linux/fs/ext3/inode.c
<<
>>
Prefs
   1/*
   2 *  linux/fs/ext3/inode.c
   3 *
   4 * Copyright (C) 1992, 1993, 1994, 1995
   5 * Remy Card (card@masi.ibp.fr)
   6 * Laboratoire MASI - Institut Blaise Pascal
   7 * Universite Pierre et Marie Curie (Paris VI)
   8 *
   9 *  from
  10 *
  11 *  linux/fs/minix/inode.c
  12 *
  13 *  Copyright (C) 1991, 1992  Linus Torvalds
  14 *
  15 *  Goal-directed block allocation by Stephen Tweedie
  16 *      (sct@redhat.com), 1993, 1998
  17 *  Big-endian to little-endian byte-swapping/bitmaps by
  18 *        David S. Miller (davem@caip.rutgers.edu), 1995
  19 *  64-bit file support on 64-bit platforms by Jakub Jelinek
  20 *      (jj@sunsite.ms.mff.cuni.cz)
  21 *
  22 *  Assorted race fixes, rewrite of ext3_get_block() by Al Viro, 2000
  23 */
  24
  25#include <linux/module.h>
  26#include <linux/fs.h>
  27#include <linux/time.h>
  28#include <linux/ext3_jbd.h>
  29#include <linux/jbd.h>
  30#include <linux/highuid.h>
  31#include <linux/pagemap.h>
  32#include <linux/quotaops.h>
  33#include <linux/string.h>
  34#include <linux/buffer_head.h>
  35#include <linux/writeback.h>
  36#include <linux/mpage.h>
  37#include <linux/uio.h>
  38#include <linux/bio.h>
  39#include <linux/fiemap.h>
  40#include <linux/namei.h>
  41#include <trace/events/ext3.h>
  42#include "xattr.h"
  43#include "acl.h"
  44
  45static int ext3_writepage_trans_blocks(struct inode *inode);
  46static int ext3_block_truncate_page(struct inode *inode, loff_t from);
  47
  48/*
  49 * Test whether an inode is a fast symlink.
  50 */
  51static int ext3_inode_is_fast_symlink(struct inode *inode)
  52{
  53        int ea_blocks = EXT3_I(inode)->i_file_acl ?
  54                (inode->i_sb->s_blocksize >> 9) : 0;
  55
  56        return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
  57}
  58
  59/*
  60 * The ext3 forget function must perform a revoke if we are freeing data
  61 * which has been journaled.  Metadata (eg. indirect blocks) must be
  62 * revoked in all cases.
  63 *
  64 * "bh" may be NULL: a metadata block may have been freed from memory
  65 * but there may still be a record of it in the journal, and that record
  66 * still needs to be revoked.
  67 */
  68int ext3_forget(handle_t *handle, int is_metadata, struct inode *inode,
  69                        struct buffer_head *bh, ext3_fsblk_t blocknr)
  70{
  71        int err;
  72
  73        might_sleep();
  74
  75        trace_ext3_forget(inode, is_metadata, blocknr);
  76        BUFFER_TRACE(bh, "enter");
  77
  78        jbd_debug(4, "forgetting bh %p: is_metadata = %d, mode %o, "
  79                  "data mode %lx\n",
  80                  bh, is_metadata, inode->i_mode,
  81                  test_opt(inode->i_sb, DATA_FLAGS));
  82
  83        /* Never use the revoke function if we are doing full data
  84         * journaling: there is no need to, and a V1 superblock won't
  85         * support it.  Otherwise, only skip the revoke on un-journaled
  86         * data blocks. */
  87
  88        if (test_opt(inode->i_sb, DATA_FLAGS) == EXT3_MOUNT_JOURNAL_DATA ||
  89            (!is_metadata && !ext3_should_journal_data(inode))) {
  90                if (bh) {
  91                        BUFFER_TRACE(bh, "call journal_forget");
  92                        return ext3_journal_forget(handle, bh);
  93                }
  94                return 0;
  95        }
  96
  97        /*
  98         * data!=journal && (is_metadata || should_journal_data(inode))
  99         */
 100        BUFFER_TRACE(bh, "call ext3_journal_revoke");
 101        err = ext3_journal_revoke(handle, blocknr, bh);
 102        if (err)
 103                ext3_abort(inode->i_sb, __func__,
 104                           "error %d when attempting revoke", err);
 105        BUFFER_TRACE(bh, "exit");
 106        return err;
 107}
 108
 109/*
 110 * Work out how many blocks we need to proceed with the next chunk of a
 111 * truncate transaction.
 112 */
 113static unsigned long blocks_for_truncate(struct inode *inode)
 114{
 115        unsigned long needed;
 116
 117        needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
 118
 119        /* Give ourselves just enough room to cope with inodes in which
 120         * i_blocks is corrupt: we've seen disk corruptions in the past
 121         * which resulted in random data in an inode which looked enough
 122         * like a regular file for ext3 to try to delete it.  Things
 123         * will go a bit crazy if that happens, but at least we should
 124         * try not to panic the whole kernel. */
 125        if (needed < 2)
 126                needed = 2;
 127
 128        /* But we need to bound the transaction so we don't overflow the
 129         * journal. */
 130        if (needed > EXT3_MAX_TRANS_DATA)
 131                needed = EXT3_MAX_TRANS_DATA;
 132
 133        return EXT3_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
 134}
 135
 136/*
 137 * Truncate transactions can be complex and absolutely huge.  So we need to
 138 * be able to restart the transaction at a conventient checkpoint to make
 139 * sure we don't overflow the journal.
 140 *
 141 * start_transaction gets us a new handle for a truncate transaction,
 142 * and extend_transaction tries to extend the existing one a bit.  If
 143 * extend fails, we need to propagate the failure up and restart the
 144 * transaction in the top-level truncate loop. --sct
 145 */
 146static handle_t *start_transaction(struct inode *inode)
 147{
 148        handle_t *result;
 149
 150        result = ext3_journal_start(inode, blocks_for_truncate(inode));
 151        if (!IS_ERR(result))
 152                return result;
 153
 154        ext3_std_error(inode->i_sb, PTR_ERR(result));
 155        return result;
 156}
 157
 158/*
 159 * Try to extend this transaction for the purposes of truncation.
 160 *
 161 * Returns 0 if we managed to create more room.  If we can't create more
 162 * room, and the transaction must be restarted we return 1.
 163 */
 164static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
 165{
 166        if (handle->h_buffer_credits > EXT3_RESERVE_TRANS_BLOCKS)
 167                return 0;
 168        if (!ext3_journal_extend(handle, blocks_for_truncate(inode)))
 169                return 0;
 170        return 1;
 171}
 172
 173/*
 174 * Restart the transaction associated with *handle.  This does a commit,
 175 * so before we call here everything must be consistently dirtied against
 176 * this transaction.
 177 */
 178static int truncate_restart_transaction(handle_t *handle, struct inode *inode)
 179{
 180        int ret;
 181
 182        jbd_debug(2, "restarting handle %p\n", handle);
 183        /*
 184         * Drop truncate_mutex to avoid deadlock with ext3_get_blocks_handle
 185         * At this moment, get_block can be called only for blocks inside
 186         * i_size since page cache has been already dropped and writes are
 187         * blocked by i_mutex. So we can safely drop the truncate_mutex.
 188         */
 189        mutex_unlock(&EXT3_I(inode)->truncate_mutex);
 190        ret = ext3_journal_restart(handle, blocks_for_truncate(inode));
 191        mutex_lock(&EXT3_I(inode)->truncate_mutex);
 192        return ret;
 193}
 194
 195/*
 196 * Called at inode eviction from icache
 197 */
 198void ext3_evict_inode (struct inode *inode)
 199{
 200        struct ext3_inode_info *ei = EXT3_I(inode);
 201        struct ext3_block_alloc_info *rsv;
 202        handle_t *handle;
 203        int want_delete = 0;
 204
 205        trace_ext3_evict_inode(inode);
 206        if (!inode->i_nlink && !is_bad_inode(inode)) {
 207                dquot_initialize(inode);
 208                want_delete = 1;
 209        }
 210
 211        /*
 212         * When journalling data dirty buffers are tracked only in the journal.
 213         * So although mm thinks everything is clean and ready for reaping the
 214         * inode might still have some pages to write in the running
 215         * transaction or waiting to be checkpointed. Thus calling
 216         * journal_invalidatepage() (via truncate_inode_pages()) to discard
 217         * these buffers can cause data loss. Also even if we did not discard
 218         * these buffers, we would have no way to find them after the inode
 219         * is reaped and thus user could see stale data if he tries to read
 220         * them before the transaction is checkpointed. So be careful and
 221         * force everything to disk here... We use ei->i_datasync_tid to
 222         * store the newest transaction containing inode's data.
 223         *
 224         * Note that directories do not have this problem because they don't
 225         * use page cache.
 226         */
 227        if (inode->i_nlink && ext3_should_journal_data(inode) &&
 228            (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
 229                tid_t commit_tid = atomic_read(&ei->i_datasync_tid);
 230                journal_t *journal = EXT3_SB(inode->i_sb)->s_journal;
 231
 232                log_start_commit(journal, commit_tid);
 233                log_wait_commit(journal, commit_tid);
 234                filemap_write_and_wait(&inode->i_data);
 235        }
 236        truncate_inode_pages(&inode->i_data, 0);
 237
 238        ext3_discard_reservation(inode);
 239        rsv = ei->i_block_alloc_info;
 240        ei->i_block_alloc_info = NULL;
 241        if (unlikely(rsv))
 242                kfree(rsv);
 243
 244        if (!want_delete)
 245                goto no_delete;
 246
 247        handle = start_transaction(inode);
 248        if (IS_ERR(handle)) {
 249                /*
 250                 * If we're going to skip the normal cleanup, we still need to
 251                 * make sure that the in-core orphan linked list is properly
 252                 * cleaned up.
 253                 */
 254                ext3_orphan_del(NULL, inode);
 255                goto no_delete;
 256        }
 257
 258        if (IS_SYNC(inode))
 259                handle->h_sync = 1;
 260        inode->i_size = 0;
 261        if (inode->i_blocks)
 262                ext3_truncate(inode);
 263        /*
 264         * Kill off the orphan record created when the inode lost the last
 265         * link.  Note that ext3_orphan_del() has to be able to cope with the
 266         * deletion of a non-existent orphan - ext3_truncate() could
 267         * have removed the record.
 268         */
 269        ext3_orphan_del(handle, inode);
 270        ei->i_dtime = get_seconds();
 271
 272        /*
 273         * One subtle ordering requirement: if anything has gone wrong
 274         * (transaction abort, IO errors, whatever), then we can still
 275         * do these next steps (the fs will already have been marked as
 276         * having errors), but we can't free the inode if the mark_dirty
 277         * fails.
 278         */
 279        if (ext3_mark_inode_dirty(handle, inode)) {
 280                /* If that failed, just dquot_drop() and be done with that */
 281                dquot_drop(inode);
 282                end_writeback(inode);
 283        } else {
 284                ext3_xattr_delete_inode(handle, inode);
 285                dquot_free_inode(inode);
 286                dquot_drop(inode);
 287                end_writeback(inode);
 288                ext3_free_inode(handle, inode);
 289        }
 290        ext3_journal_stop(handle);
 291        return;
 292no_delete:
 293        end_writeback(inode);
 294        dquot_drop(inode);
 295}
 296
 297typedef struct {
 298        __le32  *p;
 299        __le32  key;
 300        struct buffer_head *bh;
 301} Indirect;
 302
 303static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
 304{
 305        p->key = *(p->p = v);
 306        p->bh = bh;
 307}
 308
 309static int verify_chain(Indirect *from, Indirect *to)
 310{
 311        while (from <= to && from->key == *from->p)
 312                from++;
 313        return (from > to);
 314}
 315
 316/**
 317 *      ext3_block_to_path - parse the block number into array of offsets
 318 *      @inode: inode in question (we are only interested in its superblock)
 319 *      @i_block: block number to be parsed
 320 *      @offsets: array to store the offsets in
 321 *      @boundary: set this non-zero if the referred-to block is likely to be
 322 *             followed (on disk) by an indirect block.
 323 *
 324 *      To store the locations of file's data ext3 uses a data structure common
 325 *      for UNIX filesystems - tree of pointers anchored in the inode, with
 326 *      data blocks at leaves and indirect blocks in intermediate nodes.
 327 *      This function translates the block number into path in that tree -
 328 *      return value is the path length and @offsets[n] is the offset of
 329 *      pointer to (n+1)th node in the nth one. If @block is out of range
 330 *      (negative or too large) warning is printed and zero returned.
 331 *
 332 *      Note: function doesn't find node addresses, so no IO is needed. All
 333 *      we need to know is the capacity of indirect blocks (taken from the
 334 *      inode->i_sb).
 335 */
 336
 337/*
 338 * Portability note: the last comparison (check that we fit into triple
 339 * indirect block) is spelled differently, because otherwise on an
 340 * architecture with 32-bit longs and 8Kb pages we might get into trouble
 341 * if our filesystem had 8Kb blocks. We might use long long, but that would
 342 * kill us on x86. Oh, well, at least the sign propagation does not matter -
 343 * i_block would have to be negative in the very beginning, so we would not
 344 * get there at all.
 345 */
 346
 347static int ext3_block_to_path(struct inode *inode,
 348                        long i_block, int offsets[4], int *boundary)
 349{
 350        int ptrs = EXT3_ADDR_PER_BLOCK(inode->i_sb);
 351        int ptrs_bits = EXT3_ADDR_PER_BLOCK_BITS(inode->i_sb);
 352        const long direct_blocks = EXT3_NDIR_BLOCKS,
 353                indirect_blocks = ptrs,
 354                double_blocks = (1 << (ptrs_bits * 2));
 355        int n = 0;
 356        int final = 0;
 357
 358        if (i_block < 0) {
 359                ext3_warning (inode->i_sb, "ext3_block_to_path", "block < 0");
 360        } else if (i_block < direct_blocks) {
 361                offsets[n++] = i_block;
 362                final = direct_blocks;
 363        } else if ( (i_block -= direct_blocks) < indirect_blocks) {
 364                offsets[n++] = EXT3_IND_BLOCK;
 365                offsets[n++] = i_block;
 366                final = ptrs;
 367        } else if ((i_block -= indirect_blocks) < double_blocks) {
 368                offsets[n++] = EXT3_DIND_BLOCK;
 369                offsets[n++] = i_block >> ptrs_bits;
 370                offsets[n++] = i_block & (ptrs - 1);
 371                final = ptrs;
 372        } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
 373                offsets[n++] = EXT3_TIND_BLOCK;
 374                offsets[n++] = i_block >> (ptrs_bits * 2);
 375                offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
 376                offsets[n++] = i_block & (ptrs - 1);
 377                final = ptrs;
 378        } else {
 379                ext3_warning(inode->i_sb, "ext3_block_to_path", "block > big");
 380        }
 381        if (boundary)
 382                *boundary = final - 1 - (i_block & (ptrs - 1));
 383        return n;
 384}
 385
 386/**
 387 *      ext3_get_branch - read the chain of indirect blocks leading to data
 388 *      @inode: inode in question
 389 *      @depth: depth of the chain (1 - direct pointer, etc.)
 390 *      @offsets: offsets of pointers in inode/indirect blocks
 391 *      @chain: place to store the result
 392 *      @err: here we store the error value
 393 *
 394 *      Function fills the array of triples <key, p, bh> and returns %NULL
 395 *      if everything went OK or the pointer to the last filled triple
 396 *      (incomplete one) otherwise. Upon the return chain[i].key contains
 397 *      the number of (i+1)-th block in the chain (as it is stored in memory,
 398 *      i.e. little-endian 32-bit), chain[i].p contains the address of that
 399 *      number (it points into struct inode for i==0 and into the bh->b_data
 400 *      for i>0) and chain[i].bh points to the buffer_head of i-th indirect
 401 *      block for i>0 and NULL for i==0. In other words, it holds the block
 402 *      numbers of the chain, addresses they were taken from (and where we can
 403 *      verify that chain did not change) and buffer_heads hosting these
 404 *      numbers.
 405 *
 406 *      Function stops when it stumbles upon zero pointer (absent block)
 407 *              (pointer to last triple returned, *@err == 0)
 408 *      or when it gets an IO error reading an indirect block
 409 *              (ditto, *@err == -EIO)
 410 *      or when it notices that chain had been changed while it was reading
 411 *              (ditto, *@err == -EAGAIN)
 412 *      or when it reads all @depth-1 indirect blocks successfully and finds
 413 *      the whole chain, all way to the data (returns %NULL, *err == 0).
 414 */
 415static Indirect *ext3_get_branch(struct inode *inode, int depth, int *offsets,
 416                                 Indirect chain[4], int *err)
 417{
 418        struct super_block *sb = inode->i_sb;
 419        Indirect *p = chain;
 420        struct buffer_head *bh;
 421
 422        *err = 0;
 423        /* i_data is not going away, no lock needed */
 424        add_chain (chain, NULL, EXT3_I(inode)->i_data + *offsets);
 425        if (!p->key)
 426                goto no_block;
 427        while (--depth) {
 428                bh = sb_bread(sb, le32_to_cpu(p->key));
 429                if (!bh)
 430                        goto failure;
 431                /* Reader: pointers */
 432                if (!verify_chain(chain, p))
 433                        goto changed;
 434                add_chain(++p, bh, (__le32*)bh->b_data + *++offsets);
 435                /* Reader: end */
 436                if (!p->key)
 437                        goto no_block;
 438        }
 439        return NULL;
 440
 441changed:
 442        brelse(bh);
 443        *err = -EAGAIN;
 444        goto no_block;
 445failure:
 446        *err = -EIO;
 447no_block:
 448        return p;
 449}
 450
 451/**
 452 *      ext3_find_near - find a place for allocation with sufficient locality
 453 *      @inode: owner
 454 *      @ind: descriptor of indirect block.
 455 *
 456 *      This function returns the preferred place for block allocation.
 457 *      It is used when heuristic for sequential allocation fails.
 458 *      Rules are:
 459 *        + if there is a block to the left of our position - allocate near it.
 460 *        + if pointer will live in indirect block - allocate near that block.
 461 *        + if pointer will live in inode - allocate in the same
 462 *          cylinder group.
 463 *
 464 * In the latter case we colour the starting block by the callers PID to
 465 * prevent it from clashing with concurrent allocations for a different inode
 466 * in the same block group.   The PID is used here so that functionally related
 467 * files will be close-by on-disk.
 468 *
 469 *      Caller must make sure that @ind is valid and will stay that way.
 470 */
 471static ext3_fsblk_t ext3_find_near(struct inode *inode, Indirect *ind)
 472{
 473        struct ext3_inode_info *ei = EXT3_I(inode);
 474        __le32 *start = ind->bh ? (__le32*) ind->bh->b_data : ei->i_data;
 475        __le32 *p;
 476        ext3_fsblk_t bg_start;
 477        ext3_grpblk_t colour;
 478
 479        /* Try to find previous block */
 480        for (p = ind->p - 1; p >= start; p--) {
 481                if (*p)
 482                        return le32_to_cpu(*p);
 483        }
 484
 485        /* No such thing, so let's try location of indirect block */
 486        if (ind->bh)
 487                return ind->bh->b_blocknr;
 488
 489        /*
 490         * It is going to be referred to from the inode itself? OK, just put it
 491         * into the same cylinder group then.
 492         */
 493        bg_start = ext3_group_first_block_no(inode->i_sb, ei->i_block_group);
 494        colour = (current->pid % 16) *
 495                        (EXT3_BLOCKS_PER_GROUP(inode->i_sb) / 16);
 496        return bg_start + colour;
 497}
 498
 499/**
 500 *      ext3_find_goal - find a preferred place for allocation.
 501 *      @inode: owner
 502 *      @block:  block we want
 503 *      @partial: pointer to the last triple within a chain
 504 *
 505 *      Normally this function find the preferred place for block allocation,
 506 *      returns it.
 507 */
 508
 509static ext3_fsblk_t ext3_find_goal(struct inode *inode, long block,
 510                                   Indirect *partial)
 511{
 512        struct ext3_block_alloc_info *block_i;
 513
 514        block_i =  EXT3_I(inode)->i_block_alloc_info;
 515
 516        /*
 517         * try the heuristic for sequential allocation,
 518         * failing that at least try to get decent locality.
 519         */
 520        if (block_i && (block == block_i->last_alloc_logical_block + 1)
 521                && (block_i->last_alloc_physical_block != 0)) {
 522                return block_i->last_alloc_physical_block + 1;
 523        }
 524
 525        return ext3_find_near(inode, partial);
 526}
 527
 528/**
 529 *      ext3_blks_to_allocate - Look up the block map and count the number
 530 *      of direct blocks need to be allocated for the given branch.
 531 *
 532 *      @branch: chain of indirect blocks
 533 *      @k: number of blocks need for indirect blocks
 534 *      @blks: number of data blocks to be mapped.
 535 *      @blocks_to_boundary:  the offset in the indirect block
 536 *
 537 *      return the total number of blocks to be allocate, including the
 538 *      direct and indirect blocks.
 539 */
 540static int ext3_blks_to_allocate(Indirect *branch, int k, unsigned long blks,
 541                int blocks_to_boundary)
 542{
 543        unsigned long count = 0;
 544
 545        /*
 546         * Simple case, [t,d]Indirect block(s) has not allocated yet
 547         * then it's clear blocks on that path have not allocated
 548         */
 549        if (k > 0) {
 550                /* right now we don't handle cross boundary allocation */
 551                if (blks < blocks_to_boundary + 1)
 552                        count += blks;
 553                else
 554                        count += blocks_to_boundary + 1;
 555                return count;
 556        }
 557
 558        count++;
 559        while (count < blks && count <= blocks_to_boundary &&
 560                le32_to_cpu(*(branch[0].p + count)) == 0) {
 561                count++;
 562        }
 563        return count;
 564}
 565
 566/**
 567 *      ext3_alloc_blocks - multiple allocate blocks needed for a branch
 568 *      @handle: handle for this transaction
 569 *      @inode: owner
 570 *      @goal: preferred place for allocation
 571 *      @indirect_blks: the number of blocks need to allocate for indirect
 572 *                      blocks
 573 *      @blks:  number of blocks need to allocated for direct blocks
 574 *      @new_blocks: on return it will store the new block numbers for
 575 *      the indirect blocks(if needed) and the first direct block,
 576 *      @err: here we store the error value
 577 *
 578 *      return the number of direct blocks allocated
 579 */
 580static int ext3_alloc_blocks(handle_t *handle, struct inode *inode,
 581                        ext3_fsblk_t goal, int indirect_blks, int blks,
 582                        ext3_fsblk_t new_blocks[4], int *err)
 583{
 584        int target, i;
 585        unsigned long count = 0;
 586        int index = 0;
 587        ext3_fsblk_t current_block = 0;
 588        int ret = 0;
 589
 590        /*
 591         * Here we try to allocate the requested multiple blocks at once,
 592         * on a best-effort basis.
 593         * To build a branch, we should allocate blocks for
 594         * the indirect blocks(if not allocated yet), and at least
 595         * the first direct block of this branch.  That's the
 596         * minimum number of blocks need to allocate(required)
 597         */
 598        target = blks + indirect_blks;
 599
 600        while (1) {
 601                count = target;
 602                /* allocating blocks for indirect blocks and direct blocks */
 603                current_block = ext3_new_blocks(handle,inode,goal,&count,err);
 604                if (*err)
 605                        goto failed_out;
 606
 607                target -= count;
 608                /* allocate blocks for indirect blocks */
 609                while (index < indirect_blks && count) {
 610                        new_blocks[index++] = current_block++;
 611                        count--;
 612                }
 613
 614                if (count > 0)
 615                        break;
 616        }
 617
 618        /* save the new block number for the first direct block */
 619        new_blocks[index] = current_block;
 620
 621        /* total number of blocks allocated for direct blocks */
 622        ret = count;
 623        *err = 0;
 624        return ret;
 625failed_out:
 626        for (i = 0; i <index; i++)
 627                ext3_free_blocks(handle, inode, new_blocks[i], 1);
 628        return ret;
 629}
 630
 631/**
 632 *      ext3_alloc_branch - allocate and set up a chain of blocks.
 633 *      @handle: handle for this transaction
 634 *      @inode: owner
 635 *      @indirect_blks: number of allocated indirect blocks
 636 *      @blks: number of allocated direct blocks
 637 *      @goal: preferred place for allocation
 638 *      @offsets: offsets (in the blocks) to store the pointers to next.
 639 *      @branch: place to store the chain in.
 640 *
 641 *      This function allocates blocks, zeroes out all but the last one,
 642 *      links them into chain and (if we are synchronous) writes them to disk.
 643 *      In other words, it prepares a branch that can be spliced onto the
 644 *      inode. It stores the information about that chain in the branch[], in
 645 *      the same format as ext3_get_branch() would do. We are calling it after
 646 *      we had read the existing part of chain and partial points to the last
 647 *      triple of that (one with zero ->key). Upon the exit we have the same
 648 *      picture as after the successful ext3_get_block(), except that in one
 649 *      place chain is disconnected - *branch->p is still zero (we did not
 650 *      set the last link), but branch->key contains the number that should
 651 *      be placed into *branch->p to fill that gap.
 652 *
 653 *      If allocation fails we free all blocks we've allocated (and forget
 654 *      their buffer_heads) and return the error value the from failed
 655 *      ext3_alloc_block() (normally -ENOSPC). Otherwise we set the chain
 656 *      as described above and return 0.
 657 */
 658static int ext3_alloc_branch(handle_t *handle, struct inode *inode,
 659                        int indirect_blks, int *blks, ext3_fsblk_t goal,
 660                        int *offsets, Indirect *branch)
 661{
 662        int blocksize = inode->i_sb->s_blocksize;
 663        int i, n = 0;
 664        int err = 0;
 665        struct buffer_head *bh;
 666        int num;
 667        ext3_fsblk_t new_blocks[4];
 668        ext3_fsblk_t current_block;
 669
 670        num = ext3_alloc_blocks(handle, inode, goal, indirect_blks,
 671                                *blks, new_blocks, &err);
 672        if (err)
 673                return err;
 674
 675        branch[0].key = cpu_to_le32(new_blocks[0]);
 676        /*
 677         * metadata blocks and data blocks are allocated.
 678         */
 679        for (n = 1; n <= indirect_blks;  n++) {
 680                /*
 681                 * Get buffer_head for parent block, zero it out
 682                 * and set the pointer to new one, then send
 683                 * parent to disk.
 684                 */
 685                bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
 686                branch[n].bh = bh;
 687                lock_buffer(bh);
 688                BUFFER_TRACE(bh, "call get_create_access");
 689                err = ext3_journal_get_create_access(handle, bh);
 690                if (err) {
 691                        unlock_buffer(bh);
 692                        brelse(bh);
 693                        goto failed;
 694                }
 695
 696                memset(bh->b_data, 0, blocksize);
 697                branch[n].p = (__le32 *) bh->b_data + offsets[n];
 698                branch[n].key = cpu_to_le32(new_blocks[n]);
 699                *branch[n].p = branch[n].key;
 700                if ( n == indirect_blks) {
 701                        current_block = new_blocks[n];
 702                        /*
 703                         * End of chain, update the last new metablock of
 704                         * the chain to point to the new allocated
 705                         * data blocks numbers
 706                         */
 707                        for (i=1; i < num; i++)
 708                                *(branch[n].p + i) = cpu_to_le32(++current_block);
 709                }
 710                BUFFER_TRACE(bh, "marking uptodate");
 711                set_buffer_uptodate(bh);
 712                unlock_buffer(bh);
 713
 714                BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
 715                err = ext3_journal_dirty_metadata(handle, bh);
 716                if (err)
 717                        goto failed;
 718        }
 719        *blks = num;
 720        return err;
 721failed:
 722        /* Allocation failed, free what we already allocated */
 723        for (i = 1; i <= n ; i++) {
 724                BUFFER_TRACE(branch[i].bh, "call journal_forget");
 725                ext3_journal_forget(handle, branch[i].bh);
 726        }
 727        for (i = 0; i <indirect_blks; i++)
 728                ext3_free_blocks(handle, inode, new_blocks[i], 1);
 729
 730        ext3_free_blocks(handle, inode, new_blocks[i], num);
 731
 732        return err;
 733}
 734
 735/**
 736 * ext3_splice_branch - splice the allocated branch onto inode.
 737 * @handle: handle for this transaction
 738 * @inode: owner
 739 * @block: (logical) number of block we are adding
 740 * @where: location of missing link
 741 * @num:   number of indirect blocks we are adding
 742 * @blks:  number of direct blocks we are adding
 743 *
 744 * This function fills the missing link and does all housekeeping needed in
 745 * inode (->i_blocks, etc.). In case of success we end up with the full
 746 * chain to new block and return 0.
 747 */
 748static int ext3_splice_branch(handle_t *handle, struct inode *inode,
 749                        long block, Indirect *where, int num, int blks)
 750{
 751        int i;
 752        int err = 0;
 753        struct ext3_block_alloc_info *block_i;
 754        ext3_fsblk_t current_block;
 755        struct ext3_inode_info *ei = EXT3_I(inode);
 756
 757        block_i = ei->i_block_alloc_info;
 758        /*
 759         * If we're splicing into a [td]indirect block (as opposed to the
 760         * inode) then we need to get write access to the [td]indirect block
 761         * before the splice.
 762         */
 763        if (where->bh) {
 764                BUFFER_TRACE(where->bh, "get_write_access");
 765                err = ext3_journal_get_write_access(handle, where->bh);
 766                if (err)
 767                        goto err_out;
 768        }
 769        /* That's it */
 770
 771        *where->p = where->key;
 772
 773        /*
 774         * Update the host buffer_head or inode to point to more just allocated
 775         * direct blocks blocks
 776         */
 777        if (num == 0 && blks > 1) {
 778                current_block = le32_to_cpu(where->key) + 1;
 779                for (i = 1; i < blks; i++)
 780                        *(where->p + i ) = cpu_to_le32(current_block++);
 781        }
 782
 783        /*
 784         * update the most recently allocated logical & physical block
 785         * in i_block_alloc_info, to assist find the proper goal block for next
 786         * allocation
 787         */
 788        if (block_i) {
 789                block_i->last_alloc_logical_block = block + blks - 1;
 790                block_i->last_alloc_physical_block =
 791                                le32_to_cpu(where[num].key) + blks - 1;
 792        }
 793
 794        /* We are done with atomic stuff, now do the rest of housekeeping */
 795
 796        inode->i_ctime = CURRENT_TIME_SEC;
 797        ext3_mark_inode_dirty(handle, inode);
 798        /* ext3_mark_inode_dirty already updated i_sync_tid */
 799        atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
 800
 801        /* had we spliced it onto indirect block? */
 802        if (where->bh) {
 803                /*
 804                 * If we spliced it onto an indirect block, we haven't
 805                 * altered the inode.  Note however that if it is being spliced
 806                 * onto an indirect block at the very end of the file (the
 807                 * file is growing) then we *will* alter the inode to reflect
 808                 * the new i_size.  But that is not done here - it is done in
 809                 * generic_commit_write->__mark_inode_dirty->ext3_dirty_inode.
 810                 */
 811                jbd_debug(5, "splicing indirect only\n");
 812                BUFFER_TRACE(where->bh, "call ext3_journal_dirty_metadata");
 813                err = ext3_journal_dirty_metadata(handle, where->bh);
 814                if (err)
 815                        goto err_out;
 816        } else {
 817                /*
 818                 * OK, we spliced it into the inode itself on a direct block.
 819                 * Inode was dirtied above.
 820                 */
 821                jbd_debug(5, "splicing direct\n");
 822        }
 823        return err;
 824
 825err_out:
 826        for (i = 1; i <= num; i++) {
 827                BUFFER_TRACE(where[i].bh, "call journal_forget");
 828                ext3_journal_forget(handle, where[i].bh);
 829                ext3_free_blocks(handle,inode,le32_to_cpu(where[i-1].key),1);
 830        }
 831        ext3_free_blocks(handle, inode, le32_to_cpu(where[num].key), blks);
 832
 833        return err;
 834}
 835
 836/*
 837 * Allocation strategy is simple: if we have to allocate something, we will
 838 * have to go the whole way to leaf. So let's do it before attaching anything
 839 * to tree, set linkage between the newborn blocks, write them if sync is
 840 * required, recheck the path, free and repeat if check fails, otherwise
 841 * set the last missing link (that will protect us from any truncate-generated
 842 * removals - all blocks on the path are immune now) and possibly force the
 843 * write on the parent block.
 844 * That has a nice additional property: no special recovery from the failed
 845 * allocations is needed - we simply release blocks and do not touch anything
 846 * reachable from inode.
 847 *
 848 * `handle' can be NULL if create == 0.
 849 *
 850 * The BKL may not be held on entry here.  Be sure to take it early.
 851 * return > 0, # of blocks mapped or allocated.
 852 * return = 0, if plain lookup failed.
 853 * return < 0, error case.
 854 */
 855int ext3_get_blocks_handle(handle_t *handle, struct inode *inode,
 856                sector_t iblock, unsigned long maxblocks,
 857                struct buffer_head *bh_result,
 858                int create)
 859{
 860        int err = -EIO;
 861        int offsets[4];
 862        Indirect chain[4];
 863        Indirect *partial;
 864        ext3_fsblk_t goal;
 865        int indirect_blks;
 866        int blocks_to_boundary = 0;
 867        int depth;
 868        struct ext3_inode_info *ei = EXT3_I(inode);
 869        int count = 0;
 870        ext3_fsblk_t first_block = 0;
 871
 872
 873        trace_ext3_get_blocks_enter(inode, iblock, maxblocks, create);
 874        J_ASSERT(handle != NULL || create == 0);
 875        depth = ext3_block_to_path(inode,iblock,offsets,&blocks_to_boundary);
 876
 877        if (depth == 0)
 878                goto out;
 879
 880        partial = ext3_get_branch(inode, depth, offsets, chain, &err);
 881
 882        /* Simplest case - block found, no allocation needed */
 883        if (!partial) {
 884                first_block = le32_to_cpu(chain[depth - 1].key);
 885                clear_buffer_new(bh_result);
 886                count++;
 887                /*map more blocks*/
 888                while (count < maxblocks && count <= blocks_to_boundary) {
 889                        ext3_fsblk_t blk;
 890
 891                        if (!verify_chain(chain, chain + depth - 1)) {
 892                                /*
 893                                 * Indirect block might be removed by
 894                                 * truncate while we were reading it.
 895                                 * Handling of that case: forget what we've
 896                                 * got now. Flag the err as EAGAIN, so it
 897                                 * will reread.
 898                                 */
 899                                err = -EAGAIN;
 900                                count = 0;
 901                                break;
 902                        }
 903                        blk = le32_to_cpu(*(chain[depth-1].p + count));
 904
 905                        if (blk == first_block + count)
 906                                count++;
 907                        else
 908                                break;
 909                }
 910                if (err != -EAGAIN)
 911                        goto got_it;
 912        }
 913
 914        /* Next simple case - plain lookup or failed read of indirect block */
 915        if (!create || err == -EIO)
 916                goto cleanup;
 917
 918        /*
 919         * Block out ext3_truncate while we alter the tree
 920         */
 921        mutex_lock(&ei->truncate_mutex);
 922
 923        /*
 924         * If the indirect block is missing while we are reading
 925         * the chain(ext3_get_branch() returns -EAGAIN err), or
 926         * if the chain has been changed after we grab the semaphore,
 927         * (either because another process truncated this branch, or
 928         * another get_block allocated this branch) re-grab the chain to see if
 929         * the request block has been allocated or not.
 930         *
 931         * Since we already block the truncate/other get_block
 932         * at this point, we will have the current copy of the chain when we
 933         * splice the branch into the tree.
 934         */
 935        if (err == -EAGAIN || !verify_chain(chain, partial)) {
 936                while (partial > chain) {
 937                        brelse(partial->bh);
 938                        partial--;
 939                }
 940                partial = ext3_get_branch(inode, depth, offsets, chain, &err);
 941                if (!partial) {
 942                        count++;
 943                        mutex_unlock(&ei->truncate_mutex);
 944                        if (err)
 945                                goto cleanup;
 946                        clear_buffer_new(bh_result);
 947                        goto got_it;
 948                }
 949        }
 950
 951        /*
 952         * Okay, we need to do block allocation.  Lazily initialize the block
 953         * allocation info here if necessary
 954        */
 955        if (S_ISREG(inode->i_mode) && (!ei->i_block_alloc_info))
 956                ext3_init_block_alloc_info(inode);
 957
 958        goal = ext3_find_goal(inode, iblock, partial);
 959
 960        /* the number of blocks need to allocate for [d,t]indirect blocks */
 961        indirect_blks = (chain + depth) - partial - 1;
 962
 963        /*
 964         * Next look up the indirect map to count the totoal number of
 965         * direct blocks to allocate for this branch.
 966         */
 967        count = ext3_blks_to_allocate(partial, indirect_blks,
 968                                        maxblocks, blocks_to_boundary);
 969        err = ext3_alloc_branch(handle, inode, indirect_blks, &count, goal,
 970                                offsets + (partial - chain), partial);
 971
 972        /*
 973         * The ext3_splice_branch call will free and forget any buffers
 974         * on the new chain if there is a failure, but that risks using
 975         * up transaction credits, especially for bitmaps where the
 976         * credits cannot be returned.  Can we handle this somehow?  We
 977         * may need to return -EAGAIN upwards in the worst case.  --sct
 978         */
 979        if (!err)
 980                err = ext3_splice_branch(handle, inode, iblock,
 981                                        partial, indirect_blks, count);
 982        mutex_unlock(&ei->truncate_mutex);
 983        if (err)
 984                goto cleanup;
 985
 986        set_buffer_new(bh_result);
 987got_it:
 988        map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
 989        if (count > blocks_to_boundary)
 990                set_buffer_boundary(bh_result);
 991        err = count;
 992        /* Clean up and exit */
 993        partial = chain + depth - 1;    /* the whole chain */
 994cleanup:
 995        while (partial > chain) {
 996                BUFFER_TRACE(partial->bh, "call brelse");
 997                brelse(partial->bh);
 998                partial--;
 999        }
1000        BUFFER_TRACE(bh_result, "returned");
1001out:
1002        trace_ext3_get_blocks_exit(inode, iblock,
1003                                   depth ? le32_to_cpu(chain[depth-1].key) : 0,
1004                                   count, err);
1005        return err;
1006}
1007
1008/* Maximum number of blocks we map for direct IO at once. */
1009#define DIO_MAX_BLOCKS 4096
1010/*
1011 * Number of credits we need for writing DIO_MAX_BLOCKS:
1012 * We need sb + group descriptor + bitmap + inode -> 4
1013 * For B blocks with A block pointers per block we need:
1014 * 1 (triple ind.) + (B/A/A + 2) (doubly ind.) + (B/A + 2) (indirect).
1015 * If we plug in 4096 for B and 256 for A (for 1KB block size), we get 25.
1016 */
1017#define DIO_CREDITS 25
1018
1019static int ext3_get_block(struct inode *inode, sector_t iblock,
1020                        struct buffer_head *bh_result, int create)
1021{
1022        handle_t *handle = ext3_journal_current_handle();
1023        int ret = 0, started = 0;
1024        unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1025
1026        if (create && !handle) {        /* Direct IO write... */
1027                if (max_blocks > DIO_MAX_BLOCKS)
1028                        max_blocks = DIO_MAX_BLOCKS;
1029                handle = ext3_journal_start(inode, DIO_CREDITS +
1030                                EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb));
1031                if (IS_ERR(handle)) {
1032                        ret = PTR_ERR(handle);
1033                        goto out;
1034                }
1035                started = 1;
1036        }
1037
1038        ret = ext3_get_blocks_handle(handle, inode, iblock,
1039                                        max_blocks, bh_result, create);
1040        if (ret > 0) {
1041                bh_result->b_size = (ret << inode->i_blkbits);
1042                ret = 0;
1043        }
1044        if (started)
1045                ext3_journal_stop(handle);
1046out:
1047        return ret;
1048}
1049
1050int ext3_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
1051                u64 start, u64 len)
1052{
1053        return generic_block_fiemap(inode, fieinfo, start, len,
1054                                    ext3_get_block);
1055}
1056
1057/*
1058 * `handle' can be NULL if create is zero
1059 */
1060struct buffer_head *ext3_getblk(handle_t *handle, struct inode *inode,
1061                                long block, int create, int *errp)
1062{
1063        struct buffer_head dummy;
1064        int fatal = 0, err;
1065
1066        J_ASSERT(handle != NULL || create == 0);
1067
1068        dummy.b_state = 0;
1069        dummy.b_blocknr = -1000;
1070        buffer_trace_init(&dummy.b_history);
1071        err = ext3_get_blocks_handle(handle, inode, block, 1,
1072                                        &dummy, create);
1073        /*
1074         * ext3_get_blocks_handle() returns number of blocks
1075         * mapped. 0 in case of a HOLE.
1076         */
1077        if (err > 0) {
1078                if (err > 1)
1079                        WARN_ON(1);
1080                err = 0;
1081        }
1082        *errp = err;
1083        if (!err && buffer_mapped(&dummy)) {
1084                struct buffer_head *bh;
1085                bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1086                if (!bh) {
1087                        *errp = -EIO;
1088                        goto err;
1089                }
1090                if (buffer_new(&dummy)) {
1091                        J_ASSERT(create != 0);
1092                        J_ASSERT(handle != NULL);
1093
1094                        /*
1095                         * Now that we do not always journal data, we should
1096                         * keep in mind whether this should always journal the
1097                         * new buffer as metadata.  For now, regular file
1098                         * writes use ext3_get_block instead, so it's not a
1099                         * problem.
1100                         */
1101                        lock_buffer(bh);
1102                        BUFFER_TRACE(bh, "call get_create_access");
1103                        fatal = ext3_journal_get_create_access(handle, bh);
1104                        if (!fatal && !buffer_uptodate(bh)) {
1105                                memset(bh->b_data,0,inode->i_sb->s_blocksize);
1106                                set_buffer_uptodate(bh);
1107                        }
1108                        unlock_buffer(bh);
1109                        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
1110                        err = ext3_journal_dirty_metadata(handle, bh);
1111                        if (!fatal)
1112                                fatal = err;
1113                } else {
1114                        BUFFER_TRACE(bh, "not a new buffer");
1115                }
1116                if (fatal) {
1117                        *errp = fatal;
1118                        brelse(bh);
1119                        bh = NULL;
1120                }
1121                return bh;
1122        }
1123err:
1124        return NULL;
1125}
1126
1127struct buffer_head *ext3_bread(handle_t *handle, struct inode *inode,
1128                               int block, int create, int *err)
1129{
1130        struct buffer_head * bh;
1131
1132        bh = ext3_getblk(handle, inode, block, create, err);
1133        if (!bh)
1134                return bh;
1135        if (buffer_uptodate(bh))
1136                return bh;
1137        ll_rw_block(READ | REQ_META | REQ_PRIO, 1, &bh);
1138        wait_on_buffer(bh);
1139        if (buffer_uptodate(bh))
1140                return bh;
1141        put_bh(bh);
1142        *err = -EIO;
1143        return NULL;
1144}
1145
1146static int walk_page_buffers(   handle_t *handle,
1147                                struct buffer_head *head,
1148                                unsigned from,
1149                                unsigned to,
1150                                int *partial,
1151                                int (*fn)(      handle_t *handle,
1152                                                struct buffer_head *bh))
1153{
1154        struct buffer_head *bh;
1155        unsigned block_start, block_end;
1156        unsigned blocksize = head->b_size;
1157        int err, ret = 0;
1158        struct buffer_head *next;
1159
1160        for (   bh = head, block_start = 0;
1161                ret == 0 && (bh != head || !block_start);
1162                block_start = block_end, bh = next)
1163        {
1164                next = bh->b_this_page;
1165                block_end = block_start + blocksize;
1166                if (block_end <= from || block_start >= to) {
1167                        if (partial && !buffer_uptodate(bh))
1168                                *partial = 1;
1169                        continue;
1170                }
1171                err = (*fn)(handle, bh);
1172                if (!ret)
1173                        ret = err;
1174        }
1175        return ret;
1176}
1177
1178/*
1179 * To preserve ordering, it is essential that the hole instantiation and
1180 * the data write be encapsulated in a single transaction.  We cannot
1181 * close off a transaction and start a new one between the ext3_get_block()
1182 * and the commit_write().  So doing the journal_start at the start of
1183 * prepare_write() is the right place.
1184 *
1185 * Also, this function can nest inside ext3_writepage() ->
1186 * block_write_full_page(). In that case, we *know* that ext3_writepage()
1187 * has generated enough buffer credits to do the whole page.  So we won't
1188 * block on the journal in that case, which is good, because the caller may
1189 * be PF_MEMALLOC.
1190 *
1191 * By accident, ext3 can be reentered when a transaction is open via
1192 * quota file writes.  If we were to commit the transaction while thus
1193 * reentered, there can be a deadlock - we would be holding a quota
1194 * lock, and the commit would never complete if another thread had a
1195 * transaction open and was blocking on the quota lock - a ranking
1196 * violation.
1197 *
1198 * So what we do is to rely on the fact that journal_stop/journal_start
1199 * will _not_ run commit under these circumstances because handle->h_ref
1200 * is elevated.  We'll still have enough credits for the tiny quotafile
1201 * write.
1202 */
1203static int do_journal_get_write_access(handle_t *handle,
1204                                        struct buffer_head *bh)
1205{
1206        int dirty = buffer_dirty(bh);
1207        int ret;
1208
1209        if (!buffer_mapped(bh) || buffer_freed(bh))
1210                return 0;
1211        /*
1212         * __block_prepare_write() could have dirtied some buffers. Clean
1213         * the dirty bit as jbd2_journal_get_write_access() could complain
1214         * otherwise about fs integrity issues. Setting of the dirty bit
1215         * by __block_prepare_write() isn't a real problem here as we clear
1216         * the bit before releasing a page lock and thus writeback cannot
1217         * ever write the buffer.
1218         */
1219        if (dirty)
1220                clear_buffer_dirty(bh);
1221        ret = ext3_journal_get_write_access(handle, bh);
1222        if (!ret && dirty)
1223                ret = ext3_journal_dirty_metadata(handle, bh);
1224        return ret;
1225}
1226
1227/*
1228 * Truncate blocks that were not used by write. We have to truncate the
1229 * pagecache as well so that corresponding buffers get properly unmapped.
1230 */
1231static void ext3_truncate_failed_write(struct inode *inode)
1232{
1233        truncate_inode_pages(inode->i_mapping, inode->i_size);
1234        ext3_truncate(inode);
1235}
1236
1237/*
1238 * Truncate blocks that were not used by direct IO write. We have to zero out
1239 * the last file block as well because direct IO might have written to it.
1240 */
1241static void ext3_truncate_failed_direct_write(struct inode *inode)
1242{
1243        ext3_block_truncate_page(inode, inode->i_size);
1244        ext3_truncate(inode);
1245}
1246
1247static int ext3_write_begin(struct file *file, struct address_space *mapping,
1248                                loff_t pos, unsigned len, unsigned flags,
1249                                struct page **pagep, void **fsdata)
1250{
1251        struct inode *inode = mapping->host;
1252        int ret;
1253        handle_t *handle;
1254        int retries = 0;
1255        struct page *page;
1256        pgoff_t index;
1257        unsigned from, to;
1258        /* Reserve one block more for addition to orphan list in case
1259         * we allocate blocks but write fails for some reason */
1260        int needed_blocks = ext3_writepage_trans_blocks(inode) + 1;
1261
1262        trace_ext3_write_begin(inode, pos, len, flags);
1263
1264        index = pos >> PAGE_CACHE_SHIFT;
1265        from = pos & (PAGE_CACHE_SIZE - 1);
1266        to = from + len;
1267
1268retry:
1269        page = grab_cache_page_write_begin(mapping, index, flags);
1270        if (!page)
1271                return -ENOMEM;
1272        *pagep = page;
1273
1274        handle = ext3_journal_start(inode, needed_blocks);
1275        if (IS_ERR(handle)) {
1276                unlock_page(page);
1277                page_cache_release(page);
1278                ret = PTR_ERR(handle);
1279                goto out;
1280        }
1281        ret = __block_write_begin(page, pos, len, ext3_get_block);
1282        if (ret)
1283                goto write_begin_failed;
1284
1285        if (ext3_should_journal_data(inode)) {
1286                ret = walk_page_buffers(handle, page_buffers(page),
1287                                from, to, NULL, do_journal_get_write_access);
1288        }
1289write_begin_failed:
1290        if (ret) {
1291                /*
1292                 * block_write_begin may have instantiated a few blocks
1293                 * outside i_size.  Trim these off again. Don't need
1294                 * i_size_read because we hold i_mutex.
1295                 *
1296                 * Add inode to orphan list in case we crash before truncate
1297                 * finishes. Do this only if ext3_can_truncate() agrees so
1298                 * that orphan processing code is happy.
1299                 */
1300                if (pos + len > inode->i_size && ext3_can_truncate(inode))
1301                        ext3_orphan_add(handle, inode);
1302                ext3_journal_stop(handle);
1303                unlock_page(page);
1304                page_cache_release(page);
1305                if (pos + len > inode->i_size)
1306                        ext3_truncate_failed_write(inode);
1307        }
1308        if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1309                goto retry;
1310out:
1311        return ret;
1312}
1313
1314
1315int ext3_journal_dirty_data(handle_t *handle, struct buffer_head *bh)
1316{
1317        int err = journal_dirty_data(handle, bh);
1318        if (err)
1319                ext3_journal_abort_handle(__func__, __func__,
1320                                                bh, handle, err);
1321        return err;
1322}
1323
1324/* For ordered writepage and write_end functions */
1325static int journal_dirty_data_fn(handle_t *handle, struct buffer_head *bh)
1326{
1327        /*
1328         * Write could have mapped the buffer but it didn't copy the data in
1329         * yet. So avoid filing such buffer into a transaction.
1330         */
1331        if (buffer_mapped(bh) && buffer_uptodate(bh))
1332                return ext3_journal_dirty_data(handle, bh);
1333        return 0;
1334}
1335
1336/* For write_end() in data=journal mode */
1337static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1338{
1339        if (!buffer_mapped(bh) || buffer_freed(bh))
1340                return 0;
1341        set_buffer_uptodate(bh);
1342        return ext3_journal_dirty_metadata(handle, bh);
1343}
1344
1345/*
1346 * This is nasty and subtle: ext3_write_begin() could have allocated blocks
1347 * for the whole page but later we failed to copy the data in. Update inode
1348 * size according to what we managed to copy. The rest is going to be
1349 * truncated in write_end function.
1350 */
1351static void update_file_sizes(struct inode *inode, loff_t pos, unsigned copied)
1352{
1353        /* What matters to us is i_disksize. We don't write i_size anywhere */
1354        if (pos + copied > inode->i_size)
1355                i_size_write(inode, pos + copied);
1356        if (pos + copied > EXT3_I(inode)->i_disksize) {
1357                EXT3_I(inode)->i_disksize = pos + copied;
1358                mark_inode_dirty(inode);
1359        }
1360}
1361
1362/*
1363 * We need to pick up the new inode size which generic_commit_write gave us
1364 * `file' can be NULL - eg, when called from page_symlink().
1365 *
1366 * ext3 never places buffers on inode->i_mapping->private_list.  metadata
1367 * buffers are managed internally.
1368 */
1369static int ext3_ordered_write_end(struct file *file,
1370                                struct address_space *mapping,
1371                                loff_t pos, unsigned len, unsigned copied,
1372                                struct page *page, void *fsdata)
1373{
1374        handle_t *handle = ext3_journal_current_handle();
1375        struct inode *inode = file->f_mapping->host;
1376        unsigned from, to;
1377        int ret = 0, ret2;
1378
1379        trace_ext3_ordered_write_end(inode, pos, len, copied);
1380        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1381
1382        from = pos & (PAGE_CACHE_SIZE - 1);
1383        to = from + copied;
1384        ret = walk_page_buffers(handle, page_buffers(page),
1385                from, to, NULL, journal_dirty_data_fn);
1386
1387        if (ret == 0)
1388                update_file_sizes(inode, pos, copied);
1389        /*
1390         * There may be allocated blocks outside of i_size because
1391         * we failed to copy some data. Prepare for truncate.
1392         */
1393        if (pos + len > inode->i_size && ext3_can_truncate(inode))
1394                ext3_orphan_add(handle, inode);
1395        ret2 = ext3_journal_stop(handle);
1396        if (!ret)
1397                ret = ret2;
1398        unlock_page(page);
1399        page_cache_release(page);
1400
1401        if (pos + len > inode->i_size)
1402                ext3_truncate_failed_write(inode);
1403        return ret ? ret : copied;
1404}
1405
1406static int ext3_writeback_write_end(struct file *file,
1407                                struct address_space *mapping,
1408                                loff_t pos, unsigned len, unsigned copied,
1409                                struct page *page, void *fsdata)
1410{
1411        handle_t *handle = ext3_journal_current_handle();
1412        struct inode *inode = file->f_mapping->host;
1413        int ret;
1414
1415        trace_ext3_writeback_write_end(inode, pos, len, copied);
1416        copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1417        update_file_sizes(inode, pos, copied);
1418        /*
1419         * There may be allocated blocks outside of i_size because
1420         * we failed to copy some data. Prepare for truncate.
1421         */
1422        if (pos + len > inode->i_size && ext3_can_truncate(inode))
1423                ext3_orphan_add(handle, inode);
1424        ret = ext3_journal_stop(handle);
1425        unlock_page(page);
1426        page_cache_release(page);
1427
1428        if (pos + len > inode->i_size)
1429                ext3_truncate_failed_write(inode);
1430        return ret ? ret : copied;
1431}
1432
1433static int ext3_journalled_write_end(struct file *file,
1434                                struct address_space *mapping,
1435                                loff_t pos, unsigned len, unsigned copied,
1436                                struct page *page, void *fsdata)
1437{
1438        handle_t *handle = ext3_journal_current_handle();
1439        struct inode *inode = mapping->host;
1440        struct ext3_inode_info *ei = EXT3_I(inode);
1441        int ret = 0, ret2;
1442        int partial = 0;
1443        unsigned from, to;
1444
1445        trace_ext3_journalled_write_end(inode, pos, len, copied);
1446        from = pos & (PAGE_CACHE_SIZE - 1);
1447        to = from + len;
1448
1449        if (copied < len) {
1450                if (!PageUptodate(page))
1451                        copied = 0;
1452                page_zero_new_buffers(page, from + copied, to);
1453                to = from + copied;
1454        }
1455
1456        ret = walk_page_buffers(handle, page_buffers(page), from,
1457                                to, &partial, write_end_fn);
1458        if (!partial)
1459                SetPageUptodate(page);
1460
1461        if (pos + copied > inode->i_size)
1462                i_size_write(inode, pos + copied);
1463        /*
1464         * There may be allocated blocks outside of i_size because
1465         * we failed to copy some data. Prepare for truncate.
1466         */
1467        if (pos + len > inode->i_size && ext3_can_truncate(inode))
1468                ext3_orphan_add(handle, inode);
1469        ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1470        atomic_set(&ei->i_datasync_tid, handle->h_transaction->t_tid);
1471        if (inode->i_size > ei->i_disksize) {
1472                ei->i_disksize = inode->i_size;
1473                ret2 = ext3_mark_inode_dirty(handle, inode);
1474                if (!ret)
1475                        ret = ret2;
1476        }
1477
1478        ret2 = ext3_journal_stop(handle);
1479        if (!ret)
1480                ret = ret2;
1481        unlock_page(page);
1482        page_cache_release(page);
1483
1484        if (pos + len > inode->i_size)
1485                ext3_truncate_failed_write(inode);
1486        return ret ? ret : copied;
1487}
1488
1489/*
1490 * bmap() is special.  It gets used by applications such as lilo and by
1491 * the swapper to find the on-disk block of a specific piece of data.
1492 *
1493 * Naturally, this is dangerous if the block concerned is still in the
1494 * journal.  If somebody makes a swapfile on an ext3 data-journaling
1495 * filesystem and enables swap, then they may get a nasty shock when the
1496 * data getting swapped to that swapfile suddenly gets overwritten by
1497 * the original zero's written out previously to the journal and
1498 * awaiting writeback in the kernel's buffer cache.
1499 *
1500 * So, if we see any bmap calls here on a modified, data-journaled file,
1501 * take extra steps to flush any blocks which might be in the cache.
1502 */
1503static sector_t ext3_bmap(struct address_space *mapping, sector_t block)
1504{
1505        struct inode *inode = mapping->host;
1506        journal_t *journal;
1507        int err;
1508
1509        if (ext3_test_inode_state(inode, EXT3_STATE_JDATA)) {
1510                /*
1511                 * This is a REALLY heavyweight approach, but the use of
1512                 * bmap on dirty files is expected to be extremely rare:
1513                 * only if we run lilo or swapon on a freshly made file
1514                 * do we expect this to happen.
1515                 *
1516                 * (bmap requires CAP_SYS_RAWIO so this does not
1517                 * represent an unprivileged user DOS attack --- we'd be
1518                 * in trouble if mortal users could trigger this path at
1519                 * will.)
1520                 *
1521                 * NB. EXT3_STATE_JDATA is not set on files other than
1522                 * regular files.  If somebody wants to bmap a directory
1523                 * or symlink and gets confused because the buffer
1524                 * hasn't yet been flushed to disk, they deserve
1525                 * everything they get.
1526                 */
1527
1528                ext3_clear_inode_state(inode, EXT3_STATE_JDATA);
1529                journal = EXT3_JOURNAL(inode);
1530                journal_lock_updates(journal);
1531                err = journal_flush(journal);
1532                journal_unlock_updates(journal);
1533
1534                if (err)
1535                        return 0;
1536        }
1537
1538        return generic_block_bmap(mapping,block,ext3_get_block);
1539}
1540
1541static int bget_one(handle_t *handle, struct buffer_head *bh)
1542{
1543        get_bh(bh);
1544        return 0;
1545}
1546
1547static int bput_one(handle_t *handle, struct buffer_head *bh)
1548{
1549        put_bh(bh);
1550        return 0;
1551}
1552
1553static int buffer_unmapped(handle_t *handle, struct buffer_head *bh)
1554{
1555        return !buffer_mapped(bh);
1556}
1557
1558/*
1559 * Note that we always start a transaction even if we're not journalling
1560 * data.  This is to preserve ordering: any hole instantiation within
1561 * __block_write_full_page -> ext3_get_block() should be journalled
1562 * along with the data so we don't crash and then get metadata which
1563 * refers to old data.
1564 *
1565 * In all journalling modes block_write_full_page() will start the I/O.
1566 *
1567 * Problem:
1568 *
1569 *      ext3_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1570 *              ext3_writepage()
1571 *
1572 * Similar for:
1573 *
1574 *      ext3_file_write() -> generic_file_write() -> __alloc_pages() -> ...
1575 *
1576 * Same applies to ext3_get_block().  We will deadlock on various things like
1577 * lock_journal and i_truncate_mutex.
1578 *
1579 * Setting PF_MEMALLOC here doesn't work - too many internal memory
1580 * allocations fail.
1581 *
1582 * 16May01: If we're reentered then journal_current_handle() will be
1583 *          non-zero. We simply *return*.
1584 *
1585 * 1 July 2001: @@@ FIXME:
1586 *   In journalled data mode, a data buffer may be metadata against the
1587 *   current transaction.  But the same file is part of a shared mapping
1588 *   and someone does a writepage() on it.
1589 *
1590 *   We will move the buffer onto the async_data list, but *after* it has
1591 *   been dirtied. So there's a small window where we have dirty data on
1592 *   BJ_Metadata.
1593 *
1594 *   Note that this only applies to the last partial page in the file.  The
1595 *   bit which block_write_full_page() uses prepare/commit for.  (That's
1596 *   broken code anyway: it's wrong for msync()).
1597 *
1598 *   It's a rare case: affects the final partial page, for journalled data
1599 *   where the file is subject to bith write() and writepage() in the same
1600 *   transction.  To fix it we'll need a custom block_write_full_page().
1601 *   We'll probably need that anyway for journalling writepage() output.
1602 *
1603 * We don't honour synchronous mounts for writepage().  That would be
1604 * disastrous.  Any write() or metadata operation will sync the fs for
1605 * us.
1606 *
1607 * AKPM2: if all the page's buffers are mapped to disk and !data=journal,
1608 * we don't need to open a transaction here.
1609 */
1610static int ext3_ordered_writepage(struct page *page,
1611                                struct writeback_control *wbc)
1612{
1613        struct inode *inode = page->mapping->host;
1614        struct buffer_head *page_bufs;
1615        handle_t *handle = NULL;
1616        int ret = 0;
1617        int err;
1618
1619        J_ASSERT(PageLocked(page));
1620        WARN_ON_ONCE(IS_RDONLY(inode));
1621
1622        /*
1623         * We give up here if we're reentered, because it might be for a
1624         * different filesystem.
1625         */
1626        if (ext3_journal_current_handle())
1627                goto out_fail;
1628
1629        trace_ext3_ordered_writepage(page);
1630        if (!page_has_buffers(page)) {
1631                create_empty_buffers(page, inode->i_sb->s_blocksize,
1632                                (1 << BH_Dirty)|(1 << BH_Uptodate));
1633                page_bufs = page_buffers(page);
1634        } else {
1635                page_bufs = page_buffers(page);
1636                if (!walk_page_buffers(NULL, page_bufs, 0, PAGE_CACHE_SIZE,
1637                                       NULL, buffer_unmapped)) {
1638                        /* Provide NULL get_block() to catch bugs if buffers
1639                         * weren't really mapped */
1640                        return block_write_full_page(page, NULL, wbc);
1641                }
1642        }
1643        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1644
1645        if (IS_ERR(handle)) {
1646                ret = PTR_ERR(handle);
1647                goto out_fail;
1648        }
1649
1650        walk_page_buffers(handle, page_bufs, 0,
1651                        PAGE_CACHE_SIZE, NULL, bget_one);
1652
1653        ret = block_write_full_page(page, ext3_get_block, wbc);
1654
1655        /*
1656         * The page can become unlocked at any point now, and
1657         * truncate can then come in and change things.  So we
1658         * can't touch *page from now on.  But *page_bufs is
1659         * safe due to elevated refcount.
1660         */
1661
1662        /*
1663         * And attach them to the current transaction.  But only if
1664         * block_write_full_page() succeeded.  Otherwise they are unmapped,
1665         * and generally junk.
1666         */
1667        if (ret == 0) {
1668                err = walk_page_buffers(handle, page_bufs, 0, PAGE_CACHE_SIZE,
1669                                        NULL, journal_dirty_data_fn);
1670                if (!ret)
1671                        ret = err;
1672        }
1673        walk_page_buffers(handle, page_bufs, 0,
1674                        PAGE_CACHE_SIZE, NULL, bput_one);
1675        err = ext3_journal_stop(handle);
1676        if (!ret)
1677                ret = err;
1678        return ret;
1679
1680out_fail:
1681        redirty_page_for_writepage(wbc, page);
1682        unlock_page(page);
1683        return ret;
1684}
1685
1686static int ext3_writeback_writepage(struct page *page,
1687                                struct writeback_control *wbc)
1688{
1689        struct inode *inode = page->mapping->host;
1690        handle_t *handle = NULL;
1691        int ret = 0;
1692        int err;
1693
1694        J_ASSERT(PageLocked(page));
1695        WARN_ON_ONCE(IS_RDONLY(inode));
1696
1697        if (ext3_journal_current_handle())
1698                goto out_fail;
1699
1700        trace_ext3_writeback_writepage(page);
1701        if (page_has_buffers(page)) {
1702                if (!walk_page_buffers(NULL, page_buffers(page), 0,
1703                                      PAGE_CACHE_SIZE, NULL, buffer_unmapped)) {
1704                        /* Provide NULL get_block() to catch bugs if buffers
1705                         * weren't really mapped */
1706                        return block_write_full_page(page, NULL, wbc);
1707                }
1708        }
1709
1710        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1711        if (IS_ERR(handle)) {
1712                ret = PTR_ERR(handle);
1713                goto out_fail;
1714        }
1715
1716        ret = block_write_full_page(page, ext3_get_block, wbc);
1717
1718        err = ext3_journal_stop(handle);
1719        if (!ret)
1720                ret = err;
1721        return ret;
1722
1723out_fail:
1724        redirty_page_for_writepage(wbc, page);
1725        unlock_page(page);
1726        return ret;
1727}
1728
1729static int ext3_journalled_writepage(struct page *page,
1730                                struct writeback_control *wbc)
1731{
1732        struct inode *inode = page->mapping->host;
1733        handle_t *handle = NULL;
1734        int ret = 0;
1735        int err;
1736
1737        J_ASSERT(PageLocked(page));
1738        WARN_ON_ONCE(IS_RDONLY(inode));
1739
1740        if (ext3_journal_current_handle())
1741                goto no_write;
1742
1743        trace_ext3_journalled_writepage(page);
1744        handle = ext3_journal_start(inode, ext3_writepage_trans_blocks(inode));
1745        if (IS_ERR(handle)) {
1746                ret = PTR_ERR(handle);
1747                goto no_write;
1748        }
1749
1750        if (!page_has_buffers(page) || PageChecked(page)) {
1751                /*
1752                 * It's mmapped pagecache.  Add buffers and journal it.  There
1753                 * doesn't seem much point in redirtying the page here.
1754                 */
1755                ClearPageChecked(page);
1756                ret = __block_write_begin(page, 0, PAGE_CACHE_SIZE,
1757                                          ext3_get_block);
1758                if (ret != 0) {
1759                        ext3_journal_stop(handle);
1760                        goto out_unlock;
1761                }
1762                ret = walk_page_buffers(handle, page_buffers(page), 0,
1763                        PAGE_CACHE_SIZE, NULL, do_journal_get_write_access);
1764
1765                err = walk_page_buffers(handle, page_buffers(page), 0,
1766                                PAGE_CACHE_SIZE, NULL, write_end_fn);
1767                if (ret == 0)
1768                        ret = err;
1769                ext3_set_inode_state(inode, EXT3_STATE_JDATA);
1770                atomic_set(&EXT3_I(inode)->i_datasync_tid,
1771                           handle->h_transaction->t_tid);
1772                unlock_page(page);
1773        } else {
1774                /*
1775                 * It may be a page full of checkpoint-mode buffers.  We don't
1776                 * really know unless we go poke around in the buffer_heads.
1777                 * But block_write_full_page will do the right thing.
1778                 */
1779                ret = block_write_full_page(page, ext3_get_block, wbc);
1780        }
1781        err = ext3_journal_stop(handle);
1782        if (!ret)
1783                ret = err;
1784out:
1785        return ret;
1786
1787no_write:
1788        redirty_page_for_writepage(wbc, page);
1789out_unlock:
1790        unlock_page(page);
1791        goto out;
1792}
1793
1794static int ext3_readpage(struct file *file, struct page *page)
1795{
1796        trace_ext3_readpage(page);
1797        return mpage_readpage(page, ext3_get_block);
1798}
1799
1800static int
1801ext3_readpages(struct file *file, struct address_space *mapping,
1802                struct list_head *pages, unsigned nr_pages)
1803{
1804        return mpage_readpages(mapping, pages, nr_pages, ext3_get_block);
1805}
1806
1807static void ext3_invalidatepage(struct page *page, unsigned long offset)
1808{
1809        journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1810
1811        trace_ext3_invalidatepage(page, offset);
1812
1813        /*
1814         * If it's a full truncate we just forget about the pending dirtying
1815         */
1816        if (offset == 0)
1817                ClearPageChecked(page);
1818
1819        journal_invalidatepage(journal, page, offset);
1820}
1821
1822static int ext3_releasepage(struct page *page, gfp_t wait)
1823{
1824        journal_t *journal = EXT3_JOURNAL(page->mapping->host);
1825
1826        trace_ext3_releasepage(page);
1827        WARN_ON(PageChecked(page));
1828        if (!page_has_buffers(page))
1829                return 0;
1830        return journal_try_to_free_buffers(journal, page, wait);
1831}
1832
1833/*
1834 * If the O_DIRECT write will extend the file then add this inode to the
1835 * orphan list.  So recovery will truncate it back to the original size
1836 * if the machine crashes during the write.
1837 *
1838 * If the O_DIRECT write is intantiating holes inside i_size and the machine
1839 * crashes then stale disk data _may_ be exposed inside the file. But current
1840 * VFS code falls back into buffered path in that case so we are safe.
1841 */
1842static ssize_t ext3_direct_IO(int rw, struct kiocb *iocb,
1843                        const struct iovec *iov, loff_t offset,
1844                        unsigned long nr_segs)
1845{
1846        struct file *file = iocb->ki_filp;
1847        struct inode *inode = file->f_mapping->host;
1848        struct ext3_inode_info *ei = EXT3_I(inode);
1849        handle_t *handle;
1850        ssize_t ret;
1851        int orphan = 0;
1852        size_t count = iov_length(iov, nr_segs);
1853        int retries = 0;
1854
1855        trace_ext3_direct_IO_enter(inode, offset, iov_length(iov, nr_segs), rw);
1856
1857        if (rw == WRITE) {
1858                loff_t final_size = offset + count;
1859
1860                if (final_size > inode->i_size) {
1861                        /* Credits for sb + inode write */
1862                        handle = ext3_journal_start(inode, 2);
1863                        if (IS_ERR(handle)) {
1864                                ret = PTR_ERR(handle);
1865                                goto out;
1866                        }
1867                        ret = ext3_orphan_add(handle, inode);
1868                        if (ret) {
1869                                ext3_journal_stop(handle);
1870                                goto out;
1871                        }
1872                        orphan = 1;
1873                        ei->i_disksize = inode->i_size;
1874                        ext3_journal_stop(handle);
1875                }
1876        }
1877
1878retry:
1879        ret = blockdev_direct_IO(rw, iocb, inode, iov, offset, nr_segs,
1880                                 ext3_get_block);
1881        /*
1882         * In case of error extending write may have instantiated a few
1883         * blocks outside i_size. Trim these off again.
1884         */
1885        if (unlikely((rw & WRITE) && ret < 0)) {
1886                loff_t isize = i_size_read(inode);
1887                loff_t end = offset + iov_length(iov, nr_segs);
1888
1889                if (end > isize)
1890                        ext3_truncate_failed_direct_write(inode);
1891        }
1892        if (ret == -ENOSPC && ext3_should_retry_alloc(inode->i_sb, &retries))
1893                goto retry;
1894
1895        if (orphan) {
1896                int err;
1897
1898                /* Credits for sb + inode write */
1899                handle = ext3_journal_start(inode, 2);
1900                if (IS_ERR(handle)) {
1901                        /* This is really bad luck. We've written the data
1902                         * but cannot extend i_size. Truncate allocated blocks
1903                         * and pretend the write failed... */
1904                        ext3_truncate_failed_direct_write(inode);
1905                        ret = PTR_ERR(handle);
1906                        goto out;
1907                }
1908                if (inode->i_nlink)
1909                        ext3_orphan_del(handle, inode);
1910                if (ret > 0) {
1911                        loff_t end = offset + ret;
1912                        if (end > inode->i_size) {
1913                                ei->i_disksize = end;
1914                                i_size_write(inode, end);
1915                                /*
1916                                 * We're going to return a positive `ret'
1917                                 * here due to non-zero-length I/O, so there's
1918                                 * no way of reporting error returns from
1919                                 * ext3_mark_inode_dirty() to userspace.  So
1920                                 * ignore it.
1921                                 */
1922                                ext3_mark_inode_dirty(handle, inode);
1923                        }
1924                }
1925                err = ext3_journal_stop(handle);
1926                if (ret == 0)
1927                        ret = err;
1928        }
1929out:
1930        trace_ext3_direct_IO_exit(inode, offset,
1931                                iov_length(iov, nr_segs), rw, ret);
1932        return ret;
1933}
1934
1935/*
1936 * Pages can be marked dirty completely asynchronously from ext3's journalling
1937 * activity.  By filemap_sync_pte(), try_to_unmap_one(), etc.  We cannot do
1938 * much here because ->set_page_dirty is called under VFS locks.  The page is
1939 * not necessarily locked.
1940 *
1941 * We cannot just dirty the page and leave attached buffers clean, because the
1942 * buffers' dirty state is "definitive".  We cannot just set the buffers dirty
1943 * or jbddirty because all the journalling code will explode.
1944 *
1945 * So what we do is to mark the page "pending dirty" and next time writepage
1946 * is called, propagate that into the buffers appropriately.
1947 */
1948static int ext3_journalled_set_page_dirty(struct page *page)
1949{
1950        SetPageChecked(page);
1951        return __set_page_dirty_nobuffers(page);
1952}
1953
1954static const struct address_space_operations ext3_ordered_aops = {
1955        .readpage               = ext3_readpage,
1956        .readpages              = ext3_readpages,
1957        .writepage              = ext3_ordered_writepage,
1958        .write_begin            = ext3_write_begin,
1959        .write_end              = ext3_ordered_write_end,
1960        .bmap                   = ext3_bmap,
1961        .invalidatepage         = ext3_invalidatepage,
1962        .releasepage            = ext3_releasepage,
1963        .direct_IO              = ext3_direct_IO,
1964        .migratepage            = buffer_migrate_page,
1965        .is_partially_uptodate  = block_is_partially_uptodate,
1966        .error_remove_page      = generic_error_remove_page,
1967};
1968
1969static const struct address_space_operations ext3_writeback_aops = {
1970        .readpage               = ext3_readpage,
1971        .readpages              = ext3_readpages,
1972        .writepage              = ext3_writeback_writepage,
1973        .write_begin            = ext3_write_begin,
1974        .write_end              = ext3_writeback_write_end,
1975        .bmap                   = ext3_bmap,
1976        .invalidatepage         = ext3_invalidatepage,
1977        .releasepage            = ext3_releasepage,
1978        .direct_IO              = ext3_direct_IO,
1979        .migratepage            = buffer_migrate_page,
1980        .is_partially_uptodate  = block_is_partially_uptodate,
1981        .error_remove_page      = generic_error_remove_page,
1982};
1983
1984static const struct address_space_operations ext3_journalled_aops = {
1985        .readpage               = ext3_readpage,
1986        .readpages              = ext3_readpages,
1987        .writepage              = ext3_journalled_writepage,
1988        .write_begin            = ext3_write_begin,
1989        .write_end              = ext3_journalled_write_end,
1990        .set_page_dirty         = ext3_journalled_set_page_dirty,
1991        .bmap                   = ext3_bmap,
1992        .invalidatepage         = ext3_invalidatepage,
1993        .releasepage            = ext3_releasepage,
1994        .is_partially_uptodate  = block_is_partially_uptodate,
1995        .error_remove_page      = generic_error_remove_page,
1996};
1997
1998void ext3_set_aops(struct inode *inode)
1999{
2000        if (ext3_should_order_data(inode))
2001                inode->i_mapping->a_ops = &ext3_ordered_aops;
2002        else if (ext3_should_writeback_data(inode))
2003                inode->i_mapping->a_ops = &ext3_writeback_aops;
2004        else
2005                inode->i_mapping->a_ops = &ext3_journalled_aops;
2006}
2007
2008/*
2009 * ext3_block_truncate_page() zeroes out a mapping from file offset `from'
2010 * up to the end of the block which corresponds to `from'.
2011 * This required during truncate. We need to physically zero the tail end
2012 * of that block so it doesn't yield old data if the file is later grown.
2013 */
2014static int ext3_block_truncate_page(struct inode *inode, loff_t from)
2015{
2016        ext3_fsblk_t index = from >> PAGE_CACHE_SHIFT;
2017        unsigned offset = from & (PAGE_CACHE_SIZE - 1);
2018        unsigned blocksize, iblock, length, pos;
2019        struct page *page;
2020        handle_t *handle = NULL;
2021        struct buffer_head *bh;
2022        int err = 0;
2023
2024        /* Truncated on block boundary - nothing to do */
2025        blocksize = inode->i_sb->s_blocksize;
2026        if ((from & (blocksize - 1)) == 0)
2027                return 0;
2028
2029        page = grab_cache_page(inode->i_mapping, index);
2030        if (!page)
2031                return -ENOMEM;
2032        length = blocksize - (offset & (blocksize - 1));
2033        iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
2034
2035        if (!page_has_buffers(page))
2036                create_empty_buffers(page, blocksize, 0);
2037
2038        /* Find the buffer that contains "offset" */
2039        bh = page_buffers(page);
2040        pos = blocksize;
2041        while (offset >= pos) {
2042                bh = bh->b_this_page;
2043                iblock++;
2044                pos += blocksize;
2045        }
2046
2047        err = 0;
2048        if (buffer_freed(bh)) {
2049                BUFFER_TRACE(bh, "freed: skip");
2050                goto unlock;
2051        }
2052
2053        if (!buffer_mapped(bh)) {
2054                BUFFER_TRACE(bh, "unmapped");
2055                ext3_get_block(inode, iblock, bh, 0);
2056                /* unmapped? It's a hole - nothing to do */
2057                if (!buffer_mapped(bh)) {
2058                        BUFFER_TRACE(bh, "still unmapped");
2059                        goto unlock;
2060                }
2061        }
2062
2063        /* Ok, it's mapped. Make sure it's up-to-date */
2064        if (PageUptodate(page))
2065                set_buffer_uptodate(bh);
2066
2067        if (!buffer_uptodate(bh)) {
2068                err = -EIO;
2069                ll_rw_block(READ, 1, &bh);
2070                wait_on_buffer(bh);
2071                /* Uhhuh. Read error. Complain and punt. */
2072                if (!buffer_uptodate(bh))
2073                        goto unlock;
2074        }
2075
2076        /* data=writeback mode doesn't need transaction to zero-out data */
2077        if (!ext3_should_writeback_data(inode)) {
2078                /* We journal at most one block */
2079                handle = ext3_journal_start(inode, 1);
2080                if (IS_ERR(handle)) {
2081                        clear_highpage(page);
2082                        flush_dcache_page(page);
2083                        err = PTR_ERR(handle);
2084                        goto unlock;
2085                }
2086        }
2087
2088        if (ext3_should_journal_data(inode)) {
2089                BUFFER_TRACE(bh, "get write access");
2090                err = ext3_journal_get_write_access(handle, bh);
2091                if (err)
2092                        goto stop;
2093        }
2094
2095        zero_user(page, offset, length);
2096        BUFFER_TRACE(bh, "zeroed end of block");
2097
2098        err = 0;
2099        if (ext3_should_journal_data(inode)) {
2100                err = ext3_journal_dirty_metadata(handle, bh);
2101        } else {
2102                if (ext3_should_order_data(inode))
2103                        err = ext3_journal_dirty_data(handle, bh);
2104                mark_buffer_dirty(bh);
2105        }
2106stop:
2107        if (handle)
2108                ext3_journal_stop(handle);
2109
2110unlock:
2111        unlock_page(page);
2112        page_cache_release(page);
2113        return err;
2114}
2115
2116/*
2117 * Probably it should be a library function... search for first non-zero word
2118 * or memcmp with zero_page, whatever is better for particular architecture.
2119 * Linus?
2120 */
2121static inline int all_zeroes(__le32 *p, __le32 *q)
2122{
2123        while (p < q)
2124                if (*p++)
2125                        return 0;
2126        return 1;
2127}
2128
2129/**
2130 *      ext3_find_shared - find the indirect blocks for partial truncation.
2131 *      @inode:   inode in question
2132 *      @depth:   depth of the affected branch
2133 *      @offsets: offsets of pointers in that branch (see ext3_block_to_path)
2134 *      @chain:   place to store the pointers to partial indirect blocks
2135 *      @top:     place to the (detached) top of branch
2136 *
2137 *      This is a helper function used by ext3_truncate().
2138 *
2139 *      When we do truncate() we may have to clean the ends of several
2140 *      indirect blocks but leave the blocks themselves alive. Block is
2141 *      partially truncated if some data below the new i_size is referred
2142 *      from it (and it is on the path to the first completely truncated
2143 *      data block, indeed).  We have to free the top of that path along
2144 *      with everything to the right of the path. Since no allocation
2145 *      past the truncation point is possible until ext3_truncate()
2146 *      finishes, we may safely do the latter, but top of branch may
2147 *      require special attention - pageout below the truncation point
2148 *      might try to populate it.
2149 *
2150 *      We atomically detach the top of branch from the tree, store the
2151 *      block number of its root in *@top, pointers to buffer_heads of
2152 *      partially truncated blocks - in @chain[].bh and pointers to
2153 *      their last elements that should not be removed - in
2154 *      @chain[].p. Return value is the pointer to last filled element
2155 *      of @chain.
2156 *
2157 *      The work left to caller to do the actual freeing of subtrees:
2158 *              a) free the subtree starting from *@top
2159 *              b) free the subtrees whose roots are stored in
2160 *                      (@chain[i].p+1 .. end of @chain[i].bh->b_data)
2161 *              c) free the subtrees growing from the inode past the @chain[0].
2162 *                      (no partially truncated stuff there).  */
2163
2164static Indirect *ext3_find_shared(struct inode *inode, int depth,
2165                        int offsets[4], Indirect chain[4], __le32 *top)
2166{
2167        Indirect *partial, *p;
2168        int k, err;
2169
2170        *top = 0;
2171        /* Make k index the deepest non-null offset + 1 */
2172        for (k = depth; k > 1 && !offsets[k-1]; k--)
2173                ;
2174        partial = ext3_get_branch(inode, k, offsets, chain, &err);
2175        /* Writer: pointers */
2176        if (!partial)
2177                partial = chain + k-1;
2178        /*
2179         * If the branch acquired continuation since we've looked at it -
2180         * fine, it should all survive and (new) top doesn't belong to us.
2181         */
2182        if (!partial->key && *partial->p)
2183                /* Writer: end */
2184                goto no_top;
2185        for (p=partial; p>chain && all_zeroes((__le32*)p->bh->b_data,p->p); p--)
2186                ;
2187        /*
2188         * OK, we've found the last block that must survive. The rest of our
2189         * branch should be detached before unlocking. However, if that rest
2190         * of branch is all ours and does not grow immediately from the inode
2191         * it's easier to cheat and just decrement partial->p.
2192         */
2193        if (p == chain + k - 1 && p > chain) {
2194                p->p--;
2195        } else {
2196                *top = *p->p;
2197                /* Nope, don't do this in ext3.  Must leave the tree intact */
2198#if 0
2199                *p->p = 0;
2200#endif
2201        }
2202        /* Writer: end */
2203
2204        while(partial > p) {
2205                brelse(partial->bh);
2206                partial--;
2207        }
2208no_top:
2209        return partial;
2210}
2211
2212/*
2213 * Zero a number of block pointers in either an inode or an indirect block.
2214 * If we restart the transaction we must again get write access to the
2215 * indirect block for further modification.
2216 *
2217 * We release `count' blocks on disk, but (last - first) may be greater
2218 * than `count' because there can be holes in there.
2219 */
2220static void ext3_clear_blocks(handle_t *handle, struct inode *inode,
2221                struct buffer_head *bh, ext3_fsblk_t block_to_free,
2222                unsigned long count, __le32 *first, __le32 *last)
2223{
2224        __le32 *p;
2225        if (try_to_extend_transaction(handle, inode)) {
2226                if (bh) {
2227                        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
2228                        if (ext3_journal_dirty_metadata(handle, bh))
2229                                return;
2230                }
2231                ext3_mark_inode_dirty(handle, inode);
2232                truncate_restart_transaction(handle, inode);
2233                if (bh) {
2234                        BUFFER_TRACE(bh, "retaking write access");
2235                        if (ext3_journal_get_write_access(handle, bh))
2236                                return;
2237                }
2238        }
2239
2240        /*
2241         * Any buffers which are on the journal will be in memory. We find
2242         * them on the hash table so journal_revoke() will run journal_forget()
2243         * on them.  We've already detached each block from the file, so
2244         * bforget() in journal_forget() should be safe.
2245         *
2246         * AKPM: turn on bforget in journal_forget()!!!
2247         */
2248        for (p = first; p < last; p++) {
2249                u32 nr = le32_to_cpu(*p);
2250                if (nr) {
2251                        struct buffer_head *bh;
2252
2253                        *p = 0;
2254                        bh = sb_find_get_block(inode->i_sb, nr);
2255                        ext3_forget(handle, 0, inode, bh, nr);
2256                }
2257        }
2258
2259        ext3_free_blocks(handle, inode, block_to_free, count);
2260}
2261
2262/**
2263 * ext3_free_data - free a list of data blocks
2264 * @handle:     handle for this transaction
2265 * @inode:      inode we are dealing with
2266 * @this_bh:    indirect buffer_head which contains *@first and *@last
2267 * @first:      array of block numbers
2268 * @last:       points immediately past the end of array
2269 *
2270 * We are freeing all blocks referred from that array (numbers are stored as
2271 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
2272 *
2273 * We accumulate contiguous runs of blocks to free.  Conveniently, if these
2274 * blocks are contiguous then releasing them at one time will only affect one
2275 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
2276 * actually use a lot of journal space.
2277 *
2278 * @this_bh will be %NULL if @first and @last point into the inode's direct
2279 * block pointers.
2280 */
2281static void ext3_free_data(handle_t *handle, struct inode *inode,
2282                           struct buffer_head *this_bh,
2283                           __le32 *first, __le32 *last)
2284{
2285        ext3_fsblk_t block_to_free = 0;    /* Starting block # of a run */
2286        unsigned long count = 0;            /* Number of blocks in the run */
2287        __le32 *block_to_free_p = NULL;     /* Pointer into inode/ind
2288                                               corresponding to
2289                                               block_to_free */
2290        ext3_fsblk_t nr;                    /* Current block # */
2291        __le32 *p;                          /* Pointer into inode/ind
2292                                               for current block */
2293        int err;
2294
2295        if (this_bh) {                          /* For indirect block */
2296                BUFFER_TRACE(this_bh, "get_write_access");
2297                err = ext3_journal_get_write_access(handle, this_bh);
2298                /* Important: if we can't update the indirect pointers
2299                 * to the blocks, we can't free them. */
2300                if (err)
2301                        return;
2302        }
2303
2304        for (p = first; p < last; p++) {
2305                nr = le32_to_cpu(*p);
2306                if (nr) {
2307                        /* accumulate blocks to free if they're contiguous */
2308                        if (count == 0) {
2309                                block_to_free = nr;
2310                                block_to_free_p = p;
2311                                count = 1;
2312                        } else if (nr == block_to_free + count) {
2313                                count++;
2314                        } else {
2315                                ext3_clear_blocks(handle, inode, this_bh,
2316                                                  block_to_free,
2317                                                  count, block_to_free_p, p);
2318                                block_to_free = nr;
2319                                block_to_free_p = p;
2320                                count = 1;
2321                        }
2322                }
2323        }
2324
2325        if (count > 0)
2326                ext3_clear_blocks(handle, inode, this_bh, block_to_free,
2327                                  count, block_to_free_p, p);
2328
2329        if (this_bh) {
2330                BUFFER_TRACE(this_bh, "call ext3_journal_dirty_metadata");
2331
2332                /*
2333                 * The buffer head should have an attached journal head at this
2334                 * point. However, if the data is corrupted and an indirect
2335                 * block pointed to itself, it would have been detached when
2336                 * the block was cleared. Check for this instead of OOPSing.
2337                 */
2338                if (bh2jh(this_bh))
2339                        ext3_journal_dirty_metadata(handle, this_bh);
2340                else
2341                        ext3_error(inode->i_sb, "ext3_free_data",
2342                                   "circular indirect block detected, "
2343                                   "inode=%lu, block=%llu",
2344                                   inode->i_ino,
2345                                   (unsigned long long)this_bh->b_blocknr);
2346        }
2347}
2348
2349/**
2350 *      ext3_free_branches - free an array of branches
2351 *      @handle: JBD handle for this transaction
2352 *      @inode: inode we are dealing with
2353 *      @parent_bh: the buffer_head which contains *@first and *@last
2354 *      @first: array of block numbers
2355 *      @last:  pointer immediately past the end of array
2356 *      @depth: depth of the branches to free
2357 *
2358 *      We are freeing all blocks referred from these branches (numbers are
2359 *      stored as little-endian 32-bit) and updating @inode->i_blocks
2360 *      appropriately.
2361 */
2362static void ext3_free_branches(handle_t *handle, struct inode *inode,
2363                               struct buffer_head *parent_bh,
2364                               __le32 *first, __le32 *last, int depth)
2365{
2366        ext3_fsblk_t nr;
2367        __le32 *p;
2368
2369        if (is_handle_aborted(handle))
2370                return;
2371
2372        if (depth--) {
2373                struct buffer_head *bh;
2374                int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2375                p = last;
2376                while (--p >= first) {
2377                        nr = le32_to_cpu(*p);
2378                        if (!nr)
2379                                continue;               /* A hole */
2380
2381                        /* Go read the buffer for the next level down */
2382                        bh = sb_bread(inode->i_sb, nr);
2383
2384                        /*
2385                         * A read failure? Report error and clear slot
2386                         * (should be rare).
2387                         */
2388                        if (!bh) {
2389                                ext3_error(inode->i_sb, "ext3_free_branches",
2390                                           "Read failure, inode=%lu, block="E3FSBLK,
2391                                           inode->i_ino, nr);
2392                                continue;
2393                        }
2394
2395                        /* This zaps the entire block.  Bottom up. */
2396                        BUFFER_TRACE(bh, "free child branches");
2397                        ext3_free_branches(handle, inode, bh,
2398                                           (__le32*)bh->b_data,
2399                                           (__le32*)bh->b_data + addr_per_block,
2400                                           depth);
2401
2402                        /*
2403                         * Everything below this this pointer has been
2404                         * released.  Now let this top-of-subtree go.
2405                         *
2406                         * We want the freeing of this indirect block to be
2407                         * atomic in the journal with the updating of the
2408                         * bitmap block which owns it.  So make some room in
2409                         * the journal.
2410                         *
2411                         * We zero the parent pointer *after* freeing its
2412                         * pointee in the bitmaps, so if extend_transaction()
2413                         * for some reason fails to put the bitmap changes and
2414                         * the release into the same transaction, recovery
2415                         * will merely complain about releasing a free block,
2416                         * rather than leaking blocks.
2417                         */
2418                        if (is_handle_aborted(handle))
2419                                return;
2420                        if (try_to_extend_transaction(handle, inode)) {
2421                                ext3_mark_inode_dirty(handle, inode);
2422                                truncate_restart_transaction(handle, inode);
2423                        }
2424
2425                        /*
2426                         * We've probably journalled the indirect block several
2427                         * times during the truncate.  But it's no longer
2428                         * needed and we now drop it from the transaction via
2429                         * journal_revoke().
2430                         *
2431                         * That's easy if it's exclusively part of this
2432                         * transaction.  But if it's part of the committing
2433                         * transaction then journal_forget() will simply
2434                         * brelse() it.  That means that if the underlying
2435                         * block is reallocated in ext3_get_block(),
2436                         * unmap_underlying_metadata() will find this block
2437                         * and will try to get rid of it.  damn, damn. Thus
2438                         * we don't allow a block to be reallocated until
2439                         * a transaction freeing it has fully committed.
2440                         *
2441                         * We also have to make sure journal replay after a
2442                         * crash does not overwrite non-journaled data blocks
2443                         * with old metadata when the block got reallocated for
2444                         * data.  Thus we have to store a revoke record for a
2445                         * block in the same transaction in which we free the
2446                         * block.
2447                         */
2448                        ext3_forget(handle, 1, inode, bh, bh->b_blocknr);
2449
2450                        ext3_free_blocks(handle, inode, nr, 1);
2451
2452                        if (parent_bh) {
2453                                /*
2454                                 * The block which we have just freed is
2455                                 * pointed to by an indirect block: journal it
2456                                 */
2457                                BUFFER_TRACE(parent_bh, "get_write_access");
2458                                if (!ext3_journal_get_write_access(handle,
2459                                                                   parent_bh)){
2460                                        *p = 0;
2461                                        BUFFER_TRACE(parent_bh,
2462                                        "call ext3_journal_dirty_metadata");
2463                                        ext3_journal_dirty_metadata(handle,
2464                                                                    parent_bh);
2465                                }
2466                        }
2467                }
2468        } else {
2469                /* We have reached the bottom of the tree. */
2470                BUFFER_TRACE(parent_bh, "free data blocks");
2471                ext3_free_data(handle, inode, parent_bh, first, last);
2472        }
2473}
2474
2475int ext3_can_truncate(struct inode *inode)
2476{
2477        if (S_ISREG(inode->i_mode))
2478                return 1;
2479        if (S_ISDIR(inode->i_mode))
2480                return 1;
2481        if (S_ISLNK(inode->i_mode))
2482                return !ext3_inode_is_fast_symlink(inode);
2483        return 0;
2484}
2485
2486/*
2487 * ext3_truncate()
2488 *
2489 * We block out ext3_get_block() block instantiations across the entire
2490 * transaction, and VFS/VM ensures that ext3_truncate() cannot run
2491 * simultaneously on behalf of the same inode.
2492 *
2493 * As we work through the truncate and commmit bits of it to the journal there
2494 * is one core, guiding principle: the file's tree must always be consistent on
2495 * disk.  We must be able to restart the truncate after a crash.
2496 *
2497 * The file's tree may be transiently inconsistent in memory (although it
2498 * probably isn't), but whenever we close off and commit a journal transaction,
2499 * the contents of (the filesystem + the journal) must be consistent and
2500 * restartable.  It's pretty simple, really: bottom up, right to left (although
2501 * left-to-right works OK too).
2502 *
2503 * Note that at recovery time, journal replay occurs *before* the restart of
2504 * truncate against the orphan inode list.
2505 *
2506 * The committed inode has the new, desired i_size (which is the same as
2507 * i_disksize in this case).  After a crash, ext3_orphan_cleanup() will see
2508 * that this inode's truncate did not complete and it will again call
2509 * ext3_truncate() to have another go.  So there will be instantiated blocks
2510 * to the right of the truncation point in a crashed ext3 filesystem.  But
2511 * that's fine - as long as they are linked from the inode, the post-crash
2512 * ext3_truncate() run will find them and release them.
2513 */
2514void ext3_truncate(struct inode *inode)
2515{
2516        handle_t *handle;
2517        struct ext3_inode_info *ei = EXT3_I(inode);
2518        __le32 *i_data = ei->i_data;
2519        int addr_per_block = EXT3_ADDR_PER_BLOCK(inode->i_sb);
2520        int offsets[4];
2521        Indirect chain[4];
2522        Indirect *partial;
2523        __le32 nr = 0;
2524        int n;
2525        long last_block;
2526        unsigned blocksize = inode->i_sb->s_blocksize;
2527
2528        trace_ext3_truncate_enter(inode);
2529
2530        if (!ext3_can_truncate(inode))
2531                goto out_notrans;
2532
2533        if (inode->i_size == 0 && ext3_should_writeback_data(inode))
2534                ext3_set_inode_state(inode, EXT3_STATE_FLUSH_ON_CLOSE);
2535
2536        handle = start_transaction(inode);
2537        if (IS_ERR(handle))
2538                goto out_notrans;
2539
2540        last_block = (inode->i_size + blocksize-1)
2541                                        >> EXT3_BLOCK_SIZE_BITS(inode->i_sb);
2542        n = ext3_block_to_path(inode, last_block, offsets, NULL);
2543        if (n == 0)
2544                goto out_stop;  /* error */
2545
2546        /*
2547         * OK.  This truncate is going to happen.  We add the inode to the
2548         * orphan list, so that if this truncate spans multiple transactions,
2549         * and we crash, we will resume the truncate when the filesystem
2550         * recovers.  It also marks the inode dirty, to catch the new size.
2551         *
2552         * Implication: the file must always be in a sane, consistent
2553         * truncatable state while each transaction commits.
2554         */
2555        if (ext3_orphan_add(handle, inode))
2556                goto out_stop;
2557
2558        /*
2559         * The orphan list entry will now protect us from any crash which
2560         * occurs before the truncate completes, so it is now safe to propagate
2561         * the new, shorter inode size (held for now in i_size) into the
2562         * on-disk inode. We do this via i_disksize, which is the value which
2563         * ext3 *really* writes onto the disk inode.
2564         */
2565        ei->i_disksize = inode->i_size;
2566
2567        /*
2568         * From here we block out all ext3_get_block() callers who want to
2569         * modify the block allocation tree.
2570         */
2571        mutex_lock(&ei->truncate_mutex);
2572
2573        if (n == 1) {           /* direct blocks */
2574                ext3_free_data(handle, inode, NULL, i_data+offsets[0],
2575                               i_data + EXT3_NDIR_BLOCKS);
2576                goto do_indirects;
2577        }
2578
2579        partial = ext3_find_shared(inode, n, offsets, chain, &nr);
2580        /* Kill the top of shared branch (not detached) */
2581        if (nr) {
2582                if (partial == chain) {
2583                        /* Shared branch grows from the inode */
2584                        ext3_free_branches(handle, inode, NULL,
2585                                           &nr, &nr+1, (chain+n-1) - partial);
2586                        *partial->p = 0;
2587                        /*
2588                         * We mark the inode dirty prior to restart,
2589                         * and prior to stop.  No need for it here.
2590                         */
2591                } else {
2592                        /* Shared branch grows from an indirect block */
2593                        ext3_free_branches(handle, inode, partial->bh,
2594                                        partial->p,
2595                                        partial->p+1, (chain+n-1) - partial);
2596                }
2597        }
2598        /* Clear the ends of indirect blocks on the shared branch */
2599        while (partial > chain) {
2600                ext3_free_branches(handle, inode, partial->bh, partial->p + 1,
2601                                   (__le32*)partial->bh->b_data+addr_per_block,
2602                                   (chain+n-1) - partial);
2603                BUFFER_TRACE(partial->bh, "call brelse");
2604                brelse (partial->bh);
2605                partial--;
2606        }
2607do_indirects:
2608        /* Kill the remaining (whole) subtrees */
2609        switch (offsets[0]) {
2610        default:
2611                nr = i_data[EXT3_IND_BLOCK];
2612                if (nr) {
2613                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
2614                        i_data[EXT3_IND_BLOCK] = 0;
2615                }
2616        case EXT3_IND_BLOCK:
2617                nr = i_data[EXT3_DIND_BLOCK];
2618                if (nr) {
2619                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
2620                        i_data[EXT3_DIND_BLOCK] = 0;
2621                }
2622        case EXT3_DIND_BLOCK:
2623                nr = i_data[EXT3_TIND_BLOCK];
2624                if (nr) {
2625                        ext3_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
2626                        i_data[EXT3_TIND_BLOCK] = 0;
2627                }
2628        case EXT3_TIND_BLOCK:
2629                ;
2630        }
2631
2632        ext3_discard_reservation(inode);
2633
2634        mutex_unlock(&ei->truncate_mutex);
2635        inode->i_mtime = inode->i_ctime = CURRENT_TIME_SEC;
2636        ext3_mark_inode_dirty(handle, inode);
2637
2638        /*
2639         * In a multi-transaction truncate, we only make the final transaction
2640         * synchronous
2641         */
2642        if (IS_SYNC(inode))
2643                handle->h_sync = 1;
2644out_stop:
2645        /*
2646         * If this was a simple ftruncate(), and the file will remain alive
2647         * then we need to clear up the orphan record which we created above.
2648         * However, if this was a real unlink then we were called by
2649         * ext3_evict_inode(), and we allow that function to clean up the
2650         * orphan info for us.
2651         */
2652        if (inode->i_nlink)
2653                ext3_orphan_del(handle, inode);
2654
2655        ext3_journal_stop(handle);
2656        trace_ext3_truncate_exit(inode);
2657        return;
2658out_notrans:
2659        /*
2660         * Delete the inode from orphan list so that it doesn't stay there
2661         * forever and trigger assertion on umount.
2662         */
2663        if (inode->i_nlink)
2664                ext3_orphan_del(NULL, inode);
2665        trace_ext3_truncate_exit(inode);
2666}
2667
2668static ext3_fsblk_t ext3_get_inode_block(struct super_block *sb,
2669                unsigned long ino, struct ext3_iloc *iloc)
2670{
2671        unsigned long block_group;
2672        unsigned long offset;
2673        ext3_fsblk_t block;
2674        struct ext3_group_desc *gdp;
2675
2676        if (!ext3_valid_inum(sb, ino)) {
2677                /*
2678                 * This error is already checked for in namei.c unless we are
2679                 * looking at an NFS filehandle, in which case no error
2680                 * report is needed
2681                 */
2682                return 0;
2683        }
2684
2685        block_group = (ino - 1) / EXT3_INODES_PER_GROUP(sb);
2686        gdp = ext3_get_group_desc(sb, block_group, NULL);
2687        if (!gdp)
2688                return 0;
2689        /*
2690         * Figure out the offset within the block group inode table
2691         */
2692        offset = ((ino - 1) % EXT3_INODES_PER_GROUP(sb)) *
2693                EXT3_INODE_SIZE(sb);
2694        block = le32_to_cpu(gdp->bg_inode_table) +
2695                (offset >> EXT3_BLOCK_SIZE_BITS(sb));
2696
2697        iloc->block_group = block_group;
2698        iloc->offset = offset & (EXT3_BLOCK_SIZE(sb) - 1);
2699        return block;
2700}
2701
2702/*
2703 * ext3_get_inode_loc returns with an extra refcount against the inode's
2704 * underlying buffer_head on success. If 'in_mem' is true, we have all
2705 * data in memory that is needed to recreate the on-disk version of this
2706 * inode.
2707 */
2708static int __ext3_get_inode_loc(struct inode *inode,
2709                                struct ext3_iloc *iloc, int in_mem)
2710{
2711        ext3_fsblk_t block;
2712        struct buffer_head *bh;
2713
2714        block = ext3_get_inode_block(inode->i_sb, inode->i_ino, iloc);
2715        if (!block)
2716                return -EIO;
2717
2718        bh = sb_getblk(inode->i_sb, block);
2719        if (!bh) {
2720                ext3_error (inode->i_sb, "ext3_get_inode_loc",
2721                                "unable to read inode block - "
2722                                "inode=%lu, block="E3FSBLK,
2723                                 inode->i_ino, block);
2724                return -EIO;
2725        }
2726        if (!buffer_uptodate(bh)) {
2727                lock_buffer(bh);
2728
2729                /*
2730                 * If the buffer has the write error flag, we have failed
2731                 * to write out another inode in the same block.  In this
2732                 * case, we don't have to read the block because we may
2733                 * read the old inode data successfully.
2734                 */
2735                if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
2736                        set_buffer_uptodate(bh);
2737
2738                if (buffer_uptodate(bh)) {
2739                        /* someone brought it uptodate while we waited */
2740                        unlock_buffer(bh);
2741                        goto has_buffer;
2742                }
2743
2744                /*
2745                 * If we have all information of the inode in memory and this
2746                 * is the only valid inode in the block, we need not read the
2747                 * block.
2748                 */
2749                if (in_mem) {
2750                        struct buffer_head *bitmap_bh;
2751                        struct ext3_group_desc *desc;
2752                        int inodes_per_buffer;
2753                        int inode_offset, i;
2754                        int block_group;
2755                        int start;
2756
2757                        block_group = (inode->i_ino - 1) /
2758                                        EXT3_INODES_PER_GROUP(inode->i_sb);
2759                        inodes_per_buffer = bh->b_size /
2760                                EXT3_INODE_SIZE(inode->i_sb);
2761                        inode_offset = ((inode->i_ino - 1) %
2762                                        EXT3_INODES_PER_GROUP(inode->i_sb));
2763                        start = inode_offset & ~(inodes_per_buffer - 1);
2764
2765                        /* Is the inode bitmap in cache? */
2766                        desc = ext3_get_group_desc(inode->i_sb,
2767                                                block_group, NULL);
2768                        if (!desc)
2769                                goto make_io;
2770
2771                        bitmap_bh = sb_getblk(inode->i_sb,
2772                                        le32_to_cpu(desc->bg_inode_bitmap));
2773                        if (!bitmap_bh)
2774                                goto make_io;
2775
2776                        /*
2777                         * If the inode bitmap isn't in cache then the
2778                         * optimisation may end up performing two reads instead
2779                         * of one, so skip it.
2780                         */
2781                        if (!buffer_uptodate(bitmap_bh)) {
2782                                brelse(bitmap_bh);
2783                                goto make_io;
2784                        }
2785                        for (i = start; i < start + inodes_per_buffer; i++) {
2786                                if (i == inode_offset)
2787                                        continue;
2788                                if (ext3_test_bit(i, bitmap_bh->b_data))
2789                                        break;
2790                        }
2791                        brelse(bitmap_bh);
2792                        if (i == start + inodes_per_buffer) {
2793                                /* all other inodes are free, so skip I/O */
2794                                memset(bh->b_data, 0, bh->b_size);
2795                                set_buffer_uptodate(bh);
2796                                unlock_buffer(bh);
2797                                goto has_buffer;
2798                        }
2799                }
2800
2801make_io:
2802                /*
2803                 * There are other valid inodes in the buffer, this inode
2804                 * has in-inode xattrs, or we don't have this inode in memory.
2805                 * Read the block from disk.
2806                 */
2807                trace_ext3_load_inode(inode);
2808                get_bh(bh);
2809                bh->b_end_io = end_buffer_read_sync;
2810                submit_bh(READ | REQ_META | REQ_PRIO, bh);
2811                wait_on_buffer(bh);
2812                if (!buffer_uptodate(bh)) {
2813                        ext3_error(inode->i_sb, "ext3_get_inode_loc",
2814                                        "unable to read inode block - "
2815                                        "inode=%lu, block="E3FSBLK,
2816                                        inode->i_ino, block);
2817                        brelse(bh);
2818                        return -EIO;
2819                }
2820        }
2821has_buffer:
2822        iloc->bh = bh;
2823        return 0;
2824}
2825
2826int ext3_get_inode_loc(struct inode *inode, struct ext3_iloc *iloc)
2827{
2828        /* We have all inode data except xattrs in memory here. */
2829        return __ext3_get_inode_loc(inode, iloc,
2830                !ext3_test_inode_state(inode, EXT3_STATE_XATTR));
2831}
2832
2833void ext3_set_inode_flags(struct inode *inode)
2834{
2835        unsigned int flags = EXT3_I(inode)->i_flags;
2836
2837        inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
2838        if (flags & EXT3_SYNC_FL)
2839                inode->i_flags |= S_SYNC;
2840        if (flags & EXT3_APPEND_FL)
2841                inode->i_flags |= S_APPEND;
2842        if (flags & EXT3_IMMUTABLE_FL)
2843                inode->i_flags |= S_IMMUTABLE;
2844        if (flags & EXT3_NOATIME_FL)
2845                inode->i_flags |= S_NOATIME;
2846        if (flags & EXT3_DIRSYNC_FL)
2847                inode->i_flags |= S_DIRSYNC;
2848}
2849
2850/* Propagate flags from i_flags to EXT3_I(inode)->i_flags */
2851void ext3_get_inode_flags(struct ext3_inode_info *ei)
2852{
2853        unsigned int flags = ei->vfs_inode.i_flags;
2854
2855        ei->i_flags &= ~(EXT3_SYNC_FL|EXT3_APPEND_FL|
2856                        EXT3_IMMUTABLE_FL|EXT3_NOATIME_FL|EXT3_DIRSYNC_FL);
2857        if (flags & S_SYNC)
2858                ei->i_flags |= EXT3_SYNC_FL;
2859        if (flags & S_APPEND)
2860                ei->i_flags |= EXT3_APPEND_FL;
2861        if (flags & S_IMMUTABLE)
2862                ei->i_flags |= EXT3_IMMUTABLE_FL;
2863        if (flags & S_NOATIME)
2864                ei->i_flags |= EXT3_NOATIME_FL;
2865        if (flags & S_DIRSYNC)
2866                ei->i_flags |= EXT3_DIRSYNC_FL;
2867}
2868
2869struct inode *ext3_iget(struct super_block *sb, unsigned long ino)
2870{
2871        struct ext3_iloc iloc;
2872        struct ext3_inode *raw_inode;
2873        struct ext3_inode_info *ei;
2874        struct buffer_head *bh;
2875        struct inode *inode;
2876        journal_t *journal = EXT3_SB(sb)->s_journal;
2877        transaction_t *transaction;
2878        long ret;
2879        int block;
2880
2881        inode = iget_locked(sb, ino);
2882        if (!inode)
2883                return ERR_PTR(-ENOMEM);
2884        if (!(inode->i_state & I_NEW))
2885                return inode;
2886
2887        ei = EXT3_I(inode);
2888        ei->i_block_alloc_info = NULL;
2889
2890        ret = __ext3_get_inode_loc(inode, &iloc, 0);
2891        if (ret < 0)
2892                goto bad_inode;
2893        bh = iloc.bh;
2894        raw_inode = ext3_raw_inode(&iloc);
2895        inode->i_mode = le16_to_cpu(raw_inode->i_mode);
2896        inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
2897        inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
2898        if(!(test_opt (inode->i_sb, NO_UID32))) {
2899                inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
2900                inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
2901        }
2902        inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
2903        inode->i_size = le32_to_cpu(raw_inode->i_size);
2904        inode->i_atime.tv_sec = (signed)le32_to_cpu(raw_inode->i_atime);
2905        inode->i_ctime.tv_sec = (signed)le32_to_cpu(raw_inode->i_ctime);
2906        inode->i_mtime.tv_sec = (signed)le32_to_cpu(raw_inode->i_mtime);
2907        inode->i_atime.tv_nsec = inode->i_ctime.tv_nsec = inode->i_mtime.tv_nsec = 0;
2908
2909        ei->i_state_flags = 0;
2910        ei->i_dir_start_lookup = 0;
2911        ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
2912        /* We now have enough fields to check if the inode was active or not.
2913         * This is needed because nfsd might try to access dead inodes
2914         * the test is that same one that e2fsck uses
2915         * NeilBrown 1999oct15
2916         */
2917        if (inode->i_nlink == 0) {
2918                if (inode->i_mode == 0 ||
2919                    !(EXT3_SB(inode->i_sb)->s_mount_state & EXT3_ORPHAN_FS)) {
2920                        /* this inode is deleted */
2921                        brelse (bh);
2922                        ret = -ESTALE;
2923                        goto bad_inode;
2924                }
2925                /* The only unlinked inodes we let through here have
2926                 * valid i_mode and are being read by the orphan
2927                 * recovery code: that's fine, we're about to complete
2928                 * the process of deleting those. */
2929        }
2930        inode->i_blocks = le32_to_cpu(raw_inode->i_blocks);
2931        ei->i_flags = le32_to_cpu(raw_inode->i_flags);
2932#ifdef EXT3_FRAGMENTS
2933        ei->i_faddr = le32_to_cpu(raw_inode->i_faddr);
2934        ei->i_frag_no = raw_inode->i_frag;
2935        ei->i_frag_size = raw_inode->i_fsize;
2936#endif
2937        ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl);
2938        if (!S_ISREG(inode->i_mode)) {
2939                ei->i_dir_acl = le32_to_cpu(raw_inode->i_dir_acl);
2940        } else {
2941                inode->i_size |=
2942                        ((__u64)le32_to_cpu(raw_inode->i_size_high)) << 32;
2943        }
2944        ei->i_disksize = inode->i_size;
2945        inode->i_generation = le32_to_cpu(raw_inode->i_generation);
2946        ei->i_block_group = iloc.block_group;
2947        /*
2948         * NOTE! The in-memory inode i_data array is in little-endian order
2949         * even on big-endian machines: we do NOT byteswap the block numbers!
2950         */
2951        for (block = 0; block < EXT3_N_BLOCKS; block++)
2952                ei->i_data[block] = raw_inode->i_block[block];
2953        INIT_LIST_HEAD(&ei->i_orphan);
2954
2955        /*
2956         * Set transaction id's of transactions that have to be committed
2957         * to finish f[data]sync. We set them to currently running transaction
2958         * as we cannot be sure that the inode or some of its metadata isn't
2959         * part of the transaction - the inode could have been reclaimed and
2960         * now it is reread from disk.
2961         */
2962        if (journal) {
2963                tid_t tid;
2964
2965                spin_lock(&journal->j_state_lock);
2966                if (journal->j_running_transaction)
2967                        transaction = journal->j_running_transaction;
2968                else
2969                        transaction = journal->j_committing_transaction;
2970                if (transaction)
2971                        tid = transaction->t_tid;
2972                else
2973                        tid = journal->j_commit_sequence;
2974                spin_unlock(&journal->j_state_lock);
2975                atomic_set(&ei->i_sync_tid, tid);
2976                atomic_set(&ei->i_datasync_tid, tid);
2977        }
2978
2979        if (inode->i_ino >= EXT3_FIRST_INO(inode->i_sb) + 1 &&
2980            EXT3_INODE_SIZE(inode->i_sb) > EXT3_GOOD_OLD_INODE_SIZE) {
2981                /*
2982                 * When mke2fs creates big inodes it does not zero out
2983                 * the unused bytes above EXT3_GOOD_OLD_INODE_SIZE,
2984                 * so ignore those first few inodes.
2985                 */
2986                ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
2987                if (EXT3_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
2988                    EXT3_INODE_SIZE(inode->i_sb)) {
2989                        brelse (bh);
2990                        ret = -EIO;
2991                        goto bad_inode;
2992                }
2993                if (ei->i_extra_isize == 0) {
2994                        /* The extra space is currently unused. Use it. */
2995                        ei->i_extra_isize = sizeof(struct ext3_inode) -
2996                                            EXT3_GOOD_OLD_INODE_SIZE;
2997                } else {
2998                        __le32 *magic = (void *)raw_inode +
2999                                        EXT3_GOOD_OLD_INODE_SIZE +
3000                                        ei->i_extra_isize;
3001                        if (*magic == cpu_to_le32(EXT3_XATTR_MAGIC))
3002                                 ext3_set_inode_state(inode, EXT3_STATE_XATTR);
3003                }
3004        } else
3005                ei->i_extra_isize = 0;
3006
3007        if (S_ISREG(inode->i_mode)) {
3008                inode->i_op = &ext3_file_inode_operations;
3009                inode->i_fop = &ext3_file_operations;
3010                ext3_set_aops(inode);
3011        } else if (S_ISDIR(inode->i_mode)) {
3012                inode->i_op = &ext3_dir_inode_operations;
3013                inode->i_fop = &ext3_dir_operations;
3014        } else if (S_ISLNK(inode->i_mode)) {
3015                if (ext3_inode_is_fast_symlink(inode)) {
3016                        inode->i_op = &ext3_fast_symlink_inode_operations;
3017                        nd_terminate_link(ei->i_data, inode->i_size,
3018                                sizeof(ei->i_data) - 1);
3019                } else {
3020                        inode->i_op = &ext3_symlink_inode_operations;
3021                        ext3_set_aops(inode);
3022                }
3023        } else {
3024                inode->i_op = &ext3_special_inode_operations;
3025                if (raw_inode->i_block[0])
3026                        init_special_inode(inode, inode->i_mode,
3027                           old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
3028                else
3029                        init_special_inode(inode, inode->i_mode,
3030                           new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
3031        }
3032        brelse (iloc.bh);
3033        ext3_set_inode_flags(inode);
3034        unlock_new_inode(inode);
3035        return inode;
3036
3037bad_inode:
3038        iget_failed(inode);
3039        return ERR_PTR(ret);
3040}
3041
3042/*
3043 * Post the struct inode info into an on-disk inode location in the
3044 * buffer-cache.  This gobbles the caller's reference to the
3045 * buffer_head in the inode location struct.
3046 *
3047 * The caller must have write access to iloc->bh.
3048 */
3049static int ext3_do_update_inode(handle_t *handle,
3050                                struct inode *inode,
3051                                struct ext3_iloc *iloc)
3052{
3053        struct ext3_inode *raw_inode = ext3_raw_inode(iloc);
3054        struct ext3_inode_info *ei = EXT3_I(inode);
3055        struct buffer_head *bh = iloc->bh;
3056        int err = 0, rc, block;
3057
3058again:
3059        /* we can't allow multiple procs in here at once, its a bit racey */
3060        lock_buffer(bh);
3061
3062        /* For fields not not tracking in the in-memory inode,
3063         * initialise them to zero for new inodes. */
3064        if (ext3_test_inode_state(inode, EXT3_STATE_NEW))
3065                memset(raw_inode, 0, EXT3_SB(inode->i_sb)->s_inode_size);
3066
3067        ext3_get_inode_flags(ei);
3068        raw_inode->i_mode = cpu_to_le16(inode->i_mode);
3069        if(!(test_opt(inode->i_sb, NO_UID32))) {
3070                raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
3071                raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
3072/*
3073 * Fix up interoperability with old kernels. Otherwise, old inodes get
3074 * re-used with the upper 16 bits of the uid/gid intact
3075 */
3076                if(!ei->i_dtime) {
3077                        raw_inode->i_uid_high =
3078                                cpu_to_le16(high_16_bits(inode->i_uid));
3079                        raw_inode->i_gid_high =
3080                                cpu_to_le16(high_16_bits(inode->i_gid));
3081                } else {
3082                        raw_inode->i_uid_high = 0;
3083                        raw_inode->i_gid_high = 0;
3084                }
3085        } else {
3086                raw_inode->i_uid_low =
3087                        cpu_to_le16(fs_high2lowuid(inode->i_uid));
3088                raw_inode->i_gid_low =
3089                        cpu_to_le16(fs_high2lowgid(inode->i_gid));
3090                raw_inode->i_uid_high = 0;
3091                raw_inode->i_gid_high = 0;
3092        }
3093        raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
3094        raw_inode->i_size = cpu_to_le32(ei->i_disksize);
3095        raw_inode->i_atime = cpu_to_le32(inode->i_atime.tv_sec);
3096        raw_inode->i_ctime = cpu_to_le32(inode->i_ctime.tv_sec);
3097        raw_inode->i_mtime = cpu_to_le32(inode->i_mtime.tv_sec);
3098        raw_inode->i_blocks = cpu_to_le32(inode->i_blocks);
3099        raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
3100        raw_inode->i_flags = cpu_to_le32(ei->i_flags);
3101#ifdef EXT3_FRAGMENTS
3102        raw_inode->i_faddr = cpu_to_le32(ei->i_faddr);
3103        raw_inode->i_frag = ei->i_frag_no;
3104        raw_inode->i_fsize = ei->i_frag_size;
3105#endif
3106        raw_inode->i_file_acl = cpu_to_le32(ei->i_file_acl);
3107        if (!S_ISREG(inode->i_mode)) {
3108                raw_inode->i_dir_acl = cpu_to_le32(ei->i_dir_acl);
3109        } else {
3110                raw_inode->i_size_high =
3111                        cpu_to_le32(ei->i_disksize >> 32);
3112                if (ei->i_disksize > 0x7fffffffULL) {
3113                        struct super_block *sb = inode->i_sb;
3114                        if (!EXT3_HAS_RO_COMPAT_FEATURE(sb,
3115                                        EXT3_FEATURE_RO_COMPAT_LARGE_FILE) ||
3116                            EXT3_SB(sb)->s_es->s_rev_level ==
3117                                        cpu_to_le32(EXT3_GOOD_OLD_REV)) {
3118                               /* If this is the first large file
3119                                * created, add a flag to the superblock.
3120                                */
3121                                unlock_buffer(bh);
3122                                err = ext3_journal_get_write_access(handle,
3123                                                EXT3_SB(sb)->s_sbh);
3124                                if (err)
3125                                        goto out_brelse;
3126
3127                                ext3_update_dynamic_rev(sb);
3128                                EXT3_SET_RO_COMPAT_FEATURE(sb,
3129                                        EXT3_FEATURE_RO_COMPAT_LARGE_FILE);
3130                                handle->h_sync = 1;
3131                                err = ext3_journal_dirty_metadata(handle,
3132                                                EXT3_SB(sb)->s_sbh);
3133                                /* get our lock and start over */
3134                                goto again;
3135                        }
3136                }
3137        }
3138        raw_inode->i_generation = cpu_to_le32(inode->i_generation);
3139        if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
3140                if (old_valid_dev(inode->i_rdev)) {
3141                        raw_inode->i_block[0] =
3142                                cpu_to_le32(old_encode_dev(inode->i_rdev));
3143                        raw_inode->i_block[1] = 0;
3144                } else {
3145                        raw_inode->i_block[0] = 0;
3146                        raw_inode->i_block[1] =
3147                                cpu_to_le32(new_encode_dev(inode->i_rdev));
3148                        raw_inode->i_block[2] = 0;
3149                }
3150        } else for (block = 0; block < EXT3_N_BLOCKS; block++)
3151                raw_inode->i_block[block] = ei->i_data[block];
3152
3153        if (ei->i_extra_isize)
3154                raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
3155
3156        BUFFER_TRACE(bh, "call ext3_journal_dirty_metadata");
3157        unlock_buffer(bh);
3158        rc = ext3_journal_dirty_metadata(handle, bh);
3159        if (!err)
3160                err = rc;
3161        ext3_clear_inode_state(inode, EXT3_STATE_NEW);
3162
3163        atomic_set(&ei->i_sync_tid, handle->h_transaction->t_tid);
3164out_brelse:
3165        brelse (bh);
3166        ext3_std_error(inode->i_sb, err);
3167        return err;
3168}
3169
3170/*
3171 * ext3_write_inode()
3172 *
3173 * We are called from a few places:
3174 *
3175 * - Within generic_file_write() for O_SYNC files.
3176 *   Here, there will be no transaction running. We wait for any running
3177 *   trasnaction to commit.
3178 *
3179 * - Within sys_sync(), kupdate and such.
3180 *   We wait on commit, if tol to.
3181 *
3182 * - Within prune_icache() (PF_MEMALLOC == true)
3183 *   Here we simply return.  We can't afford to block kswapd on the
3184 *   journal commit.
3185 *
3186 * In all cases it is actually safe for us to return without doing anything,
3187 * because the inode has been copied into a raw inode buffer in
3188 * ext3_mark_inode_dirty().  This is a correctness thing for O_SYNC and for
3189 * knfsd.
3190 *
3191 * Note that we are absolutely dependent upon all inode dirtiers doing the
3192 * right thing: they *must* call mark_inode_dirty() after dirtying info in
3193 * which we are interested.
3194 *
3195 * It would be a bug for them to not do this.  The code:
3196 *
3197 *      mark_inode_dirty(inode)
3198 *      stuff();
3199 *      inode->i_size = expr;
3200 *
3201 * is in error because a kswapd-driven write_inode() could occur while
3202 * `stuff()' is running, and the new i_size will be lost.  Plus the inode
3203 * will no longer be on the superblock's dirty inode list.
3204 */
3205int ext3_write_inode(struct inode *inode, struct writeback_control *wbc)
3206{
3207        if (current->flags & PF_MEMALLOC)
3208                return 0;
3209
3210        if (ext3_journal_current_handle()) {
3211                jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
3212                dump_stack();
3213                return -EIO;
3214        }
3215
3216        if (wbc->sync_mode != WB_SYNC_ALL)
3217                return 0;
3218
3219        return ext3_force_commit(inode->i_sb);
3220}
3221
3222/*
3223 * ext3_setattr()
3224 *
3225 * Called from notify_change.
3226 *
3227 * We want to trap VFS attempts to truncate the file as soon as
3228 * possible.  In particular, we want to make sure that when the VFS
3229 * shrinks i_size, we put the inode on the orphan list and modify
3230 * i_disksize immediately, so that during the subsequent flushing of
3231 * dirty pages and freeing of disk blocks, we can guarantee that any
3232 * commit will leave the blocks being flushed in an unused state on
3233 * disk.  (On recovery, the inode will get truncated and the blocks will
3234 * be freed, so we have a strong guarantee that no future commit will
3235 * leave these blocks visible to the user.)
3236 *
3237 * Called with inode->sem down.
3238 */
3239int ext3_setattr(struct dentry *dentry, struct iattr *attr)
3240{
3241        struct inode *inode = dentry->d_inode;
3242        int error, rc = 0;
3243        const unsigned int ia_valid = attr->ia_valid;
3244
3245        error = inode_change_ok(inode, attr);
3246        if (error)
3247                return error;
3248
3249        if (is_quota_modification(inode, attr))
3250                dquot_initialize(inode);
3251        if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
3252                (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
3253                handle_t *handle;
3254
3255                /* (user+group)*(old+new) structure, inode write (sb,
3256                 * inode block, ? - but truncate inode update has it) */
3257                handle = ext3_journal_start(inode, EXT3_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
3258                                        EXT3_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)+3);
3259                if (IS_ERR(handle)) {
3260                        error = PTR_ERR(handle);
3261                        goto err_out;
3262                }
3263                error = dquot_transfer(inode, attr);
3264                if (error) {
3265                        ext3_journal_stop(handle);
3266                        return error;
3267                }
3268                /* Update corresponding info in inode so that everything is in
3269                 * one transaction */
3270                if (attr->ia_valid & ATTR_UID)
3271                        inode->i_uid = attr->ia_uid;
3272                if (attr->ia_valid & ATTR_GID)
3273                        inode->i_gid = attr->ia_gid;
3274                error = ext3_mark_inode_dirty(handle, inode);
3275                ext3_journal_stop(handle);
3276        }
3277
3278        if (attr->ia_valid & ATTR_SIZE)
3279                inode_dio_wait(inode);
3280
3281        if (S_ISREG(inode->i_mode) &&
3282            attr->ia_valid & ATTR_SIZE && attr->ia_size < inode->i_size) {
3283                handle_t *handle;
3284
3285                handle = ext3_journal_start(inode, 3);
3286                if (IS_ERR(handle)) {
3287                        error = PTR_ERR(handle);
3288                        goto err_out;
3289                }
3290
3291                error = ext3_orphan_add(handle, inode);
3292                if (error) {
3293                        ext3_journal_stop(handle);
3294                        goto err_out;
3295                }
3296                EXT3_I(inode)->i_disksize = attr->ia_size;
3297                error = ext3_mark_inode_dirty(handle, inode);
3298                ext3_journal_stop(handle);
3299                if (error) {
3300                        /* Some hard fs error must have happened. Bail out. */
3301                        ext3_orphan_del(NULL, inode);
3302                        goto err_out;
3303                }
3304                rc = ext3_block_truncate_page(inode, attr->ia_size);
3305                if (rc) {
3306                        /* Cleanup orphan list and exit */
3307                        handle = ext3_journal_start(inode, 3);
3308                        if (IS_ERR(handle)) {
3309                                ext3_orphan_del(NULL, inode);
3310                                goto err_out;
3311                        }
3312                        ext3_orphan_del(handle, inode);
3313                        ext3_journal_stop(handle);
3314                        goto err_out;
3315                }
3316        }
3317
3318        if ((attr->ia_valid & ATTR_SIZE) &&
3319            attr->ia_size != i_size_read(inode)) {
3320                truncate_setsize(inode, attr->ia_size);
3321                ext3_truncate(inode);
3322        }
3323
3324        setattr_copy(inode, attr);
3325        mark_inode_dirty(inode);
3326
3327        if (ia_valid & ATTR_MODE)
3328                rc = ext3_acl_chmod(inode);
3329
3330err_out:
3331        ext3_std_error(inode->i_sb, error);
3332        if (!error)
3333                error = rc;
3334        return error;
3335}
3336
3337
3338/*
3339 * How many blocks doth make a writepage()?
3340 *
3341 * With N blocks per page, it may be:
3342 * N data blocks
3343 * 2 indirect block
3344 * 2 dindirect
3345 * 1 tindirect
3346 * N+5 bitmap blocks (from the above)
3347 * N+5 group descriptor summary blocks
3348 * 1 inode block
3349 * 1 superblock.
3350 * 2 * EXT3_SINGLEDATA_TRANS_BLOCKS for the quote files
3351 *
3352 * 3 * (N + 5) + 2 + 2 * EXT3_SINGLEDATA_TRANS_BLOCKS
3353 *
3354 * With ordered or writeback data it's the same, less the N data blocks.
3355 *
3356 * If the inode's direct blocks can hold an integral number of pages then a
3357 * page cannot straddle two indirect blocks, and we can only touch one indirect
3358 * and dindirect block, and the "5" above becomes "3".
3359 *
3360 * This still overestimates under most circumstances.  If we were to pass the
3361 * start and end offsets in here as well we could do block_to_path() on each
3362 * block and work out the exact number of indirects which are touched.  Pah.
3363 */
3364
3365static int ext3_writepage_trans_blocks(struct inode *inode)
3366{
3367        int bpp = ext3_journal_blocks_per_page(inode);
3368        int indirects = (EXT3_NDIR_BLOCKS % bpp) ? 5 : 3;
3369        int ret;
3370
3371        if (ext3_should_journal_data(inode))
3372                ret = 3 * (bpp + indirects) + 2;
3373        else
3374                ret = 2 * (bpp + indirects) + indirects + 2;
3375
3376#ifdef CONFIG_QUOTA
3377        /* We know that structure was already allocated during dquot_initialize so
3378         * we will be updating only the data blocks + inodes */
3379        ret += EXT3_MAXQUOTAS_TRANS_BLOCKS(inode->i_sb);
3380#endif
3381
3382        return ret;
3383}
3384
3385/*
3386 * The caller must have previously called ext3_reserve_inode_write().
3387 * Give this, we know that the caller already has write access to iloc->bh.
3388 */
3389int ext3_mark_iloc_dirty(handle_t *handle,
3390                struct inode *inode, struct ext3_iloc *iloc)
3391{
3392        int err = 0;
3393
3394        /* the do_update_inode consumes one bh->b_count */
3395        get_bh(iloc->bh);
3396
3397        /* ext3_do_update_inode() does journal_dirty_metadata */
3398        err = ext3_do_update_inode(handle, inode, iloc);
3399        put_bh(iloc->bh);
3400        return err;
3401}
3402
3403/*
3404 * On success, We end up with an outstanding reference count against
3405 * iloc->bh.  This _must_ be cleaned up later.
3406 */
3407
3408int
3409ext3_reserve_inode_write(handle_t *handle, struct inode *inode,
3410                         struct ext3_iloc *iloc)
3411{
3412        int err = 0;
3413        if (handle) {
3414                err = ext3_get_inode_loc(inode, iloc);
3415                if (!err) {
3416                        BUFFER_TRACE(iloc->bh, "get_write_access");
3417                        err = ext3_journal_get_write_access(handle, iloc->bh);
3418                        if (err) {
3419                                brelse(iloc->bh);
3420                                iloc->bh = NULL;
3421                        }
3422                }
3423        }
3424        ext3_std_error(inode->i_sb, err);
3425        return err;
3426}
3427
3428/*
3429 * What we do here is to mark the in-core inode as clean with respect to inode
3430 * dirtiness (it may still be data-dirty).
3431 * This means that the in-core inode may be reaped by prune_icache
3432 * without having to perform any I/O.  This is a very good thing,
3433 * because *any* task may call prune_icache - even ones which
3434 * have a transaction open against a different journal.
3435 *
3436 * Is this cheating?  Not really.  Sure, we haven't written the
3437 * inode out, but prune_icache isn't a user-visible syncing function.
3438 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
3439 * we start and wait on commits.
3440 *
3441 * Is this efficient/effective?  Well, we're being nice to the system
3442 * by cleaning up our inodes proactively so they can be reaped
3443 * without I/O.  But we are potentially leaving up to five seconds'
3444 * worth of inodes floating about which prune_icache wants us to
3445 * write out.  One way to fix that would be to get prune_icache()
3446 * to do a write_super() to free up some memory.  It has the desired
3447 * effect.
3448 */
3449int ext3_mark_inode_dirty(handle_t *handle, struct inode *inode)
3450{
3451        struct ext3_iloc iloc;
3452        int err;
3453
3454        might_sleep();
3455        trace_ext3_mark_inode_dirty(inode, _RET_IP_);
3456        err = ext3_reserve_inode_write(handle, inode, &iloc);
3457        if (!err)
3458                err = ext3_mark_iloc_dirty(handle, inode, &iloc);
3459        return err;
3460}
3461
3462/*
3463 * ext3_dirty_inode() is called from __mark_inode_dirty()
3464 *
3465 * We're really interested in the case where a file is being extended.
3466 * i_size has been changed by generic_commit_write() and we thus need
3467 * to include the updated inode in the current transaction.
3468 *
3469 * Also, dquot_alloc_space() will always dirty the inode when blocks
3470 * are allocated to the file.
3471 *
3472 * If the inode is marked synchronous, we don't honour that here - doing
3473 * so would cause a commit on atime updates, which we don't bother doing.
3474 * We handle synchronous inodes at the highest possible level.
3475 */
3476void ext3_dirty_inode(struct inode *inode, int flags)
3477{
3478        handle_t *current_handle = ext3_journal_current_handle();
3479        handle_t *handle;
3480
3481        handle = ext3_journal_start(inode, 2);
3482        if (IS_ERR(handle))
3483                goto out;
3484        if (current_handle &&
3485                current_handle->h_transaction != handle->h_transaction) {
3486                /* This task has a transaction open against a different fs */
3487                printk(KERN_EMERG "%s: transactions do not match!\n",
3488                       __func__);
3489        } else {
3490                jbd_debug(5, "marking dirty.  outer handle=%p\n",
3491                                current_handle);
3492                ext3_mark_inode_dirty(handle, inode);
3493        }
3494        ext3_journal_stop(handle);
3495out:
3496        return;
3497}
3498
3499#if 0
3500/*
3501 * Bind an inode's backing buffer_head into this transaction, to prevent
3502 * it from being flushed to disk early.  Unlike
3503 * ext3_reserve_inode_write, this leaves behind no bh reference and
3504 * returns no iloc structure, so the caller needs to repeat the iloc
3505 * lookup to mark the inode dirty later.
3506 */
3507static int ext3_pin_inode(handle_t *handle, struct inode *inode)
3508{
3509        struct ext3_iloc iloc;
3510
3511        int err = 0;
3512        if (handle) {
3513                err = ext3_get_inode_loc(inode, &iloc);
3514                if (!err) {
3515                        BUFFER_TRACE(iloc.bh, "get_write_access");
3516                        err = journal_get_write_access(handle, iloc.bh);
3517                        if (!err)
3518                                err = ext3_journal_dirty_metadata(handle,
3519                                                                  iloc.bh);
3520                        brelse(iloc.bh);
3521                }
3522        }
3523        ext3_std_error(inode->i_sb, err);
3524        return err;
3525}
3526#endif
3527
3528int ext3_change_inode_journal_flag(struct inode *inode, int val)
3529{
3530        journal_t *journal;
3531        handle_t *handle;
3532        int err;
3533
3534        /*
3535         * We have to be very careful here: changing a data block's
3536         * journaling status dynamically is dangerous.  If we write a
3537         * data block to the journal, change the status and then delete
3538         * that block, we risk forgetting to revoke the old log record
3539         * from the journal and so a subsequent replay can corrupt data.
3540         * So, first we make sure that the journal is empty and that
3541         * nobody is changing anything.
3542         */
3543
3544        journal = EXT3_JOURNAL(inode);
3545        if (is_journal_aborted(journal))
3546                return -EROFS;
3547
3548        journal_lock_updates(journal);
3549        journal_flush(journal);
3550
3551        /*
3552         * OK, there are no updates running now, and all cached data is
3553         * synced to disk.  We are now in a completely consistent state
3554         * which doesn't have anything in the journal, and we know that
3555         * no filesystem updates are running, so it is safe to modify
3556         * the inode's in-core data-journaling state flag now.
3557         */
3558
3559        if (val)
3560                EXT3_I(inode)->i_flags |= EXT3_JOURNAL_DATA_FL;
3561        else
3562                EXT3_I(inode)->i_flags &= ~EXT3_JOURNAL_DATA_FL;
3563        ext3_set_aops(inode);
3564
3565        journal_unlock_updates(journal);
3566
3567        /* Finally we can mark the inode as dirty. */
3568
3569        handle = ext3_journal_start(inode, 1);
3570        if (IS_ERR(handle))
3571                return PTR_ERR(handle);
3572
3573        err = ext3_mark_inode_dirty(handle, inode);
3574        handle->h_sync = 1;
3575        ext3_journal_stop(handle);
3576        ext3_std_error(inode->i_sb, err);
3577
3578        return err;
3579}
3580