linux/fs/btrfs/disk-io.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/fs.h>
  20#include <linux/blkdev.h>
  21#include <linux/scatterlist.h>
  22#include <linux/swap.h>
  23#include <linux/radix-tree.h>
  24#include <linux/writeback.h>
  25#include <linux/buffer_head.h>
  26#include <linux/workqueue.h>
  27#include <linux/kthread.h>
  28#include <linux/freezer.h>
  29#include <linux/crc32c.h>
  30#include <linux/slab.h>
  31#include <linux/migrate.h>
  32#include <linux/ratelimit.h>
  33#include <asm/unaligned.h>
  34#include "compat.h"
  35#include "ctree.h"
  36#include "disk-io.h"
  37#include "transaction.h"
  38#include "btrfs_inode.h"
  39#include "volumes.h"
  40#include "print-tree.h"
  41#include "async-thread.h"
  42#include "locking.h"
  43#include "tree-log.h"
  44#include "free-space-cache.h"
  45#include "inode-map.h"
  46
  47static struct extent_io_ops btree_extent_io_ops;
  48static void end_workqueue_fn(struct btrfs_work *work);
  49static void free_fs_root(struct btrfs_root *root);
  50static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
  51                                    int read_only);
  52static int btrfs_destroy_ordered_operations(struct btrfs_root *root);
  53static int btrfs_destroy_ordered_extents(struct btrfs_root *root);
  54static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
  55                                      struct btrfs_root *root);
  56static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t);
  57static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root);
  58static int btrfs_destroy_marked_extents(struct btrfs_root *root,
  59                                        struct extent_io_tree *dirty_pages,
  60                                        int mark);
  61static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
  62                                       struct extent_io_tree *pinned_extents);
  63static int btrfs_cleanup_transaction(struct btrfs_root *root);
  64
  65/*
  66 * end_io_wq structs are used to do processing in task context when an IO is
  67 * complete.  This is used during reads to verify checksums, and it is used
  68 * by writes to insert metadata for new file extents after IO is complete.
  69 */
  70struct end_io_wq {
  71        struct bio *bio;
  72        bio_end_io_t *end_io;
  73        void *private;
  74        struct btrfs_fs_info *info;
  75        int error;
  76        int metadata;
  77        struct list_head list;
  78        struct btrfs_work work;
  79};
  80
  81/*
  82 * async submit bios are used to offload expensive checksumming
  83 * onto the worker threads.  They checksum file and metadata bios
  84 * just before they are sent down the IO stack.
  85 */
  86struct async_submit_bio {
  87        struct inode *inode;
  88        struct bio *bio;
  89        struct list_head list;
  90        extent_submit_bio_hook_t *submit_bio_start;
  91        extent_submit_bio_hook_t *submit_bio_done;
  92        int rw;
  93        int mirror_num;
  94        unsigned long bio_flags;
  95        /*
  96         * bio_offset is optional, can be used if the pages in the bio
  97         * can't tell us where in the file the bio should go
  98         */
  99        u64 bio_offset;
 100        struct btrfs_work work;
 101};
 102
 103/*
 104 * Lockdep class keys for extent_buffer->lock's in this root.  For a given
 105 * eb, the lockdep key is determined by the btrfs_root it belongs to and
 106 * the level the eb occupies in the tree.
 107 *
 108 * Different roots are used for different purposes and may nest inside each
 109 * other and they require separate keysets.  As lockdep keys should be
 110 * static, assign keysets according to the purpose of the root as indicated
 111 * by btrfs_root->objectid.  This ensures that all special purpose roots
 112 * have separate keysets.
 113 *
 114 * Lock-nesting across peer nodes is always done with the immediate parent
 115 * node locked thus preventing deadlock.  As lockdep doesn't know this, use
 116 * subclass to avoid triggering lockdep warning in such cases.
 117 *
 118 * The key is set by the readpage_end_io_hook after the buffer has passed
 119 * csum validation but before the pages are unlocked.  It is also set by
 120 * btrfs_init_new_buffer on freshly allocated blocks.
 121 *
 122 * We also add a check to make sure the highest level of the tree is the
 123 * same as our lockdep setup here.  If BTRFS_MAX_LEVEL changes, this code
 124 * needs update as well.
 125 */
 126#ifdef CONFIG_DEBUG_LOCK_ALLOC
 127# if BTRFS_MAX_LEVEL != 8
 128#  error
 129# endif
 130
 131static struct btrfs_lockdep_keyset {
 132        u64                     id;             /* root objectid */
 133        const char              *name_stem;     /* lock name stem */
 134        char                    names[BTRFS_MAX_LEVEL + 1][20];
 135        struct lock_class_key   keys[BTRFS_MAX_LEVEL + 1];
 136} btrfs_lockdep_keysets[] = {
 137        { .id = BTRFS_ROOT_TREE_OBJECTID,       .name_stem = "root"     },
 138        { .id = BTRFS_EXTENT_TREE_OBJECTID,     .name_stem = "extent"   },
 139        { .id = BTRFS_CHUNK_TREE_OBJECTID,      .name_stem = "chunk"    },
 140        { .id = BTRFS_DEV_TREE_OBJECTID,        .name_stem = "dev"      },
 141        { .id = BTRFS_FS_TREE_OBJECTID,         .name_stem = "fs"       },
 142        { .id = BTRFS_CSUM_TREE_OBJECTID,       .name_stem = "csum"     },
 143        { .id = BTRFS_ORPHAN_OBJECTID,          .name_stem = "orphan"   },
 144        { .id = BTRFS_TREE_LOG_OBJECTID,        .name_stem = "log"      },
 145        { .id = BTRFS_TREE_RELOC_OBJECTID,      .name_stem = "treloc"   },
 146        { .id = BTRFS_DATA_RELOC_TREE_OBJECTID, .name_stem = "dreloc"   },
 147        { .id = 0,                              .name_stem = "tree"     },
 148};
 149
 150void __init btrfs_init_lockdep(void)
 151{
 152        int i, j;
 153
 154        /* initialize lockdep class names */
 155        for (i = 0; i < ARRAY_SIZE(btrfs_lockdep_keysets); i++) {
 156                struct btrfs_lockdep_keyset *ks = &btrfs_lockdep_keysets[i];
 157
 158                for (j = 0; j < ARRAY_SIZE(ks->names); j++)
 159                        snprintf(ks->names[j], sizeof(ks->names[j]),
 160                                 "btrfs-%s-%02d", ks->name_stem, j);
 161        }
 162}
 163
 164void btrfs_set_buffer_lockdep_class(u64 objectid, struct extent_buffer *eb,
 165                                    int level)
 166{
 167        struct btrfs_lockdep_keyset *ks;
 168
 169        BUG_ON(level >= ARRAY_SIZE(ks->keys));
 170
 171        /* find the matching keyset, id 0 is the default entry */
 172        for (ks = btrfs_lockdep_keysets; ks->id; ks++)
 173                if (ks->id == objectid)
 174                        break;
 175
 176        lockdep_set_class_and_name(&eb->lock,
 177                                   &ks->keys[level], ks->names[level]);
 178}
 179
 180#endif
 181
 182/*
 183 * extents on the btree inode are pretty simple, there's one extent
 184 * that covers the entire device
 185 */
 186static struct extent_map *btree_get_extent(struct inode *inode,
 187                struct page *page, size_t pg_offset, u64 start, u64 len,
 188                int create)
 189{
 190        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 191        struct extent_map *em;
 192        int ret;
 193
 194        read_lock(&em_tree->lock);
 195        em = lookup_extent_mapping(em_tree, start, len);
 196        if (em) {
 197                em->bdev =
 198                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 199                read_unlock(&em_tree->lock);
 200                goto out;
 201        }
 202        read_unlock(&em_tree->lock);
 203
 204        em = alloc_extent_map();
 205        if (!em) {
 206                em = ERR_PTR(-ENOMEM);
 207                goto out;
 208        }
 209        em->start = 0;
 210        em->len = (u64)-1;
 211        em->block_len = (u64)-1;
 212        em->block_start = 0;
 213        em->bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
 214
 215        write_lock(&em_tree->lock);
 216        ret = add_extent_mapping(em_tree, em);
 217        if (ret == -EEXIST) {
 218                u64 failed_start = em->start;
 219                u64 failed_len = em->len;
 220
 221                free_extent_map(em);
 222                em = lookup_extent_mapping(em_tree, start, len);
 223                if (em) {
 224                        ret = 0;
 225                } else {
 226                        em = lookup_extent_mapping(em_tree, failed_start,
 227                                                   failed_len);
 228                        ret = -EIO;
 229                }
 230        } else if (ret) {
 231                free_extent_map(em);
 232                em = NULL;
 233        }
 234        write_unlock(&em_tree->lock);
 235
 236        if (ret)
 237                em = ERR_PTR(ret);
 238out:
 239        return em;
 240}
 241
 242u32 btrfs_csum_data(struct btrfs_root *root, char *data, u32 seed, size_t len)
 243{
 244        return crc32c(seed, data, len);
 245}
 246
 247void btrfs_csum_final(u32 crc, char *result)
 248{
 249        put_unaligned_le32(~crc, result);
 250}
 251
 252/*
 253 * compute the csum for a btree block, and either verify it or write it
 254 * into the csum field of the block.
 255 */
 256static int csum_tree_block(struct btrfs_root *root, struct extent_buffer *buf,
 257                           int verify)
 258{
 259        u16 csum_size =
 260                btrfs_super_csum_size(&root->fs_info->super_copy);
 261        char *result = NULL;
 262        unsigned long len;
 263        unsigned long cur_len;
 264        unsigned long offset = BTRFS_CSUM_SIZE;
 265        char *kaddr;
 266        unsigned long map_start;
 267        unsigned long map_len;
 268        int err;
 269        u32 crc = ~(u32)0;
 270        unsigned long inline_result;
 271
 272        len = buf->len - offset;
 273        while (len > 0) {
 274                err = map_private_extent_buffer(buf, offset, 32,
 275                                        &kaddr, &map_start, &map_len);
 276                if (err)
 277                        return 1;
 278                cur_len = min(len, map_len - (offset - map_start));
 279                crc = btrfs_csum_data(root, kaddr + offset - map_start,
 280                                      crc, cur_len);
 281                len -= cur_len;
 282                offset += cur_len;
 283        }
 284        if (csum_size > sizeof(inline_result)) {
 285                result = kzalloc(csum_size * sizeof(char), GFP_NOFS);
 286                if (!result)
 287                        return 1;
 288        } else {
 289                result = (char *)&inline_result;
 290        }
 291
 292        btrfs_csum_final(crc, result);
 293
 294        if (verify) {
 295                if (memcmp_extent_buffer(buf, result, 0, csum_size)) {
 296                        u32 val;
 297                        u32 found = 0;
 298                        memcpy(&found, result, csum_size);
 299
 300                        read_extent_buffer(buf, &val, 0, csum_size);
 301                        printk_ratelimited(KERN_INFO "btrfs: %s checksum verify "
 302                                       "failed on %llu wanted %X found %X "
 303                                       "level %d\n",
 304                                       root->fs_info->sb->s_id,
 305                                       (unsigned long long)buf->start, val, found,
 306                                       btrfs_header_level(buf));
 307                        if (result != (char *)&inline_result)
 308                                kfree(result);
 309                        return 1;
 310                }
 311        } else {
 312                write_extent_buffer(buf, result, 0, csum_size);
 313        }
 314        if (result != (char *)&inline_result)
 315                kfree(result);
 316        return 0;
 317}
 318
 319/*
 320 * we can't consider a given block up to date unless the transid of the
 321 * block matches the transid in the parent node's pointer.  This is how we
 322 * detect blocks that either didn't get written at all or got written
 323 * in the wrong place.
 324 */
 325static int verify_parent_transid(struct extent_io_tree *io_tree,
 326                                 struct extent_buffer *eb, u64 parent_transid)
 327{
 328        struct extent_state *cached_state = NULL;
 329        int ret;
 330
 331        if (!parent_transid || btrfs_header_generation(eb) == parent_transid)
 332                return 0;
 333
 334        lock_extent_bits(io_tree, eb->start, eb->start + eb->len - 1,
 335                         0, &cached_state, GFP_NOFS);
 336        if (extent_buffer_uptodate(io_tree, eb, cached_state) &&
 337            btrfs_header_generation(eb) == parent_transid) {
 338                ret = 0;
 339                goto out;
 340        }
 341        printk_ratelimited("parent transid verify failed on %llu wanted %llu "
 342                       "found %llu\n",
 343                       (unsigned long long)eb->start,
 344                       (unsigned long long)parent_transid,
 345                       (unsigned long long)btrfs_header_generation(eb));
 346        ret = 1;
 347        clear_extent_buffer_uptodate(io_tree, eb, &cached_state);
 348out:
 349        unlock_extent_cached(io_tree, eb->start, eb->start + eb->len - 1,
 350                             &cached_state, GFP_NOFS);
 351        return ret;
 352}
 353
 354/*
 355 * helper to read a given tree block, doing retries as required when
 356 * the checksums don't match and we have alternate mirrors to try.
 357 */
 358static int btree_read_extent_buffer_pages(struct btrfs_root *root,
 359                                          struct extent_buffer *eb,
 360                                          u64 start, u64 parent_transid)
 361{
 362        struct extent_io_tree *io_tree;
 363        int ret;
 364        int num_copies = 0;
 365        int mirror_num = 0;
 366
 367        clear_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 368        io_tree = &BTRFS_I(root->fs_info->btree_inode)->io_tree;
 369        while (1) {
 370                ret = read_extent_buffer_pages(io_tree, eb, start, 1,
 371                                               btree_get_extent, mirror_num);
 372                if (!ret &&
 373                    !verify_parent_transid(io_tree, eb, parent_transid))
 374                        return ret;
 375
 376                /*
 377                 * This buffer's crc is fine, but its contents are corrupted, so
 378                 * there is no reason to read the other copies, they won't be
 379                 * any less wrong.
 380                 */
 381                if (test_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags))
 382                        return ret;
 383
 384                num_copies = btrfs_num_copies(&root->fs_info->mapping_tree,
 385                                              eb->start, eb->len);
 386                if (num_copies == 1)
 387                        return ret;
 388
 389                mirror_num++;
 390                if (mirror_num > num_copies)
 391                        return ret;
 392        }
 393        return -EIO;
 394}
 395
 396/*
 397 * checksum a dirty tree block before IO.  This has extra checks to make sure
 398 * we only fill in the checksum field in the first page of a multi-page block
 399 */
 400
 401static int csum_dirty_buffer(struct btrfs_root *root, struct page *page)
 402{
 403        struct extent_io_tree *tree;
 404        u64 start = (u64)page->index << PAGE_CACHE_SHIFT;
 405        u64 found_start;
 406        unsigned long len;
 407        struct extent_buffer *eb;
 408        int ret;
 409
 410        tree = &BTRFS_I(page->mapping->host)->io_tree;
 411
 412        if (page->private == EXTENT_PAGE_PRIVATE) {
 413                WARN_ON(1);
 414                goto out;
 415        }
 416        if (!page->private) {
 417                WARN_ON(1);
 418                goto out;
 419        }
 420        len = page->private >> 2;
 421        WARN_ON(len == 0);
 422
 423        eb = alloc_extent_buffer(tree, start, len, page);
 424        if (eb == NULL) {
 425                WARN_ON(1);
 426                goto out;
 427        }
 428        ret = btree_read_extent_buffer_pages(root, eb, start + PAGE_CACHE_SIZE,
 429                                             btrfs_header_generation(eb));
 430        BUG_ON(ret);
 431        WARN_ON(!btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN));
 432
 433        found_start = btrfs_header_bytenr(eb);
 434        if (found_start != start) {
 435                WARN_ON(1);
 436                goto err;
 437        }
 438        if (eb->first_page != page) {
 439                WARN_ON(1);
 440                goto err;
 441        }
 442        if (!PageUptodate(page)) {
 443                WARN_ON(1);
 444                goto err;
 445        }
 446        csum_tree_block(root, eb, 0);
 447err:
 448        free_extent_buffer(eb);
 449out:
 450        return 0;
 451}
 452
 453static int check_tree_block_fsid(struct btrfs_root *root,
 454                                 struct extent_buffer *eb)
 455{
 456        struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
 457        u8 fsid[BTRFS_UUID_SIZE];
 458        int ret = 1;
 459
 460        read_extent_buffer(eb, fsid, (unsigned long)btrfs_header_fsid(eb),
 461                           BTRFS_FSID_SIZE);
 462        while (fs_devices) {
 463                if (!memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE)) {
 464                        ret = 0;
 465                        break;
 466                }
 467                fs_devices = fs_devices->seed;
 468        }
 469        return ret;
 470}
 471
 472#define CORRUPT(reason, eb, root, slot)                         \
 473        printk(KERN_CRIT "btrfs: corrupt leaf, %s: block=%llu," \
 474               "root=%llu, slot=%d\n", reason,                  \
 475               (unsigned long long)btrfs_header_bytenr(eb),     \
 476               (unsigned long long)root->objectid, slot)
 477
 478static noinline int check_leaf(struct btrfs_root *root,
 479                               struct extent_buffer *leaf)
 480{
 481        struct btrfs_key key;
 482        struct btrfs_key leaf_key;
 483        u32 nritems = btrfs_header_nritems(leaf);
 484        int slot;
 485
 486        if (nritems == 0)
 487                return 0;
 488
 489        /* Check the 0 item */
 490        if (btrfs_item_offset_nr(leaf, 0) + btrfs_item_size_nr(leaf, 0) !=
 491            BTRFS_LEAF_DATA_SIZE(root)) {
 492                CORRUPT("invalid item offset size pair", leaf, root, 0);
 493                return -EIO;
 494        }
 495
 496        /*
 497         * Check to make sure each items keys are in the correct order and their
 498         * offsets make sense.  We only have to loop through nritems-1 because
 499         * we check the current slot against the next slot, which verifies the
 500         * next slot's offset+size makes sense and that the current's slot
 501         * offset is correct.
 502         */
 503        for (slot = 0; slot < nritems - 1; slot++) {
 504                btrfs_item_key_to_cpu(leaf, &leaf_key, slot);
 505                btrfs_item_key_to_cpu(leaf, &key, slot + 1);
 506
 507                /* Make sure the keys are in the right order */
 508                if (btrfs_comp_cpu_keys(&leaf_key, &key) >= 0) {
 509                        CORRUPT("bad key order", leaf, root, slot);
 510                        return -EIO;
 511                }
 512
 513                /*
 514                 * Make sure the offset and ends are right, remember that the
 515                 * item data starts at the end of the leaf and grows towards the
 516                 * front.
 517                 */
 518                if (btrfs_item_offset_nr(leaf, slot) !=
 519                        btrfs_item_end_nr(leaf, slot + 1)) {
 520                        CORRUPT("slot offset bad", leaf, root, slot);
 521                        return -EIO;
 522                }
 523
 524                /*
 525                 * Check to make sure that we don't point outside of the leaf,
 526                 * just incase all the items are consistent to eachother, but
 527                 * all point outside of the leaf.
 528                 */
 529                if (btrfs_item_end_nr(leaf, slot) >
 530                    BTRFS_LEAF_DATA_SIZE(root)) {
 531                        CORRUPT("slot end outside of leaf", leaf, root, slot);
 532                        return -EIO;
 533                }
 534        }
 535
 536        return 0;
 537}
 538
 539static int btree_readpage_end_io_hook(struct page *page, u64 start, u64 end,
 540                               struct extent_state *state)
 541{
 542        struct extent_io_tree *tree;
 543        u64 found_start;
 544        int found_level;
 545        unsigned long len;
 546        struct extent_buffer *eb;
 547        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 548        int ret = 0;
 549
 550        tree = &BTRFS_I(page->mapping->host)->io_tree;
 551        if (page->private == EXTENT_PAGE_PRIVATE)
 552                goto out;
 553        if (!page->private)
 554                goto out;
 555
 556        len = page->private >> 2;
 557        WARN_ON(len == 0);
 558
 559        eb = alloc_extent_buffer(tree, start, len, page);
 560        if (eb == NULL) {
 561                ret = -EIO;
 562                goto out;
 563        }
 564
 565        found_start = btrfs_header_bytenr(eb);
 566        if (found_start != start) {
 567                printk_ratelimited(KERN_INFO "btrfs bad tree block start "
 568                               "%llu %llu\n",
 569                               (unsigned long long)found_start,
 570                               (unsigned long long)eb->start);
 571                ret = -EIO;
 572                goto err;
 573        }
 574        if (eb->first_page != page) {
 575                printk(KERN_INFO "btrfs bad first page %lu %lu\n",
 576                       eb->first_page->index, page->index);
 577                WARN_ON(1);
 578                ret = -EIO;
 579                goto err;
 580        }
 581        if (check_tree_block_fsid(root, eb)) {
 582                printk_ratelimited(KERN_INFO "btrfs bad fsid on block %llu\n",
 583                               (unsigned long long)eb->start);
 584                ret = -EIO;
 585                goto err;
 586        }
 587        found_level = btrfs_header_level(eb);
 588
 589        btrfs_set_buffer_lockdep_class(btrfs_header_owner(eb),
 590                                       eb, found_level);
 591
 592        ret = csum_tree_block(root, eb, 1);
 593        if (ret) {
 594                ret = -EIO;
 595                goto err;
 596        }
 597
 598        /*
 599         * If this is a leaf block and it is corrupt, set the corrupt bit so
 600         * that we don't try and read the other copies of this block, just
 601         * return -EIO.
 602         */
 603        if (found_level == 0 && check_leaf(root, eb)) {
 604                set_bit(EXTENT_BUFFER_CORRUPT, &eb->bflags);
 605                ret = -EIO;
 606        }
 607
 608        end = min_t(u64, eb->len, PAGE_CACHE_SIZE);
 609        end = eb->start + end - 1;
 610err:
 611        free_extent_buffer(eb);
 612out:
 613        return ret;
 614}
 615
 616static void end_workqueue_bio(struct bio *bio, int err)
 617{
 618        struct end_io_wq *end_io_wq = bio->bi_private;
 619        struct btrfs_fs_info *fs_info;
 620
 621        fs_info = end_io_wq->info;
 622        end_io_wq->error = err;
 623        end_io_wq->work.func = end_workqueue_fn;
 624        end_io_wq->work.flags = 0;
 625
 626        if (bio->bi_rw & REQ_WRITE) {
 627                if (end_io_wq->metadata == 1)
 628                        btrfs_queue_worker(&fs_info->endio_meta_write_workers,
 629                                           &end_io_wq->work);
 630                else if (end_io_wq->metadata == 2)
 631                        btrfs_queue_worker(&fs_info->endio_freespace_worker,
 632                                           &end_io_wq->work);
 633                else
 634                        btrfs_queue_worker(&fs_info->endio_write_workers,
 635                                           &end_io_wq->work);
 636        } else {
 637                if (end_io_wq->metadata)
 638                        btrfs_queue_worker(&fs_info->endio_meta_workers,
 639                                           &end_io_wq->work);
 640                else
 641                        btrfs_queue_worker(&fs_info->endio_workers,
 642                                           &end_io_wq->work);
 643        }
 644}
 645
 646/*
 647 * For the metadata arg you want
 648 *
 649 * 0 - if data
 650 * 1 - if normal metadta
 651 * 2 - if writing to the free space cache area
 652 */
 653int btrfs_bio_wq_end_io(struct btrfs_fs_info *info, struct bio *bio,
 654                        int metadata)
 655{
 656        struct end_io_wq *end_io_wq;
 657        end_io_wq = kmalloc(sizeof(*end_io_wq), GFP_NOFS);
 658        if (!end_io_wq)
 659                return -ENOMEM;
 660
 661        end_io_wq->private = bio->bi_private;
 662        end_io_wq->end_io = bio->bi_end_io;
 663        end_io_wq->info = info;
 664        end_io_wq->error = 0;
 665        end_io_wq->bio = bio;
 666        end_io_wq->metadata = metadata;
 667
 668        bio->bi_private = end_io_wq;
 669        bio->bi_end_io = end_workqueue_bio;
 670        return 0;
 671}
 672
 673unsigned long btrfs_async_submit_limit(struct btrfs_fs_info *info)
 674{
 675        unsigned long limit = min_t(unsigned long,
 676                                    info->workers.max_workers,
 677                                    info->fs_devices->open_devices);
 678        return 256 * limit;
 679}
 680
 681static void run_one_async_start(struct btrfs_work *work)
 682{
 683        struct async_submit_bio *async;
 684
 685        async = container_of(work, struct  async_submit_bio, work);
 686        async->submit_bio_start(async->inode, async->rw, async->bio,
 687                               async->mirror_num, async->bio_flags,
 688                               async->bio_offset);
 689}
 690
 691static void run_one_async_done(struct btrfs_work *work)
 692{
 693        struct btrfs_fs_info *fs_info;
 694        struct async_submit_bio *async;
 695        int limit;
 696
 697        async = container_of(work, struct  async_submit_bio, work);
 698        fs_info = BTRFS_I(async->inode)->root->fs_info;
 699
 700        limit = btrfs_async_submit_limit(fs_info);
 701        limit = limit * 2 / 3;
 702
 703        atomic_dec(&fs_info->nr_async_submits);
 704
 705        if (atomic_read(&fs_info->nr_async_submits) < limit &&
 706            waitqueue_active(&fs_info->async_submit_wait))
 707                wake_up(&fs_info->async_submit_wait);
 708
 709        async->submit_bio_done(async->inode, async->rw, async->bio,
 710                               async->mirror_num, async->bio_flags,
 711                               async->bio_offset);
 712}
 713
 714static void run_one_async_free(struct btrfs_work *work)
 715{
 716        struct async_submit_bio *async;
 717
 718        async = container_of(work, struct  async_submit_bio, work);
 719        kfree(async);
 720}
 721
 722int btrfs_wq_submit_bio(struct btrfs_fs_info *fs_info, struct inode *inode,
 723                        int rw, struct bio *bio, int mirror_num,
 724                        unsigned long bio_flags,
 725                        u64 bio_offset,
 726                        extent_submit_bio_hook_t *submit_bio_start,
 727                        extent_submit_bio_hook_t *submit_bio_done)
 728{
 729        struct async_submit_bio *async;
 730
 731        async = kmalloc(sizeof(*async), GFP_NOFS);
 732        if (!async)
 733                return -ENOMEM;
 734
 735        async->inode = inode;
 736        async->rw = rw;
 737        async->bio = bio;
 738        async->mirror_num = mirror_num;
 739        async->submit_bio_start = submit_bio_start;
 740        async->submit_bio_done = submit_bio_done;
 741
 742        async->work.func = run_one_async_start;
 743        async->work.ordered_func = run_one_async_done;
 744        async->work.ordered_free = run_one_async_free;
 745
 746        async->work.flags = 0;
 747        async->bio_flags = bio_flags;
 748        async->bio_offset = bio_offset;
 749
 750        atomic_inc(&fs_info->nr_async_submits);
 751
 752        if (rw & REQ_SYNC)
 753                btrfs_set_work_high_prio(&async->work);
 754
 755        btrfs_queue_worker(&fs_info->workers, &async->work);
 756
 757        while (atomic_read(&fs_info->async_submit_draining) &&
 758              atomic_read(&fs_info->nr_async_submits)) {
 759                wait_event(fs_info->async_submit_wait,
 760                           (atomic_read(&fs_info->nr_async_submits) == 0));
 761        }
 762
 763        return 0;
 764}
 765
 766static int btree_csum_one_bio(struct bio *bio)
 767{
 768        struct bio_vec *bvec = bio->bi_io_vec;
 769        int bio_index = 0;
 770        struct btrfs_root *root;
 771
 772        WARN_ON(bio->bi_vcnt <= 0);
 773        while (bio_index < bio->bi_vcnt) {
 774                root = BTRFS_I(bvec->bv_page->mapping->host)->root;
 775                csum_dirty_buffer(root, bvec->bv_page);
 776                bio_index++;
 777                bvec++;
 778        }
 779        return 0;
 780}
 781
 782static int __btree_submit_bio_start(struct inode *inode, int rw,
 783                                    struct bio *bio, int mirror_num,
 784                                    unsigned long bio_flags,
 785                                    u64 bio_offset)
 786{
 787        /*
 788         * when we're called for a write, we're already in the async
 789         * submission context.  Just jump into btrfs_map_bio
 790         */
 791        btree_csum_one_bio(bio);
 792        return 0;
 793}
 794
 795static int __btree_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
 796                                 int mirror_num, unsigned long bio_flags,
 797                                 u64 bio_offset)
 798{
 799        /*
 800         * when we're called for a write, we're already in the async
 801         * submission context.  Just jump into btrfs_map_bio
 802         */
 803        return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio, mirror_num, 1);
 804}
 805
 806static int btree_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
 807                                 int mirror_num, unsigned long bio_flags,
 808                                 u64 bio_offset)
 809{
 810        int ret;
 811
 812        ret = btrfs_bio_wq_end_io(BTRFS_I(inode)->root->fs_info,
 813                                          bio, 1);
 814        BUG_ON(ret);
 815
 816        if (!(rw & REQ_WRITE)) {
 817                /*
 818                 * called for a read, do the setup so that checksum validation
 819                 * can happen in the async kernel threads
 820                 */
 821                return btrfs_map_bio(BTRFS_I(inode)->root, rw, bio,
 822                                     mirror_num, 0);
 823        }
 824
 825        /*
 826         * kthread helpers are used to submit writes so that checksumming
 827         * can happen in parallel across all CPUs
 828         */
 829        return btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
 830                                   inode, rw, bio, mirror_num, 0,
 831                                   bio_offset,
 832                                   __btree_submit_bio_start,
 833                                   __btree_submit_bio_done);
 834}
 835
 836#ifdef CONFIG_MIGRATION
 837static int btree_migratepage(struct address_space *mapping,
 838                        struct page *newpage, struct page *page)
 839{
 840        /*
 841         * we can't safely write a btree page from here,
 842         * we haven't done the locking hook
 843         */
 844        if (PageDirty(page))
 845                return -EAGAIN;
 846        /*
 847         * Buffers may be managed in a filesystem specific way.
 848         * We must have no buffers or drop them.
 849         */
 850        if (page_has_private(page) &&
 851            !try_to_release_page(page, GFP_KERNEL))
 852                return -EAGAIN;
 853        return migrate_page(mapping, newpage, page);
 854}
 855#endif
 856
 857static int btree_writepage(struct page *page, struct writeback_control *wbc)
 858{
 859        struct extent_io_tree *tree;
 860        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
 861        struct extent_buffer *eb;
 862        int was_dirty;
 863
 864        tree = &BTRFS_I(page->mapping->host)->io_tree;
 865        if (!(current->flags & PF_MEMALLOC)) {
 866                return extent_write_full_page(tree, page,
 867                                              btree_get_extent, wbc);
 868        }
 869
 870        redirty_page_for_writepage(wbc, page);
 871        eb = btrfs_find_tree_block(root, page_offset(page), PAGE_CACHE_SIZE);
 872        WARN_ON(!eb);
 873
 874        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
 875        if (!was_dirty) {
 876                spin_lock(&root->fs_info->delalloc_lock);
 877                root->fs_info->dirty_metadata_bytes += PAGE_CACHE_SIZE;
 878                spin_unlock(&root->fs_info->delalloc_lock);
 879        }
 880        free_extent_buffer(eb);
 881
 882        unlock_page(page);
 883        return 0;
 884}
 885
 886static int btree_writepages(struct address_space *mapping,
 887                            struct writeback_control *wbc)
 888{
 889        struct extent_io_tree *tree;
 890        tree = &BTRFS_I(mapping->host)->io_tree;
 891        if (wbc->sync_mode == WB_SYNC_NONE) {
 892                struct btrfs_root *root = BTRFS_I(mapping->host)->root;
 893                u64 num_dirty;
 894                unsigned long thresh = 32 * 1024 * 1024;
 895
 896                if (wbc->for_kupdate)
 897                        return 0;
 898
 899                /* this is a bit racy, but that's ok */
 900                num_dirty = root->fs_info->dirty_metadata_bytes;
 901                if (num_dirty < thresh)
 902                        return 0;
 903        }
 904        return extent_writepages(tree, mapping, btree_get_extent, wbc);
 905}
 906
 907static int btree_readpage(struct file *file, struct page *page)
 908{
 909        struct extent_io_tree *tree;
 910        tree = &BTRFS_I(page->mapping->host)->io_tree;
 911        return extent_read_full_page(tree, page, btree_get_extent);
 912}
 913
 914static int btree_releasepage(struct page *page, gfp_t gfp_flags)
 915{
 916        struct extent_io_tree *tree;
 917        struct extent_map_tree *map;
 918        int ret;
 919
 920        if (PageWriteback(page) || PageDirty(page))
 921                return 0;
 922
 923        tree = &BTRFS_I(page->mapping->host)->io_tree;
 924        map = &BTRFS_I(page->mapping->host)->extent_tree;
 925
 926        ret = try_release_extent_state(map, tree, page, gfp_flags);
 927        if (!ret)
 928                return 0;
 929
 930        ret = try_release_extent_buffer(tree, page);
 931        if (ret == 1) {
 932                ClearPagePrivate(page);
 933                set_page_private(page, 0);
 934                page_cache_release(page);
 935        }
 936
 937        return ret;
 938}
 939
 940static void btree_invalidatepage(struct page *page, unsigned long offset)
 941{
 942        struct extent_io_tree *tree;
 943        tree = &BTRFS_I(page->mapping->host)->io_tree;
 944        extent_invalidatepage(tree, page, offset);
 945        btree_releasepage(page, GFP_NOFS);
 946        if (PagePrivate(page)) {
 947                printk(KERN_WARNING "btrfs warning page private not zero "
 948                       "on page %llu\n", (unsigned long long)page_offset(page));
 949                ClearPagePrivate(page);
 950                set_page_private(page, 0);
 951                page_cache_release(page);
 952        }
 953}
 954
 955static const struct address_space_operations btree_aops = {
 956        .readpage       = btree_readpage,
 957        .writepage      = btree_writepage,
 958        .writepages     = btree_writepages,
 959        .releasepage    = btree_releasepage,
 960        .invalidatepage = btree_invalidatepage,
 961#ifdef CONFIG_MIGRATION
 962        .migratepage    = btree_migratepage,
 963#endif
 964};
 965
 966int readahead_tree_block(struct btrfs_root *root, u64 bytenr, u32 blocksize,
 967                         u64 parent_transid)
 968{
 969        struct extent_buffer *buf = NULL;
 970        struct inode *btree_inode = root->fs_info->btree_inode;
 971        int ret = 0;
 972
 973        buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
 974        if (!buf)
 975                return 0;
 976        read_extent_buffer_pages(&BTRFS_I(btree_inode)->io_tree,
 977                                 buf, 0, 0, btree_get_extent, 0);
 978        free_extent_buffer(buf);
 979        return ret;
 980}
 981
 982struct extent_buffer *btrfs_find_tree_block(struct btrfs_root *root,
 983                                            u64 bytenr, u32 blocksize)
 984{
 985        struct inode *btree_inode = root->fs_info->btree_inode;
 986        struct extent_buffer *eb;
 987        eb = find_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
 988                                bytenr, blocksize);
 989        return eb;
 990}
 991
 992struct extent_buffer *btrfs_find_create_tree_block(struct btrfs_root *root,
 993                                                 u64 bytenr, u32 blocksize)
 994{
 995        struct inode *btree_inode = root->fs_info->btree_inode;
 996        struct extent_buffer *eb;
 997
 998        eb = alloc_extent_buffer(&BTRFS_I(btree_inode)->io_tree,
 999                                 bytenr, blocksize, NULL);
1000        return eb;
1001}
1002
1003
1004int btrfs_write_tree_block(struct extent_buffer *buf)
1005{
1006        return filemap_fdatawrite_range(buf->first_page->mapping, buf->start,
1007                                        buf->start + buf->len - 1);
1008}
1009
1010int btrfs_wait_tree_block_writeback(struct extent_buffer *buf)
1011{
1012        return filemap_fdatawait_range(buf->first_page->mapping,
1013                                       buf->start, buf->start + buf->len - 1);
1014}
1015
1016struct extent_buffer *read_tree_block(struct btrfs_root *root, u64 bytenr,
1017                                      u32 blocksize, u64 parent_transid)
1018{
1019        struct extent_buffer *buf = NULL;
1020        int ret;
1021
1022        buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
1023        if (!buf)
1024                return NULL;
1025
1026        ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
1027
1028        if (ret == 0)
1029                set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
1030        return buf;
1031
1032}
1033
1034int clean_tree_block(struct btrfs_trans_handle *trans, struct btrfs_root *root,
1035                     struct extent_buffer *buf)
1036{
1037        struct inode *btree_inode = root->fs_info->btree_inode;
1038        if (btrfs_header_generation(buf) ==
1039            root->fs_info->running_transaction->transid) {
1040                btrfs_assert_tree_locked(buf);
1041
1042                if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &buf->bflags)) {
1043                        spin_lock(&root->fs_info->delalloc_lock);
1044                        if (root->fs_info->dirty_metadata_bytes >= buf->len)
1045                                root->fs_info->dirty_metadata_bytes -= buf->len;
1046                        else
1047                                WARN_ON(1);
1048                        spin_unlock(&root->fs_info->delalloc_lock);
1049                }
1050
1051                /* ugh, clear_extent_buffer_dirty needs to lock the page */
1052                btrfs_set_lock_blocking(buf);
1053                clear_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
1054                                          buf);
1055        }
1056        return 0;
1057}
1058
1059static int __setup_root(u32 nodesize, u32 leafsize, u32 sectorsize,
1060                        u32 stripesize, struct btrfs_root *root,
1061                        struct btrfs_fs_info *fs_info,
1062                        u64 objectid)
1063{
1064        root->node = NULL;
1065        root->commit_root = NULL;
1066        root->sectorsize = sectorsize;
1067        root->nodesize = nodesize;
1068        root->leafsize = leafsize;
1069        root->stripesize = stripesize;
1070        root->ref_cows = 0;
1071        root->track_dirty = 0;
1072        root->in_radix = 0;
1073        root->orphan_item_inserted = 0;
1074        root->orphan_cleanup_state = 0;
1075
1076        root->fs_info = fs_info;
1077        root->objectid = objectid;
1078        root->last_trans = 0;
1079        root->highest_objectid = 0;
1080        root->name = NULL;
1081        root->inode_tree = RB_ROOT;
1082        INIT_RADIX_TREE(&root->delayed_nodes_tree, GFP_ATOMIC);
1083        root->block_rsv = NULL;
1084        root->orphan_block_rsv = NULL;
1085
1086        INIT_LIST_HEAD(&root->dirty_list);
1087        INIT_LIST_HEAD(&root->orphan_list);
1088        INIT_LIST_HEAD(&root->root_list);
1089        spin_lock_init(&root->orphan_lock);
1090        spin_lock_init(&root->inode_lock);
1091        spin_lock_init(&root->accounting_lock);
1092        mutex_init(&root->objectid_mutex);
1093        mutex_init(&root->log_mutex);
1094        init_waitqueue_head(&root->log_writer_wait);
1095        init_waitqueue_head(&root->log_commit_wait[0]);
1096        init_waitqueue_head(&root->log_commit_wait[1]);
1097        atomic_set(&root->log_commit[0], 0);
1098        atomic_set(&root->log_commit[1], 0);
1099        atomic_set(&root->log_writers, 0);
1100        root->log_batch = 0;
1101        root->log_transid = 0;
1102        root->last_log_commit = 0;
1103        extent_io_tree_init(&root->dirty_log_pages,
1104                             fs_info->btree_inode->i_mapping);
1105
1106        memset(&root->root_key, 0, sizeof(root->root_key));
1107        memset(&root->root_item, 0, sizeof(root->root_item));
1108        memset(&root->defrag_progress, 0, sizeof(root->defrag_progress));
1109        memset(&root->root_kobj, 0, sizeof(root->root_kobj));
1110        root->defrag_trans_start = fs_info->generation;
1111        init_completion(&root->kobj_unregister);
1112        root->defrag_running = 0;
1113        root->root_key.objectid = objectid;
1114        root->anon_dev = 0;
1115        return 0;
1116}
1117
1118static int find_and_setup_root(struct btrfs_root *tree_root,
1119                               struct btrfs_fs_info *fs_info,
1120                               u64 objectid,
1121                               struct btrfs_root *root)
1122{
1123        int ret;
1124        u32 blocksize;
1125        u64 generation;
1126
1127        __setup_root(tree_root->nodesize, tree_root->leafsize,
1128                     tree_root->sectorsize, tree_root->stripesize,
1129                     root, fs_info, objectid);
1130        ret = btrfs_find_last_root(tree_root, objectid,
1131                                   &root->root_item, &root->root_key);
1132        if (ret > 0)
1133                return -ENOENT;
1134        BUG_ON(ret);
1135
1136        generation = btrfs_root_generation(&root->root_item);
1137        blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1138        root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1139                                     blocksize, generation);
1140        if (!root->node || !btrfs_buffer_uptodate(root->node, generation)) {
1141                free_extent_buffer(root->node);
1142                return -EIO;
1143        }
1144        root->commit_root = btrfs_root_node(root);
1145        return 0;
1146}
1147
1148static struct btrfs_root *alloc_log_tree(struct btrfs_trans_handle *trans,
1149                                         struct btrfs_fs_info *fs_info)
1150{
1151        struct btrfs_root *root;
1152        struct btrfs_root *tree_root = fs_info->tree_root;
1153        struct extent_buffer *leaf;
1154
1155        root = kzalloc(sizeof(*root), GFP_NOFS);
1156        if (!root)
1157                return ERR_PTR(-ENOMEM);
1158
1159        __setup_root(tree_root->nodesize, tree_root->leafsize,
1160                     tree_root->sectorsize, tree_root->stripesize,
1161                     root, fs_info, BTRFS_TREE_LOG_OBJECTID);
1162
1163        root->root_key.objectid = BTRFS_TREE_LOG_OBJECTID;
1164        root->root_key.type = BTRFS_ROOT_ITEM_KEY;
1165        root->root_key.offset = BTRFS_TREE_LOG_OBJECTID;
1166        /*
1167         * log trees do not get reference counted because they go away
1168         * before a real commit is actually done.  They do store pointers
1169         * to file data extents, and those reference counts still get
1170         * updated (along with back refs to the log tree).
1171         */
1172        root->ref_cows = 0;
1173
1174        leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
1175                                      BTRFS_TREE_LOG_OBJECTID, NULL, 0, 0, 0);
1176        if (IS_ERR(leaf)) {
1177                kfree(root);
1178                return ERR_CAST(leaf);
1179        }
1180
1181        memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
1182        btrfs_set_header_bytenr(leaf, leaf->start);
1183        btrfs_set_header_generation(leaf, trans->transid);
1184        btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
1185        btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
1186        root->node = leaf;
1187
1188        write_extent_buffer(root->node, root->fs_info->fsid,
1189                            (unsigned long)btrfs_header_fsid(root->node),
1190                            BTRFS_FSID_SIZE);
1191        btrfs_mark_buffer_dirty(root->node);
1192        btrfs_tree_unlock(root->node);
1193        return root;
1194}
1195
1196int btrfs_init_log_root_tree(struct btrfs_trans_handle *trans,
1197                             struct btrfs_fs_info *fs_info)
1198{
1199        struct btrfs_root *log_root;
1200
1201        log_root = alloc_log_tree(trans, fs_info);
1202        if (IS_ERR(log_root))
1203                return PTR_ERR(log_root);
1204        WARN_ON(fs_info->log_root_tree);
1205        fs_info->log_root_tree = log_root;
1206        return 0;
1207}
1208
1209int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
1210                       struct btrfs_root *root)
1211{
1212        struct btrfs_root *log_root;
1213        struct btrfs_inode_item *inode_item;
1214
1215        log_root = alloc_log_tree(trans, root->fs_info);
1216        if (IS_ERR(log_root))
1217                return PTR_ERR(log_root);
1218
1219        log_root->last_trans = trans->transid;
1220        log_root->root_key.offset = root->root_key.objectid;
1221
1222        inode_item = &log_root->root_item.inode;
1223        inode_item->generation = cpu_to_le64(1);
1224        inode_item->size = cpu_to_le64(3);
1225        inode_item->nlink = cpu_to_le32(1);
1226        inode_item->nbytes = cpu_to_le64(root->leafsize);
1227        inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
1228
1229        btrfs_set_root_node(&log_root->root_item, log_root->node);
1230
1231        WARN_ON(root->log_root);
1232        root->log_root = log_root;
1233        root->log_transid = 0;
1234        root->last_log_commit = 0;
1235        return 0;
1236}
1237
1238struct btrfs_root *btrfs_read_fs_root_no_radix(struct btrfs_root *tree_root,
1239                                               struct btrfs_key *location)
1240{
1241        struct btrfs_root *root;
1242        struct btrfs_fs_info *fs_info = tree_root->fs_info;
1243        struct btrfs_path *path;
1244        struct extent_buffer *l;
1245        u64 generation;
1246        u32 blocksize;
1247        int ret = 0;
1248
1249        root = kzalloc(sizeof(*root), GFP_NOFS);
1250        if (!root)
1251                return ERR_PTR(-ENOMEM);
1252        if (location->offset == (u64)-1) {
1253                ret = find_and_setup_root(tree_root, fs_info,
1254                                          location->objectid, root);
1255                if (ret) {
1256                        kfree(root);
1257                        return ERR_PTR(ret);
1258                }
1259                goto out;
1260        }
1261
1262        __setup_root(tree_root->nodesize, tree_root->leafsize,
1263                     tree_root->sectorsize, tree_root->stripesize,
1264                     root, fs_info, location->objectid);
1265
1266        path = btrfs_alloc_path();
1267        if (!path) {
1268                kfree(root);
1269                return ERR_PTR(-ENOMEM);
1270        }
1271        ret = btrfs_search_slot(NULL, tree_root, location, path, 0, 0);
1272        if (ret == 0) {
1273                l = path->nodes[0];
1274                read_extent_buffer(l, &root->root_item,
1275                                btrfs_item_ptr_offset(l, path->slots[0]),
1276                                sizeof(root->root_item));
1277                memcpy(&root->root_key, location, sizeof(*location));
1278        }
1279        btrfs_free_path(path);
1280        if (ret) {
1281                kfree(root);
1282                if (ret > 0)
1283                        ret = -ENOENT;
1284                return ERR_PTR(ret);
1285        }
1286
1287        generation = btrfs_root_generation(&root->root_item);
1288        blocksize = btrfs_level_size(root, btrfs_root_level(&root->root_item));
1289        root->node = read_tree_block(root, btrfs_root_bytenr(&root->root_item),
1290                                     blocksize, generation);
1291        root->commit_root = btrfs_root_node(root);
1292        BUG_ON(!root->node);
1293out:
1294        if (location->objectid != BTRFS_TREE_LOG_OBJECTID) {
1295                root->ref_cows = 1;
1296                btrfs_check_and_init_root_item(&root->root_item);
1297        }
1298
1299        return root;
1300}
1301
1302struct btrfs_root *btrfs_read_fs_root_no_name(struct btrfs_fs_info *fs_info,
1303                                              struct btrfs_key *location)
1304{
1305        struct btrfs_root *root;
1306        int ret;
1307
1308        if (location->objectid == BTRFS_ROOT_TREE_OBJECTID)
1309                return fs_info->tree_root;
1310        if (location->objectid == BTRFS_EXTENT_TREE_OBJECTID)
1311                return fs_info->extent_root;
1312        if (location->objectid == BTRFS_CHUNK_TREE_OBJECTID)
1313                return fs_info->chunk_root;
1314        if (location->objectid == BTRFS_DEV_TREE_OBJECTID)
1315                return fs_info->dev_root;
1316        if (location->objectid == BTRFS_CSUM_TREE_OBJECTID)
1317                return fs_info->csum_root;
1318again:
1319        spin_lock(&fs_info->fs_roots_radix_lock);
1320        root = radix_tree_lookup(&fs_info->fs_roots_radix,
1321                                 (unsigned long)location->objectid);
1322        spin_unlock(&fs_info->fs_roots_radix_lock);
1323        if (root)
1324                return root;
1325
1326        root = btrfs_read_fs_root_no_radix(fs_info->tree_root, location);
1327        if (IS_ERR(root))
1328                return root;
1329
1330        root->free_ino_ctl = kzalloc(sizeof(*root->free_ino_ctl), GFP_NOFS);
1331        root->free_ino_pinned = kzalloc(sizeof(*root->free_ino_pinned),
1332                                        GFP_NOFS);
1333        if (!root->free_ino_pinned || !root->free_ino_ctl) {
1334                ret = -ENOMEM;
1335                goto fail;
1336        }
1337
1338        btrfs_init_free_ino_ctl(root);
1339        mutex_init(&root->fs_commit_mutex);
1340        spin_lock_init(&root->cache_lock);
1341        init_waitqueue_head(&root->cache_wait);
1342
1343        ret = get_anon_bdev(&root->anon_dev);
1344        if (ret)
1345                goto fail;
1346
1347        if (btrfs_root_refs(&root->root_item) == 0) {
1348                ret = -ENOENT;
1349                goto fail;
1350        }
1351
1352        ret = btrfs_find_orphan_item(fs_info->tree_root, location->objectid);
1353        if (ret < 0)
1354                goto fail;
1355        if (ret == 0)
1356                root->orphan_item_inserted = 1;
1357
1358        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
1359        if (ret)
1360                goto fail;
1361
1362        spin_lock(&fs_info->fs_roots_radix_lock);
1363        ret = radix_tree_insert(&fs_info->fs_roots_radix,
1364                                (unsigned long)root->root_key.objectid,
1365                                root);
1366        if (ret == 0)
1367                root->in_radix = 1;
1368
1369        spin_unlock(&fs_info->fs_roots_radix_lock);
1370        radix_tree_preload_end();
1371        if (ret) {
1372                if (ret == -EEXIST) {
1373                        free_fs_root(root);
1374                        goto again;
1375                }
1376                goto fail;
1377        }
1378
1379        ret = btrfs_find_dead_roots(fs_info->tree_root,
1380                                    root->root_key.objectid);
1381        WARN_ON(ret);
1382        return root;
1383fail:
1384        free_fs_root(root);
1385        return ERR_PTR(ret);
1386}
1387
1388static int btrfs_congested_fn(void *congested_data, int bdi_bits)
1389{
1390        struct btrfs_fs_info *info = (struct btrfs_fs_info *)congested_data;
1391        int ret = 0;
1392        struct btrfs_device *device;
1393        struct backing_dev_info *bdi;
1394
1395        rcu_read_lock();
1396        list_for_each_entry_rcu(device, &info->fs_devices->devices, dev_list) {
1397                if (!device->bdev)
1398                        continue;
1399                bdi = blk_get_backing_dev_info(device->bdev);
1400                if (bdi && bdi_congested(bdi, bdi_bits)) {
1401                        ret = 1;
1402                        break;
1403                }
1404        }
1405        rcu_read_unlock();
1406        return ret;
1407}
1408
1409/*
1410 * If this fails, caller must call bdi_destroy() to get rid of the
1411 * bdi again.
1412 */
1413static int setup_bdi(struct btrfs_fs_info *info, struct backing_dev_info *bdi)
1414{
1415        int err;
1416
1417        bdi->capabilities = BDI_CAP_MAP_COPY;
1418        err = bdi_setup_and_register(bdi, "btrfs", BDI_CAP_MAP_COPY);
1419        if (err)
1420                return err;
1421
1422        bdi->ra_pages   = default_backing_dev_info.ra_pages;
1423        bdi->congested_fn       = btrfs_congested_fn;
1424        bdi->congested_data     = info;
1425        return 0;
1426}
1427
1428static int bio_ready_for_csum(struct bio *bio)
1429{
1430        u64 length = 0;
1431        u64 buf_len = 0;
1432        u64 start = 0;
1433        struct page *page;
1434        struct extent_io_tree *io_tree = NULL;
1435        struct bio_vec *bvec;
1436        int i;
1437        int ret;
1438
1439        bio_for_each_segment(bvec, bio, i) {
1440                page = bvec->bv_page;
1441                if (page->private == EXTENT_PAGE_PRIVATE) {
1442                        length += bvec->bv_len;
1443                        continue;
1444                }
1445                if (!page->private) {
1446                        length += bvec->bv_len;
1447                        continue;
1448                }
1449                length = bvec->bv_len;
1450                buf_len = page->private >> 2;
1451                start = page_offset(page) + bvec->bv_offset;
1452                io_tree = &BTRFS_I(page->mapping->host)->io_tree;
1453        }
1454        /* are we fully contained in this bio? */
1455        if (buf_len <= length)
1456                return 1;
1457
1458        ret = extent_range_uptodate(io_tree, start + length,
1459                                    start + buf_len - 1);
1460        return ret;
1461}
1462
1463/*
1464 * called by the kthread helper functions to finally call the bio end_io
1465 * functions.  This is where read checksum verification actually happens
1466 */
1467static void end_workqueue_fn(struct btrfs_work *work)
1468{
1469        struct bio *bio;
1470        struct end_io_wq *end_io_wq;
1471        struct btrfs_fs_info *fs_info;
1472        int error;
1473
1474        end_io_wq = container_of(work, struct end_io_wq, work);
1475        bio = end_io_wq->bio;
1476        fs_info = end_io_wq->info;
1477
1478        /* metadata bio reads are special because the whole tree block must
1479         * be checksummed at once.  This makes sure the entire block is in
1480         * ram and up to date before trying to verify things.  For
1481         * blocksize <= pagesize, it is basically a noop
1482         */
1483        if (!(bio->bi_rw & REQ_WRITE) && end_io_wq->metadata &&
1484            !bio_ready_for_csum(bio)) {
1485                btrfs_queue_worker(&fs_info->endio_meta_workers,
1486                                   &end_io_wq->work);
1487                return;
1488        }
1489        error = end_io_wq->error;
1490        bio->bi_private = end_io_wq->private;
1491        bio->bi_end_io = end_io_wq->end_io;
1492        kfree(end_io_wq);
1493        bio_endio(bio, error);
1494}
1495
1496static int cleaner_kthread(void *arg)
1497{
1498        struct btrfs_root *root = arg;
1499
1500        do {
1501                vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1502
1503                if (!(root->fs_info->sb->s_flags & MS_RDONLY) &&
1504                    mutex_trylock(&root->fs_info->cleaner_mutex)) {
1505                        btrfs_run_delayed_iputs(root);
1506                        btrfs_clean_old_snapshots(root);
1507                        mutex_unlock(&root->fs_info->cleaner_mutex);
1508                        btrfs_run_defrag_inodes(root->fs_info);
1509                }
1510
1511                if (freezing(current)) {
1512                        refrigerator();
1513                } else {
1514                        set_current_state(TASK_INTERRUPTIBLE);
1515                        if (!kthread_should_stop())
1516                                schedule();
1517                        __set_current_state(TASK_RUNNING);
1518                }
1519        } while (!kthread_should_stop());
1520        return 0;
1521}
1522
1523static int transaction_kthread(void *arg)
1524{
1525        struct btrfs_root *root = arg;
1526        struct btrfs_trans_handle *trans;
1527        struct btrfs_transaction *cur;
1528        u64 transid;
1529        unsigned long now;
1530        unsigned long delay;
1531        int ret;
1532
1533        do {
1534                delay = HZ * 30;
1535                vfs_check_frozen(root->fs_info->sb, SB_FREEZE_WRITE);
1536                mutex_lock(&root->fs_info->transaction_kthread_mutex);
1537
1538                spin_lock(&root->fs_info->trans_lock);
1539                cur = root->fs_info->running_transaction;
1540                if (!cur) {
1541                        spin_unlock(&root->fs_info->trans_lock);
1542                        goto sleep;
1543                }
1544
1545                now = get_seconds();
1546                if (!cur->blocked &&
1547                    (now < cur->start_time || now - cur->start_time < 30)) {
1548                        spin_unlock(&root->fs_info->trans_lock);
1549                        delay = HZ * 5;
1550                        goto sleep;
1551                }
1552                transid = cur->transid;
1553                spin_unlock(&root->fs_info->trans_lock);
1554
1555                trans = btrfs_join_transaction(root);
1556                BUG_ON(IS_ERR(trans));
1557                if (transid == trans->transid) {
1558                        ret = btrfs_commit_transaction(trans, root);
1559                        BUG_ON(ret);
1560                } else {
1561                        btrfs_end_transaction(trans, root);
1562                }
1563sleep:
1564                wake_up_process(root->fs_info->cleaner_kthread);
1565                mutex_unlock(&root->fs_info->transaction_kthread_mutex);
1566
1567                if (freezing(current)) {
1568                        refrigerator();
1569                } else {
1570                        set_current_state(TASK_INTERRUPTIBLE);
1571                        if (!kthread_should_stop() &&
1572                            !btrfs_transaction_blocked(root->fs_info))
1573                                schedule_timeout(delay);
1574                        __set_current_state(TASK_RUNNING);
1575                }
1576        } while (!kthread_should_stop());
1577        return 0;
1578}
1579
1580struct btrfs_root *open_ctree(struct super_block *sb,
1581                              struct btrfs_fs_devices *fs_devices,
1582                              char *options)
1583{
1584        u32 sectorsize;
1585        u32 nodesize;
1586        u32 leafsize;
1587        u32 blocksize;
1588        u32 stripesize;
1589        u64 generation;
1590        u64 features;
1591        struct btrfs_key location;
1592        struct buffer_head *bh;
1593        struct btrfs_root *extent_root = kzalloc(sizeof(struct btrfs_root),
1594                                                 GFP_NOFS);
1595        struct btrfs_root *csum_root = kzalloc(sizeof(struct btrfs_root),
1596                                                 GFP_NOFS);
1597        struct btrfs_root *tree_root = btrfs_sb(sb);
1598        struct btrfs_fs_info *fs_info = NULL;
1599        struct btrfs_root *chunk_root = kzalloc(sizeof(struct btrfs_root),
1600                                                GFP_NOFS);
1601        struct btrfs_root *dev_root = kzalloc(sizeof(struct btrfs_root),
1602                                              GFP_NOFS);
1603        struct btrfs_root *log_tree_root;
1604
1605        int ret;
1606        int err = -EINVAL;
1607
1608        struct btrfs_super_block *disk_super;
1609
1610        if (!extent_root || !tree_root || !tree_root->fs_info ||
1611            !chunk_root || !dev_root || !csum_root) {
1612                err = -ENOMEM;
1613                goto fail;
1614        }
1615        fs_info = tree_root->fs_info;
1616
1617        ret = init_srcu_struct(&fs_info->subvol_srcu);
1618        if (ret) {
1619                err = ret;
1620                goto fail;
1621        }
1622
1623        ret = setup_bdi(fs_info, &fs_info->bdi);
1624        if (ret) {
1625                err = ret;
1626                goto fail_srcu;
1627        }
1628
1629        fs_info->btree_inode = new_inode(sb);
1630        if (!fs_info->btree_inode) {
1631                err = -ENOMEM;
1632                goto fail_bdi;
1633        }
1634
1635        mapping_set_gfp_mask(fs_info->btree_inode->i_mapping, GFP_NOFS);
1636
1637        INIT_RADIX_TREE(&fs_info->fs_roots_radix, GFP_ATOMIC);
1638        INIT_LIST_HEAD(&fs_info->trans_list);
1639        INIT_LIST_HEAD(&fs_info->dead_roots);
1640        INIT_LIST_HEAD(&fs_info->delayed_iputs);
1641        INIT_LIST_HEAD(&fs_info->hashers);
1642        INIT_LIST_HEAD(&fs_info->delalloc_inodes);
1643        INIT_LIST_HEAD(&fs_info->ordered_operations);
1644        INIT_LIST_HEAD(&fs_info->caching_block_groups);
1645        spin_lock_init(&fs_info->delalloc_lock);
1646        spin_lock_init(&fs_info->trans_lock);
1647        spin_lock_init(&fs_info->ref_cache_lock);
1648        spin_lock_init(&fs_info->fs_roots_radix_lock);
1649        spin_lock_init(&fs_info->delayed_iput_lock);
1650        spin_lock_init(&fs_info->defrag_inodes_lock);
1651        mutex_init(&fs_info->reloc_mutex);
1652
1653        init_completion(&fs_info->kobj_unregister);
1654        fs_info->tree_root = tree_root;
1655        fs_info->extent_root = extent_root;
1656        fs_info->csum_root = csum_root;
1657        fs_info->chunk_root = chunk_root;
1658        fs_info->dev_root = dev_root;
1659        fs_info->fs_devices = fs_devices;
1660        INIT_LIST_HEAD(&fs_info->dirty_cowonly_roots);
1661        INIT_LIST_HEAD(&fs_info->space_info);
1662        btrfs_mapping_init(&fs_info->mapping_tree);
1663        btrfs_init_block_rsv(&fs_info->global_block_rsv);
1664        btrfs_init_block_rsv(&fs_info->delalloc_block_rsv);
1665        btrfs_init_block_rsv(&fs_info->trans_block_rsv);
1666        btrfs_init_block_rsv(&fs_info->chunk_block_rsv);
1667        btrfs_init_block_rsv(&fs_info->empty_block_rsv);
1668        INIT_LIST_HEAD(&fs_info->durable_block_rsv_list);
1669        mutex_init(&fs_info->durable_block_rsv_mutex);
1670        atomic_set(&fs_info->nr_async_submits, 0);
1671        atomic_set(&fs_info->async_delalloc_pages, 0);
1672        atomic_set(&fs_info->async_submit_draining, 0);
1673        atomic_set(&fs_info->nr_async_bios, 0);
1674        atomic_set(&fs_info->defrag_running, 0);
1675        fs_info->sb = sb;
1676        fs_info->max_inline = 8192 * 1024;
1677        fs_info->metadata_ratio = 0;
1678        fs_info->defrag_inodes = RB_ROOT;
1679        fs_info->trans_no_join = 0;
1680
1681        fs_info->thread_pool_size = min_t(unsigned long,
1682                                          num_online_cpus() + 2, 8);
1683
1684        INIT_LIST_HEAD(&fs_info->ordered_extents);
1685        spin_lock_init(&fs_info->ordered_extent_lock);
1686        fs_info->delayed_root = kmalloc(sizeof(struct btrfs_delayed_root),
1687                                        GFP_NOFS);
1688        if (!fs_info->delayed_root) {
1689                err = -ENOMEM;
1690                goto fail_iput;
1691        }
1692        btrfs_init_delayed_root(fs_info->delayed_root);
1693
1694        mutex_init(&fs_info->scrub_lock);
1695        atomic_set(&fs_info->scrubs_running, 0);
1696        atomic_set(&fs_info->scrub_pause_req, 0);
1697        atomic_set(&fs_info->scrubs_paused, 0);
1698        atomic_set(&fs_info->scrub_cancel_req, 0);
1699        init_waitqueue_head(&fs_info->scrub_pause_wait);
1700        init_rwsem(&fs_info->scrub_super_lock);
1701        fs_info->scrub_workers_refcnt = 0;
1702
1703        sb->s_blocksize = 4096;
1704        sb->s_blocksize_bits = blksize_bits(4096);
1705        sb->s_bdi = &fs_info->bdi;
1706
1707        fs_info->btree_inode->i_ino = BTRFS_BTREE_INODE_OBJECTID;
1708        fs_info->btree_inode->i_nlink = 1;
1709        /*
1710         * we set the i_size on the btree inode to the max possible int.
1711         * the real end of the address space is determined by all of
1712         * the devices in the system
1713         */
1714        fs_info->btree_inode->i_size = OFFSET_MAX;
1715        fs_info->btree_inode->i_mapping->a_ops = &btree_aops;
1716        fs_info->btree_inode->i_mapping->backing_dev_info = &fs_info->bdi;
1717
1718        RB_CLEAR_NODE(&BTRFS_I(fs_info->btree_inode)->rb_node);
1719        extent_io_tree_init(&BTRFS_I(fs_info->btree_inode)->io_tree,
1720                             fs_info->btree_inode->i_mapping);
1721        extent_map_tree_init(&BTRFS_I(fs_info->btree_inode)->extent_tree);
1722
1723        BTRFS_I(fs_info->btree_inode)->io_tree.ops = &btree_extent_io_ops;
1724
1725        BTRFS_I(fs_info->btree_inode)->root = tree_root;
1726        memset(&BTRFS_I(fs_info->btree_inode)->location, 0,
1727               sizeof(struct btrfs_key));
1728        BTRFS_I(fs_info->btree_inode)->dummy_inode = 1;
1729        insert_inode_hash(fs_info->btree_inode);
1730
1731        spin_lock_init(&fs_info->block_group_cache_lock);
1732        fs_info->block_group_cache_tree = RB_ROOT;
1733
1734        extent_io_tree_init(&fs_info->freed_extents[0],
1735                             fs_info->btree_inode->i_mapping);
1736        extent_io_tree_init(&fs_info->freed_extents[1],
1737                             fs_info->btree_inode->i_mapping);
1738        fs_info->pinned_extents = &fs_info->freed_extents[0];
1739        fs_info->do_barriers = 1;
1740
1741
1742        mutex_init(&fs_info->ordered_operations_mutex);
1743        mutex_init(&fs_info->tree_log_mutex);
1744        mutex_init(&fs_info->chunk_mutex);
1745        mutex_init(&fs_info->transaction_kthread_mutex);
1746        mutex_init(&fs_info->cleaner_mutex);
1747        mutex_init(&fs_info->volume_mutex);
1748        init_rwsem(&fs_info->extent_commit_sem);
1749        init_rwsem(&fs_info->cleanup_work_sem);
1750        init_rwsem(&fs_info->subvol_sem);
1751
1752        btrfs_init_free_cluster(&fs_info->meta_alloc_cluster);
1753        btrfs_init_free_cluster(&fs_info->data_alloc_cluster);
1754
1755        init_waitqueue_head(&fs_info->transaction_throttle);
1756        init_waitqueue_head(&fs_info->transaction_wait);
1757        init_waitqueue_head(&fs_info->transaction_blocked_wait);
1758        init_waitqueue_head(&fs_info->async_submit_wait);
1759
1760        __setup_root(4096, 4096, 4096, 4096, tree_root,
1761                     fs_info, BTRFS_ROOT_TREE_OBJECTID);
1762
1763        bh = btrfs_read_dev_super(fs_devices->latest_bdev);
1764        if (!bh) {
1765                err = -EINVAL;
1766                goto fail_alloc;
1767        }
1768
1769        memcpy(&fs_info->super_copy, bh->b_data, sizeof(fs_info->super_copy));
1770        memcpy(&fs_info->super_for_commit, &fs_info->super_copy,
1771               sizeof(fs_info->super_for_commit));
1772        brelse(bh);
1773
1774        memcpy(fs_info->fsid, fs_info->super_copy.fsid, BTRFS_FSID_SIZE);
1775
1776        disk_super = &fs_info->super_copy;
1777        if (!btrfs_super_root(disk_super))
1778                goto fail_alloc;
1779
1780        /* check FS state, whether FS is broken. */
1781        fs_info->fs_state |= btrfs_super_flags(disk_super);
1782
1783        btrfs_check_super_valid(fs_info, sb->s_flags & MS_RDONLY);
1784
1785        /*
1786         * In the long term, we'll store the compression type in the super
1787         * block, and it'll be used for per file compression control.
1788         */
1789        fs_info->compress_type = BTRFS_COMPRESS_ZLIB;
1790
1791        ret = btrfs_parse_options(tree_root, options);
1792        if (ret) {
1793                err = ret;
1794                goto fail_alloc;
1795        }
1796
1797        features = btrfs_super_incompat_flags(disk_super) &
1798                ~BTRFS_FEATURE_INCOMPAT_SUPP;
1799        if (features) {
1800                printk(KERN_ERR "BTRFS: couldn't mount because of "
1801                       "unsupported optional features (%Lx).\n",
1802                       (unsigned long long)features);
1803                err = -EINVAL;
1804                goto fail_alloc;
1805        }
1806
1807        features = btrfs_super_incompat_flags(disk_super);
1808        features |= BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF;
1809        if (tree_root->fs_info->compress_type & BTRFS_COMPRESS_LZO)
1810                features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1811        btrfs_set_super_incompat_flags(disk_super, features);
1812
1813        features = btrfs_super_compat_ro_flags(disk_super) &
1814                ~BTRFS_FEATURE_COMPAT_RO_SUPP;
1815        if (!(sb->s_flags & MS_RDONLY) && features) {
1816                printk(KERN_ERR "BTRFS: couldn't mount RDWR because of "
1817                       "unsupported option features (%Lx).\n",
1818                       (unsigned long long)features);
1819                err = -EINVAL;
1820                goto fail_alloc;
1821        }
1822
1823        btrfs_init_workers(&fs_info->generic_worker,
1824                           "genwork", 1, NULL);
1825
1826        btrfs_init_workers(&fs_info->workers, "worker",
1827                           fs_info->thread_pool_size,
1828                           &fs_info->generic_worker);
1829
1830        btrfs_init_workers(&fs_info->delalloc_workers, "delalloc",
1831                           fs_info->thread_pool_size,
1832                           &fs_info->generic_worker);
1833
1834        btrfs_init_workers(&fs_info->submit_workers, "submit",
1835                           min_t(u64, fs_devices->num_devices,
1836                           fs_info->thread_pool_size),
1837                           &fs_info->generic_worker);
1838
1839        btrfs_init_workers(&fs_info->caching_workers, "cache",
1840                           2, &fs_info->generic_worker);
1841
1842        /* a higher idle thresh on the submit workers makes it much more
1843         * likely that bios will be send down in a sane order to the
1844         * devices
1845         */
1846        fs_info->submit_workers.idle_thresh = 64;
1847
1848        fs_info->workers.idle_thresh = 16;
1849        fs_info->workers.ordered = 1;
1850
1851        fs_info->delalloc_workers.idle_thresh = 2;
1852        fs_info->delalloc_workers.ordered = 1;
1853
1854        btrfs_init_workers(&fs_info->fixup_workers, "fixup", 1,
1855                           &fs_info->generic_worker);
1856        btrfs_init_workers(&fs_info->endio_workers, "endio",
1857                           fs_info->thread_pool_size,
1858                           &fs_info->generic_worker);
1859        btrfs_init_workers(&fs_info->endio_meta_workers, "endio-meta",
1860                           fs_info->thread_pool_size,
1861                           &fs_info->generic_worker);
1862        btrfs_init_workers(&fs_info->endio_meta_write_workers,
1863                           "endio-meta-write", fs_info->thread_pool_size,
1864                           &fs_info->generic_worker);
1865        btrfs_init_workers(&fs_info->endio_write_workers, "endio-write",
1866                           fs_info->thread_pool_size,
1867                           &fs_info->generic_worker);
1868        btrfs_init_workers(&fs_info->endio_freespace_worker, "freespace-write",
1869                           1, &fs_info->generic_worker);
1870        btrfs_init_workers(&fs_info->delayed_workers, "delayed-meta",
1871                           fs_info->thread_pool_size,
1872                           &fs_info->generic_worker);
1873
1874        /*
1875         * endios are largely parallel and should have a very
1876         * low idle thresh
1877         */
1878        fs_info->endio_workers.idle_thresh = 4;
1879        fs_info->endio_meta_workers.idle_thresh = 4;
1880
1881        fs_info->endio_write_workers.idle_thresh = 2;
1882        fs_info->endio_meta_write_workers.idle_thresh = 2;
1883
1884        btrfs_start_workers(&fs_info->workers, 1);
1885        btrfs_start_workers(&fs_info->generic_worker, 1);
1886        btrfs_start_workers(&fs_info->submit_workers, 1);
1887        btrfs_start_workers(&fs_info->delalloc_workers, 1);
1888        btrfs_start_workers(&fs_info->fixup_workers, 1);
1889        btrfs_start_workers(&fs_info->endio_workers, 1);
1890        btrfs_start_workers(&fs_info->endio_meta_workers, 1);
1891        btrfs_start_workers(&fs_info->endio_meta_write_workers, 1);
1892        btrfs_start_workers(&fs_info->endio_write_workers, 1);
1893        btrfs_start_workers(&fs_info->endio_freespace_worker, 1);
1894        btrfs_start_workers(&fs_info->delayed_workers, 1);
1895        btrfs_start_workers(&fs_info->caching_workers, 1);
1896
1897        fs_info->bdi.ra_pages *= btrfs_super_num_devices(disk_super);
1898        fs_info->bdi.ra_pages = max(fs_info->bdi.ra_pages,
1899                                    4 * 1024 * 1024 / PAGE_CACHE_SIZE);
1900
1901        nodesize = btrfs_super_nodesize(disk_super);
1902        leafsize = btrfs_super_leafsize(disk_super);
1903        sectorsize = btrfs_super_sectorsize(disk_super);
1904        stripesize = btrfs_super_stripesize(disk_super);
1905        tree_root->nodesize = nodesize;
1906        tree_root->leafsize = leafsize;
1907        tree_root->sectorsize = sectorsize;
1908        tree_root->stripesize = stripesize;
1909
1910        sb->s_blocksize = sectorsize;
1911        sb->s_blocksize_bits = blksize_bits(sectorsize);
1912
1913        if (strncmp((char *)(&disk_super->magic), BTRFS_MAGIC,
1914                    sizeof(disk_super->magic))) {
1915                printk(KERN_INFO "btrfs: valid FS not found on %s\n", sb->s_id);
1916                goto fail_sb_buffer;
1917        }
1918
1919        mutex_lock(&fs_info->chunk_mutex);
1920        ret = btrfs_read_sys_array(tree_root);
1921        mutex_unlock(&fs_info->chunk_mutex);
1922        if (ret) {
1923                printk(KERN_WARNING "btrfs: failed to read the system "
1924                       "array on %s\n", sb->s_id);
1925                goto fail_sb_buffer;
1926        }
1927
1928        blocksize = btrfs_level_size(tree_root,
1929                                     btrfs_super_chunk_root_level(disk_super));
1930        generation = btrfs_super_chunk_root_generation(disk_super);
1931
1932        __setup_root(nodesize, leafsize, sectorsize, stripesize,
1933                     chunk_root, fs_info, BTRFS_CHUNK_TREE_OBJECTID);
1934
1935        chunk_root->node = read_tree_block(chunk_root,
1936                                           btrfs_super_chunk_root(disk_super),
1937                                           blocksize, generation);
1938        BUG_ON(!chunk_root->node);
1939        if (!test_bit(EXTENT_BUFFER_UPTODATE, &chunk_root->node->bflags)) {
1940                printk(KERN_WARNING "btrfs: failed to read chunk root on %s\n",
1941                       sb->s_id);
1942                goto fail_chunk_root;
1943        }
1944        btrfs_set_root_node(&chunk_root->root_item, chunk_root->node);
1945        chunk_root->commit_root = btrfs_root_node(chunk_root);
1946
1947        read_extent_buffer(chunk_root->node, fs_info->chunk_tree_uuid,
1948           (unsigned long)btrfs_header_chunk_tree_uuid(chunk_root->node),
1949           BTRFS_UUID_SIZE);
1950
1951        mutex_lock(&fs_info->chunk_mutex);
1952        ret = btrfs_read_chunk_tree(chunk_root);
1953        mutex_unlock(&fs_info->chunk_mutex);
1954        if (ret) {
1955                printk(KERN_WARNING "btrfs: failed to read chunk tree on %s\n",
1956                       sb->s_id);
1957                goto fail_chunk_root;
1958        }
1959
1960        btrfs_close_extra_devices(fs_devices);
1961
1962        blocksize = btrfs_level_size(tree_root,
1963                                     btrfs_super_root_level(disk_super));
1964        generation = btrfs_super_generation(disk_super);
1965
1966        tree_root->node = read_tree_block(tree_root,
1967                                          btrfs_super_root(disk_super),
1968                                          blocksize, generation);
1969        if (!tree_root->node)
1970                goto fail_chunk_root;
1971        if (!test_bit(EXTENT_BUFFER_UPTODATE, &tree_root->node->bflags)) {
1972                printk(KERN_WARNING "btrfs: failed to read tree root on %s\n",
1973                       sb->s_id);
1974                goto fail_tree_root;
1975        }
1976        btrfs_set_root_node(&tree_root->root_item, tree_root->node);
1977        tree_root->commit_root = btrfs_root_node(tree_root);
1978
1979        ret = find_and_setup_root(tree_root, fs_info,
1980                                  BTRFS_EXTENT_TREE_OBJECTID, extent_root);
1981        if (ret)
1982                goto fail_tree_root;
1983        extent_root->track_dirty = 1;
1984
1985        ret = find_and_setup_root(tree_root, fs_info,
1986                                  BTRFS_DEV_TREE_OBJECTID, dev_root);
1987        if (ret)
1988                goto fail_extent_root;
1989        dev_root->track_dirty = 1;
1990
1991        ret = find_and_setup_root(tree_root, fs_info,
1992                                  BTRFS_CSUM_TREE_OBJECTID, csum_root);
1993        if (ret)
1994                goto fail_dev_root;
1995
1996        csum_root->track_dirty = 1;
1997
1998        fs_info->generation = generation;
1999        fs_info->last_trans_committed = generation;
2000        fs_info->data_alloc_profile = (u64)-1;
2001        fs_info->metadata_alloc_profile = (u64)-1;
2002        fs_info->system_alloc_profile = fs_info->metadata_alloc_profile;
2003
2004        ret = btrfs_init_space_info(fs_info);
2005        if (ret) {
2006                printk(KERN_ERR "Failed to initial space info: %d\n", ret);
2007                goto fail_block_groups;
2008        }
2009
2010        ret = btrfs_read_block_groups(extent_root);
2011        if (ret) {
2012                printk(KERN_ERR "Failed to read block groups: %d\n", ret);
2013                goto fail_block_groups;
2014        }
2015
2016        fs_info->cleaner_kthread = kthread_run(cleaner_kthread, tree_root,
2017                                               "btrfs-cleaner");
2018        if (IS_ERR(fs_info->cleaner_kthread))
2019                goto fail_block_groups;
2020
2021        fs_info->transaction_kthread = kthread_run(transaction_kthread,
2022                                                   tree_root,
2023                                                   "btrfs-transaction");
2024        if (IS_ERR(fs_info->transaction_kthread))
2025                goto fail_cleaner;
2026
2027        if (!btrfs_test_opt(tree_root, SSD) &&
2028            !btrfs_test_opt(tree_root, NOSSD) &&
2029            !fs_info->fs_devices->rotating) {
2030                printk(KERN_INFO "Btrfs detected SSD devices, enabling SSD "
2031                       "mode\n");
2032                btrfs_set_opt(fs_info->mount_opt, SSD);
2033        }
2034
2035        /* do not make disk changes in broken FS */
2036        if (btrfs_super_log_root(disk_super) != 0 &&
2037            !(fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)) {
2038                u64 bytenr = btrfs_super_log_root(disk_super);
2039
2040                if (fs_devices->rw_devices == 0) {
2041                        printk(KERN_WARNING "Btrfs log replay required "
2042                               "on RO media\n");
2043                        err = -EIO;
2044                        goto fail_trans_kthread;
2045                }
2046                blocksize =
2047                     btrfs_level_size(tree_root,
2048                                      btrfs_super_log_root_level(disk_super));
2049
2050                log_tree_root = kzalloc(sizeof(struct btrfs_root), GFP_NOFS);
2051                if (!log_tree_root) {
2052                        err = -ENOMEM;
2053                        goto fail_trans_kthread;
2054                }
2055
2056                __setup_root(nodesize, leafsize, sectorsize, stripesize,
2057                             log_tree_root, fs_info, BTRFS_TREE_LOG_OBJECTID);
2058
2059                log_tree_root->node = read_tree_block(tree_root, bytenr,
2060                                                      blocksize,
2061                                                      generation + 1);
2062                ret = btrfs_recover_log_trees(log_tree_root);
2063                BUG_ON(ret);
2064
2065                if (sb->s_flags & MS_RDONLY) {
2066                        ret =  btrfs_commit_super(tree_root);
2067                        BUG_ON(ret);
2068                }
2069        }
2070
2071        ret = btrfs_find_orphan_roots(tree_root);
2072        BUG_ON(ret);
2073
2074        if (!(sb->s_flags & MS_RDONLY)) {
2075                ret = btrfs_cleanup_fs_roots(fs_info);
2076                BUG_ON(ret);
2077
2078                ret = btrfs_recover_relocation(tree_root);
2079                if (ret < 0) {
2080                        printk(KERN_WARNING
2081                               "btrfs: failed to recover relocation\n");
2082                        err = -EINVAL;
2083                        goto fail_trans_kthread;
2084                }
2085        }
2086
2087        location.objectid = BTRFS_FS_TREE_OBJECTID;
2088        location.type = BTRFS_ROOT_ITEM_KEY;
2089        location.offset = (u64)-1;
2090
2091        fs_info->fs_root = btrfs_read_fs_root_no_name(fs_info, &location);
2092        if (!fs_info->fs_root)
2093                goto fail_trans_kthread;
2094        if (IS_ERR(fs_info->fs_root)) {
2095                err = PTR_ERR(fs_info->fs_root);
2096                goto fail_trans_kthread;
2097        }
2098
2099        if (!(sb->s_flags & MS_RDONLY)) {
2100                down_read(&fs_info->cleanup_work_sem);
2101                err = btrfs_orphan_cleanup(fs_info->fs_root);
2102                if (!err)
2103                        err = btrfs_orphan_cleanup(fs_info->tree_root);
2104                up_read(&fs_info->cleanup_work_sem);
2105                if (err) {
2106                        close_ctree(tree_root);
2107                        return ERR_PTR(err);
2108                }
2109        }
2110
2111        return tree_root;
2112
2113fail_trans_kthread:
2114        kthread_stop(fs_info->transaction_kthread);
2115fail_cleaner:
2116        kthread_stop(fs_info->cleaner_kthread);
2117
2118        /*
2119         * make sure we're done with the btree inode before we stop our
2120         * kthreads
2121         */
2122        filemap_write_and_wait(fs_info->btree_inode->i_mapping);
2123        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2124
2125fail_block_groups:
2126        btrfs_free_block_groups(fs_info);
2127        free_extent_buffer(csum_root->node);
2128        free_extent_buffer(csum_root->commit_root);
2129fail_dev_root:
2130        free_extent_buffer(dev_root->node);
2131        free_extent_buffer(dev_root->commit_root);
2132fail_extent_root:
2133        free_extent_buffer(extent_root->node);
2134        free_extent_buffer(extent_root->commit_root);
2135fail_tree_root:
2136        free_extent_buffer(tree_root->node);
2137        free_extent_buffer(tree_root->commit_root);
2138fail_chunk_root:
2139        free_extent_buffer(chunk_root->node);
2140        free_extent_buffer(chunk_root->commit_root);
2141fail_sb_buffer:
2142        btrfs_stop_workers(&fs_info->generic_worker);
2143        btrfs_stop_workers(&fs_info->fixup_workers);
2144        btrfs_stop_workers(&fs_info->delalloc_workers);
2145        btrfs_stop_workers(&fs_info->workers);
2146        btrfs_stop_workers(&fs_info->endio_workers);
2147        btrfs_stop_workers(&fs_info->endio_meta_workers);
2148        btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2149        btrfs_stop_workers(&fs_info->endio_write_workers);
2150        btrfs_stop_workers(&fs_info->endio_freespace_worker);
2151        btrfs_stop_workers(&fs_info->submit_workers);
2152        btrfs_stop_workers(&fs_info->delayed_workers);
2153        btrfs_stop_workers(&fs_info->caching_workers);
2154fail_alloc:
2155        kfree(fs_info->delayed_root);
2156fail_iput:
2157        invalidate_inode_pages2(fs_info->btree_inode->i_mapping);
2158        iput(fs_info->btree_inode);
2159
2160        btrfs_close_devices(fs_info->fs_devices);
2161        btrfs_mapping_tree_free(&fs_info->mapping_tree);
2162fail_bdi:
2163        bdi_destroy(&fs_info->bdi);
2164fail_srcu:
2165        cleanup_srcu_struct(&fs_info->subvol_srcu);
2166fail:
2167        kfree(extent_root);
2168        kfree(tree_root);
2169        kfree(fs_info);
2170        kfree(chunk_root);
2171        kfree(dev_root);
2172        kfree(csum_root);
2173        return ERR_PTR(err);
2174}
2175
2176static void btrfs_end_buffer_write_sync(struct buffer_head *bh, int uptodate)
2177{
2178        char b[BDEVNAME_SIZE];
2179
2180        if (uptodate) {
2181                set_buffer_uptodate(bh);
2182        } else {
2183                printk_ratelimited(KERN_WARNING "lost page write due to "
2184                                        "I/O error on %s\n",
2185                                       bdevname(bh->b_bdev, b));
2186                /* note, we dont' set_buffer_write_io_error because we have
2187                 * our own ways of dealing with the IO errors
2188                 */
2189                clear_buffer_uptodate(bh);
2190        }
2191        unlock_buffer(bh);
2192        put_bh(bh);
2193}
2194
2195struct buffer_head *btrfs_read_dev_super(struct block_device *bdev)
2196{
2197        struct buffer_head *bh;
2198        struct buffer_head *latest = NULL;
2199        struct btrfs_super_block *super;
2200        int i;
2201        u64 transid = 0;
2202        u64 bytenr;
2203
2204        /* we would like to check all the supers, but that would make
2205         * a btrfs mount succeed after a mkfs from a different FS.
2206         * So, we need to add a special mount option to scan for
2207         * later supers, using BTRFS_SUPER_MIRROR_MAX instead
2208         */
2209        for (i = 0; i < 1; i++) {
2210                bytenr = btrfs_sb_offset(i);
2211                if (bytenr + 4096 >= i_size_read(bdev->bd_inode))
2212                        break;
2213                bh = __bread(bdev, bytenr / 4096, 4096);
2214                if (!bh)
2215                        continue;
2216
2217                super = (struct btrfs_super_block *)bh->b_data;
2218                if (btrfs_super_bytenr(super) != bytenr ||
2219                    strncmp((char *)(&super->magic), BTRFS_MAGIC,
2220                            sizeof(super->magic))) {
2221                        brelse(bh);
2222                        continue;
2223                }
2224
2225                if (!latest || btrfs_super_generation(super) > transid) {
2226                        brelse(latest);
2227                        latest = bh;
2228                        transid = btrfs_super_generation(super);
2229                } else {
2230                        brelse(bh);
2231                }
2232        }
2233        return latest;
2234}
2235
2236/*
2237 * this should be called twice, once with wait == 0 and
2238 * once with wait == 1.  When wait == 0 is done, all the buffer heads
2239 * we write are pinned.
2240 *
2241 * They are released when wait == 1 is done.
2242 * max_mirrors must be the same for both runs, and it indicates how
2243 * many supers on this one device should be written.
2244 *
2245 * max_mirrors == 0 means to write them all.
2246 */
2247static int write_dev_supers(struct btrfs_device *device,
2248                            struct btrfs_super_block *sb,
2249                            int do_barriers, int wait, int max_mirrors)
2250{
2251        struct buffer_head *bh;
2252        int i;
2253        int ret;
2254        int errors = 0;
2255        u32 crc;
2256        u64 bytenr;
2257        int last_barrier = 0;
2258
2259        if (max_mirrors == 0)
2260                max_mirrors = BTRFS_SUPER_MIRROR_MAX;
2261
2262        /* make sure only the last submit_bh does a barrier */
2263        if (do_barriers) {
2264                for (i = 0; i < max_mirrors; i++) {
2265                        bytenr = btrfs_sb_offset(i);
2266                        if (bytenr + BTRFS_SUPER_INFO_SIZE >=
2267                            device->total_bytes)
2268                                break;
2269                        last_barrier = i;
2270                }
2271        }
2272
2273        for (i = 0; i < max_mirrors; i++) {
2274                bytenr = btrfs_sb_offset(i);
2275                if (bytenr + BTRFS_SUPER_INFO_SIZE >= device->total_bytes)
2276                        break;
2277
2278                if (wait) {
2279                        bh = __find_get_block(device->bdev, bytenr / 4096,
2280                                              BTRFS_SUPER_INFO_SIZE);
2281                        BUG_ON(!bh);
2282                        wait_on_buffer(bh);
2283                        if (!buffer_uptodate(bh))
2284                                errors++;
2285
2286                        /* drop our reference */
2287                        brelse(bh);
2288
2289                        /* drop the reference from the wait == 0 run */
2290                        brelse(bh);
2291                        continue;
2292                } else {
2293                        btrfs_set_super_bytenr(sb, bytenr);
2294
2295                        crc = ~(u32)0;
2296                        crc = btrfs_csum_data(NULL, (char *)sb +
2297                                              BTRFS_CSUM_SIZE, crc,
2298                                              BTRFS_SUPER_INFO_SIZE -
2299                                              BTRFS_CSUM_SIZE);
2300                        btrfs_csum_final(crc, sb->csum);
2301
2302                        /*
2303                         * one reference for us, and we leave it for the
2304                         * caller
2305                         */
2306                        bh = __getblk(device->bdev, bytenr / 4096,
2307                                      BTRFS_SUPER_INFO_SIZE);
2308                        memcpy(bh->b_data, sb, BTRFS_SUPER_INFO_SIZE);
2309
2310                        /* one reference for submit_bh */
2311                        get_bh(bh);
2312
2313                        set_buffer_uptodate(bh);
2314                        lock_buffer(bh);
2315                        bh->b_end_io = btrfs_end_buffer_write_sync;
2316                }
2317
2318                if (i == last_barrier && do_barriers)
2319                        ret = submit_bh(WRITE_FLUSH_FUA, bh);
2320                else
2321                        ret = submit_bh(WRITE_SYNC, bh);
2322
2323                if (ret)
2324                        errors++;
2325        }
2326        return errors < i ? 0 : -1;
2327}
2328
2329int write_all_supers(struct btrfs_root *root, int max_mirrors)
2330{
2331        struct list_head *head;
2332        struct btrfs_device *dev;
2333        struct btrfs_super_block *sb;
2334        struct btrfs_dev_item *dev_item;
2335        int ret;
2336        int do_barriers;
2337        int max_errors;
2338        int total_errors = 0;
2339        u64 flags;
2340
2341        max_errors = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
2342        do_barriers = !btrfs_test_opt(root, NOBARRIER);
2343
2344        sb = &root->fs_info->super_for_commit;
2345        dev_item = &sb->dev_item;
2346
2347        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2348        head = &root->fs_info->fs_devices->devices;
2349        list_for_each_entry_rcu(dev, head, dev_list) {
2350                if (!dev->bdev) {
2351                        total_errors++;
2352                        continue;
2353                }
2354                if (!dev->in_fs_metadata || !dev->writeable)
2355                        continue;
2356
2357                btrfs_set_stack_device_generation(dev_item, 0);
2358                btrfs_set_stack_device_type(dev_item, dev->type);
2359                btrfs_set_stack_device_id(dev_item, dev->devid);
2360                btrfs_set_stack_device_total_bytes(dev_item, dev->total_bytes);
2361                btrfs_set_stack_device_bytes_used(dev_item, dev->bytes_used);
2362                btrfs_set_stack_device_io_align(dev_item, dev->io_align);
2363                btrfs_set_stack_device_io_width(dev_item, dev->io_width);
2364                btrfs_set_stack_device_sector_size(dev_item, dev->sector_size);
2365                memcpy(dev_item->uuid, dev->uuid, BTRFS_UUID_SIZE);
2366                memcpy(dev_item->fsid, dev->fs_devices->fsid, BTRFS_UUID_SIZE);
2367
2368                flags = btrfs_super_flags(sb);
2369                btrfs_set_super_flags(sb, flags | BTRFS_HEADER_FLAG_WRITTEN);
2370
2371                ret = write_dev_supers(dev, sb, do_barriers, 0, max_mirrors);
2372                if (ret)
2373                        total_errors++;
2374        }
2375        if (total_errors > max_errors) {
2376                printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2377                       total_errors);
2378                BUG();
2379        }
2380
2381        total_errors = 0;
2382        list_for_each_entry_rcu(dev, head, dev_list) {
2383                if (!dev->bdev)
2384                        continue;
2385                if (!dev->in_fs_metadata || !dev->writeable)
2386                        continue;
2387
2388                ret = write_dev_supers(dev, sb, do_barriers, 1, max_mirrors);
2389                if (ret)
2390                        total_errors++;
2391        }
2392        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2393        if (total_errors > max_errors) {
2394                printk(KERN_ERR "btrfs: %d errors while writing supers\n",
2395                       total_errors);
2396                BUG();
2397        }
2398        return 0;
2399}
2400
2401int write_ctree_super(struct btrfs_trans_handle *trans,
2402                      struct btrfs_root *root, int max_mirrors)
2403{
2404        int ret;
2405
2406        ret = write_all_supers(root, max_mirrors);
2407        return ret;
2408}
2409
2410int btrfs_free_fs_root(struct btrfs_fs_info *fs_info, struct btrfs_root *root)
2411{
2412        spin_lock(&fs_info->fs_roots_radix_lock);
2413        radix_tree_delete(&fs_info->fs_roots_radix,
2414                          (unsigned long)root->root_key.objectid);
2415        spin_unlock(&fs_info->fs_roots_radix_lock);
2416
2417        if (btrfs_root_refs(&root->root_item) == 0)
2418                synchronize_srcu(&fs_info->subvol_srcu);
2419
2420        __btrfs_remove_free_space_cache(root->free_ino_pinned);
2421        __btrfs_remove_free_space_cache(root->free_ino_ctl);
2422        free_fs_root(root);
2423        return 0;
2424}
2425
2426static void free_fs_root(struct btrfs_root *root)
2427{
2428        iput(root->cache_inode);
2429        WARN_ON(!RB_EMPTY_ROOT(&root->inode_tree));
2430        if (root->anon_dev)
2431                free_anon_bdev(root->anon_dev);
2432        free_extent_buffer(root->node);
2433        free_extent_buffer(root->commit_root);
2434        kfree(root->free_ino_ctl);
2435        kfree(root->free_ino_pinned);
2436        kfree(root->name);
2437        kfree(root);
2438}
2439
2440static int del_fs_roots(struct btrfs_fs_info *fs_info)
2441{
2442        int ret;
2443        struct btrfs_root *gang[8];
2444        int i;
2445
2446        while (!list_empty(&fs_info->dead_roots)) {
2447                gang[0] = list_entry(fs_info->dead_roots.next,
2448                                     struct btrfs_root, root_list);
2449                list_del(&gang[0]->root_list);
2450
2451                if (gang[0]->in_radix) {
2452                        btrfs_free_fs_root(fs_info, gang[0]);
2453                } else {
2454                        free_extent_buffer(gang[0]->node);
2455                        free_extent_buffer(gang[0]->commit_root);
2456                        kfree(gang[0]);
2457                }
2458        }
2459
2460        while (1) {
2461                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2462                                             (void **)gang, 0,
2463                                             ARRAY_SIZE(gang));
2464                if (!ret)
2465                        break;
2466                for (i = 0; i < ret; i++)
2467                        btrfs_free_fs_root(fs_info, gang[i]);
2468        }
2469        return 0;
2470}
2471
2472int btrfs_cleanup_fs_roots(struct btrfs_fs_info *fs_info)
2473{
2474        u64 root_objectid = 0;
2475        struct btrfs_root *gang[8];
2476        int i;
2477        int ret;
2478
2479        while (1) {
2480                ret = radix_tree_gang_lookup(&fs_info->fs_roots_radix,
2481                                             (void **)gang, root_objectid,
2482                                             ARRAY_SIZE(gang));
2483                if (!ret)
2484                        break;
2485
2486                root_objectid = gang[ret - 1]->root_key.objectid + 1;
2487                for (i = 0; i < ret; i++) {
2488                        int err;
2489
2490                        root_objectid = gang[i]->root_key.objectid;
2491                        err = btrfs_orphan_cleanup(gang[i]);
2492                        if (err)
2493                                return err;
2494                }
2495                root_objectid++;
2496        }
2497        return 0;
2498}
2499
2500int btrfs_commit_super(struct btrfs_root *root)
2501{
2502        struct btrfs_trans_handle *trans;
2503        int ret;
2504
2505        mutex_lock(&root->fs_info->cleaner_mutex);
2506        btrfs_run_delayed_iputs(root);
2507        btrfs_clean_old_snapshots(root);
2508        mutex_unlock(&root->fs_info->cleaner_mutex);
2509
2510        /* wait until ongoing cleanup work done */
2511        down_write(&root->fs_info->cleanup_work_sem);
2512        up_write(&root->fs_info->cleanup_work_sem);
2513
2514        trans = btrfs_join_transaction(root);
2515        if (IS_ERR(trans))
2516                return PTR_ERR(trans);
2517        ret = btrfs_commit_transaction(trans, root);
2518        BUG_ON(ret);
2519        /* run commit again to drop the original snapshot */
2520        trans = btrfs_join_transaction(root);
2521        if (IS_ERR(trans))
2522                return PTR_ERR(trans);
2523        btrfs_commit_transaction(trans, root);
2524        ret = btrfs_write_and_wait_transaction(NULL, root);
2525        BUG_ON(ret);
2526
2527        ret = write_ctree_super(NULL, root, 0);
2528        return ret;
2529}
2530
2531int close_ctree(struct btrfs_root *root)
2532{
2533        struct btrfs_fs_info *fs_info = root->fs_info;
2534        int ret;
2535
2536        fs_info->closing = 1;
2537        smp_mb();
2538
2539        btrfs_scrub_cancel(root);
2540
2541        /* wait for any defraggers to finish */
2542        wait_event(fs_info->transaction_wait,
2543                   (atomic_read(&fs_info->defrag_running) == 0));
2544
2545        /* clear out the rbtree of defraggable inodes */
2546        btrfs_run_defrag_inodes(root->fs_info);
2547
2548        btrfs_put_block_group_cache(fs_info);
2549
2550        /*
2551         * Here come 2 situations when btrfs is broken to flip readonly:
2552         *
2553         * 1. when btrfs flips readonly somewhere else before
2554         * btrfs_commit_super, sb->s_flags has MS_RDONLY flag,
2555         * and btrfs will skip to write sb directly to keep
2556         * ERROR state on disk.
2557         *
2558         * 2. when btrfs flips readonly just in btrfs_commit_super,
2559         * and in such case, btrfs cannot write sb via btrfs_commit_super,
2560         * and since fs_state has been set BTRFS_SUPER_FLAG_ERROR flag,
2561         * btrfs will cleanup all FS resources first and write sb then.
2562         */
2563        if (!(fs_info->sb->s_flags & MS_RDONLY)) {
2564                ret = btrfs_commit_super(root);
2565                if (ret)
2566                        printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2567        }
2568
2569        if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
2570                ret = btrfs_error_commit_super(root);
2571                if (ret)
2572                        printk(KERN_ERR "btrfs: commit super ret %d\n", ret);
2573        }
2574
2575        kthread_stop(root->fs_info->transaction_kthread);
2576        kthread_stop(root->fs_info->cleaner_kthread);
2577
2578        fs_info->closing = 2;
2579        smp_mb();
2580
2581        if (fs_info->delalloc_bytes) {
2582                printk(KERN_INFO "btrfs: at unmount delalloc count %llu\n",
2583                       (unsigned long long)fs_info->delalloc_bytes);
2584        }
2585        if (fs_info->total_ref_cache_size) {
2586                printk(KERN_INFO "btrfs: at umount reference cache size %llu\n",
2587                       (unsigned long long)fs_info->total_ref_cache_size);
2588        }
2589
2590        free_extent_buffer(fs_info->extent_root->node);
2591        free_extent_buffer(fs_info->extent_root->commit_root);
2592        free_extent_buffer(fs_info->tree_root->node);
2593        free_extent_buffer(fs_info->tree_root->commit_root);
2594        free_extent_buffer(root->fs_info->chunk_root->node);
2595        free_extent_buffer(root->fs_info->chunk_root->commit_root);
2596        free_extent_buffer(root->fs_info->dev_root->node);
2597        free_extent_buffer(root->fs_info->dev_root->commit_root);
2598        free_extent_buffer(root->fs_info->csum_root->node);
2599        free_extent_buffer(root->fs_info->csum_root->commit_root);
2600
2601        btrfs_free_block_groups(root->fs_info);
2602
2603        del_fs_roots(fs_info);
2604
2605        iput(fs_info->btree_inode);
2606        kfree(fs_info->delayed_root);
2607
2608        btrfs_stop_workers(&fs_info->generic_worker);
2609        btrfs_stop_workers(&fs_info->fixup_workers);
2610        btrfs_stop_workers(&fs_info->delalloc_workers);
2611        btrfs_stop_workers(&fs_info->workers);
2612        btrfs_stop_workers(&fs_info->endio_workers);
2613        btrfs_stop_workers(&fs_info->endio_meta_workers);
2614        btrfs_stop_workers(&fs_info->endio_meta_write_workers);
2615        btrfs_stop_workers(&fs_info->endio_write_workers);
2616        btrfs_stop_workers(&fs_info->endio_freespace_worker);
2617        btrfs_stop_workers(&fs_info->submit_workers);
2618        btrfs_stop_workers(&fs_info->delayed_workers);
2619        btrfs_stop_workers(&fs_info->caching_workers);
2620
2621        btrfs_close_devices(fs_info->fs_devices);
2622        btrfs_mapping_tree_free(&fs_info->mapping_tree);
2623
2624        bdi_destroy(&fs_info->bdi);
2625        cleanup_srcu_struct(&fs_info->subvol_srcu);
2626
2627        kfree(fs_info->extent_root);
2628        kfree(fs_info->tree_root);
2629        kfree(fs_info->chunk_root);
2630        kfree(fs_info->dev_root);
2631        kfree(fs_info->csum_root);
2632        kfree(fs_info);
2633
2634        return 0;
2635}
2636
2637int btrfs_buffer_uptodate(struct extent_buffer *buf, u64 parent_transid)
2638{
2639        int ret;
2640        struct inode *btree_inode = buf->first_page->mapping->host;
2641
2642        ret = extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree, buf,
2643                                     NULL);
2644        if (!ret)
2645                return ret;
2646
2647        ret = verify_parent_transid(&BTRFS_I(btree_inode)->io_tree, buf,
2648                                    parent_transid);
2649        return !ret;
2650}
2651
2652int btrfs_set_buffer_uptodate(struct extent_buffer *buf)
2653{
2654        struct inode *btree_inode = buf->first_page->mapping->host;
2655        return set_extent_buffer_uptodate(&BTRFS_I(btree_inode)->io_tree,
2656                                          buf);
2657}
2658
2659void btrfs_mark_buffer_dirty(struct extent_buffer *buf)
2660{
2661        struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2662        u64 transid = btrfs_header_generation(buf);
2663        struct inode *btree_inode = root->fs_info->btree_inode;
2664        int was_dirty;
2665
2666        btrfs_assert_tree_locked(buf);
2667        if (transid != root->fs_info->generation) {
2668                printk(KERN_CRIT "btrfs transid mismatch buffer %llu, "
2669                       "found %llu running %llu\n",
2670                        (unsigned long long)buf->start,
2671                        (unsigned long long)transid,
2672                        (unsigned long long)root->fs_info->generation);
2673                WARN_ON(1);
2674        }
2675        was_dirty = set_extent_buffer_dirty(&BTRFS_I(btree_inode)->io_tree,
2676                                            buf);
2677        if (!was_dirty) {
2678                spin_lock(&root->fs_info->delalloc_lock);
2679                root->fs_info->dirty_metadata_bytes += buf->len;
2680                spin_unlock(&root->fs_info->delalloc_lock);
2681        }
2682}
2683
2684void btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2685{
2686        /*
2687         * looks as though older kernels can get into trouble with
2688         * this code, they end up stuck in balance_dirty_pages forever
2689         */
2690        u64 num_dirty;
2691        unsigned long thresh = 32 * 1024 * 1024;
2692
2693        if (current->flags & PF_MEMALLOC)
2694                return;
2695
2696        btrfs_balance_delayed_items(root);
2697
2698        num_dirty = root->fs_info->dirty_metadata_bytes;
2699
2700        if (num_dirty > thresh) {
2701                balance_dirty_pages_ratelimited_nr(
2702                                   root->fs_info->btree_inode->i_mapping, 1);
2703        }
2704        return;
2705}
2706
2707void __btrfs_btree_balance_dirty(struct btrfs_root *root, unsigned long nr)
2708{
2709        /*
2710         * looks as though older kernels can get into trouble with
2711         * this code, they end up stuck in balance_dirty_pages forever
2712         */
2713        u64 num_dirty;
2714        unsigned long thresh = 32 * 1024 * 1024;
2715
2716        if (current->flags & PF_MEMALLOC)
2717                return;
2718
2719        num_dirty = root->fs_info->dirty_metadata_bytes;
2720
2721        if (num_dirty > thresh) {
2722                balance_dirty_pages_ratelimited_nr(
2723                                   root->fs_info->btree_inode->i_mapping, 1);
2724        }
2725        return;
2726}
2727
2728int btrfs_read_buffer(struct extent_buffer *buf, u64 parent_transid)
2729{
2730        struct btrfs_root *root = BTRFS_I(buf->first_page->mapping->host)->root;
2731        int ret;
2732        ret = btree_read_extent_buffer_pages(root, buf, 0, parent_transid);
2733        if (ret == 0)
2734                set_bit(EXTENT_BUFFER_UPTODATE, &buf->bflags);
2735        return ret;
2736}
2737
2738int btree_lock_page_hook(struct page *page)
2739{
2740        struct inode *inode = page->mapping->host;
2741        struct btrfs_root *root = BTRFS_I(inode)->root;
2742        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2743        struct extent_buffer *eb;
2744        unsigned long len;
2745        u64 bytenr = page_offset(page);
2746
2747        if (page->private == EXTENT_PAGE_PRIVATE)
2748                goto out;
2749
2750        len = page->private >> 2;
2751        eb = find_extent_buffer(io_tree, bytenr, len);
2752        if (!eb)
2753                goto out;
2754
2755        btrfs_tree_lock(eb);
2756        btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
2757
2758        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
2759                spin_lock(&root->fs_info->delalloc_lock);
2760                if (root->fs_info->dirty_metadata_bytes >= eb->len)
2761                        root->fs_info->dirty_metadata_bytes -= eb->len;
2762                else
2763                        WARN_ON(1);
2764                spin_unlock(&root->fs_info->delalloc_lock);
2765        }
2766
2767        btrfs_tree_unlock(eb);
2768        free_extent_buffer(eb);
2769out:
2770        lock_page(page);
2771        return 0;
2772}
2773
2774static void btrfs_check_super_valid(struct btrfs_fs_info *fs_info,
2775                              int read_only)
2776{
2777        if (read_only)
2778                return;
2779
2780        if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
2781                printk(KERN_WARNING "warning: mount fs with errors, "
2782                       "running btrfsck is recommended\n");
2783}
2784
2785int btrfs_error_commit_super(struct btrfs_root *root)
2786{
2787        int ret;
2788
2789        mutex_lock(&root->fs_info->cleaner_mutex);
2790        btrfs_run_delayed_iputs(root);
2791        mutex_unlock(&root->fs_info->cleaner_mutex);
2792
2793        down_write(&root->fs_info->cleanup_work_sem);
2794        up_write(&root->fs_info->cleanup_work_sem);
2795
2796        /* cleanup FS via transaction */
2797        btrfs_cleanup_transaction(root);
2798
2799        ret = write_ctree_super(NULL, root, 0);
2800
2801        return ret;
2802}
2803
2804static int btrfs_destroy_ordered_operations(struct btrfs_root *root)
2805{
2806        struct btrfs_inode *btrfs_inode;
2807        struct list_head splice;
2808
2809        INIT_LIST_HEAD(&splice);
2810
2811        mutex_lock(&root->fs_info->ordered_operations_mutex);
2812        spin_lock(&root->fs_info->ordered_extent_lock);
2813
2814        list_splice_init(&root->fs_info->ordered_operations, &splice);
2815        while (!list_empty(&splice)) {
2816                btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2817                                         ordered_operations);
2818
2819                list_del_init(&btrfs_inode->ordered_operations);
2820
2821                btrfs_invalidate_inodes(btrfs_inode->root);
2822        }
2823
2824        spin_unlock(&root->fs_info->ordered_extent_lock);
2825        mutex_unlock(&root->fs_info->ordered_operations_mutex);
2826
2827        return 0;
2828}
2829
2830static int btrfs_destroy_ordered_extents(struct btrfs_root *root)
2831{
2832        struct list_head splice;
2833        struct btrfs_ordered_extent *ordered;
2834        struct inode *inode;
2835
2836        INIT_LIST_HEAD(&splice);
2837
2838        spin_lock(&root->fs_info->ordered_extent_lock);
2839
2840        list_splice_init(&root->fs_info->ordered_extents, &splice);
2841        while (!list_empty(&splice)) {
2842                ordered = list_entry(splice.next, struct btrfs_ordered_extent,
2843                                     root_extent_list);
2844
2845                list_del_init(&ordered->root_extent_list);
2846                atomic_inc(&ordered->refs);
2847
2848                /* the inode may be getting freed (in sys_unlink path). */
2849                inode = igrab(ordered->inode);
2850
2851                spin_unlock(&root->fs_info->ordered_extent_lock);
2852                if (inode)
2853                        iput(inode);
2854
2855                atomic_set(&ordered->refs, 1);
2856                btrfs_put_ordered_extent(ordered);
2857
2858                spin_lock(&root->fs_info->ordered_extent_lock);
2859        }
2860
2861        spin_unlock(&root->fs_info->ordered_extent_lock);
2862
2863        return 0;
2864}
2865
2866static int btrfs_destroy_delayed_refs(struct btrfs_transaction *trans,
2867                                      struct btrfs_root *root)
2868{
2869        struct rb_node *node;
2870        struct btrfs_delayed_ref_root *delayed_refs;
2871        struct btrfs_delayed_ref_node *ref;
2872        int ret = 0;
2873
2874        delayed_refs = &trans->delayed_refs;
2875
2876        spin_lock(&delayed_refs->lock);
2877        if (delayed_refs->num_entries == 0) {
2878                spin_unlock(&delayed_refs->lock);
2879                printk(KERN_INFO "delayed_refs has NO entry\n");
2880                return ret;
2881        }
2882
2883        node = rb_first(&delayed_refs->root);
2884        while (node) {
2885                ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2886                node = rb_next(node);
2887
2888                ref->in_tree = 0;
2889                rb_erase(&ref->rb_node, &delayed_refs->root);
2890                delayed_refs->num_entries--;
2891
2892                atomic_set(&ref->refs, 1);
2893                if (btrfs_delayed_ref_is_head(ref)) {
2894                        struct btrfs_delayed_ref_head *head;
2895
2896                        head = btrfs_delayed_node_to_head(ref);
2897                        mutex_lock(&head->mutex);
2898                        kfree(head->extent_op);
2899                        delayed_refs->num_heads--;
2900                        if (list_empty(&head->cluster))
2901                                delayed_refs->num_heads_ready--;
2902                        list_del_init(&head->cluster);
2903                        mutex_unlock(&head->mutex);
2904                }
2905
2906                spin_unlock(&delayed_refs->lock);
2907                btrfs_put_delayed_ref(ref);
2908
2909                cond_resched();
2910                spin_lock(&delayed_refs->lock);
2911        }
2912
2913        spin_unlock(&delayed_refs->lock);
2914
2915        return ret;
2916}
2917
2918static int btrfs_destroy_pending_snapshots(struct btrfs_transaction *t)
2919{
2920        struct btrfs_pending_snapshot *snapshot;
2921        struct list_head splice;
2922
2923        INIT_LIST_HEAD(&splice);
2924
2925        list_splice_init(&t->pending_snapshots, &splice);
2926
2927        while (!list_empty(&splice)) {
2928                snapshot = list_entry(splice.next,
2929                                      struct btrfs_pending_snapshot,
2930                                      list);
2931
2932                list_del_init(&snapshot->list);
2933
2934                kfree(snapshot);
2935        }
2936
2937        return 0;
2938}
2939
2940static int btrfs_destroy_delalloc_inodes(struct btrfs_root *root)
2941{
2942        struct btrfs_inode *btrfs_inode;
2943        struct list_head splice;
2944
2945        INIT_LIST_HEAD(&splice);
2946
2947        spin_lock(&root->fs_info->delalloc_lock);
2948        list_splice_init(&root->fs_info->delalloc_inodes, &splice);
2949
2950        while (!list_empty(&splice)) {
2951                btrfs_inode = list_entry(splice.next, struct btrfs_inode,
2952                                    delalloc_inodes);
2953
2954                list_del_init(&btrfs_inode->delalloc_inodes);
2955
2956                btrfs_invalidate_inodes(btrfs_inode->root);
2957        }
2958
2959        spin_unlock(&root->fs_info->delalloc_lock);
2960
2961        return 0;
2962}
2963
2964static int btrfs_destroy_marked_extents(struct btrfs_root *root,
2965                                        struct extent_io_tree *dirty_pages,
2966                                        int mark)
2967{
2968        int ret;
2969        struct page *page;
2970        struct inode *btree_inode = root->fs_info->btree_inode;
2971        struct extent_buffer *eb;
2972        u64 start = 0;
2973        u64 end;
2974        u64 offset;
2975        unsigned long index;
2976
2977        while (1) {
2978                ret = find_first_extent_bit(dirty_pages, start, &start, &end,
2979                                            mark);
2980                if (ret)
2981                        break;
2982
2983                clear_extent_bits(dirty_pages, start, end, mark, GFP_NOFS);
2984                while (start <= end) {
2985                        index = start >> PAGE_CACHE_SHIFT;
2986                        start = (u64)(index + 1) << PAGE_CACHE_SHIFT;
2987                        page = find_get_page(btree_inode->i_mapping, index);
2988                        if (!page)
2989                                continue;
2990                        offset = page_offset(page);
2991
2992                        spin_lock(&dirty_pages->buffer_lock);
2993                        eb = radix_tree_lookup(
2994                             &(&BTRFS_I(page->mapping->host)->io_tree)->buffer,
2995                                               offset >> PAGE_CACHE_SHIFT);
2996                        spin_unlock(&dirty_pages->buffer_lock);
2997                        if (eb) {
2998                                ret = test_and_clear_bit(EXTENT_BUFFER_DIRTY,
2999                                                         &eb->bflags);
3000                                atomic_set(&eb->refs, 1);
3001                        }
3002                        if (PageWriteback(page))
3003                                end_page_writeback(page);
3004
3005                        lock_page(page);
3006                        if (PageDirty(page)) {
3007                                clear_page_dirty_for_io(page);
3008                                spin_lock_irq(&page->mapping->tree_lock);
3009                                radix_tree_tag_clear(&page->mapping->page_tree,
3010                                                        page_index(page),
3011                                                        PAGECACHE_TAG_DIRTY);
3012                                spin_unlock_irq(&page->mapping->tree_lock);
3013                        }
3014
3015                        page->mapping->a_ops->invalidatepage(page, 0);
3016                        unlock_page(page);
3017                }
3018        }
3019
3020        return ret;
3021}
3022
3023static int btrfs_destroy_pinned_extent(struct btrfs_root *root,
3024                                       struct extent_io_tree *pinned_extents)
3025{
3026        struct extent_io_tree *unpin;
3027        u64 start;
3028        u64 end;
3029        int ret;
3030
3031        unpin = pinned_extents;
3032        while (1) {
3033                ret = find_first_extent_bit(unpin, 0, &start, &end,
3034                                            EXTENT_DIRTY);
3035                if (ret)
3036                        break;
3037
3038                /* opt_discard */
3039                if (btrfs_test_opt(root, DISCARD))
3040                        ret = btrfs_error_discard_extent(root, start,
3041                                                         end + 1 - start,
3042                                                         NULL);
3043
3044                clear_extent_dirty(unpin, start, end, GFP_NOFS);
3045                btrfs_error_unpin_extent_range(root, start, end);
3046                cond_resched();
3047        }
3048
3049        return 0;
3050}
3051
3052static int btrfs_cleanup_transaction(struct btrfs_root *root)
3053{
3054        struct btrfs_transaction *t;
3055        LIST_HEAD(list);
3056
3057        WARN_ON(1);
3058
3059        mutex_lock(&root->fs_info->transaction_kthread_mutex);
3060
3061        spin_lock(&root->fs_info->trans_lock);
3062        list_splice_init(&root->fs_info->trans_list, &list);
3063        root->fs_info->trans_no_join = 1;
3064        spin_unlock(&root->fs_info->trans_lock);
3065
3066        while (!list_empty(&list)) {
3067                t = list_entry(list.next, struct btrfs_transaction, list);
3068                if (!t)
3069                        break;
3070
3071                btrfs_destroy_ordered_operations(root);
3072
3073                btrfs_destroy_ordered_extents(root);
3074
3075                btrfs_destroy_delayed_refs(t, root);
3076
3077                btrfs_block_rsv_release(root,
3078                                        &root->fs_info->trans_block_rsv,
3079                                        t->dirty_pages.dirty_bytes);
3080
3081                /* FIXME: cleanup wait for commit */
3082                t->in_commit = 1;
3083                t->blocked = 1;
3084                if (waitqueue_active(&root->fs_info->transaction_blocked_wait))
3085                        wake_up(&root->fs_info->transaction_blocked_wait);
3086
3087                t->blocked = 0;
3088                if (waitqueue_active(&root->fs_info->transaction_wait))
3089                        wake_up(&root->fs_info->transaction_wait);
3090
3091                t->commit_done = 1;
3092                if (waitqueue_active(&t->commit_wait))
3093                        wake_up(&t->commit_wait);
3094
3095                btrfs_destroy_pending_snapshots(t);
3096
3097                btrfs_destroy_delalloc_inodes(root);
3098
3099                spin_lock(&root->fs_info->trans_lock);
3100                root->fs_info->running_transaction = NULL;
3101                spin_unlock(&root->fs_info->trans_lock);
3102
3103                btrfs_destroy_marked_extents(root, &t->dirty_pages,
3104                                             EXTENT_DIRTY);
3105
3106                btrfs_destroy_pinned_extent(root,
3107                                            root->fs_info->pinned_extents);
3108
3109                atomic_set(&t->use_count, 0);
3110                list_del_init(&t->list);
3111                memset(t, 0, sizeof(*t));
3112                kmem_cache_free(btrfs_transaction_cachep, t);
3113        }
3114
3115        spin_lock(&root->fs_info->trans_lock);
3116        root->fs_info->trans_no_join = 0;
3117        spin_unlock(&root->fs_info->trans_lock);
3118        mutex_unlock(&root->fs_info->transaction_kthread_mutex);
3119
3120        return 0;
3121}
3122
3123static struct extent_io_ops btree_extent_io_ops = {
3124        .write_cache_pages_lock_hook = btree_lock_page_hook,
3125        .readpage_end_io_hook = btree_readpage_end_io_hook,
3126        .submit_bio_hook = btree_submit_bio_hook,
3127        /* note we're sharing with inode.c for the merge bio hook */
3128        .merge_bio_hook = btrfs_merge_bio_hook,
3129};
3130