 0, zeros);
 525                                flush_dcache_page(page);
 526                                kunmap_atomic(userpage, KM_USER0);
 527                        }
 528                }
 529
 530                ret = bio_add_page(cb->orig_bio, page,
 531                                   PAGE_CACHE_SIZE, 0);
 532
 533                if (ret == PAGE_CACHE_SIZE) {
 534                        nr_pages++;
 535                        page_cache_release(page);
 536                } else {
 537                        unlock_extent(tree, last_offset, end, GFP_NOFS);
 538                        unlock_page(page);
 539                        page_cache_release(page);
 540                        break;
 541                }
 542next:
 543                last_offset += PAGE_CACHE_SIZE;
 544        }
 545        return 0;
 546}
 547
 548/*
 549 * for a compressed read, the bio we get passed has all the inode pages
 550 * in it.  We don't actually do IO on those pages but allocate new ones
 551 * to hold the compressed pages on disk.
 552 *
 553 * bio->bi_sector points to the compressed extent on disk
 554 * bio->bi_io_vec points to all of the inode pages
 555 * bio->bi_vcnt is a count of pages
 556 *
 557 * After the compressed pages are read, we copy the bytes into the
 558 * bio we were passed and then call the bio end_io calls
 559 */
 560int btrfs_submit_compressed_read(struct inode *inode, struct bio *bio,
 561                                 int mirror_num, unsigned long bio_flags)
 562{
 563        struct extent_io_tree *tree;
 564        struct extent_map_tree *em_tree;
 565        struct compressed_bio *cb;
 566        struct btrfs_root *root = BTRFS_I(inode)->root;
 567        unsigned long uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 568        unsigned long compressed_len;
 569        unsigned long nr_pages;
 570        unsigned long pg_index;
 571        struct page *page;
 572        struct block_device *bdev;
 573        struct bio *comp_bio;
 574        u64 cur_disk_byte = (u64)bio->bi_sector << 9;
 575        u64 em_len;
 576        u64 em_start;
 577        struct extent_map *em;
 578        int ret = -ENOMEM;
 579        u32 *sums;
 580
 581        tree = &BTRFS_I(inode)->io_tree;
 582        em_tree = &BTRFS_I(inode)->extent_tree;
 583
 584        /* we need the actual starting offset of this extent in the file */
 585        read_lock(&em_tree->lock);
 586        em = lookup_extent_mapping(em_tree,
 587                                   page_offset(bio->bi_io_vec->bv_page),
 588                                   PAGE_CACHE_SIZE);
 589        read_unlock(&em_tree->lock);
 590
 591        compressed_len = em->block_len;
 592        cb = kmalloc(compressed_bio_size(root, compressed_len), GFP_NOFS);
 593        if (!cb)
 594                goto out;
 595
 596        atomic_set(&cb->pending_bios, 0);
 597        cb->errors = 0;
 598        cb->inode = inode;
 599        cb->mirror_num = mirror_num;
 600        sums = &cb->sums;
 601
 602        cb->start = em->orig_start;
 603        em_len = em->len;
 604        em_start = em->start;
 605
 606        free_extent_map(em);
 607        em = NULL;
 608
 609        cb->len = uncompressed_len;
 610        cb->compressed_len = compressed_len;
 611        cb->compress_type = extent_compress_type(bio_flags);
 612        cb->orig_bio = bio;
 613
 614        nr_pages = (compressed_len + PAGE_CACHE_SIZE - 1) /
 615                                 PAGE_CACHE_SIZE;
 616        cb->compressed_pages = kzalloc(sizeof(struct page *) * nr_pages,
 617                                       GFP_NOFS);
 618        if (!cb->compressed_pages)
 619                goto fail1;
 620
 621        bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 622
 623        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 624                cb->compressed_pages[pg_index] = alloc_page(GFP_NOFS |
 625                                                              __GFP_HIGHMEM);
 626                if (!cb->compressed_pages[pg_index])
 627                        goto fail2;
 628        }
 629        cb->nr_pages = nr_pages;
 630
 631        add_ra_bio_pages(inode, em_start + em_len, cb);
 632
 633        /* include any pages we added in add_ra-bio_pages */
 634        uncompressed_len = bio->bi_vcnt * PAGE_CACHE_SIZE;
 635        cb->len = uncompressed_len;
 636
 637        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte, GFP_NOFS);
 638        if (!comp_bio)
 639                goto fail2;
 640        comp_bio->bi_private = cb;
 641        comp_bio->bi_end_io = end_compressed_bio_read;
 642        atomic_inc(&cb->pending_bios);
 643
 644        for (pg_index = 0; pg_index < nr_pages; pg_index++) {
 645                page = cb->compressed_pages[pg_index];
 646                page->mapping = inode->i_mapping;
 647                page->index = em_start >> PAGE_CACHE_SHIFT;
 648
 649                if (comp_bio->bi_size)
 650                        ret = tree->ops->merge_bio_hook(page, 0,
 651                                                        PAGE_CACHE_SIZE,
 652                                                        comp_bio, 0);
 653                else
 654                        ret = 0;
 655
 656                page->mapping = NULL;
 657                if (ret || bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0) <
 658                    PAGE_CACHE_SIZE) {
 659                        bio_get(comp_bio);
 660
 661                        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 662                        BUG_ON(ret);
 663
 664                        /*
 665                         * inc the count before we submit the bio so
 666                         * we know the end IO handler won't happen before
 667                         * we inc the count.  Otherwise, the cb might get
 668                         * freed before we're done setting it up
 669                         */
 670                        atomic_inc(&cb->pending_bios);
 671
 672                        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 673                                ret = btrfs_lookup_bio_sums(root, inode,
 674                                                        comp_bio, sums);
 675                                BUG_ON(ret);
 676                        }
 677                        sums += (comp_bio->bi_size + root->sectorsize - 1) /
 678                                root->sectorsize;
 679
 680                        ret = btrfs_map_bio(root, READ, comp_bio,
 681                                            mirror_num, 0);
 682                        BUG_ON(ret);
 683
 684                        bio_put(comp_bio);
 685
 686                        comp_bio = compressed_bio_alloc(bdev, cur_disk_byte,
 687                                                        GFP_NOFS);
 688                        comp_bio->bi_private = cb;
 689                        comp_bio->bi_end_io = end_compressed_bio_read;
 690
 691                        bio_add_page(comp_bio, page, PAGE_CACHE_SIZE, 0);
 692                }
 693                cur_disk_byte += PAGE_CACHE_SIZE;
 694        }
 695        bio_get(comp_bio);
 696
 697        ret = btrfs_bio_wq_end_io(root->fs_info, comp_bio, 0);
 698        BUG_ON(ret);
 699
 700        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
 701                ret = btrfs_lookup_bio_sums(root, inode, comp_bio, sums);
 702                BUG_ON(ret);
 703        }
 704
 705        ret = btrfs_map_bio(root, READ, comp_bio, mirror_num, 0);
 706        BUG_ON(ret);
 707
 708        bio_put(comp_bio);
 709        return 0;
 710
 711fail2:
 712        for (pg_index = 0; pg_index < nr_pages; pg_index++)
 713                free_page((unsigned long)cb->compressed_pages[pg_index]);
 714
 715        kfree(cb->compressed_pages);
 716fail1:
 717        kfree(cb);
 718out:
 719        free_extent_map(em);
 720        return ret;
 721}
 722
 723static struct list_head comp_idle_workspace[BTRFS_COMPRESS_TYPES];
 724static spinlock_t comp_workspace_lock[BTRFS_COMPRESS_TYPES];
 725static int comp_num_workspace[BTRFS_COMPRESS_TYPES];
 726static atomic_t comp_alloc_workspace[BTRFS_COMPRESS_TYPES];
 727static wait_queue_head_t comp_workspace_wait[BTRFS_COMPRESS_TYPES];
 728
 729struct btrfs_compress_op *btrfs_compress_op[] = {
 730        &btrfs_zlib_compress,
 731        &btrfs_lzo_compress,
 732};
 733
 734int __init btrfs_init_compress(void)
 735{
 736        int i;
 737
 738        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 739                INIT_LIST_HEAD(&comp_idle_workspace[i]);
 740                spin_lock_init(&comp_workspace_lock[i]);
 741                atomic_set(&comp_alloc_workspace[i], 0);
 742                init_waitqueue_head(&comp_workspace_wait[i]);
 743        }
 744        return 0;
 745}
 746
 747/*
 748 * this finds an available workspace or allocates a new one
 749 * ERR_PTR is returned if things go bad.
 750 */
 751static struct list_head *find_workspace(int type)
 752{
 753        struct list_head *workspace;
 754        int cpus = num_online_cpus();
 755        int idx = type - 1;
 756
 757        struct list_head *idle_workspace        = &comp_idle_workspace[idx];
 758        spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
 759        atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
 760        wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
 761        int *num_workspace                      = &comp_num_workspace[idx];
 762again:
 763        spin_lock(workspace_lock);
 764        if (!list_empty(idle_workspace)) {
 765                workspace = idle_workspace->next;
 766                list_del(workspace);
 767                (*num_workspace)--;
 768                spin_unlock(workspace_lock);
 769                return workspace;
 770
 771        }
 772        if (atomic_read(alloc_workspace) > cpus) {
 773                DEFINE_WAIT(wait);
 774
 775                spin_unlock(workspace_lock);
 776                prepare_to_wait(workspace_wait, &wait, TASK_UNINTERRUPTIBLE);
 777                if (atomic_read(alloc_workspace) > cpus && !*num_workspace)
 778                        schedule();
 779                finish_wait(workspace_wait, &wait);
 780                goto again;
 781        }
 782        atomic_inc(alloc_workspace);
 783        spin_unlock(workspace_lock);
 784
 785        workspace = btrfs_compress_op[idx]->alloc_workspace();
 786        if (IS_ERR(workspace)) {
 787                atomic_dec(alloc_workspace);
 788                wake_up(workspace_wait);
 789        }
 790        return workspace;
 791}
 792
 793/*
 794 * put a workspace struct back on the list or free it if we have enough
 795 * idle ones sitting around
 796 */
 797static void free_workspace(int type, struct list_head *workspace)
 798{
 799        int idx = type - 1;
 800        struct list_head *idle_workspace        = &comp_idle_workspace[idx];
 801        spinlock_t *workspace_lock              = &comp_workspace_lock[idx];
 802        atomic_t *alloc_workspace               = &comp_alloc_workspace[idx];
 803        wait_queue_head_t *workspace_wait       = &comp_workspace_wait[idx];
 804        int *num_workspace                      = &comp_num_workspace[idx];
 805
 806        spin_lock(workspace_lock);
 807        if (*num_workspace < num_online_cpus()) {
 808                list_add_tail(workspace, idle_workspace);
 809                (*num_workspace)++;
 810                spin_unlock(workspace_lock);
 811                goto wake;
 812        }
 813        spin_unlock(workspace_lock);
 814
 815        btrfs_compress_op[idx]->free_workspace(workspace);
 816        atomic_dec(alloc_workspace);
 817wake:
 818        if (waitqueue_active(workspace_wait))
 819                wake_up(workspace_wait);
 820}
 821
 822/*
 823 * cleanup function for module exit
 824 */
 825static void free_workspaces(void)
 826{
 827        struct list_head *workspace;
 828        int i;
 829
 830        for (i = 0; i < BTRFS_COMPRESS_TYPES; i++) {
 831                while (!list_empty(&comp_idle_workspace[i])) {
 832                        workspace = comp_idle_workspace[i].next;
 833                        list_del(workspace);
 834                        btrfs_compress_op[i]->free_workspace(workspace);
 835                        atomic_dec(&comp_alloc_workspace[i]);
 836                }
 837        }
 838}
 839
 840/*
 841 * given an address space and start/len, compress the bytes.
 842 *
 843 * pages are allocated to hold the compressed result and stored
 844 * in 'pages'
 845 *
 846 * out_pages is used to return the number of pages allocated.  There
 847 * may be pages allocated even if we return an error
 848 *
 849 * total_in is used to return the number of bytes actually read.  It
 850 * may be smaller then len if we had to exit early because we
 851 * ran out of room in the pages array or because we cross the
 852 * max_out threshold.
 853 *
 854 * total_out is used to return the total number of compressed bytes
 855 *
 856 * max_out tells us the max number of bytes that we're allowed to
 857 * stuff into pages
 858 */
 859int btrfs_compress_pages(int type, struct address_space *mapping,
 860                         u64 start, unsigned long len,
 861                         struct page **pages,
 862                         unsigned long nr_dest_pages,
 863                         unsigned long *out_pages,
 864                         unsigned long *total_in,
 865                         unsigned long *total_out,
 866                         unsigned long max_out)
 867{
 868        struct list_head *workspace;
 869        int ret;
 870
 871        workspace = find_workspace(type);
 872        if (IS_ERR(workspace))
 873                return -1;
 874
 875        ret = btrfs_compress_op[type-1]->compress_pages(workspace, mapping,
 876                                                      start, len, pages,
 877                                                      nr_dest_pages, out_pages,
 878                                                      total_in, total_out,
 879                                                      max_out);
 880        free_workspace(type, workspace);
 881        return ret;
 882}
 883
 884/*
 885 * pages_in is an array of pages with compressed data.
 886 *
 887 * disk_start is the starting logical offset of this array in the file
 888 *
 889 * bvec is a bio_vec of pages from the file that we want to decompress into
 890 *
 891 * vcnt is the count of pages in the biovec
 892 *
 893 * srclen is the number of bytes in pages_in
 894 *
 895 * The basic idea is that we have a bio that was created by readpages.
 896 * The pages in the bio are for the uncompressed data, and they may not
 897 * be contiguous.  They all correspond to the range of bytes covered by
 898 * the compressed extent.
 899 */
 900int btrfs_decompress_biovec(int type, struct page **pages_in, u64 disk_start,
 901                            struct bio_vec *bvec, int vcnt, size_t srclen)
 902{
 903        struct list_head *workspace;
 904        int ret;
 905
 906        workspace = find_workspace(type);
 907        if (IS_ERR(workspace))
 908                return -ENOMEM;
 909
 910        ret = btrfs_compress_op[type-1]->decompress_biovec(workspace, pages_in,
 911                                                         disk_start,
 912                                                         bvec, vcnt, srclen);
 913        free_workspace(type, workspace);
 914        return ret;
 915}
 916
 917/*
 918 * a less complex decompression routine.  Our compressed data fits in a
 919 * single page, and we want to read a single page out of it.
 920 * start_byte tells us the offset into the compressed data we're interested in
 921 */
 922int btrfs_decompress(int type, unsigned char *data_in, struct page *dest_page,
 923                     unsigned long start_byte, size_t srclen, size_t destlen)
 924{
 925        struct list_head *workspace;
 926        int ret;
 927
 928        workspace = find_workspace(type);
 929        if (IS_ERR(workspace))
 930                return -ENOMEM;
 931
 932        ret = btrfs_compress_op[type-1]->decompress(workspace, data_in,
 933                                                  dest_page, start_byte,
 934                                                  srclen, destlen);
 935
 936        free_workspace(type, workspace);
 937        return ret;
 938}
 939
 940void btrfs_exit_compress(void)
 941{
 942        free_workspaces();
 943}
 944
 945/*
 946 * Copy uncompressed data from working buffer to pages.
 947 *
 948 * buf_start is the byte offset we're of the start of our workspace buffer.
 949 *
 950 * total_out is the last byte of the buffer
 951 */
 952int btrfs_decompress_buf2page(char *buf, unsigned long buf_start,
 953                              unsigned long total_out, u64 disk_start,
 954                              struct bio_vec *bvec, int vcnt,
 955                              unsigned long *pg_index,
 956                              unsigned long *pg_offset)
 957{
 958        unsigned long buf_offset;
 959        unsigned long current_buf_start;
 960        unsigned long start_byte;
 961        unsigned long working_bytes = total_out - buf_start;
 962        unsigned long bytes;
 963        char *kaddr;
 964        struct page *page_out = bvec[*pg_index].bv_page;
 965
 966        /*
 967         * start byte is the first byte of the page we're currently
 968         * copying into relative to the start of the compressed data.
 969         */
 970        start_byte = page_offset(page_out) - disk_start;
 971
 972        /* we haven't yet hit data corresponding to this page */
 973        if (total_out <= start_byte)
 974                return 1;
 975
 976        /*
 977         * the start of the data we care about is offset into
 978         * the middle of our working buffer
 979         */
 980        if (total_out > start_byte && buf_start < start_byte) {
 981                buf_offset = start_byte - buf_start;
 982                working_bytes -= buf_offset;
 983        } else {
 984                buf_offset = 0;
 985        }
 986        current_buf_start = buf_start;
 987
 988        /* copy bytes from the working buffer into the pages */
 989        while (working_bytes > 0) {
 990                bytes = min(PAGE_CACHE_SIZE - *pg_offset,
 991                            PAGE_CACHE_SIZE - buf_offset);
 992                bytes = min(bytes, working_bytes);
 993                kaddr = kmap_atomic(page_out, KM_USER0);
 994                memcpy(kaddr + *pg_offset, buf + buf_offset, bytes);
 995                kunmap_atomic(kaddr, KM_USER0);
 996                flush_dcache_page(page_out);
 997
 998                *pg_offset += bytes;
 999                buf_offset += bytes;
1000                working_bytes -= bytes;
1001                current_buf_start += bytes;
1002
1003                /* check if we need to pick another page */
1004                if (*pg_offset == PAGE_CACHE_SIZE) {
1005                        (*pg_index)++;
1006                        if (*pg_index >= vcnt)
1007                                return 0;
1008
1009                        page_out = bvec[*pg_index].bv_page;
1010                        *pg_offset = 0;
1011                        start_byte = page_offset(page_out) - disk_start;
1012
1013                        /*
1014                         * make sure our new page is covered by this
1015                         * working buffer
1016                         */
1017                        if (total_out <= start_byte)
1018                                return 1;
1019
1020                        /*
1021                         * the next page in the biovec might not be adjacent
1022                         * to the last page, but it might still be found
1023                         * inside this working buffer. bump our offset pointer
1024                         */
1025                        if (total_out > start_byte &&
1026                            current_buf_start < start_byte) {
1027                                buf_offset = start_byte - buf_start;
1028                                working_bytes = total_out - start_byte;
1029                                current_buf_start = buf_start + buf_offset;
1030                        }
1031                }
1032        }
1033
1034        return 1;
1035}
1036