linux/fs/buffer.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/buffer.c
   3 *
   4 *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
   5 */
   6
   7/*
   8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
   9 *
  10 * Removed a lot of unnecessary code and simplified things now that
  11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
  12 *
  13 * Speed up hash, lru, and free list operations.  Use gfp() for allocating
  14 * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
  15 *
  16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
  17 *
  18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
  19 */
  20
  21#include <linux/kernel.h>
  22#include <linux/syscalls.h>
  23#include <linux/fs.h>
  24#include <linux/mm.h>
  25#include <linux/percpu.h>
  26#include <linux/slab.h>
  27#include <linux/capability.h>
  28#include <linux/blkdev.h>
  29#include <linux/file.h>
  30#include <linux/quotaops.h>
  31#include <linux/highmem.h>
  32#include <linux/module.h>
  33#include <linux/writeback.h>
  34#include <linux/hash.h>
  35#include <linux/suspend.h>
  36#include <linux/buffer_head.h>
  37#include <linux/task_io_accounting_ops.h>
  38#include <linux/bio.h>
  39#include <linux/notifier.h>
  40#include <linux/cpu.h>
  41#include <linux/bitops.h>
  42#include <linux/mpage.h>
  43#include <linux/bit_spinlock.h>
  44#include <linux/cleancache.h>
  45
  46static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
  47
  48#define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
  49
  50inline void
  51init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
  52{
  53        bh->b_end_io = handler;
  54        bh->b_private = private;
  55}
  56EXPORT_SYMBOL(init_buffer);
  57
  58static int sleep_on_buffer(void *word)
  59{
  60        io_schedule();
  61        return 0;
  62}
  63
  64void __lock_buffer(struct buffer_head *bh)
  65{
  66        wait_on_bit_lock(&bh->b_state, BH_Lock, sleep_on_buffer,
  67                                                        TASK_UNINTERRUPTIBLE);
  68}
  69EXPORT_SYMBOL(__lock_buffer);
  70
  71void unlock_buffer(struct buffer_head *bh)
  72{
  73        clear_bit_unlock(BH_Lock, &bh->b_state);
  74        smp_mb__after_clear_bit();
  75        wake_up_bit(&bh->b_state, BH_Lock);
  76}
  77EXPORT_SYMBOL(unlock_buffer);
  78
  79/*
  80 * Block until a buffer comes unlocked.  This doesn't stop it
  81 * from becoming locked again - you have to lock it yourself
  82 * if you want to preserve its state.
  83 */
  84void __wait_on_buffer(struct buffer_head * bh)
  85{
  86        wait_on_bit(&bh->b_state, BH_Lock, sleep_on_buffer, TASK_UNINTERRUPTIBLE);
  87}
  88EXPORT_SYMBOL(__wait_on_buffer);
  89
  90static void
  91__clear_page_buffers(struct page *page)
  92{
  93        ClearPagePrivate(page);
  94        set_page_private(page, 0);
  95        page_cache_release(page);
  96}
  97
  98
  99static int quiet_error(struct buffer_head *bh)
 100{
 101        if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
 102                return 0;
 103        return 1;
 104}
 105
 106
 107static void buffer_io_error(struct buffer_head *bh)
 108{
 109        char b[BDEVNAME_SIZE];
 110        printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
 111                        bdevname(bh->b_bdev, b),
 112                        (unsigned long long)bh->b_blocknr);
 113}
 114
 115/*
 116 * End-of-IO handler helper function which does not touch the bh after
 117 * unlocking it.
 118 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
 119 * a race there is benign: unlock_buffer() only use the bh's address for
 120 * hashing after unlocking the buffer, so it doesn't actually touch the bh
 121 * itself.
 122 */
 123static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
 124{
 125        if (uptodate) {
 126                set_buffer_uptodate(bh);
 127        } else {
 128                /* This happens, due to failed READA attempts. */
 129                clear_buffer_uptodate(bh);
 130        }
 131        unlock_buffer(bh);
 132}
 133
 134/*
 135 * Default synchronous end-of-IO handler..  Just mark it up-to-date and
 136 * unlock the buffer. This is what ll_rw_block uses too.
 137 */
 138void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
 139{
 140        __end_buffer_read_notouch(bh, uptodate);
 141        put_bh(bh);
 142}
 143EXPORT_SYMBOL(end_buffer_read_sync);
 144
 145void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
 146{
 147        char b[BDEVNAME_SIZE];
 148
 149        if (uptodate) {
 150                set_buffer_uptodate(bh);
 151        } else {
 152                if (!quiet_error(bh)) {
 153                        buffer_io_error(bh);
 154                        printk(KERN_WARNING "lost page write due to "
 155                                        "I/O error on %s\n",
 156                                       bdevname(bh->b_bdev, b));
 157                }
 158                set_buffer_write_io_error(bh);
 159                clear_buffer_uptodate(bh);
 160        }
 161        unlock_buffer(bh);
 162        put_bh(bh);
 163}
 164EXPORT_SYMBOL(end_buffer_write_sync);
 165
 166/*
 167 * Various filesystems appear to want __find_get_block to be non-blocking.
 168 * But it's the page lock which protects the buffers.  To get around this,
 169 * we get exclusion from try_to_free_buffers with the blockdev mapping's
 170 * private_lock.
 171 *
 172 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
 173 * may be quite high.  This code could TryLock the page, and if that
 174 * succeeds, there is no need to take private_lock. (But if
 175 * private_lock is contended then so is mapping->tree_lock).
 176 */
 177static struct buffer_head *
 178__find_get_block_slow(struct block_device *bdev, sector_t block)
 179{
 180        struct inode *bd_inode = bdev->bd_inode;
 181        struct address_space *bd_mapping = bd_inode->i_mapping;
 182        struct buffer_head *ret = NULL;
 183        pgoff_t index;
 184        struct buffer_head *bh;
 185        struct buffer_head *head;
 186        struct page *page;
 187        int all_mapped = 1;
 188
 189        index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
 190        page = find_get_page(bd_mapping, index);
 191        if (!page)
 192                goto out;
 193
 194        spin_lock(&bd_mapping->private_lock);
 195        if (!page_has_buffers(page))
 196                goto out_unlock;
 197        head = page_buffers(page);
 198        bh = head;
 199        do {
 200                if (!buffer_mapped(bh))
 201                        all_mapped = 0;
 202                else if (bh->b_blocknr == block) {
 203                        ret = bh;
 204                        get_bh(bh);
 205                        goto out_unlock;
 206                }
 207                bh = bh->b_this_page;
 208        } while (bh != head);
 209
 210        /* we might be here because some of the buffers on this page are
 211         * not mapped.  This is due to various races between
 212         * file io on the block device and getblk.  It gets dealt with
 213         * elsewhere, don't buffer_error if we had some unmapped buffers
 214         */
 215        if (all_mapped) {
 216                printk("__find_get_block_slow() failed. "
 217                        "block=%llu, b_blocknr=%llu\n",
 218                        (unsigned long long)block,
 219                        (unsigned long long)bh->b_blocknr);
 220                printk("b_state=0x%08lx, b_size=%zu\n",
 221                        bh->b_state, bh->b_size);
 222                printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
 223        }
 224out_unlock:
 225        spin_unlock(&bd_mapping->private_lock);
 226        page_cache_release(page);
 227out:
 228        return ret;
 229}
 230
 231/* If invalidate_buffers() will trash dirty buffers, it means some kind
 232   of fs corruption is going on. Trashing dirty data always imply losing
 233   information that was supposed to be just stored on the physical layer
 234   by the user.
 235
 236   Thus invalidate_buffers in general usage is not allwowed to trash
 237   dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
 238   be preserved.  These buffers are simply skipped.
 239  
 240   We also skip buffers which are still in use.  For example this can
 241   happen if a userspace program is reading the block device.
 242
 243   NOTE: In the case where the user removed a removable-media-disk even if
 244   there's still dirty data not synced on disk (due a bug in the device driver
 245   or due an error of the user), by not destroying the dirty buffers we could
 246   generate corruption also on the next media inserted, thus a parameter is
 247   necessary to handle this case in the most safe way possible (trying
 248   to not corrupt also the new disk inserted with the data belonging to
 249   the old now corrupted disk). Also for the ramdisk the natural thing
 250   to do in order to release the ramdisk memory is to destroy dirty buffers.
 251
 252   These are two special cases. Normal usage imply the device driver
 253   to issue a sync on the device (without waiting I/O completion) and
 254   then an invalidate_buffers call that doesn't trash dirty buffers.
 255
 256   For handling cache coherency with the blkdev pagecache the 'update' case
 257   is been introduced. It is needed to re-read from disk any pinned
 258   buffer. NOTE: re-reading from disk is destructive so we can do it only
 259   when we assume nobody is changing the buffercache under our I/O and when
 260   we think the disk contains more recent information than the buffercache.
 261   The update == 1 pass marks the buffers we need to update, the update == 2
 262   pass does the actual I/O. */
 263void invalidate_bdev(struct block_device *bdev)
 264{
 265        struct address_space *mapping = bdev->bd_inode->i_mapping;
 266
 267        if (mapping->nrpages == 0)
 268                return;
 269
 270        invalidate_bh_lrus();
 271        lru_add_drain_all();    /* make sure all lru add caches are flushed */
 272        invalidate_mapping_pages(mapping, 0, -1);
 273        /* 99% of the time, we don't need to flush the cleancache on the bdev.
 274         * But, for the strange corners, lets be cautious
 275         */
 276        cleancache_flush_inode(mapping);
 277}
 278EXPORT_SYMBOL(invalidate_bdev);
 279
 280/*
 281 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
 282 */
 283static void free_more_memory(void)
 284{
 285        struct zone *zone;
 286        int nid;
 287
 288        wakeup_flusher_threads(1024);
 289        yield();
 290
 291        for_each_online_node(nid) {
 292                (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
 293                                                gfp_zone(GFP_NOFS), NULL,
 294                                                &zone);
 295                if (zone)
 296                        try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
 297                                                GFP_NOFS, NULL);
 298        }
 299}
 300
 301/*
 302 * I/O completion handler for block_read_full_page() - pages
 303 * which come unlocked at the end of I/O.
 304 */
 305static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
 306{
 307        unsigned long flags;
 308        struct buffer_head *first;
 309        struct buffer_head *tmp;
 310        struct page *page;
 311        int page_uptodate = 1;
 312
 313        BUG_ON(!buffer_async_read(bh));
 314
 315        page = bh->b_page;
 316        if (uptodate) {
 317                set_buffer_uptodate(bh);
 318        } else {
 319                clear_buffer_uptodate(bh);
 320                if (!quiet_error(bh))
 321                        buffer_io_error(bh);
 322                SetPageError(page);
 323        }
 324
 325        /*
 326         * Be _very_ careful from here on. Bad things can happen if
 327         * two buffer heads end IO at almost the same time and both
 328         * decide that the page is now completely done.
 329         */
 330        first = page_buffers(page);
 331        local_irq_save(flags);
 332        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 333        clear_buffer_async_read(bh);
 334        unlock_buffer(bh);
 335        tmp = bh;
 336        do {
 337                if (!buffer_uptodate(tmp))
 338                        page_uptodate = 0;
 339                if (buffer_async_read(tmp)) {
 340                        BUG_ON(!buffer_locked(tmp));
 341                        goto still_busy;
 342                }
 343                tmp = tmp->b_this_page;
 344        } while (tmp != bh);
 345        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 346        local_irq_restore(flags);
 347
 348        /*
 349         * If none of the buffers had errors and they are all
 350         * uptodate then we can set the page uptodate.
 351         */
 352        if (page_uptodate && !PageError(page))
 353                SetPageUptodate(page);
 354        unlock_page(page);
 355        return;
 356
 357still_busy:
 358        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 359        local_irq_restore(flags);
 360        return;
 361}
 362
 363/*
 364 * Completion handler for block_write_full_page() - pages which are unlocked
 365 * during I/O, and which have PageWriteback cleared upon I/O completion.
 366 */
 367void end_buffer_async_write(struct buffer_head *bh, int uptodate)
 368{
 369        char b[BDEVNAME_SIZE];
 370        unsigned long flags;
 371        struct buffer_head *first;
 372        struct buffer_head *tmp;
 373        struct page *page;
 374
 375        BUG_ON(!buffer_async_write(bh));
 376
 377        page = bh->b_page;
 378        if (uptodate) {
 379                set_buffer_uptodate(bh);
 380        } else {
 381                if (!quiet_error(bh)) {
 382                        buffer_io_error(bh);
 383                        printk(KERN_WARNING "lost page write due to "
 384                                        "I/O error on %s\n",
 385                               bdevname(bh->b_bdev, b));
 386                }
 387                set_bit(AS_EIO, &page->mapping->flags);
 388                set_buffer_write_io_error(bh);
 389                clear_buffer_uptodate(bh);
 390                SetPageError(page);
 391        }
 392
 393        first = page_buffers(page);
 394        local_irq_save(flags);
 395        bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
 396
 397        clear_buffer_async_write(bh);
 398        unlock_buffer(bh);
 399        tmp = bh->b_this_page;
 400        while (tmp != bh) {
 401                if (buffer_async_write(tmp)) {
 402                        BUG_ON(!buffer_locked(tmp));
 403                        goto still_busy;
 404                }
 405                tmp = tmp->b_this_page;
 406        }
 407        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 408        local_irq_restore(flags);
 409        end_page_writeback(page);
 410        return;
 411
 412still_busy:
 413        bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
 414        local_irq_restore(flags);
 415        return;
 416}
 417EXPORT_SYMBOL(end_buffer_async_write);
 418
 419/*
 420 * If a page's buffers are under async readin (end_buffer_async_read
 421 * completion) then there is a possibility that another thread of
 422 * control could lock one of the buffers after it has completed
 423 * but while some of the other buffers have not completed.  This
 424 * locked buffer would confuse end_buffer_async_read() into not unlocking
 425 * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
 426 * that this buffer is not under async I/O.
 427 *
 428 * The page comes unlocked when it has no locked buffer_async buffers
 429 * left.
 430 *
 431 * PageLocked prevents anyone starting new async I/O reads any of
 432 * the buffers.
 433 *
 434 * PageWriteback is used to prevent simultaneous writeout of the same
 435 * page.
 436 *
 437 * PageLocked prevents anyone from starting writeback of a page which is
 438 * under read I/O (PageWriteback is only ever set against a locked page).
 439 */
 440static void mark_buffer_async_read(struct buffer_head *bh)
 441{
 442        bh->b_end_io = end_buffer_async_read;
 443        set_buffer_async_read(bh);
 444}
 445
 446static void mark_buffer_async_write_endio(struct buffer_head *bh,
 447                                          bh_end_io_t *handler)
 448{
 449        bh->b_end_io = handler;
 450        set_buffer_async_write(bh);
 451}
 452
 453void mark_buffer_async_write(struct buffer_head *bh)
 454{
 455        mark_buffer_async_write_endio(bh, end_buffer_async_write);
 456}
 457EXPORT_SYMBOL(mark_buffer_async_write);
 458
 459
 460/*
 461 * fs/buffer.c contains helper functions for buffer-backed address space's
 462 * fsync functions.  A common requirement for buffer-based filesystems is
 463 * that certain data from the backing blockdev needs to be written out for
 464 * a successful fsync().  For example, ext2 indirect blocks need to be
 465 * written back and waited upon before fsync() returns.
 466 *
 467 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
 468 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
 469 * management of a list of dependent buffers at ->i_mapping->private_list.
 470 *
 471 * Locking is a little subtle: try_to_free_buffers() will remove buffers
 472 * from their controlling inode's queue when they are being freed.  But
 473 * try_to_free_buffers() will be operating against the *blockdev* mapping
 474 * at the time, not against the S_ISREG file which depends on those buffers.
 475 * So the locking for private_list is via the private_lock in the address_space
 476 * which backs the buffers.  Which is different from the address_space 
 477 * against which the buffers are listed.  So for a particular address_space,
 478 * mapping->private_lock does *not* protect mapping->private_list!  In fact,
 479 * mapping->private_list will always be protected by the backing blockdev's
 480 * ->private_lock.
 481 *
 482 * Which introduces a requirement: all buffers on an address_space's
 483 * ->private_list must be from the same address_space: the blockdev's.
 484 *
 485 * address_spaces which do not place buffers at ->private_list via these
 486 * utility functions are free to use private_lock and private_list for
 487 * whatever they want.  The only requirement is that list_empty(private_list)
 488 * be true at clear_inode() time.
 489 *
 490 * FIXME: clear_inode should not call invalidate_inode_buffers().  The
 491 * filesystems should do that.  invalidate_inode_buffers() should just go
 492 * BUG_ON(!list_empty).
 493 *
 494 * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
 495 * take an address_space, not an inode.  And it should be called
 496 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
 497 * queued up.
 498 *
 499 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
 500 * list if it is already on a list.  Because if the buffer is on a list,
 501 * it *must* already be on the right one.  If not, the filesystem is being
 502 * silly.  This will save a ton of locking.  But first we have to ensure
 503 * that buffers are taken *off* the old inode's list when they are freed
 504 * (presumably in truncate).  That requires careful auditing of all
 505 * filesystems (do it inside bforget()).  It could also be done by bringing
 506 * b_inode back.
 507 */
 508
 509/*
 510 * The buffer's backing address_space's private_lock must be held
 511 */
 512static void __remove_assoc_queue(struct buffer_head *bh)
 513{
 514        list_del_init(&bh->b_assoc_buffers);
 515        WARN_ON(!bh->b_assoc_map);
 516        if (buffer_write_io_error(bh))
 517                set_bit(AS_EIO, &bh->b_assoc_map->flags);
 518        bh->b_assoc_map = NULL;
 519}
 520
 521int inode_has_buffers(struct inode *inode)
 522{
 523        return !list_empty(&inode->i_data.private_list);
 524}
 525
 526/*
 527 * osync is designed to support O_SYNC io.  It waits synchronously for
 528 * all already-submitted IO to complete, but does not queue any new
 529 * writes to the disk.
 530 *
 531 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
 532 * you dirty the buffers, and then use osync_inode_buffers to wait for
 533 * completion.  Any other dirty buffers which are not yet queued for
 534 * write will not be flushed to disk by the osync.
 535 */
 536static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
 537{
 538        struct buffer_head *bh;
 539        struct list_head *p;
 540        int err = 0;
 541
 542        spin_lock(lock);
 543repeat:
 544        list_for_each_prev(p, list) {
 545                bh = BH_ENTRY(p);
 546                if (buffer_locked(bh)) {
 547                        get_bh(bh);
 548                        spin_unlock(lock);
 549                        wait_on_buffer(bh);
 550                        if (!buffer_uptodate(bh))
 551                                err = -EIO;
 552                        brelse(bh);
 553                        spin_lock(lock);
 554                        goto repeat;
 555                }
 556        }
 557        spin_unlock(lock);
 558        return err;
 559}
 560
 561static void do_thaw_one(struct super_block *sb, void *unused)
 562{
 563        char b[BDEVNAME_SIZE];
 564        while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
 565                printk(KERN_WARNING "Emergency Thaw on %s\n",
 566                       bdevname(sb->s_bdev, b));
 567}
 568
 569static void do_thaw_all(struct work_struct *work)
 570{
 571        iterate_supers(do_thaw_one, NULL);
 572        kfree(work);
 573        printk(KERN_WARNING "Emergency Thaw complete\n");
 574}
 575
 576/**
 577 * emergency_thaw_all -- forcibly thaw every frozen filesystem
 578 *
 579 * Used for emergency unfreeze of all filesystems via SysRq
 580 */
 581void emergency_thaw_all(void)
 582{
 583        struct work_struct *work;
 584
 585        work = kmalloc(sizeof(*work), GFP_ATOMIC);
 586        if (work) {
 587                INIT_WORK(work, do_thaw_all);
 588                schedule_work(work);
 589        }
 590}
 591
 592/**
 593 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
 594 * @mapping: the mapping which wants those buffers written
 595 *
 596 * Starts I/O against the buffers at mapping->private_list, and waits upon
 597 * that I/O.
 598 *
 599 * Basically, this is a convenience function for fsync().
 600 * @mapping is a file or directory which needs those buffers to be written for
 601 * a successful fsync().
 602 */
 603int sync_mapping_buffers(struct address_space *mapping)
 604{
 605        struct address_space *buffer_mapping = mapping->assoc_mapping;
 606
 607        if (buffer_mapping == NULL || list_empty(&mapping->private_list))
 608                return 0;
 609
 610        return fsync_buffers_list(&buffer_mapping->private_lock,
 611                                        &mapping->private_list);
 612}
 613EXPORT_SYMBOL(sync_mapping_buffers);
 614
 615/*
 616 * Called when we've recently written block `bblock', and it is known that
 617 * `bblock' was for a buffer_boundary() buffer.  This means that the block at
 618 * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
 619 * dirty, schedule it for IO.  So that indirects merge nicely with their data.
 620 */
 621void write_boundary_block(struct block_device *bdev,
 622                        sector_t bblock, unsigned blocksize)
 623{
 624        struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
 625        if (bh) {
 626                if (buffer_dirty(bh))
 627                        ll_rw_block(WRITE, 1, &bh);
 628                put_bh(bh);
 629        }
 630}
 631
 632void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
 633{
 634        struct address_space *mapping = inode->i_mapping;
 635        struct address_space *buffer_mapping = bh->b_page->mapping;
 636
 637        mark_buffer_dirty(bh);
 638        if (!mapping->assoc_mapping) {
 639                mapping->assoc_mapping = buffer_mapping;
 640        } else {
 641                BUG_ON(mapping->assoc_mapping != buffer_mapping);
 642        }
 643        if (!bh->b_assoc_map) {
 644                spin_lock(&buffer_mapping->private_lock);
 645                list_move_tail(&bh->b_assoc_buffers,
 646                                &mapping->private_list);
 647                bh->b_assoc_map = mapping;
 648                spin_unlock(&buffer_mapping->private_lock);
 649        }
 650}
 651EXPORT_SYMBOL(mark_buffer_dirty_inode);
 652
 653/*
 654 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
 655 * dirty.
 656 *
 657 * If warn is true, then emit a warning if the page is not uptodate and has
 658 * not been truncated.
 659 */
 660static void __set_page_dirty(struct page *page,
 661                struct address_space *mapping, int warn)
 662{
 663        spin_lock_irq(&mapping->tree_lock);
 664        if (page->mapping) {    /* Race with truncate? */
 665                WARN_ON_ONCE(warn && !PageUptodate(page));
 666                account_page_dirtied(page, mapping);
 667                radix_tree_tag_set(&mapping->page_tree,
 668                                page_index(page), PAGECACHE_TAG_DIRTY);
 669        }
 670        spin_unlock_irq(&mapping->tree_lock);
 671        __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
 672}
 673
 674/*
 675 * Add a page to the dirty page list.
 676 *
 677 * It is a sad fact of life that this function is called from several places
 678 * deeply under spinlocking.  It may not sleep.
 679 *
 680 * If the page has buffers, the uptodate buffers are set dirty, to preserve
 681 * dirty-state coherency between the page and the buffers.  It the page does
 682 * not have buffers then when they are later attached they will all be set
 683 * dirty.
 684 *
 685 * The buffers are dirtied before the page is dirtied.  There's a small race
 686 * window in which a writepage caller may see the page cleanness but not the
 687 * buffer dirtiness.  That's fine.  If this code were to set the page dirty
 688 * before the buffers, a concurrent writepage caller could clear the page dirty
 689 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
 690 * page on the dirty page list.
 691 *
 692 * We use private_lock to lock against try_to_free_buffers while using the
 693 * page's buffer list.  Also use this to protect against clean buffers being
 694 * added to the page after it was set dirty.
 695 *
 696 * FIXME: may need to call ->reservepage here as well.  That's rather up to the
 697 * address_space though.
 698 */
 699int __set_page_dirty_buffers(struct page *page)
 700{
 701        int newly_dirty;
 702        struct address_space *mapping = page_mapping(page);
 703
 704        if (unlikely(!mapping))
 705                return !TestSetPageDirty(page);
 706
 707        spin_lock(&mapping->private_lock);
 708        if (page_has_buffers(page)) {
 709                struct buffer_head *head = page_buffers(page);
 710                struct buffer_head *bh = head;
 711
 712                do {
 713                        set_buffer_dirty(bh);
 714                        bh = bh->b_this_page;
 715                } while (bh != head);
 716        }
 717        newly_dirty = !TestSetPageDirty(page);
 718        spin_unlock(&mapping->private_lock);
 719
 720        if (newly_dirty)
 721                __set_page_dirty(page, mapping, 1);
 722        return newly_dirty;
 723}
 724EXPORT_SYMBOL(__set_page_dirty_buffers);
 725
 726/*
 727 * Write out and wait upon a list of buffers.
 728 *
 729 * We have conflicting pressures: we want to make sure that all
 730 * initially dirty buffers get waited on, but that any subsequently
 731 * dirtied buffers don't.  After all, we don't want fsync to last
 732 * forever if somebody is actively writing to the file.
 733 *
 734 * Do this in two main stages: first we copy dirty buffers to a
 735 * temporary inode list, queueing the writes as we go.  Then we clean
 736 * up, waiting for those writes to complete.
 737 * 
 738 * During this second stage, any subsequent updates to the file may end
 739 * up refiling the buffer on the original inode's dirty list again, so
 740 * there is a chance we will end up with a buffer queued for write but
 741 * not yet completed on that list.  So, as a final cleanup we go through
 742 * the osync code to catch these locked, dirty buffers without requeuing
 743 * any newly dirty buffers for write.
 744 */
 745static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
 746{
 747        struct buffer_head *bh;
 748        struct list_head tmp;
 749        struct address_space *mapping;
 750        int err = 0, err2;
 751        struct blk_plug plug;
 752
 753        INIT_LIST_HEAD(&tmp);
 754        blk_start_plug(&plug);
 755
 756        spin_lock(lock);
 757        while (!list_empty(list)) {
 758                bh = BH_ENTRY(list->next);
 759                mapping = bh->b_assoc_map;
 760                __remove_assoc_queue(bh);
 761                /* Avoid race with mark_buffer_dirty_inode() which does
 762                 * a lockless check and we rely on seeing the dirty bit */
 763                smp_mb();
 764                if (buffer_dirty(bh) || buffer_locked(bh)) {
 765                        list_add(&bh->b_assoc_buffers, &tmp);
 766                        bh->b_assoc_map = mapping;
 767                        if (buffer_dirty(bh)) {
 768                                get_bh(bh);
 769                                spin_unlock(lock);
 770                                /*
 771                                 * Ensure any pending I/O completes so that
 772                                 * write_dirty_buffer() actually writes the
 773                                 * current contents - it is a noop if I/O is
 774                                 * still in flight on potentially older
 775                                 * contents.
 776                                 */
 777                                write_dirty_buffer(bh, WRITE_SYNC);
 778
 779                                /*
 780                                 * Kick off IO for the previous mapping. Note
 781                                 * that we will not run the very last mapping,
 782                                 * wait_on_buffer() will do that for us
 783                                 * through sync_buffer().
 784                                 */
 785                                brelse(bh);
 786                                spin_lock(lock);
 787                        }
 788                }
 789        }
 790
 791        spin_unlock(lock);
 792        blk_finish_plug(&plug);
 793        spin_lock(lock);
 794
 795        while (!list_empty(&tmp)) {
 796                bh = BH_ENTRY(tmp.prev);
 797                get_bh(bh);
 798                mapping = bh->b_assoc_map;
 799                __remove_assoc_queue(bh);
 800                /* Avoid race with mark_buffer_dirty_inode() which does
 801                 * a lockless check and we rely on seeing the dirty bit */
 802                smp_mb();
 803                if (buffer_dirty(bh)) {
 804                        list_add(&bh->b_assoc_buffers,
 805                                 &mapping->private_list);
 806                        bh->b_assoc_map = mapping;
 807                }
 808                spin_unlock(lock);
 809                wait_on_buffer(bh);
 810                if (!buffer_uptodate(bh))
 811                        err = -EIO;
 812                brelse(bh);
 813                spin_lock(lock);
 814        }
 815        
 816        spin_unlock(lock);
 817        err2 = osync_buffers_list(lock, list);
 818        if (err)
 819                return err;
 820        else
 821                return err2;
 822}
 823
 824/*
 825 * Invalidate any and all dirty buffers on a given inode.  We are
 826 * probably unmounting the fs, but that doesn't mean we have already
 827 * done a sync().  Just drop the buffers from the inode list.
 828 *
 829 * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
 830 * assumes that all the buffers are against the blockdev.  Not true
 831 * for reiserfs.
 832 */
 833void invalidate_inode_buffers(struct inode *inode)
 834{
 835        if (inode_has_buffers(inode)) {
 836                struct address_space *mapping = &inode->i_data;
 837                struct list_head *list = &mapping->private_list;
 838                struct address_space *buffer_mapping = mapping->assoc_mapping;
 839
 840                spin_lock(&buffer_mapping->private_lock);
 841                while (!list_empty(list))
 842                        __remove_assoc_queue(BH_ENTRY(list->next));
 843                spin_unlock(&buffer_mapping->private_lock);
 844        }
 845}
 846EXPORT_SYMBOL(invalidate_inode_buffers);
 847
 848/*
 849 * Remove any clean buffers from the inode's buffer list.  This is called
 850 * when we're trying to free the inode itself.  Those buffers can pin it.
 851 *
 852 * Returns true if all buffers were removed.
 853 */
 854int remove_inode_buffers(struct inode *inode)
 855{
 856        int ret = 1;
 857
 858        if (inode_has_buffers(inode)) {
 859                struct address_space *mapping = &inode->i_data;
 860                struct list_head *list = &mapping->private_list;
 861                struct address_space *buffer_mapping = mapping->assoc_mapping;
 862
 863                spin_lock(&buffer_mapping->private_lock);
 864                while (!list_empty(list)) {
 865                        struct buffer_head *bh = BH_ENTRY(list->next);
 866                        if (buffer_dirty(bh)) {
 867                                ret = 0;
 868                                break;
 869                        }
 870                        __remove_assoc_queue(bh);
 871                }
 872                spin_unlock(&buffer_mapping->private_lock);
 873        }
 874        return ret;
 875}
 876
 877/*
 878 * Create the appropriate buffers when given a page for data area and
 879 * the size of each buffer.. Use the bh->b_this_page linked list to
 880 * follow the buffers created.  Return NULL if unable to create more
 881 * buffers.
 882 *
 883 * The retry flag is used to differentiate async IO (paging, swapping)
 884 * which may not fail from ordinary buffer allocations.
 885 */
 886struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
 887                int retry)
 888{
 889        struct buffer_head *bh, *head;
 890        long offset;
 891
 892try_again:
 893        head = NULL;
 894        offset = PAGE_SIZE;
 895        while ((offset -= size) >= 0) {
 896                bh = alloc_buffer_head(GFP_NOFS);
 897                if (!bh)
 898                        goto no_grow;
 899
 900                bh->b_bdev = NULL;
 901                bh->b_this_page = head;
 902                bh->b_blocknr = -1;
 903                head = bh;
 904
 905                bh->b_state = 0;
 906                atomic_set(&bh->b_count, 0);
 907                bh->b_size = size;
 908
 909                /* Link the buffer to its page */
 910                set_bh_page(bh, page, offset);
 911
 912                init_buffer(bh, NULL, NULL);
 913        }
 914        return head;
 915/*
 916 * In case anything failed, we just free everything we got.
 917 */
 918no_grow:
 919        if (head) {
 920                do {
 921                        bh = head;
 922                        head = head->b_this_page;
 923                        free_buffer_head(bh);
 924                } while (head);
 925        }
 926
 927        /*
 928         * Return failure for non-async IO requests.  Async IO requests
 929         * are not allowed to fail, so we have to wait until buffer heads
 930         * become available.  But we don't want tasks sleeping with 
 931         * partially complete buffers, so all were released above.
 932         */
 933        if (!retry)
 934                return NULL;
 935
 936        /* We're _really_ low on memory. Now we just
 937         * wait for old buffer heads to become free due to
 938         * finishing IO.  Since this is an async request and
 939         * the reserve list is empty, we're sure there are 
 940         * async buffer heads in use.
 941         */
 942        free_more_memory();
 943        goto try_again;
 944}
 945EXPORT_SYMBOL_GPL(alloc_page_buffers);
 946
 947static inline void
 948link_dev_buffers(struct page *page, struct buffer_head *head)
 949{
 950        struct buffer_head *bh, *tail;
 951
 952        bh = head;
 953        do {
 954                tail = bh;
 955                bh = bh->b_this_page;
 956        } while (bh);
 957        tail->b_this_page = head;
 958        attach_page_buffers(page, head);
 959}
 960
 961/*
 962 * Initialise the state of a blockdev page's buffers.
 963 */ 
 964static void
 965init_page_buffers(struct page *page, struct block_device *bdev,
 966                        sector_t block, int size)
 967{
 968        struct buffer_head *head = page_buffers(page);
 969        struct buffer_head *bh = head;
 970        int uptodate = PageUptodate(page);
 971
 972        do {
 973                if (!buffer_mapped(bh)) {
 974                        init_buffer(bh, NULL, NULL);
 975                        bh->b_bdev = bdev;
 976                        bh->b_blocknr = block;
 977                        if (uptodate)
 978                                set_buffer_uptodate(bh);
 979                        set_buffer_mapped(bh);
 980                }
 981                block++;
 982                bh = bh->b_this_page;
 983        } while (bh != head);
 984}
 985
 986/*
 987 * Create the page-cache page that contains the requested block.
 988 *
 989 * This is user purely for blockdev mappings.
 990 */
 991static struct page *
 992grow_dev_page(struct block_device *bdev, sector_t block,
 993                pgoff_t index, int size)
 994{
 995        struct inode *inode = bdev->bd_inode;
 996        struct page *page;
 997        struct buffer_head *bh;
 998
 999        page = find_or_create_page(inode->i_mapping, index,
1000                (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1001        if (!page)
1002                return NULL;
1003
1004        BUG_ON(!PageLocked(page));
1005
1006        if (page_has_buffers(page)) {
1007                bh = page_buffers(page);
1008                if (bh->b_size == size) {
1009                        init_page_buffers(page, bdev, block, size);
1010                        return page;
1011                }
1012                if (!try_to_free_buffers(page))
1013                        goto failed;
1014        }
1015
1016        /*
1017         * Allocate some buffers for this page
1018         */
1019        bh = alloc_page_buffers(page, size, 0);
1020        if (!bh)
1021                goto failed;
1022
1023        /*
1024         * Link the page to the buffers and initialise them.  Take the
1025         * lock to be atomic wrt __find_get_block(), which does not
1026         * run under the page lock.
1027         */
1028        spin_lock(&inode->i_mapping->private_lock);
1029        link_dev_buffers(page, bh);
1030        init_page_buffers(page, bdev, block, size);
1031        spin_unlock(&inode->i_mapping->private_lock);
1032        return page;
1033
1034failed:
1035        BUG();
1036        unlock_page(page);
1037        page_cache_release(page);
1038        return NULL;
1039}
1040
1041/*
1042 * Create buffers for the specified block device block's page.  If
1043 * that page was dirty, the buffers are set dirty also.
1044 */
1045static int
1046grow_buffers(struct block_device *bdev, sector_t block, int size)
1047{
1048        struct page *page;
1049        pgoff_t index;
1050        int sizebits;
1051
1052        sizebits = -1;
1053        do {
1054                sizebits++;
1055        } while ((size << sizebits) < PAGE_SIZE);
1056
1057        index = block >> sizebits;
1058
1059        /*
1060         * Check for a block which wants to lie outside our maximum possible
1061         * pagecache index.  (this comparison is done using sector_t types).
1062         */
1063        if (unlikely(index != block >> sizebits)) {
1064                char b[BDEVNAME_SIZE];
1065
1066                printk(KERN_ERR "%s: requested out-of-range block %llu for "
1067                        "device %s\n",
1068                        __func__, (unsigned long long)block,
1069                        bdevname(bdev, b));
1070                return -EIO;
1071        }
1072        block = index << sizebits;
1073        /* Create a page with the proper size buffers.. */
1074        page = grow_dev_page(bdev, block, index, size);
1075        if (!page)
1076                return 0;
1077        unlock_page(page);
1078        page_cache_release(page);
1079        return 1;
1080}
1081
1082static struct buffer_head *
1083__getblk_slow(struct block_device *bdev, sector_t block, int size)
1084{
1085        /* Size must be multiple of hard sectorsize */
1086        if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1087                        (size < 512 || size > PAGE_SIZE))) {
1088                printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1089                                        size);
1090                printk(KERN_ERR "logical block size: %d\n",
1091                                        bdev_logical_block_size(bdev));
1092
1093                dump_stack();
1094                return NULL;
1095        }
1096
1097        for (;;) {
1098                struct buffer_head * bh;
1099                int ret;
1100
1101                bh = __find_get_block(bdev, block, size);
1102                if (bh)
1103                        return bh;
1104
1105                ret = grow_buffers(bdev, block, size);
1106                if (ret < 0)
1107                        return NULL;
1108                if (ret == 0)
1109                        free_more_memory();
1110        }
1111}
1112
1113/*
1114 * The relationship between dirty buffers and dirty pages:
1115 *
1116 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117 * the page is tagged dirty in its radix tree.
1118 *
1119 * At all times, the dirtiness of the buffers represents the dirtiness of
1120 * subsections of the page.  If the page has buffers, the page dirty bit is
1121 * merely a hint about the true dirty state.
1122 *
1123 * When a page is set dirty in its entirety, all its buffers are marked dirty
1124 * (if the page has buffers).
1125 *
1126 * When a buffer is marked dirty, its page is dirtied, but the page's other
1127 * buffers are not.
1128 *
1129 * Also.  When blockdev buffers are explicitly read with bread(), they
1130 * individually become uptodate.  But their backing page remains not
1131 * uptodate - even if all of its buffers are uptodate.  A subsequent
1132 * block_read_full_page() against that page will discover all the uptodate
1133 * buffers, will set the page uptodate and will perform no I/O.
1134 */
1135
1136/**
1137 * mark_buffer_dirty - mark a buffer_head as needing writeout
1138 * @bh: the buffer_head to mark dirty
1139 *
1140 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141 * backing page dirty, then tag the page as dirty in its address_space's radix
1142 * tree and then attach the address_space's inode to its superblock's dirty
1143 * inode list.
1144 *
1145 * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1146 * mapping->tree_lock and mapping->host->i_lock.
1147 */
1148void mark_buffer_dirty(struct buffer_head *bh)
1149{
1150        WARN_ON_ONCE(!buffer_uptodate(bh));
1151
1152        /*
1153         * Very *carefully* optimize the it-is-already-dirty case.
1154         *
1155         * Don't let the final "is it dirty" escape to before we
1156         * perhaps modified the buffer.
1157         */
1158        if (buffer_dirty(bh)) {
1159                smp_mb();
1160                if (buffer_dirty(bh))
1161                        return;
1162        }
1163
1164        if (!test_set_buffer_dirty(bh)) {
1165                struct page *page = bh->b_page;
1166                if (!TestSetPageDirty(page)) {
1167                        struct address_space *mapping = page_mapping(page);
1168                        if (mapping)
1169                                __set_page_dirty(page, mapping, 0);
1170                }
1171        }
1172}
1173EXPORT_SYMBOL(mark_buffer_dirty);
1174
1175/*
1176 * Decrement a buffer_head's reference count.  If all buffers against a page
1177 * have zero reference count, are clean and unlocked, and if the page is clean
1178 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1179 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1180 * a page but it ends up not being freed, and buffers may later be reattached).
1181 */
1182void __brelse(struct buffer_head * buf)
1183{
1184        if (atomic_read(&buf->b_count)) {
1185                put_bh(buf);
1186                return;
1187        }
1188        WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1189}
1190EXPORT_SYMBOL(__brelse);
1191
1192/*
1193 * bforget() is like brelse(), except it discards any
1194 * potentially dirty data.
1195 */
1196void __bforget(struct buffer_head *bh)
1197{
1198        clear_buffer_dirty(bh);
1199        if (bh->b_assoc_map) {
1200                struct address_space *buffer_mapping = bh->b_page->mapping;
1201
1202                spin_lock(&buffer_mapping->private_lock);
1203                list_del_init(&bh->b_assoc_buffers);
1204                bh->b_assoc_map = NULL;
1205                spin_unlock(&buffer_mapping->private_lock);
1206        }
1207        __brelse(bh);
1208}
1209EXPORT_SYMBOL(__bforget);
1210
1211static struct buffer_head *__bread_slow(struct buffer_head *bh)
1212{
1213        lock_buffer(bh);
1214        if (buffer_uptodate(bh)) {
1215                unlock_buffer(bh);
1216                return bh;
1217        } else {
1218                get_bh(bh);
1219                bh->b_end_io = end_buffer_read_sync;
1220                submit_bh(READ, bh);
1221                wait_on_buffer(bh);
1222                if (buffer_uptodate(bh))
1223                        return bh;
1224        }
1225        brelse(bh);
1226        return NULL;
1227}
1228
1229/*
1230 * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1231 * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1232 * refcount elevated by one when they're in an LRU.  A buffer can only appear
1233 * once in a particular CPU's LRU.  A single buffer can be present in multiple
1234 * CPU's LRUs at the same time.
1235 *
1236 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1237 * sb_find_get_block().
1238 *
1239 * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1240 * a local interrupt disable for that.
1241 */
1242
1243#define BH_LRU_SIZE     8
1244
1245struct bh_lru {
1246        struct buffer_head *bhs[BH_LRU_SIZE];
1247};
1248
1249static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1250
1251#ifdef CONFIG_SMP
1252#define bh_lru_lock()   local_irq_disable()
1253#define bh_lru_unlock() local_irq_enable()
1254#else
1255#define bh_lru_lock()   preempt_disable()
1256#define bh_lru_unlock() preempt_enable()
1257#endif
1258
1259static inline void check_irqs_on(void)
1260{
1261#ifdef irqs_disabled
1262        BUG_ON(irqs_disabled());
1263#endif
1264}
1265
1266/*
1267 * The LRU management algorithm is dopey-but-simple.  Sorry.
1268 */
1269static void bh_lru_install(struct buffer_head *bh)
1270{
1271        struct buffer_head *evictee = NULL;
1272
1273        check_irqs_on();
1274        bh_lru_lock();
1275        if (__this_cpu_read(bh_lrus.bhs[0]) != bh) {
1276                struct buffer_head *bhs[BH_LRU_SIZE];
1277                int in;
1278                int out = 0;
1279
1280                get_bh(bh);
1281                bhs[out++] = bh;
1282                for (in = 0; in < BH_LRU_SIZE; in++) {
1283                        struct buffer_head *bh2 =
1284                                __this_cpu_read(bh_lrus.bhs[in]);
1285
1286                        if (bh2 == bh) {
1287                                __brelse(bh2);
1288                        } else {
1289                                if (out >= BH_LRU_SIZE) {
1290                                        BUG_ON(evictee != NULL);
1291                                        evictee = bh2;
1292                                } else {
1293                                        bhs[out++] = bh2;
1294                                }
1295                        }
1296                }
1297                while (out < BH_LRU_SIZE)
1298                        bhs[out++] = NULL;
1299                memcpy(__this_cpu_ptr(&bh_lrus.bhs), bhs, sizeof(bhs));
1300        }
1301        bh_lru_unlock();
1302
1303        if (evictee)
1304                __brelse(evictee);
1305}
1306
1307/*
1308 * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1309 */
1310static struct buffer_head *
1311lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1312{
1313        struct buffer_head *ret = NULL;
1314        unsigned int i;
1315
1316        check_irqs_on();
1317        bh_lru_lock();
1318        for (i = 0; i < BH_LRU_SIZE; i++) {
1319                struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1320
1321                if (bh && bh->b_bdev == bdev &&
1322                                bh->b_blocknr == block && bh->b_size == size) {
1323                        if (i) {
1324                                while (i) {
1325                                        __this_cpu_write(bh_lrus.bhs[i],
1326                                                __this_cpu_read(bh_lrus.bhs[i - 1]));
1327                                        i--;
1328                                }
1329                                __this_cpu_write(bh_lrus.bhs[0], bh);
1330                        }
1331                        get_bh(bh);
1332                        ret = bh;
1333                        break;
1334                }
1335        }
1336        bh_lru_unlock();
1337        return ret;
1338}
1339
1340/*
1341 * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1342 * it in the LRU and mark it as accessed.  If it is not present then return
1343 * NULL
1344 */
1345struct buffer_head *
1346__find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1347{
1348        struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1349
1350        if (bh == NULL) {
1351                bh = __find_get_block_slow(bdev, block);
1352                if (bh)
1353                        bh_lru_install(bh);
1354        }
1355        if (bh)
1356                touch_buffer(bh);
1357        return bh;
1358}
1359EXPORT_SYMBOL(__find_get_block);
1360
1361/*
1362 * __getblk will locate (and, if necessary, create) the buffer_head
1363 * which corresponds to the passed block_device, block and size. The
1364 * returned buffer has its reference count incremented.
1365 *
1366 * __getblk() cannot fail - it just keeps trying.  If you pass it an
1367 * illegal block number, __getblk() will happily return a buffer_head
1368 * which represents the non-existent block.  Very weird.
1369 *
1370 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1371 * attempt is failing.  FIXME, perhaps?
1372 */
1373struct buffer_head *
1374__getblk(struct block_device *bdev, sector_t block, unsigned size)
1375{
1376        struct buffer_head *bh = __find_get_block(bdev, block, size);
1377
1378        might_sleep();
1379        if (bh == NULL)
1380                bh = __getblk_slow(bdev, block, size);
1381        return bh;
1382}
1383EXPORT_SYMBOL(__getblk);
1384
1385/*
1386 * Do async read-ahead on a buffer..
1387 */
1388void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1389{
1390        struct buffer_head *bh = __getblk(bdev, block, size);
1391        if (likely(bh)) {
1392                ll_rw_block(READA, 1, &bh);
1393                brelse(bh);
1394        }
1395}
1396EXPORT_SYMBOL(__breadahead);
1397
1398/**
1399 *  __bread() - reads a specified block and returns the bh
1400 *  @bdev: the block_device to read from
1401 *  @block: number of block
1402 *  @size: size (in bytes) to read
1403 * 
1404 *  Reads a specified block, and returns buffer head that contains it.
1405 *  It returns NULL if the block was unreadable.
1406 */
1407struct buffer_head *
1408__bread(struct block_device *bdev, sector_t block, unsigned size)
1409{
1410        struct buffer_head *bh = __getblk(bdev, block, size);
1411
1412        if (likely(bh) && !buffer_uptodate(bh))
1413                bh = __bread_slow(bh);
1414        return bh;
1415}
1416EXPORT_SYMBOL(__bread);
1417
1418/*
1419 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1420 * This doesn't race because it runs in each cpu either in irq
1421 * or with preempt disabled.
1422 */
1423static void invalidate_bh_lru(void *arg)
1424{
1425        struct bh_lru *b = &get_cpu_var(bh_lrus);
1426        int i;
1427
1428        for (i = 0; i < BH_LRU_SIZE; i++) {
1429                brelse(b->bhs[i]);
1430                b->bhs[i] = NULL;
1431        }
1432        put_cpu_var(bh_lrus);
1433}
1434        
1435void invalidate_bh_lrus(void)
1436{
1437        on_each_cpu(invalidate_bh_lru, NULL, 1);
1438}
1439EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1440
1441void set_bh_page(struct buffer_head *bh,
1442                struct page *page, unsigned long offset)
1443{
1444        bh->b_page = page;
1445        BUG_ON(offset >= PAGE_SIZE);
1446        if (PageHighMem(page))
1447                /*
1448                 * This catches illegal uses and preserves the offset:
1449                 */
1450                bh->b_data = (char *)(0 + offset);
1451        else
1452                bh->b_data = page_address(page) + offset;
1453}
1454EXPORT_SYMBOL(set_bh_page);
1455
1456/*
1457 * Called when truncating a buffer on a page completely.
1458 */
1459static void discard_buffer(struct buffer_head * bh)
1460{
1461        lock_buffer(bh);
1462        clear_buffer_dirty(bh);
1463        bh->b_bdev = NULL;
1464        clear_buffer_mapped(bh);
1465        clear_buffer_req(bh);
1466        clear_buffer_new(bh);
1467        clear_buffer_delay(bh);
1468        clear_buffer_unwritten(bh);
1469        unlock_buffer(bh);
1470}
1471
1472/**
1473 * block_invalidatepage - invalidate part of all of a buffer-backed page
1474 *
1475 * @page: the page which is affected
1476 * @offset: the index of the truncation point
1477 *
1478 * block_invalidatepage() is called when all or part of the page has become
1479 * invalidatedby a truncate operation.
1480 *
1481 * block_invalidatepage() does not have to release all buffers, but it must
1482 * ensure that no dirty buffer is left outside @offset and that no I/O
1483 * is underway against any of the blocks which are outside the truncation
1484 * point.  Because the caller is about to free (and possibly reuse) those
1485 * blocks on-disk.
1486 */
1487void block_invalidatepage(struct page *page, unsigned long offset)
1488{
1489        struct buffer_head *head, *bh, *next;
1490        unsigned int curr_off = 0;
1491
1492        BUG_ON(!PageLocked(page));
1493        if (!page_has_buffers(page))
1494                goto out;
1495
1496        head = page_buffers(page);
1497        bh = head;
1498        do {
1499                unsigned int next_off = curr_off + bh->b_size;
1500                next = bh->b_this_page;
1501
1502                /*
1503                 * is this block fully invalidated?
1504                 */
1505                if (offset <= curr_off)
1506                        discard_buffer(bh);
1507                curr_off = next_off;
1508                bh = next;
1509        } while (bh != head);
1510
1511        /*
1512         * We release buffers only if the entire page is being invalidated.
1513         * The get_block cached value has been unconditionally invalidated,
1514         * so real IO is not possible anymore.
1515         */
1516        if (offset == 0)
1517                try_to_release_page(page, 0);
1518out:
1519        return;
1520}
1521EXPORT_SYMBOL(block_invalidatepage);
1522
1523/*
1524 * We attach and possibly dirty the buffers atomically wrt
1525 * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1526 * is already excluded via the page lock.
1527 */
1528void create_empty_buffers(struct page *page,
1529                        unsigned long blocksize, unsigned long b_state)
1530{
1531        struct buffer_head *bh, *head, *tail;
1532
1533        head = alloc_page_buffers(page, blocksize, 1);
1534        bh = head;
1535        do {
1536                bh->b_state |= b_state;
1537                tail = bh;
1538                bh = bh->b_this_page;
1539        } while (bh);
1540        tail->b_this_page = head;
1541
1542        spin_lock(&page->mapping->private_lock);
1543        if (PageUptodate(page) || PageDirty(page)) {
1544                bh = head;
1545                do {
1546                        if (PageDirty(page))
1547                                set_buffer_dirty(bh);
1548                        if (PageUptodate(page))
1549                                set_buffer_uptodate(bh);
1550                        bh = bh->b_this_page;
1551                } while (bh != head);
1552        }
1553        attach_page_buffers(page, head);
1554        spin_unlock(&page->mapping->private_lock);
1555}
1556EXPORT_SYMBOL(create_empty_buffers);
1557
1558/*
1559 * We are taking a block for data and we don't want any output from any
1560 * buffer-cache aliases starting from return from that function and
1561 * until the moment when something will explicitly mark the buffer
1562 * dirty (hopefully that will not happen until we will free that block ;-)
1563 * We don't even need to mark it not-uptodate - nobody can expect
1564 * anything from a newly allocated buffer anyway. We used to used
1565 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1566 * don't want to mark the alias unmapped, for example - it would confuse
1567 * anyone who might pick it with bread() afterwards...
1568 *
1569 * Also..  Note that bforget() doesn't lock the buffer.  So there can
1570 * be writeout I/O going on against recently-freed buffers.  We don't
1571 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1572 * only if we really need to.  That happens here.
1573 */
1574void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1575{
1576        struct buffer_head *old_bh;
1577
1578        might_sleep();
1579
1580        old_bh = __find_get_block_slow(bdev, block);
1581        if (old_bh) {
1582                clear_buffer_dirty(old_bh);
1583                wait_on_buffer(old_bh);
1584                clear_buffer_req(old_bh);
1585                __brelse(old_bh);
1586        }
1587}
1588EXPORT_SYMBOL(unmap_underlying_metadata);
1589
1590/*
1591 * NOTE! All mapped/uptodate combinations are valid:
1592 *
1593 *      Mapped  Uptodate        Meaning
1594 *
1595 *      No      No              "unknown" - must do get_block()
1596 *      No      Yes             "hole" - zero-filled
1597 *      Yes     No              "allocated" - allocated on disk, not read in
1598 *      Yes     Yes             "valid" - allocated and up-to-date in memory.
1599 *
1600 * "Dirty" is valid only with the last case (mapped+uptodate).
1601 */
1602
1603/*
1604 * While block_write_full_page is writing back the dirty buffers under
1605 * the page lock, whoever dirtied the buffers may decide to clean them
1606 * again at any time.  We handle that by only looking at the buffer
1607 * state inside lock_buffer().
1608 *
1609 * If block_write_full_page() is called for regular writeback
1610 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1611 * locked buffer.   This only can happen if someone has written the buffer
1612 * directly, with submit_bh().  At the address_space level PageWriteback
1613 * prevents this contention from occurring.
1614 *
1615 * If block_write_full_page() is called with wbc->sync_mode ==
1616 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1617 * causes the writes to be flagged as synchronous writes.
1618 */
1619static int __block_write_full_page(struct inode *inode, struct page *page,
1620                        get_block_t *get_block, struct writeback_control *wbc,
1621                        bh_end_io_t *handler)
1622{
1623        int err;
1624        sector_t block;
1625        sector_t last_block;
1626        struct buffer_head *bh, *head;
1627        const unsigned blocksize = 1 << inode->i_blkbits;
1628        int nr_underway = 0;
1629        int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1630                        WRITE_SYNC : WRITE);
1631
1632        BUG_ON(!PageLocked(page));
1633
1634        last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1635
1636        if (!page_has_buffers(page)) {
1637                create_empty_buffers(page, blocksize,
1638                                        (1 << BH_Dirty)|(1 << BH_Uptodate));
1639        }
1640
1641        /*
1642         * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1643         * here, and the (potentially unmapped) buffers may become dirty at
1644         * any time.  If a buffer becomes dirty here after we've inspected it
1645         * then we just miss that fact, and the page stays dirty.
1646         *
1647         * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1648         * handle that here by just cleaning them.
1649         */
1650
1651        block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1652        head = page_buffers(page);
1653        bh = head;
1654
1655        /*
1656         * Get all the dirty buffers mapped to disk addresses and
1657         * handle any aliases from the underlying blockdev's mapping.
1658         */
1659        do {
1660                if (block > last_block) {
1661                        /*
1662                         * mapped buffers outside i_size will occur, because
1663                         * this page can be outside i_size when there is a
1664                         * truncate in progress.
1665                         */
1666                        /*
1667                         * The buffer was zeroed by block_write_full_page()
1668                         */
1669                        clear_buffer_dirty(bh);
1670                        set_buffer_uptodate(bh);
1671                } else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1672                           buffer_dirty(bh)) {
1673                        WARN_ON(bh->b_size != blocksize);
1674                        err = get_block(inode, block, bh, 1);
1675                        if (err)
1676                                goto recover;
1677                        clear_buffer_delay(bh);
1678                        if (buffer_new(bh)) {
1679                                /* blockdev mappings never come here */
1680                                clear_buffer_new(bh);
1681                                unmap_underlying_metadata(bh->b_bdev,
1682                                                        bh->b_blocknr);
1683                        }
1684                }
1685                bh = bh->b_this_page;
1686                block++;
1687        } while (bh != head);
1688
1689        do {
1690                if (!buffer_mapped(bh))
1691                        continue;
1692                /*
1693                 * If it's a fully non-blocking write attempt and we cannot
1694                 * lock the buffer then redirty the page.  Note that this can
1695                 * potentially cause a busy-wait loop from writeback threads
1696                 * and kswapd activity, but those code paths have their own
1697                 * higher-level throttling.
1698                 */
1699                if (wbc->sync_mode != WB_SYNC_NONE) {
1700                        lock_buffer(bh);
1701                } else if (!trylock_buffer(bh)) {
1702                        redirty_page_for_writepage(wbc, page);
1703                        continue;
1704                }
1705                if (test_clear_buffer_dirty(bh)) {
1706                        mark_buffer_async_write_endio(bh, handler);
1707                } else {
1708                        unlock_buffer(bh);
1709                }
1710        } while ((bh = bh->b_this_page) != head);
1711
1712        /*
1713         * The page and its buffers are protected by PageWriteback(), so we can
1714         * drop the bh refcounts early.
1715         */
1716        BUG_ON(PageWriteback(page));
1717        set_page_writeback(page);
1718
1719        do {
1720                struct buffer_head *next = bh->b_this_page;
1721                if (buffer_async_write(bh)) {
1722                        submit_bh(write_op, bh);
1723                        nr_underway++;
1724                }
1725                bh = next;
1726        } while (bh != head);
1727        unlock_page(page);
1728
1729        err = 0;
1730done:
1731        if (nr_underway == 0) {
1732                /*
1733                 * The page was marked dirty, but the buffers were
1734                 * clean.  Someone wrote them back by hand with
1735                 * ll_rw_block/submit_bh.  A rare case.
1736                 */
1737                end_page_writeback(page);
1738
1739                /*
1740                 * The page and buffer_heads can be released at any time from
1741                 * here on.
1742                 */
1743        }
1744        return err;
1745
1746recover:
1747        /*
1748         * ENOSPC, or some other error.  We may already have added some
1749         * blocks to the file, so we need to write these out to avoid
1750         * exposing stale data.
1751         * The page is currently locked and not marked for writeback
1752         */
1753        bh = head;
1754        /* Recovery: lock and submit the mapped buffers */
1755        do {
1756                if (buffer_mapped(bh) && buffer_dirty(bh) &&
1757                    !buffer_delay(bh)) {
1758                        lock_buffer(bh);
1759                        mark_buffer_async_write_endio(bh, handler);
1760                } else {
1761                        /*
1762                         * The buffer may have been set dirty during
1763                         * attachment to a dirty page.
1764                         */
1765                        clear_buffer_dirty(bh);
1766                }
1767        } while ((bh = bh->b_this_page) != head);
1768        SetPageError(page);
1769        BUG_ON(PageWriteback(page));
1770        mapping_set_error(page->mapping, err);
1771        set_page_writeback(page);
1772        do {
1773                struct buffer_head *next = bh->b_this_page;
1774                if (buffer_async_write(bh)) {
1775                        clear_buffer_dirty(bh);
1776                        submit_bh(write_op, bh);
1777                        nr_underway++;
1778                }
1779                bh = next;
1780        } while (bh != head);
1781        unlock_page(page);
1782        goto done;
1783}
1784
1785/*
1786 * If a page has any new buffers, zero them out here, and mark them uptodate
1787 * and dirty so they'll be written out (in order to prevent uninitialised
1788 * block data from leaking). And clear the new bit.
1789 */
1790void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1791{
1792        unsigned int block_start, block_end;
1793        struct buffer_head *head, *bh;
1794
1795        BUG_ON(!PageLocked(page));
1796        if (!page_has_buffers(page))
1797                return;
1798
1799        bh = head = page_buffers(page);
1800        block_start = 0;
1801        do {
1802                block_end = block_start + bh->b_size;
1803
1804                if (buffer_new(bh)) {
1805                        if (block_end > from && block_start < to) {
1806                                if (!PageUptodate(page)) {
1807                                        unsigned start, size;
1808
1809                                        start = max(from, block_start);
1810                                        size = min(to, block_end) - start;
1811
1812                                        zero_user(page, start, size);
1813                                        set_buffer_uptodate(bh);
1814                                }
1815
1816                                clear_buffer_new(bh);
1817                                mark_buffer_dirty(bh);
1818                        }
1819                }
1820
1821                block_start = block_end;
1822                bh = bh->b_this_page;
1823        } while (bh != head);
1824}
1825EXPORT_SYMBOL(page_zero_new_buffers);
1826
1827int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1828                get_block_t *get_block)
1829{
1830        unsigned from = pos & (PAGE_CACHE_SIZE - 1);
1831        unsigned to = from + len;
1832        struct inode *inode = page->mapping->host;
1833        unsigned block_start, block_end;
1834        sector_t block;
1835        int err = 0;
1836        unsigned blocksize, bbits;
1837        struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1838
1839        BUG_ON(!PageLocked(page));
1840        BUG_ON(from > PAGE_CACHE_SIZE);
1841        BUG_ON(to > PAGE_CACHE_SIZE);
1842        BUG_ON(from > to);
1843
1844        blocksize = 1 << inode->i_blkbits;
1845        if (!page_has_buffers(page))
1846                create_empty_buffers(page, blocksize, 0);
1847        head = page_buffers(page);
1848
1849        bbits = inode->i_blkbits;
1850        block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1851
1852        for(bh = head, block_start = 0; bh != head || !block_start;
1853            block++, block_start=block_end, bh = bh->b_this_page) {
1854                block_end = block_start + blocksize;
1855                if (block_end <= from || block_start >= to) {
1856                        if (PageUptodate(page)) {
1857                                if (!buffer_uptodate(bh))
1858                                        set_buffer_uptodate(bh);
1859                        }
1860                        continue;
1861                }
1862                if (buffer_new(bh))
1863                        clear_buffer_new(bh);
1864                if (!buffer_mapped(bh)) {
1865                        WARN_ON(bh->b_size != blocksize);
1866                        err = get_block(inode, block, bh, 1);
1867                        if (err)
1868                                break;
1869                        if (buffer_new(bh)) {
1870                                unmap_underlying_metadata(bh->b_bdev,
1871                                                        bh->b_blocknr);
1872                                if (PageUptodate(page)) {
1873                                        clear_buffer_new(bh);
1874                                        set_buffer_uptodate(bh);
1875                                        mark_buffer_dirty(bh);
1876                                        continue;
1877                                }
1878                                if (block_end > to || block_start < from)
1879                                        zero_user_segments(page,
1880                                                to, block_end,
1881                                                block_start, from);
1882                                continue;
1883                        }
1884                }
1885                if (PageUptodate(page)) {
1886                        if (!buffer_uptodate(bh))
1887                                set_buffer_uptodate(bh);
1888                        continue; 
1889                }
1890                if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1891                    !buffer_unwritten(bh) &&
1892                     (block_start < from || block_end > to)) {
1893                        ll_rw_block(READ, 1, &bh);
1894                        *wait_bh++=bh;
1895                }
1896        }
1897        /*
1898         * If we issued read requests - let them complete.
1899         */
1900        while(wait_bh > wait) {
1901                wait_on_buffer(*--wait_bh);
1902                if (!buffer_uptodate(*wait_bh))
1903                        err = -EIO;
1904        }
1905        if (unlikely(err))
1906                page_zero_new_buffers(page, from, to);
1907        return err;
1908}
1909EXPORT_SYMBOL(__block_write_begin);
1910
1911static int __block_commit_write(struct inode *inode, struct page *page,
1912                unsigned from, unsigned to)
1913{
1914        unsigned block_start, block_end;
1915        int partial = 0;
1916        unsigned blocksize;
1917        struct buffer_head *bh, *head;
1918
1919        blocksize = 1 << inode->i_blkbits;
1920
1921        for(bh = head = page_buffers(page), block_start = 0;
1922            bh != head || !block_start;
1923            block_start=block_end, bh = bh->b_this_page) {
1924                block_end = block_start + blocksize;
1925                if (block_end <= from || block_start >= to) {
1926                        if (!buffer_uptodate(bh))
1927                                partial = 1;
1928                } else {
1929                        set_buffer_uptodate(bh);
1930                        mark_buffer_dirty(bh);
1931                }
1932                clear_buffer_new(bh);
1933        }
1934
1935        /*
1936         * If this is a partial write which happened to make all buffers
1937         * uptodate then we can optimize away a bogus readpage() for
1938         * the next read(). Here we 'discover' whether the page went
1939         * uptodate as a result of this (potentially partial) write.
1940         */
1941        if (!partial)
1942                SetPageUptodate(page);
1943        return 0;
1944}
1945
1946/*
1947 * block_write_begin takes care of the basic task of block allocation and
1948 * bringing partial write blocks uptodate first.
1949 *
1950 * The filesystem needs to handle block truncation upon failure.
1951 */
1952int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1953                unsigned flags, struct page **pagep, get_block_t *get_block)
1954{
1955        pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1956        struct page *page;
1957        int status;
1958
1959        page = grab_cache_page_write_begin(mapping, index, flags);
1960        if (!page)
1961                return -ENOMEM;
1962
1963        status = __block_write_begin(page, pos, len, get_block);
1964        if (unlikely(status)) {
1965                unlock_page(page);
1966                page_cache_release(page);
1967                page = NULL;
1968        }
1969
1970        *pagep = page;
1971        return status;
1972}
1973EXPORT_SYMBOL(block_write_begin);
1974
1975int block_write_end(struct file *file, struct address_space *mapping,
1976                        loff_t pos, unsigned len, unsigned copied,
1977                        struct page *page, void *fsdata)
1978{
1979        struct inode *inode = mapping->host;
1980        unsigned start;
1981
1982        start = pos & (PAGE_CACHE_SIZE - 1);
1983
1984        if (unlikely(copied < len)) {
1985                /*
1986                 * The buffers that were written will now be uptodate, so we
1987                 * don't have to worry about a readpage reading them and
1988                 * overwriting a partial write. However if we have encountered
1989                 * a short write and only partially written into a buffer, it
1990                 * will not be marked uptodate, so a readpage might come in and
1991                 * destroy our partial write.
1992                 *
1993                 * Do the simplest thing, and just treat any short write to a
1994                 * non uptodate page as a zero-length write, and force the
1995                 * caller to redo the whole thing.
1996                 */
1997                if (!PageUptodate(page))
1998                        copied = 0;
1999
2000                page_zero_new_buffers(page, start+copied, start+len);
2001        }
2002        flush_dcache_page(page);
2003
2004        /* This could be a short (even 0-length) commit */
2005        __block_commit_write(inode, page, start, start+copied);
2006
2007        return copied;
2008}
2009EXPORT_SYMBOL(block_write_end);
2010
2011int generic_write_end(struct file *file, struct address_space *mapping,
2012                        loff_t pos, unsigned len, unsigned copied,
2013                        struct page *page, void *fsdata)
2014{
2015        struct inode *inode = mapping->host;
2016        int i_size_changed = 0;
2017
2018        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2019
2020        /*
2021         * No need to use i_size_read() here, the i_size
2022         * cannot change under us because we hold i_mutex.
2023         *
2024         * But it's important to update i_size while still holding page lock:
2025         * page writeout could otherwise come in and zero beyond i_size.
2026         */
2027        if (pos+copied > inode->i_size) {
2028                i_size_write(inode, pos+copied);
2029                i_size_changed = 1;
2030        }
2031
2032        unlock_page(page);
2033        page_cache_release(page);
2034
2035        /*
2036         * Don't mark the inode dirty under page lock. First, it unnecessarily
2037         * makes the holding time of page lock longer. Second, it forces lock
2038         * ordering of page lock and transaction start for journaling
2039         * filesystems.
2040         */
2041        if (i_size_changed)
2042                mark_inode_dirty(inode);
2043
2044        return copied;
2045}
2046EXPORT_SYMBOL(generic_write_end);
2047
2048/*
2049 * block_is_partially_uptodate checks whether buffers within a page are
2050 * uptodate or not.
2051 *
2052 * Returns true if all buffers which correspond to a file portion
2053 * we want to read are uptodate.
2054 */
2055int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2056                                        unsigned long from)
2057{
2058        struct inode *inode = page->mapping->host;
2059        unsigned block_start, block_end, blocksize;
2060        unsigned to;
2061        struct buffer_head *bh, *head;
2062        int ret = 1;
2063
2064        if (!page_has_buffers(page))
2065                return 0;
2066
2067        blocksize = 1 << inode->i_blkbits;
2068        to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2069        to = from + to;
2070        if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2071                return 0;
2072
2073        head = page_buffers(page);
2074        bh = head;
2075        block_start = 0;
2076        do {
2077                block_end = block_start + blocksize;
2078                if (block_end > from && block_start < to) {
2079                        if (!buffer_uptodate(bh)) {
2080                                ret = 0;
2081                                break;
2082                        }
2083                        if (block_end >= to)
2084                                break;
2085                }
2086                block_start = block_end;
2087                bh = bh->b_this_page;
2088        } while (bh != head);
2089
2090        return ret;
2091}
2092EXPORT_SYMBOL(block_is_partially_uptodate);
2093
2094/*
2095 * Generic "read page" function for block devices that have the normal
2096 * get_block functionality. This is most of the block device filesystems.
2097 * Reads the page asynchronously --- the unlock_buffer() and
2098 * set/clear_buffer_uptodate() functions propagate buffer state into the
2099 * page struct once IO has completed.
2100 */
2101int block_read_full_page(struct page *page, get_block_t *get_block)
2102{
2103        struct inode *inode = page->mapping->host;
2104        sector_t iblock, lblock;
2105        struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2106        unsigned int blocksize;
2107        int nr, i;
2108        int fully_mapped = 1;
2109
2110        BUG_ON(!PageLocked(page));
2111        blocksize = 1 << inode->i_blkbits;
2112        if (!page_has_buffers(page))
2113                create_empty_buffers(page, blocksize, 0);
2114        head = page_buffers(page);
2115
2116        iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2117        lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2118        bh = head;
2119        nr = 0;
2120        i = 0;
2121
2122        do {
2123                if (buffer_uptodate(bh))
2124                        continue;
2125
2126                if (!buffer_mapped(bh)) {
2127                        int err = 0;
2128
2129                        fully_mapped = 0;
2130                        if (iblock < lblock) {
2131                                WARN_ON(bh->b_size != blocksize);
2132                                err = get_block(inode, iblock, bh, 0);
2133                                if (err)
2134                                        SetPageError(page);
2135                        }
2136                        if (!buffer_mapped(bh)) {
2137                                zero_user(page, i * blocksize, blocksize);
2138                                if (!err)
2139                                        set_buffer_uptodate(bh);
2140                                continue;
2141                        }
2142                        /*
2143                         * get_block() might have updated the buffer
2144                         * synchronously
2145                         */
2146                        if (buffer_uptodate(bh))
2147                                continue;
2148                }
2149                arr[nr++] = bh;
2150        } while (i++, iblock++, (bh = bh->b_this_page) != head);
2151
2152        if (fully_mapped)
2153                SetPageMappedToDisk(page);
2154
2155        if (!nr) {
2156                /*
2157                 * All buffers are uptodate - we can set the page uptodate
2158                 * as well. But not if get_block() returned an error.
2159                 */
2160                if (!PageError(page))
2161                        SetPageUptodate(page);
2162                unlock_page(page);
2163                return 0;
2164        }
2165
2166        /* Stage two: lock the buffers */
2167        for (i = 0; i < nr; i++) {
2168                bh = arr[i];
2169                lock_buffer(bh);
2170                mark_buffer_async_read(bh);
2171        }
2172
2173        /*
2174         * Stage 3: start the IO.  Check for uptodateness
2175         * inside the buffer lock in case another process reading
2176         * the underlying blockdev brought it uptodate (the sct fix).
2177         */
2178        for (i = 0; i < nr; i++) {
2179                bh = arr[i];
2180                if (buffer_uptodate(bh))
2181                        end_buffer_async_read(bh, 1);
2182                else
2183                        submit_bh(READ, bh);
2184        }
2185        return 0;
2186}
2187EXPORT_SYMBOL(block_read_full_page);
2188
2189/* utility function for filesystems that need to do work on expanding
2190 * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2191 * deal with the hole.  
2192 */
2193int generic_cont_expand_simple(struct inode *inode, loff_t size)
2194{
2195        struct address_space *mapping = inode->i_mapping;
2196        struct page *page;
2197        void *fsdata;
2198        int err;
2199
2200        err = inode_newsize_ok(inode, size);
2201        if (err)
2202                goto out;
2203
2204        err = pagecache_write_begin(NULL, mapping, size, 0,
2205                                AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2206                                &page, &fsdata);
2207        if (err)
2208                goto out;
2209
2210        err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2211        BUG_ON(err > 0);
2212
2213out:
2214        return err;
2215}
2216EXPORT_SYMBOL(generic_cont_expand_simple);
2217
2218static int cont_expand_zero(struct file *file, struct address_space *mapping,
2219                            loff_t pos, loff_t *bytes)
2220{
2221        struct inode *inode = mapping->host;
2222        unsigned blocksize = 1 << inode->i_blkbits;
2223        struct page *page;
2224        void *fsdata;
2225        pgoff_t index, curidx;
2226        loff_t curpos;
2227        unsigned zerofrom, offset, len;
2228        int err = 0;
2229
2230        index = pos >> PAGE_CACHE_SHIFT;
2231        offset = pos & ~PAGE_CACHE_MASK;
2232
2233        while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2234                zerofrom = curpos & ~PAGE_CACHE_MASK;
2235                if (zerofrom & (blocksize-1)) {
2236                        *bytes |= (blocksize-1);
2237                        (*bytes)++;
2238                }
2239                len = PAGE_CACHE_SIZE - zerofrom;
2240
2241                err = pagecache_write_begin(file, mapping, curpos, len,
2242                                                AOP_FLAG_UNINTERRUPTIBLE,
2243                                                &page, &fsdata);
2244                if (err)
2245                        goto out;
2246                zero_user(page, zerofrom, len);
2247                err = pagecache_write_end(file, mapping, curpos, len, len,
2248                                                page, fsdata);
2249                if (err < 0)
2250                        goto out;
2251                BUG_ON(err != len);
2252                err = 0;
2253
2254                balance_dirty_pages_ratelimited(mapping);
2255        }
2256
2257        /* page covers the boundary, find the boundary offset */
2258        if (index == curidx) {
2259                zerofrom = curpos & ~PAGE_CACHE_MASK;
2260                /* if we will expand the thing last block will be filled */
2261                if (offset <= zerofrom) {
2262                        goto out;
2263                }
2264                if (zerofrom & (blocksize-1)) {
2265                        *bytes |= (blocksize-1);
2266                        (*bytes)++;
2267                }
2268                len = offset - zerofrom;
2269
2270                err = pagecache_write_begin(file, mapping, curpos, len,
2271                                                AOP_FLAG_UNINTERRUPTIBLE,
2272                                                &page, &fsdata);
2273                if (err)
2274                        goto out;
2275                zero_user(page, zerofrom, len);
2276                err = pagecache_write_end(file, mapping, curpos, len, len,
2277                                                page, fsdata);
2278                if (err < 0)
2279                        goto out;
2280                BUG_ON(err != len);
2281                err = 0;
2282        }
2283out:
2284        return err;
2285}
2286
2287/*
2288 * For moronic filesystems that do not allow holes in file.
2289 * We may have to extend the file.
2290 */
2291int cont_write_begin(struct file *file, struct address_space *mapping,
2292                        loff_t pos, unsigned len, unsigned flags,
2293                        struct page **pagep, void **fsdata,
2294                        get_block_t *get_block, loff_t *bytes)
2295{
2296        struct inode *inode = mapping->host;
2297        unsigned blocksize = 1 << inode->i_blkbits;
2298        unsigned zerofrom;
2299        int err;
2300
2301        err = cont_expand_zero(file, mapping, pos, bytes);
2302        if (err)
2303                return err;
2304
2305        zerofrom = *bytes & ~PAGE_CACHE_MASK;
2306        if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2307                *bytes |= (blocksize-1);
2308                (*bytes)++;
2309        }
2310
2311        return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2312}
2313EXPORT_SYMBOL(cont_write_begin);
2314
2315int block_commit_write(struct page *page, unsigned from, unsigned to)
2316{
2317        struct inode *inode = page->mapping->host;
2318        __block_commit_write(inode,page,from,to);
2319        return 0;
2320}
2321EXPORT_SYMBOL(block_commit_write);
2322
2323/*
2324 * block_page_mkwrite() is not allowed to change the file size as it gets
2325 * called from a page fault handler when a page is first dirtied. Hence we must
2326 * be careful to check for EOF conditions here. We set the page up correctly
2327 * for a written page which means we get ENOSPC checking when writing into
2328 * holes and correct delalloc and unwritten extent mapping on filesystems that
2329 * support these features.
2330 *
2331 * We are not allowed to take the i_mutex here so we have to play games to
2332 * protect against truncate races as the page could now be beyond EOF.  Because
2333 * truncate writes the inode size before removing pages, once we have the
2334 * page lock we can determine safely if the page is beyond EOF. If it is not
2335 * beyond EOF, then the page is guaranteed safe against truncation until we
2336 * unlock the page.
2337 *
2338 * Direct callers of this function should call vfs_check_frozen() so that page
2339 * fault does not busyloop until the fs is thawed.
2340 */
2341int __block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2342                         get_block_t get_block)
2343{
2344        struct page *page = vmf->page;
2345        struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2346        unsigned long end;
2347        loff_t size;
2348        int ret;
2349
2350        lock_page(page);
2351        size = i_size_read(inode);
2352        if ((page->mapping != inode->i_mapping) ||
2353            (page_offset(page) > size)) {
2354                /* We overload EFAULT to mean page got truncated */
2355                ret = -EFAULT;
2356                goto out_unlock;
2357        }
2358
2359        /* page is wholly or partially inside EOF */
2360        if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2361                end = size & ~PAGE_CACHE_MASK;
2362        else
2363                end = PAGE_CACHE_SIZE;
2364
2365        ret = __block_write_begin(page, 0, end, get_block);
2366        if (!ret)
2367                ret = block_commit_write(page, 0, end);
2368
2369        if (unlikely(ret < 0))
2370                goto out_unlock;
2371        /*
2372         * Freezing in progress? We check after the page is marked dirty and
2373         * with page lock held so if the test here fails, we are sure freezing
2374         * code will wait during syncing until the page fault is done - at that
2375         * point page will be dirty and unlocked so freezing code will write it
2376         * and writeprotect it again.
2377         */
2378        set_page_dirty(page);
2379        if (inode->i_sb->s_frozen != SB_UNFROZEN) {
2380                ret = -EAGAIN;
2381                goto out_unlock;
2382        }
2383        wait_on_page_writeback(page);
2384        return 0;
2385out_unlock:
2386        unlock_page(page);
2387        return ret;
2388}
2389EXPORT_SYMBOL(__block_page_mkwrite);
2390
2391int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2392                   get_block_t get_block)
2393{
2394        int ret;
2395        struct super_block *sb = vma->vm_file->f_path.dentry->d_inode->i_sb;
2396
2397        /*
2398         * This check is racy but catches the common case. The check in
2399         * __block_page_mkwrite() is reliable.
2400         */
2401        vfs_check_frozen(sb, SB_FREEZE_WRITE);
2402        ret = __block_page_mkwrite(vma, vmf, get_block);
2403        return block_page_mkwrite_return(ret);
2404}
2405EXPORT_SYMBOL(block_page_mkwrite);
2406
2407/*
2408 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2409 * immediately, while under the page lock.  So it needs a special end_io
2410 * handler which does not touch the bh after unlocking it.
2411 */
2412static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2413{
2414        __end_buffer_read_notouch(bh, uptodate);
2415}
2416
2417/*
2418 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2419 * the page (converting it to circular linked list and taking care of page
2420 * dirty races).
2421 */
2422static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2423{
2424        struct buffer_head *bh;
2425
2426        BUG_ON(!PageLocked(page));
2427
2428        spin_lock(&page->mapping->private_lock);
2429        bh = head;
2430        do {
2431                if (PageDirty(page))
2432                        set_buffer_dirty(bh);
2433                if (!bh->b_this_page)
2434                        bh->b_this_page = head;
2435                bh = bh->b_this_page;
2436        } while (bh != head);
2437        attach_page_buffers(page, head);
2438        spin_unlock(&page->mapping->private_lock);
2439}
2440
2441/*
2442 * On entry, the page is fully not uptodate.
2443 * On exit the page is fully uptodate in the areas outside (from,to)
2444 * The filesystem needs to handle block truncation upon failure.
2445 */
2446int nobh_write_begin(struct address_space *mapping,
2447                        loff_t pos, unsigned len, unsigned flags,
2448                        struct page **pagep, void **fsdata,
2449                        get_block_t *get_block)
2450{
2451        struct inode *inode = mapping->host;
2452        const unsigned blkbits = inode->i_blkbits;
2453        const unsigned blocksize = 1 << blkbits;
2454        struct buffer_head *head, *bh;
2455        struct page *page;
2456        pgoff_t index;
2457        unsigned from, to;
2458        unsigned block_in_page;
2459        unsigned block_start, block_end;
2460        sector_t block_in_file;
2461        int nr_reads = 0;
2462        int ret = 0;
2463        int is_mapped_to_disk = 1;
2464
2465        index = pos >> PAGE_CACHE_SHIFT;
2466        from = pos & (PAGE_CACHE_SIZE - 1);
2467        to = from + len;
2468
2469        page = grab_cache_page_write_begin(mapping, index, flags);
2470        if (!page)
2471                return -ENOMEM;
2472        *pagep = page;
2473        *fsdata = NULL;
2474
2475        if (page_has_buffers(page)) {
2476                ret = __block_write_begin(page, pos, len, get_block);
2477                if (unlikely(ret))
2478                        goto out_release;
2479                return ret;
2480        }
2481
2482        if (PageMappedToDisk(page))
2483                return 0;
2484
2485        /*
2486         * Allocate buffers so that we can keep track of state, and potentially
2487         * attach them to the page if an error occurs. In the common case of
2488         * no error, they will just be freed again without ever being attached
2489         * to the page (which is all OK, because we're under the page lock).
2490         *
2491         * Be careful: the buffer linked list is a NULL terminated one, rather
2492         * than the circular one we're used to.
2493         */
2494        head = alloc_page_buffers(page, blocksize, 0);
2495        if (!head) {
2496                ret = -ENOMEM;
2497                goto out_release;
2498        }
2499
2500        block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2501
2502        /*
2503         * We loop across all blocks in the page, whether or not they are
2504         * part of the affected region.  This is so we can discover if the
2505         * page is fully mapped-to-disk.
2506         */
2507        for (block_start = 0, block_in_page = 0, bh = head;
2508                  block_start < PAGE_CACHE_SIZE;
2509                  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2510                int create;
2511
2512                block_end = block_start + blocksize;
2513                bh->b_state = 0;
2514                create = 1;
2515                if (block_start >= to)
2516                        create = 0;
2517                ret = get_block(inode, block_in_file + block_in_page,
2518                                        bh, create);
2519                if (ret)
2520                        goto failed;
2521                if (!buffer_mapped(bh))
2522                        is_mapped_to_disk = 0;
2523                if (buffer_new(bh))
2524                        unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2525                if (PageUptodate(page)) {
2526                        set_buffer_uptodate(bh);
2527                        continue;
2528                }
2529                if (buffer_new(bh) || !buffer_mapped(bh)) {
2530                        zero_user_segments(page, block_start, from,
2531                                                        to, block_end);
2532                        continue;
2533                }
2534                if (buffer_uptodate(bh))
2535                        continue;       /* reiserfs does this */
2536                if (block_start < from || block_end > to) {
2537                        lock_buffer(bh);
2538                        bh->b_end_io = end_buffer_read_nobh;
2539                        submit_bh(READ, bh);
2540                        nr_reads++;
2541                }
2542        }
2543
2544        if (nr_reads) {
2545                /*
2546                 * The page is locked, so these buffers are protected from
2547                 * any VM or truncate activity.  Hence we don't need to care
2548                 * for the buffer_head refcounts.
2549                 */
2550                for (bh = head; bh; bh = bh->b_this_page) {
2551                        wait_on_buffer(bh);
2552                        if (!buffer_uptodate(bh))
2553                                ret = -EIO;
2554                }
2555                if (ret)
2556                        goto failed;
2557        }
2558
2559        if (is_mapped_to_disk)
2560                SetPageMappedToDisk(page);
2561
2562        *fsdata = head; /* to be released by nobh_write_end */
2563
2564        return 0;
2565
2566failed:
2567        BUG_ON(!ret);
2568        /*
2569         * Error recovery is a bit difficult. We need to zero out blocks that
2570         * were newly allocated, and dirty them to ensure they get written out.
2571         * Buffers need to be attached to the page at this point, otherwise
2572         * the handling of potential IO errors during writeout would be hard
2573         * (could try doing synchronous writeout, but what if that fails too?)
2574         */
2575        attach_nobh_buffers(page, head);
2576        page_zero_new_buffers(page, from, to);
2577
2578out_release:
2579        unlock_page(page);
2580        page_cache_release(page);
2581        *pagep = NULL;
2582
2583        return ret;
2584}
2585EXPORT_SYMBOL(nobh_write_begin);
2586
2587int nobh_write_end(struct file *file, struct address_space *mapping,
2588                        loff_t pos, unsigned len, unsigned copied,
2589                        struct page *page, void *fsdata)
2590{
2591        struct inode *inode = page->mapping->host;
2592        struct buffer_head *head = fsdata;
2593        struct buffer_head *bh;
2594        BUG_ON(fsdata != NULL && page_has_buffers(page));
2595
2596        if (unlikely(copied < len) && head)
2597                attach_nobh_buffers(page, head);
2598        if (page_has_buffers(page))
2599                return generic_write_end(file, mapping, pos, len,
2600                                        copied, page, fsdata);
2601
2602        SetPageUptodate(page);
2603        set_page_dirty(page);
2604        if (pos+copied > inode->i_size) {
2605                i_size_write(inode, pos+copied);
2606                mark_inode_dirty(inode);
2607        }
2608
2609        unlock_page(page);
2610        page_cache_release(page);
2611
2612        while (head) {
2613                bh = head;
2614                head = head->b_this_page;
2615                free_buffer_head(bh);
2616        }
2617
2618        return copied;
2619}
2620EXPORT_SYMBOL(nobh_write_end);
2621
2622/*
2623 * nobh_writepage() - based on block_full_write_page() except
2624 * that it tries to operate without attaching bufferheads to
2625 * the page.
2626 */
2627int nobh_writepage(struct page *page, get_block_t *get_block,
2628                        struct writeback_control *wbc)
2629{
2630        struct inode * const inode = page->mapping->host;
2631        loff_t i_size = i_size_read(inode);
2632        const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2633        unsigned offset;
2634        int ret;
2635
2636        /* Is the page fully inside i_size? */
2637        if (page->index < end_index)
2638                goto out;
2639
2640        /* Is the page fully outside i_size? (truncate in progress) */
2641        offset = i_size & (PAGE_CACHE_SIZE-1);
2642        if (page->index >= end_index+1 || !offset) {
2643                /*
2644                 * The page may have dirty, unmapped buffers.  For example,
2645                 * they may have been added in ext3_writepage().  Make them
2646                 * freeable here, so the page does not leak.
2647                 */
2648#if 0
2649                /* Not really sure about this  - do we need this ? */
2650                if (page->mapping->a_ops->invalidatepage)
2651                        page->mapping->a_ops->invalidatepage(page, offset);
2652#endif
2653                unlock_page(page);
2654                return 0; /* don't care */
2655        }
2656
2657        /*
2658         * The page straddles i_size.  It must be zeroed out on each and every
2659         * writepage invocation because it may be mmapped.  "A file is mapped
2660         * in multiples of the page size.  For a file that is not a multiple of
2661         * the  page size, the remaining memory is zeroed when mapped, and
2662         * writes to that region are not written out to the file."
2663         */
2664        zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2665out:
2666        ret = mpage_writepage(page, get_block, wbc);
2667        if (ret == -EAGAIN)
2668                ret = __block_write_full_page(inode, page, get_block, wbc,
2669                                              end_buffer_async_write);
2670        return ret;
2671}
2672EXPORT_SYMBOL(nobh_writepage);
2673
2674int nobh_truncate_page(struct address_space *mapping,
2675                        loff_t from, get_block_t *get_block)
2676{
2677        pgoff_t index = from >> PAGE_CACHE_SHIFT;
2678        unsigned offset = from & (PAGE_CACHE_SIZE-1);
2679        unsigned blocksize;
2680        sector_t iblock;
2681        unsigned length, pos;
2682        struct inode *inode = mapping->host;
2683        struct page *page;
2684        struct buffer_head map_bh;
2685        int err;
2686
2687        blocksize = 1 << inode->i_blkbits;
2688        length = offset & (blocksize - 1);
2689
2690        /* Block boundary? Nothing to do */
2691        if (!length)
2692                return 0;
2693
2694        length = blocksize - length;
2695        iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2696
2697        page = grab_cache_page(mapping, index);
2698        err = -ENOMEM;
2699        if (!page)
2700                goto out;
2701
2702        if (page_has_buffers(page)) {
2703has_buffers:
2704                unlock_page(page);
2705                page_cache_release(page);
2706                return block_truncate_page(mapping, from, get_block);
2707        }
2708
2709        /* Find the buffer that contains "offset" */
2710        pos = blocksize;
2711        while (offset >= pos) {
2712                iblock++;
2713                pos += blocksize;
2714        }
2715
2716        map_bh.b_size = blocksize;
2717        map_bh.b_state = 0;
2718        err = get_block(inode, iblock, &map_bh, 0);
2719        if (err)
2720                goto unlock;
2721        /* unmapped? It's a hole - nothing to do */
2722        if (!buffer_mapped(&map_bh))
2723                goto unlock;
2724
2725        /* Ok, it's mapped. Make sure it's up-to-date */
2726        if (!PageUptodate(page)) {
2727                err = mapping->a_ops->readpage(NULL, page);
2728                if (err) {
2729                        page_cache_release(page);
2730                        goto out;
2731                }
2732                lock_page(page);
2733                if (!PageUptodate(page)) {
2734                        err = -EIO;
2735                        goto unlock;
2736                }
2737                if (page_has_buffers(page))
2738                        goto has_buffers;
2739        }
2740        zero_user(page, offset, length);
2741        set_page_dirty(page);
2742        err = 0;
2743
2744unlock:
2745        unlock_page(page);
2746        page_cache_release(page);
2747out:
2748        return err;
2749}
2750EXPORT_SYMBOL(nobh_truncate_page);
2751
2752int block_truncate_page(struct address_space *mapping,
2753                        loff_t from, get_block_t *get_block)
2754{
2755        pgoff_t index = from >> PAGE_CACHE_SHIFT;
2756        unsigned offset = from & (PAGE_CACHE_SIZE-1);
2757        unsigned blocksize;
2758        sector_t iblock;
2759        unsigned length, pos;
2760        struct inode *inode = mapping->host;
2761        struct page *page;
2762        struct buffer_head *bh;
2763        int err;
2764
2765        blocksize = 1 << inode->i_blkbits;
2766        length = offset & (blocksize - 1);
2767
2768        /* Block boundary? Nothing to do */
2769        if (!length)
2770                return 0;
2771
2772        length = blocksize - length;
2773        iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2774        
2775        page = grab_cache_page(mapping, index);
2776        err = -ENOMEM;
2777        if (!page)
2778                goto out;
2779
2780        if (!page_has_buffers(page))
2781                create_empty_buffers(page, blocksize, 0);
2782
2783        /* Find the buffer that contains "offset" */
2784        bh = page_buffers(page);
2785        pos = blocksize;
2786        while (offset >= pos) {
2787                bh = bh->b_this_page;
2788                iblock++;
2789                pos += blocksize;
2790        }
2791
2792        err = 0;
2793        if (!buffer_mapped(bh)) {
2794                WARN_ON(bh->b_size != blocksize);
2795                err = get_block(inode, iblock, bh, 0);
2796                if (err)
2797                        goto unlock;
2798                /* unmapped? It's a hole - nothing to do */
2799                if (!buffer_mapped(bh))
2800                        goto unlock;
2801        }
2802
2803        /* Ok, it's mapped. Make sure it's up-to-date */
2804        if (PageUptodate(page))
2805                set_buffer_uptodate(bh);
2806
2807        if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2808                err = -EIO;
2809                ll_rw_block(READ, 1, &bh);
2810                wait_on_buffer(bh);
2811                /* Uhhuh. Read error. Complain and punt. */
2812                if (!buffer_uptodate(bh))
2813                        goto unlock;
2814        }
2815
2816        zero_user(page, offset, length);
2817        mark_buffer_dirty(bh);
2818        err = 0;
2819
2820unlock:
2821        unlock_page(page);
2822        page_cache_release(page);
2823out:
2824        return err;
2825}
2826EXPORT_SYMBOL(block_truncate_page);
2827
2828/*
2829 * The generic ->writepage function for buffer-backed address_spaces
2830 * this form passes in the end_io handler used to finish the IO.
2831 */
2832int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2833                        struct writeback_control *wbc, bh_end_io_t *handler)
2834{
2835        struct inode * const inode = page->mapping->host;
2836        loff_t i_size = i_size_read(inode);
2837        const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2838        unsigned offset;
2839
2840        /* Is the page fully inside i_size? */
2841        if (page->index < end_index)
2842                return __block_write_full_page(inode, page, get_block, wbc,
2843                                               handler);
2844
2845        /* Is the page fully outside i_size? (truncate in progress) */
2846        offset = i_size & (PAGE_CACHE_SIZE-1);
2847        if (page->index >= end_index+1 || !offset) {
2848                /*
2849                 * The page may have dirty, unmapped buffers.  For example,
2850                 * they may have been added in ext3_writepage().  Make them
2851                 * freeable here, so the page does not leak.
2852                 */
2853                do_invalidatepage(page, 0);
2854                unlock_page(page);
2855                return 0; /* don't care */
2856        }
2857
2858        /*
2859         * The page straddles i_size.  It must be zeroed out on each and every
2860         * writepage invocation because it may be mmapped.  "A file is mapped
2861         * in multiples of the page size.  For a file that is not a multiple of
2862         * the  page size, the remaining memory is zeroed when mapped, and
2863         * writes to that region are not written out to the file."
2864         */
2865        zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2866        return __block_write_full_page(inode, page, get_block, wbc, handler);
2867}
2868EXPORT_SYMBOL(block_write_full_page_endio);
2869
2870/*
2871 * The generic ->writepage function for buffer-backed address_spaces
2872 */
2873int block_write_full_page(struct page *page, get_block_t *get_block,
2874                        struct writeback_control *wbc)
2875{
2876        return block_write_full_page_endio(page, get_block, wbc,
2877                                           end_buffer_async_write);
2878}
2879EXPORT_SYMBOL(block_write_full_page);
2880
2881sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2882                            get_block_t *get_block)
2883{
2884        struct buffer_head tmp;
2885        struct inode *inode = mapping->host;
2886        tmp.b_state = 0;
2887        tmp.b_blocknr = 0;
2888        tmp.b_size = 1 << inode->i_blkbits;
2889        get_block(inode, block, &tmp, 0);
2890        return tmp.b_blocknr;
2891}
2892EXPORT_SYMBOL(generic_block_bmap);
2893
2894static void end_bio_bh_io_sync(struct bio *bio, int err)
2895{
2896        struct buffer_head *bh = bio->bi_private;
2897
2898        if (err == -EOPNOTSUPP) {
2899                set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2900        }
2901
2902        if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2903                set_bit(BH_Quiet, &bh->b_state);
2904
2905        bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2906        bio_put(bio);
2907}
2908
2909int submit_bh(int rw, struct buffer_head * bh)
2910{
2911        struct bio *bio;
2912        int ret = 0;
2913
2914        BUG_ON(!buffer_locked(bh));
2915        BUG_ON(!buffer_mapped(bh));
2916        BUG_ON(!bh->b_end_io);
2917        BUG_ON(buffer_delay(bh));
2918        BUG_ON(buffer_unwritten(bh));
2919
2920        /*
2921         * Only clear out a write error when rewriting
2922         */
2923        if (test_set_buffer_req(bh) && (rw & WRITE))
2924                clear_buffer_write_io_error(bh);
2925
2926        /*
2927         * from here on down, it's all bio -- do the initial mapping,
2928         * submit_bio -> generic_make_request may further map this bio around
2929         */
2930        bio = bio_alloc(GFP_NOIO, 1);
2931
2932        bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2933        bio->bi_bdev = bh->b_bdev;
2934        bio->bi_io_vec[0].bv_page = bh->b_page;
2935        bio->bi_io_vec[0].bv_len = bh->b_size;
2936        bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2937
2938        bio->bi_vcnt = 1;
2939        bio->bi_idx = 0;
2940        bio->bi_size = bh->b_size;
2941
2942        bio->bi_end_io = end_bio_bh_io_sync;
2943        bio->bi_private = bh;
2944
2945        bio_get(bio);
2946        submit_bio(rw, bio);
2947
2948        if (bio_flagged(bio, BIO_EOPNOTSUPP))
2949                ret = -EOPNOTSUPP;
2950
2951        bio_put(bio);
2952        return ret;
2953}
2954EXPORT_SYMBOL(submit_bh);
2955
2956/**
2957 * ll_rw_block: low-level access to block devices (DEPRECATED)
2958 * @rw: whether to %READ or %WRITE or maybe %READA (readahead)
2959 * @nr: number of &struct buffer_heads in the array
2960 * @bhs: array of pointers to &struct buffer_head
2961 *
2962 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2963 * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2964 * %READA option is described in the documentation for generic_make_request()
2965 * which ll_rw_block() calls.
2966 *
2967 * This function drops any buffer that it cannot get a lock on (with the
2968 * BH_Lock state bit), any buffer that appears to be clean when doing a write
2969 * request, and any buffer that appears to be up-to-date when doing read
2970 * request.  Further it marks as clean buffers that are processed for
2971 * writing (the buffer cache won't assume that they are actually clean
2972 * until the buffer gets unlocked).
2973 *
2974 * ll_rw_block sets b_end_io to simple completion handler that marks
2975 * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2976 * any waiters. 
2977 *
2978 * All of the buffers must be for the same device, and must also be a
2979 * multiple of the current approved size for the device.
2980 */
2981void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2982{
2983        int i;
2984
2985        for (i = 0; i < nr; i++) {
2986                struct buffer_head *bh = bhs[i];
2987
2988                if (!trylock_buffer(bh))
2989                        continue;
2990                if (rw == WRITE) {
2991                        if (test_clear_buffer_dirty(bh)) {
2992                                bh->b_end_io = end_buffer_write_sync;
2993                                get_bh(bh);
2994                                submit_bh(WRITE, bh);
2995                                continue;
2996                        }
2997                } else {
2998                        if (!buffer_uptodate(bh)) {
2999                                bh->b_end_io = end_buffer_read_sync;
3000                                get_bh(bh);
3001                                submit_bh(rw, bh);
3002                                continue;
3003                        }
3004                }
3005                unlock_buffer(bh);
3006        }
3007}
3008EXPORT_SYMBOL(ll_rw_block);
3009
3010void write_dirty_buffer(struct buffer_head *bh, int rw)
3011{
3012        lock_buffer(bh);
3013        if (!test_clear_buffer_dirty(bh)) {
3014                unlock_buffer(bh);
3015                return;
3016        }
3017        bh->b_end_io = end_buffer_write_sync;
3018        get_bh(bh);
3019        submit_bh(rw, bh);
3020}
3021EXPORT_SYMBOL(write_dirty_buffer);
3022
3023/*
3024 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3025 * and then start new I/O and then wait upon it.  The caller must have a ref on
3026 * the buffer_head.
3027 */
3028int __sync_dirty_buffer(struct buffer_head *bh, int rw)
3029{
3030        int ret = 0;
3031
3032        WARN_ON(atomic_read(&bh->b_count) < 1);
3033        lock_buffer(bh);
3034        if (test_clear_buffer_dirty(bh)) {
3035                get_bh(bh);
3036                bh->b_end_io = end_buffer_write_sync;
3037                ret = submit_bh(rw, bh);
3038                wait_on_buffer(bh);
3039                if (!ret && !buffer_uptodate(bh))
3040                        ret = -EIO;
3041        } else {
3042                unlock_buffer(bh);
3043        }
3044        return ret;
3045}
3046EXPORT_SYMBOL(__sync_dirty_buffer);
3047
3048int sync_dirty_buffer(struct buffer_head *bh)
3049{
3050        return __sync_dirty_buffer(bh, WRITE_SYNC);
3051}
3052EXPORT_SYMBOL(sync_dirty_buffer);
3053
3054/*
3055 * try_to_free_buffers() checks if all the buffers on this particular page
3056 * are unused, and releases them if so.
3057 *
3058 * Exclusion against try_to_free_buffers may be obtained by either
3059 * locking the page or by holding its mapping's private_lock.
3060 *
3061 * If the page is dirty but all the buffers are clean then we need to
3062 * be sure to mark the page clean as well.  This is because the page
3063 * may be against a block device, and a later reattachment of buffers
3064 * to a dirty page will set *all* buffers dirty.  Which would corrupt
3065 * filesystem data on the same device.
3066 *
3067 * The same applies to regular filesystem pages: if all the buffers are
3068 * clean then we set the page clean and proceed.  To do that, we require
3069 * total exclusion from __set_page_dirty_buffers().  That is obtained with
3070 * private_lock.
3071 *
3072 * try_to_free_buffers() is non-blocking.
3073 */
3074static inline int buffer_busy(struct buffer_head *bh)
3075{
3076        return atomic_read(&bh->b_count) |
3077                (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3078}
3079
3080static int
3081drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3082{
3083        struct buffer_head *head = page_buffers(page);
3084        struct buffer_head *bh;
3085
3086        bh = head;
3087        do {
3088                if (buffer_write_io_error(bh) && page->mapping)
3089                        set_bit(AS_EIO, &page->mapping->flags);
3090                if (buffer_busy(bh))
3091                        goto failed;
3092                bh = bh->b_this_page;
3093        } while (bh != head);
3094
3095        do {
3096                struct buffer_head *next = bh->b_this_page;
3097
3098                if (bh->b_assoc_map)
3099                        __remove_assoc_queue(bh);
3100                bh = next;
3101        } while (bh != head);
3102        *buffers_to_free = head;
3103        __clear_page_buffers(page);
3104        return 1;
3105failed:
3106        return 0;
3107}
3108
3109int try_to_free_buffers(struct page *page)
3110{
3111        struct address_space * const mapping = page->mapping;
3112        struct buffer_head *buffers_to_free = NULL;
3113        int ret = 0;
3114
3115        BUG_ON(!PageLocked(page));
3116        if (PageWriteback(page))
3117                return 0;
3118
3119        if (mapping == NULL) {          /* can this still happen? */
3120                ret = drop_buffers(page, &buffers_to_free);
3121                goto out;
3122        }
3123
3124        spin_lock(&mapping->private_lock);
3125        ret = drop_buffers(page, &buffers_to_free);
3126
3127        /*
3128         * If the filesystem writes its buffers by hand (eg ext3)
3129         * then we can have clean buffers against a dirty page.  We
3130         * clean the page here; otherwise the VM will never notice
3131         * that the filesystem did any IO at all.
3132         *
3133         * Also, during truncate, discard_buffer will have marked all
3134         * the page's buffers clean.  We discover that here and clean
3135         * the page also.
3136         *
3137         * private_lock must be held over this entire operation in order
3138         * to synchronise against __set_page_dirty_buffers and prevent the
3139         * dirty bit from being lost.
3140         */
3141        if (ret)
3142                cancel_dirty_page(page, PAGE_CACHE_SIZE);
3143        spin_unlock(&mapping->private_lock);
3144out:
3145        if (buffers_to_free) {
3146                struct buffer_head *bh = buffers_to_free;
3147
3148                do {
3149                        struct buffer_head *next = bh->b_this_page;
3150                        free_buffer_head(bh);
3151                        bh = next;
3152                } while (bh != buffers_to_free);
3153        }
3154        return ret;
3155}
3156EXPORT_SYMBOL(try_to_free_buffers);
3157
3158/*
3159 * There are no bdflush tunables left.  But distributions are
3160 * still running obsolete flush daemons, so we terminate them here.
3161 *
3162 * Use of bdflush() is deprecated and will be removed in a future kernel.
3163 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3164 */
3165SYSCALL_DEFINE2(bdflush, int, func, long, data)
3166{
3167        static int msg_count;
3168
3169        if (!capable(CAP_SYS_ADMIN))
3170                return -EPERM;
3171
3172        if (msg_count < 5) {
3173                msg_count++;
3174                printk(KERN_INFO
3175                        "warning: process `%s' used the obsolete bdflush"
3176                        " system call\n", current->comm);
3177                printk(KERN_INFO "Fix your initscripts?\n");
3178        }
3179
3180        if (func == 1)
3181                do_exit(0);
3182        return 0;
3183}
3184
3185/*
3186 * Buffer-head allocation
3187 */
3188static struct kmem_cache *bh_cachep;
3189
3190/*
3191 * Once the number of bh's in the machine exceeds this level, we start
3192 * stripping them in writeback.
3193 */
3194static int max_buffer_heads;
3195
3196int buffer_heads_over_limit;
3197
3198struct bh_accounting {
3199        int nr;                 /* Number of live bh's */
3200        int ratelimit;          /* Limit cacheline bouncing */
3201};
3202
3203static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3204
3205static void recalc_bh_state(void)
3206{
3207        int i;
3208        int tot = 0;
3209
3210        if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3211                return;
3212        __this_cpu_write(bh_accounting.ratelimit, 0);
3213        for_each_online_cpu(i)
3214                tot += per_cpu(bh_accounting, i).nr;
3215        buffer_heads_over_limit = (tot > max_buffer_heads);
3216}
3217
3218struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3219{
3220        struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3221        if (ret) {
3222                INIT_LIST_HEAD(&ret->b_assoc_buffers);
3223                preempt_disable();
3224                __this_cpu_inc(bh_accounting.nr);
3225                recalc_bh_state();
3226                preempt_enable();
3227        }
3228        return ret;
3229}
3230EXPORT_SYMBOL(alloc_buffer_head);
3231
3232void free_buffer_head(struct buffer_head *bh)
3233{
3234        BUG_ON(!list_empty(&bh->b_assoc_buffers));
3235        kmem_cache_free(bh_cachep, bh);
3236        preempt_disable();
3237        __this_cpu_dec(bh_accounting.nr);
3238        recalc_bh_state();
3239        preempt_enable();
3240}
3241EXPORT_SYMBOL(free_buffer_head);
3242
3243static void buffer_exit_cpu(int cpu)
3244{
3245        int i;
3246        struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3247
3248        for (i = 0; i < BH_LRU_SIZE; i++) {
3249                brelse(b->bhs[i]);
3250                b->bhs[i] = NULL;
3251        }
3252        this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3253        per_cpu(bh_accounting, cpu).nr = 0;
3254}
3255
3256static int buffer_cpu_notify(struct notifier_block *self,
3257                              unsigned long action, void *hcpu)
3258{
3259        if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3260                buffer_exit_cpu((unsigned long)hcpu);
3261        return NOTIFY_OK;
3262}
3263
3264/**
3265 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3266 * @bh: struct buffer_head
3267 *
3268 * Return true if the buffer is up-to-date and false,
3269 * with the buffer locked, if not.
3270 */
3271int bh_uptodate_or_lock(struct buffer_head *bh)
3272{
3273        if (!buffer_uptodate(bh)) {
3274                lock_buffer(bh);
3275                if (!buffer_uptodate(bh))
3276                        return 0;
3277                unlock_buffer(bh);
3278        }
3279        return 1;
3280}
3281EXPORT_SYMBOL(bh_uptodate_or_lock);
3282
3283/**
3284 * bh_submit_read - Submit a locked buffer for reading
3285 * @bh: struct buffer_head
3286 *
3287 * Returns zero on success and -EIO on error.
3288 */
3289int bh_submit_read(struct buffer_head *bh)
3290{
3291        BUG_ON(!buffer_locked(bh));
3292
3293        if (buffer_uptodate(bh)) {
3294                unlock_buffer(bh);
3295                return 0;
3296        }
3297
3298        get_bh(bh);
3299        bh->b_end_io = end_buffer_read_sync;
3300        submit_bh(READ, bh);
3301        wait_on_buffer(bh);
3302        if (buffer_uptodate(bh))
3303                return 0;
3304        return -EIO;
3305}
3306EXPORT_SYMBOL(bh_submit_read);
3307
3308void __init buffer_init(void)
3309{
3310        int nrpages;
3311
3312        bh_cachep = kmem_cache_create("buffer_head",
3313                        sizeof(struct buffer_head), 0,
3314                                (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3315                                SLAB_MEM_SPREAD),
3316                                NULL);
3317
3318        /*
3319         * Limit the bh occupancy to 10% of ZONE_NORMAL
3320         */
3321        nrpages = (nr_free_buffer_pages() * 10) / 100;
3322        max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3323        hotcpu_notifier(buffer_cpu_notify, 0);
3324}
3325