linux/fs/xfs/xfs_aops.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
   3 * All Rights Reserved.
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it would be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write the Free Software Foundation,
  16 * Inc.,  51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
  17 */
  18#include "xfs.h"
  19#include "xfs_bit.h"
  20#include "xfs_log.h"
  21#include "xfs_inum.h"
  22#include "xfs_sb.h"
  23#include "xfs_ag.h"
  24#include "xfs_trans.h"
  25#include "xfs_mount.h"
  26#include "xfs_bmap_btree.h"
  27#include "xfs_dinode.h"
  28#include "xfs_inode.h"
  29#include "xfs_alloc.h"
  30#include "xfs_error.h"
  31#include "xfs_rw.h"
  32#include "xfs_iomap.h"
  33#include "xfs_vnodeops.h"
  34#include "xfs_trace.h"
  35#include "xfs_bmap.h"
  36#include <linux/gfp.h>
  37#include <linux/mpage.h>
  38#include <linux/pagevec.h>
  39#include <linux/writeback.h>
  40
  41
  42/*
  43 * Prime number of hash buckets since address is used as the key.
  44 */
  45#define NVSYNC          37
  46#define to_ioend_wq(v)  (&xfs_ioend_wq[((unsigned long)v) % NVSYNC])
  47static wait_queue_head_t xfs_ioend_wq[NVSYNC];
  48
  49void __init
  50xfs_ioend_init(void)
  51{
  52        int i;
  53
  54        for (i = 0; i < NVSYNC; i++)
  55                init_waitqueue_head(&xfs_ioend_wq[i]);
  56}
  57
  58void
  59xfs_ioend_wait(
  60        xfs_inode_t     *ip)
  61{
  62        wait_queue_head_t *wq = to_ioend_wq(ip);
  63
  64        wait_event(*wq, (atomic_read(&ip->i_iocount) == 0));
  65}
  66
  67STATIC void
  68xfs_ioend_wake(
  69        xfs_inode_t     *ip)
  70{
  71        if (atomic_dec_and_test(&ip->i_iocount))
  72                wake_up(to_ioend_wq(ip));
  73}
  74
  75void
  76xfs_count_page_state(
  77        struct page             *page,
  78        int                     *delalloc,
  79        int                     *unwritten)
  80{
  81        struct buffer_head      *bh, *head;
  82
  83        *delalloc = *unwritten = 0;
  84
  85        bh = head = page_buffers(page);
  86        do {
  87                if (buffer_unwritten(bh))
  88                        (*unwritten) = 1;
  89                else if (buffer_delay(bh))
  90                        (*delalloc) = 1;
  91        } while ((bh = bh->b_this_page) != head);
  92}
  93
  94STATIC struct block_device *
  95xfs_find_bdev_for_inode(
  96        struct inode            *inode)
  97{
  98        struct xfs_inode        *ip = XFS_I(inode);
  99        struct xfs_mount        *mp = ip->i_mount;
 100
 101        if (XFS_IS_REALTIME_INODE(ip))
 102                return mp->m_rtdev_targp->bt_bdev;
 103        else
 104                return mp->m_ddev_targp->bt_bdev;
 105}
 106
 107/*
 108 * We're now finished for good with this ioend structure.
 109 * Update the page state via the associated buffer_heads,
 110 * release holds on the inode and bio, and finally free
 111 * up memory.  Do not use the ioend after this.
 112 */
 113STATIC void
 114xfs_destroy_ioend(
 115        xfs_ioend_t             *ioend)
 116{
 117        struct buffer_head      *bh, *next;
 118        struct xfs_inode        *ip = XFS_I(ioend->io_inode);
 119
 120        for (bh = ioend->io_buffer_head; bh; bh = next) {
 121                next = bh->b_private;
 122                bh->b_end_io(bh, !ioend->io_error);
 123        }
 124
 125        /*
 126         * Volume managers supporting multiple paths can send back ENODEV
 127         * when the final path disappears.  In this case continuing to fill
 128         * the page cache with dirty data which cannot be written out is
 129         * evil, so prevent that.
 130         */
 131        if (unlikely(ioend->io_error == -ENODEV)) {
 132                xfs_do_force_shutdown(ip->i_mount, SHUTDOWN_DEVICE_REQ,
 133                                      __FILE__, __LINE__);
 134        }
 135
 136        xfs_ioend_wake(ip);
 137        mempool_free(ioend, xfs_ioend_pool);
 138}
 139
 140/*
 141 * If the end of the current ioend is beyond the current EOF,
 142 * return the new EOF value, otherwise zero.
 143 */
 144STATIC xfs_fsize_t
 145xfs_ioend_new_eof(
 146        xfs_ioend_t             *ioend)
 147{
 148        xfs_inode_t             *ip = XFS_I(ioend->io_inode);
 149        xfs_fsize_t             isize;
 150        xfs_fsize_t             bsize;
 151
 152        bsize = ioend->io_offset + ioend->io_size;
 153        isize = MAX(ip->i_size, ip->i_new_size);
 154        isize = MIN(isize, bsize);
 155        return isize > ip->i_d.di_size ? isize : 0;
 156}
 157
 158/*
 159 * Update on-disk file size now that data has been written to disk.  The
 160 * current in-memory file size is i_size.  If a write is beyond eof i_new_size
 161 * will be the intended file size until i_size is updated.  If this write does
 162 * not extend all the way to the valid file size then restrict this update to
 163 * the end of the write.
 164 *
 165 * This function does not block as blocking on the inode lock in IO completion
 166 * can lead to IO completion order dependency deadlocks.. If it can't get the
 167 * inode ilock it will return EAGAIN. Callers must handle this.
 168 */
 169STATIC int
 170xfs_setfilesize(
 171        xfs_ioend_t             *ioend)
 172{
 173        xfs_inode_t             *ip = XFS_I(ioend->io_inode);
 174        xfs_fsize_t             isize;
 175
 176        if (unlikely(ioend->io_error))
 177                return 0;
 178
 179        if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
 180                return EAGAIN;
 181
 182        isize = xfs_ioend_new_eof(ioend);
 183        if (isize) {
 184                trace_xfs_setfilesize(ip, ioend->io_offset, ioend->io_size);
 185                ip->i_d.di_size = isize;
 186                xfs_mark_inode_dirty(ip);
 187        }
 188
 189        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 190        return 0;
 191}
 192
 193/*
 194 * Schedule IO completion handling on the final put of an ioend.
 195 */
 196STATIC void
 197xfs_finish_ioend(
 198        struct xfs_ioend        *ioend)
 199{
 200        if (atomic_dec_and_test(&ioend->io_remaining)) {
 201                if (ioend->io_type == IO_UNWRITTEN)
 202                        queue_work(xfsconvertd_workqueue, &ioend->io_work);
 203                else
 204                        queue_work(xfsdatad_workqueue, &ioend->io_work);
 205        }
 206}
 207
 208/*
 209 * IO write completion.
 210 */
 211STATIC void
 212xfs_end_io(
 213        struct work_struct *work)
 214{
 215        xfs_ioend_t     *ioend = container_of(work, xfs_ioend_t, io_work);
 216        struct xfs_inode *ip = XFS_I(ioend->io_inode);
 217        int             error = 0;
 218
 219        /*
 220         * For unwritten extents we need to issue transactions to convert a
 221         * range to normal written extens after the data I/O has finished.
 222         */
 223        if (ioend->io_type == IO_UNWRITTEN &&
 224            likely(!ioend->io_error && !XFS_FORCED_SHUTDOWN(ip->i_mount))) {
 225
 226                error = xfs_iomap_write_unwritten(ip, ioend->io_offset,
 227                                                 ioend->io_size);
 228                if (error)
 229                        ioend->io_error = error;
 230        }
 231
 232        /*
 233         * We might have to update the on-disk file size after extending
 234         * writes.
 235         */
 236        error = xfs_setfilesize(ioend);
 237        ASSERT(!error || error == EAGAIN);
 238
 239        /*
 240         * If we didn't complete processing of the ioend, requeue it to the
 241         * tail of the workqueue for another attempt later. Otherwise destroy
 242         * it.
 243         */
 244        if (error == EAGAIN) {
 245                atomic_inc(&ioend->io_remaining);
 246                xfs_finish_ioend(ioend);
 247                /* ensure we don't spin on blocked ioends */
 248                delay(1);
 249        } else {
 250                if (ioend->io_iocb)
 251                        aio_complete(ioend->io_iocb, ioend->io_result, 0);
 252                xfs_destroy_ioend(ioend);
 253        }
 254}
 255
 256/*
 257 * Call IO completion handling in caller context on the final put of an ioend.
 258 */
 259STATIC void
 260xfs_finish_ioend_sync(
 261        struct xfs_ioend        *ioend)
 262{
 263        if (atomic_dec_and_test(&ioend->io_remaining))
 264                xfs_end_io(&ioend->io_work);
 265}
 266
 267/*
 268 * Allocate and initialise an IO completion structure.
 269 * We need to track unwritten extent write completion here initially.
 270 * We'll need to extend this for updating the ondisk inode size later
 271 * (vs. incore size).
 272 */
 273STATIC xfs_ioend_t *
 274xfs_alloc_ioend(
 275        struct inode            *inode,
 276        unsigned int            type)
 277{
 278        xfs_ioend_t             *ioend;
 279
 280        ioend = mempool_alloc(xfs_ioend_pool, GFP_NOFS);
 281
 282        /*
 283         * Set the count to 1 initially, which will prevent an I/O
 284         * completion callback from happening before we have started
 285         * all the I/O from calling the completion routine too early.
 286         */
 287        atomic_set(&ioend->io_remaining, 1);
 288        ioend->io_error = 0;
 289        ioend->io_list = NULL;
 290        ioend->io_type = type;
 291        ioend->io_inode = inode;
 292        ioend->io_buffer_head = NULL;
 293        ioend->io_buffer_tail = NULL;
 294        atomic_inc(&XFS_I(ioend->io_inode)->i_iocount);
 295        ioend->io_offset = 0;
 296        ioend->io_size = 0;
 297        ioend->io_iocb = NULL;
 298        ioend->io_result = 0;
 299
 300        INIT_WORK(&ioend->io_work, xfs_end_io);
 301        return ioend;
 302}
 303
 304STATIC int
 305xfs_map_blocks(
 306        struct inode            *inode,
 307        loff_t                  offset,
 308        struct xfs_bmbt_irec    *imap,
 309        int                     type,
 310        int                     nonblocking)
 311{
 312        struct xfs_inode        *ip = XFS_I(inode);
 313        struct xfs_mount        *mp = ip->i_mount;
 314        ssize_t                 count = 1 << inode->i_blkbits;
 315        xfs_fileoff_t           offset_fsb, end_fsb;
 316        int                     error = 0;
 317        int                     bmapi_flags = XFS_BMAPI_ENTIRE;
 318        int                     nimaps = 1;
 319
 320        if (XFS_FORCED_SHUTDOWN(mp))
 321                return -XFS_ERROR(EIO);
 322
 323        if (type == IO_UNWRITTEN)
 324                bmapi_flags |= XFS_BMAPI_IGSTATE;
 325
 326        if (!xfs_ilock_nowait(ip, XFS_ILOCK_SHARED)) {
 327                if (nonblocking)
 328                        return -XFS_ERROR(EAGAIN);
 329                xfs_ilock(ip, XFS_ILOCK_SHARED);
 330        }
 331
 332        ASSERT(ip->i_d.di_format != XFS_DINODE_FMT_BTREE ||
 333               (ip->i_df.if_flags & XFS_IFEXTENTS));
 334        ASSERT(offset <= mp->m_maxioffset);
 335
 336        if (offset + count > mp->m_maxioffset)
 337                count = mp->m_maxioffset - offset;
 338        end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + count);
 339        offset_fsb = XFS_B_TO_FSBT(mp, offset);
 340        error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
 341                          bmapi_flags,  NULL, 0, imap, &nimaps, NULL);
 342        xfs_iunlock(ip, XFS_ILOCK_SHARED);
 343
 344        if (error)
 345                return -XFS_ERROR(error);
 346
 347        if (type == IO_DELALLOC &&
 348            (!nimaps || isnullstartblock(imap->br_startblock))) {
 349                error = xfs_iomap_write_allocate(ip, offset, count, imap);
 350                if (!error)
 351                        trace_xfs_map_blocks_alloc(ip, offset, count, type, imap);
 352                return -XFS_ERROR(error);
 353        }
 354
 355#ifdef DEBUG
 356        if (type == IO_UNWRITTEN) {
 357                ASSERT(nimaps);
 358                ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 359                ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 360        }
 361#endif
 362        if (nimaps)
 363                trace_xfs_map_blocks_found(ip, offset, count, type, imap);
 364        return 0;
 365}
 366
 367STATIC int
 368xfs_imap_valid(
 369        struct inode            *inode,
 370        struct xfs_bmbt_irec    *imap,
 371        xfs_off_t               offset)
 372{
 373        offset >>= inode->i_blkbits;
 374
 375        return offset >= imap->br_startoff &&
 376                offset < imap->br_startoff + imap->br_blockcount;
 377}
 378
 379/*
 380 * BIO completion handler for buffered IO.
 381 */
 382STATIC void
 383xfs_end_bio(
 384        struct bio              *bio,
 385        int                     error)
 386{
 387        xfs_ioend_t             *ioend = bio->bi_private;
 388
 389        ASSERT(atomic_read(&bio->bi_cnt) >= 1);
 390        ioend->io_error = test_bit(BIO_UPTODATE, &bio->bi_flags) ? 0 : error;
 391
 392        /* Toss bio and pass work off to an xfsdatad thread */
 393        bio->bi_private = NULL;
 394        bio->bi_end_io = NULL;
 395        bio_put(bio);
 396
 397        xfs_finish_ioend(ioend);
 398}
 399
 400STATIC void
 401xfs_submit_ioend_bio(
 402        struct writeback_control *wbc,
 403        xfs_ioend_t             *ioend,
 404        struct bio              *bio)
 405{
 406        atomic_inc(&ioend->io_remaining);
 407        bio->bi_private = ioend;
 408        bio->bi_end_io = xfs_end_bio;
 409
 410        /*
 411         * If the I/O is beyond EOF we mark the inode dirty immediately
 412         * but don't update the inode size until I/O completion.
 413         */
 414        if (xfs_ioend_new_eof(ioend))
 415                xfs_mark_inode_dirty(XFS_I(ioend->io_inode));
 416
 417        submit_bio(wbc->sync_mode == WB_SYNC_ALL ? WRITE_SYNC : WRITE, bio);
 418}
 419
 420STATIC struct bio *
 421xfs_alloc_ioend_bio(
 422        struct buffer_head      *bh)
 423{
 424        int                     nvecs = bio_get_nr_vecs(bh->b_bdev);
 425        struct bio              *bio = bio_alloc(GFP_NOIO, nvecs);
 426
 427        ASSERT(bio->bi_private == NULL);
 428        bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
 429        bio->bi_bdev = bh->b_bdev;
 430        return bio;
 431}
 432
 433STATIC void
 434xfs_start_buffer_writeback(
 435        struct buffer_head      *bh)
 436{
 437        ASSERT(buffer_mapped(bh));
 438        ASSERT(buffer_locked(bh));
 439        ASSERT(!buffer_delay(bh));
 440        ASSERT(!buffer_unwritten(bh));
 441
 442        mark_buffer_async_write(bh);
 443        set_buffer_uptodate(bh);
 444        clear_buffer_dirty(bh);
 445}
 446
 447STATIC void
 448xfs_start_page_writeback(
 449        struct page             *page,
 450        int                     clear_dirty,
 451        int                     buffers)
 452{
 453        ASSERT(PageLocked(page));
 454        ASSERT(!PageWriteback(page));
 455        if (clear_dirty)
 456                clear_page_dirty_for_io(page);
 457        set_page_writeback(page);
 458        unlock_page(page);
 459        /* If no buffers on the page are to be written, finish it here */
 460        if (!buffers)
 461                end_page_writeback(page);
 462}
 463
 464static inline int bio_add_buffer(struct bio *bio, struct buffer_head *bh)
 465{
 466        return bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
 467}
 468
 469/*
 470 * Submit all of the bios for all of the ioends we have saved up, covering the
 471 * initial writepage page and also any probed pages.
 472 *
 473 * Because we may have multiple ioends spanning a page, we need to start
 474 * writeback on all the buffers before we submit them for I/O. If we mark the
 475 * buffers as we got, then we can end up with a page that only has buffers
 476 * marked async write and I/O complete on can occur before we mark the other
 477 * buffers async write.
 478 *
 479 * The end result of this is that we trip a bug in end_page_writeback() because
 480 * we call it twice for the one page as the code in end_buffer_async_write()
 481 * assumes that all buffers on the page are started at the same time.
 482 *
 483 * The fix is two passes across the ioend list - one to start writeback on the
 484 * buffer_heads, and then submit them for I/O on the second pass.
 485 */
 486STATIC void
 487xfs_submit_ioend(
 488        struct writeback_control *wbc,
 489        xfs_ioend_t             *ioend)
 490{
 491        xfs_ioend_t             *head = ioend;
 492        xfs_ioend_t             *next;
 493        struct buffer_head      *bh;
 494        struct bio              *bio;
 495        sector_t                lastblock = 0;
 496
 497        /* Pass 1 - start writeback */
 498        do {
 499                next = ioend->io_list;
 500                for (bh = ioend->io_buffer_head; bh; bh = bh->b_private)
 501                        xfs_start_buffer_writeback(bh);
 502        } while ((ioend = next) != NULL);
 503
 504        /* Pass 2 - submit I/O */
 505        ioend = head;
 506        do {
 507                next = ioend->io_list;
 508                bio = NULL;
 509
 510                for (bh = ioend->io_buffer_head; bh; bh = bh->b_private) {
 511
 512                        if (!bio) {
 513 retry:
 514                                bio = xfs_alloc_ioend_bio(bh);
 515                        } else if (bh->b_blocknr != lastblock + 1) {
 516                                xfs_submit_ioend_bio(wbc, ioend, bio);
 517                                goto retry;
 518                        }
 519
 520                        if (bio_add_buffer(bio, bh) != bh->b_size) {
 521                                xfs_submit_ioend_bio(wbc, ioend, bio);
 522                                goto retry;
 523                        }
 524
 525                        lastblock = bh->b_blocknr;
 526                }
 527                if (bio)
 528                        xfs_submit_ioend_bio(wbc, ioend, bio);
 529                xfs_finish_ioend(ioend);
 530        } while ((ioend = next) != NULL);
 531}
 532
 533/*
 534 * Cancel submission of all buffer_heads so far in this endio.
 535 * Toss the endio too.  Only ever called for the initial page
 536 * in a writepage request, so only ever one page.
 537 */
 538STATIC void
 539xfs_cancel_ioend(
 540        xfs_ioend_t             *ioend)
 541{
 542        xfs_ioend_t             *next;
 543        struct buffer_head      *bh, *next_bh;
 544
 545        do {
 546                next = ioend->io_list;
 547                bh = ioend->io_buffer_head;
 548                do {
 549                        next_bh = bh->b_private;
 550                        clear_buffer_async_write(bh);
 551                        unlock_buffer(bh);
 552                } while ((bh = next_bh) != NULL);
 553
 554                xfs_ioend_wake(XFS_I(ioend->io_inode));
 555                mempool_free(ioend, xfs_ioend_pool);
 556        } while ((ioend = next) != NULL);
 557}
 558
 559/*
 560 * Test to see if we've been building up a completion structure for
 561 * earlier buffers -- if so, we try to append to this ioend if we
 562 * can, otherwise we finish off any current ioend and start another.
 563 * Return true if we've finished the given ioend.
 564 */
 565STATIC void
 566xfs_add_to_ioend(
 567        struct inode            *inode,
 568        struct buffer_head      *bh,
 569        xfs_off_t               offset,
 570        unsigned int            type,
 571        xfs_ioend_t             **result,
 572        int                     need_ioend)
 573{
 574        xfs_ioend_t             *ioend = *result;
 575
 576        if (!ioend || need_ioend || type != ioend->io_type) {
 577                xfs_ioend_t     *previous = *result;
 578
 579                ioend = xfs_alloc_ioend(inode, type);
 580                ioend->io_offset = offset;
 581                ioend->io_buffer_head = bh;
 582                ioend->io_buffer_tail = bh;
 583                if (previous)
 584                        previous->io_list = ioend;
 585                *result = ioend;
 586        } else {
 587                ioend->io_buffer_tail->b_private = bh;
 588                ioend->io_buffer_tail = bh;
 589        }
 590
 591        bh->b_private = NULL;
 592        ioend->io_size += bh->b_size;
 593}
 594
 595STATIC void
 596xfs_map_buffer(
 597        struct inode            *inode,
 598        struct buffer_head      *bh,
 599        struct xfs_bmbt_irec    *imap,
 600        xfs_off_t               offset)
 601{
 602        sector_t                bn;
 603        struct xfs_mount        *m = XFS_I(inode)->i_mount;
 604        xfs_off_t               iomap_offset = XFS_FSB_TO_B(m, imap->br_startoff);
 605        xfs_daddr_t             iomap_bn = xfs_fsb_to_db(XFS_I(inode), imap->br_startblock);
 606
 607        ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 608        ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 609
 610        bn = (iomap_bn >> (inode->i_blkbits - BBSHIFT)) +
 611              ((offset - iomap_offset) >> inode->i_blkbits);
 612
 613        ASSERT(bn || XFS_IS_REALTIME_INODE(XFS_I(inode)));
 614
 615        bh->b_blocknr = bn;
 616        set_buffer_mapped(bh);
 617}
 618
 619STATIC void
 620xfs_map_at_offset(
 621        struct inode            *inode,
 622        struct buffer_head      *bh,
 623        struct xfs_bmbt_irec    *imap,
 624        xfs_off_t               offset)
 625{
 626        ASSERT(imap->br_startblock != HOLESTARTBLOCK);
 627        ASSERT(imap->br_startblock != DELAYSTARTBLOCK);
 628
 629        xfs_map_buffer(inode, bh, imap, offset);
 630        set_buffer_mapped(bh);
 631        clear_buffer_delay(bh);
 632        clear_buffer_unwritten(bh);
 633}
 634
 635/*
 636 * Test if a given page is suitable for writing as part of an unwritten
 637 * or delayed allocate extent.
 638 */
 639STATIC int
 640xfs_is_delayed_page(
 641        struct page             *page,
 642        unsigned int            type)
 643{
 644        if (PageWriteback(page))
 645                return 0;
 646
 647        if (page->mapping && page_has_buffers(page)) {
 648                struct buffer_head      *bh, *head;
 649                int                     acceptable = 0;
 650
 651                bh = head = page_buffers(page);
 652                do {
 653                        if (buffer_unwritten(bh))
 654                                acceptable = (type == IO_UNWRITTEN);
 655                        else if (buffer_delay(bh))
 656                                acceptable = (type == IO_DELALLOC);
 657                        else if (buffer_dirty(bh) && buffer_mapped(bh))
 658                                acceptable = (type == IO_OVERWRITE);
 659                        else
 660                                break;
 661                } while ((bh = bh->b_this_page) != head);
 662
 663                if (acceptable)
 664                        return 1;
 665        }
 666
 667        return 0;
 668}
 669
 670/*
 671 * Allocate & map buffers for page given the extent map. Write it out.
 672 * except for the original page of a writepage, this is called on
 673 * delalloc/unwritten pages only, for the original page it is possible
 674 * that the page has no mapping at all.
 675 */
 676STATIC int
 677xfs_convert_page(
 678        struct inode            *inode,
 679        struct page             *page,
 680        loff_t                  tindex,
 681        struct xfs_bmbt_irec    *imap,
 682        xfs_ioend_t             **ioendp,
 683        struct writeback_control *wbc)
 684{
 685        struct buffer_head      *bh, *head;
 686        xfs_off_t               end_offset;
 687        unsigned long           p_offset;
 688        unsigned int            type;
 689        int                     len, page_dirty;
 690        int                     count = 0, done = 0, uptodate = 1;
 691        xfs_off_t               offset = page_offset(page);
 692
 693        if (page->index != tindex)
 694                goto fail;
 695        if (!trylock_page(page))
 696                goto fail;
 697        if (PageWriteback(page))
 698                goto fail_unlock_page;
 699        if (page->mapping != inode->i_mapping)
 700                goto fail_unlock_page;
 701        if (!xfs_is_delayed_page(page, (*ioendp)->io_type))
 702                goto fail_unlock_page;
 703
 704        /*
 705         * page_dirty is initially a count of buffers on the page before
 706         * EOF and is decremented as we move each into a cleanable state.
 707         *
 708         * Derivation:
 709         *
 710         * End offset is the highest offset that this page should represent.
 711         * If we are on the last page, (end_offset & (PAGE_CACHE_SIZE - 1))
 712         * will evaluate non-zero and be less than PAGE_CACHE_SIZE and
 713         * hence give us the correct page_dirty count. On any other page,
 714         * it will be zero and in that case we need page_dirty to be the
 715         * count of buffers on the page.
 716         */
 717        end_offset = min_t(unsigned long long,
 718                        (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 719                        i_size_read(inode));
 720
 721        len = 1 << inode->i_blkbits;
 722        p_offset = min_t(unsigned long, end_offset & (PAGE_CACHE_SIZE - 1),
 723                                        PAGE_CACHE_SIZE);
 724        p_offset = p_offset ? roundup(p_offset, len) : PAGE_CACHE_SIZE;
 725        page_dirty = p_offset / len;
 726
 727        bh = head = page_buffers(page);
 728        do {
 729                if (offset >= end_offset)
 730                        break;
 731                if (!buffer_uptodate(bh))
 732                        uptodate = 0;
 733                if (!(PageUptodate(page) || buffer_uptodate(bh))) {
 734                        done = 1;
 735                        continue;
 736                }
 737
 738                if (buffer_unwritten(bh) || buffer_delay(bh) ||
 739                    buffer_mapped(bh)) {
 740                        if (buffer_unwritten(bh))
 741                                type = IO_UNWRITTEN;
 742                        else if (buffer_delay(bh))
 743                                type = IO_DELALLOC;
 744                        else
 745                                type = IO_OVERWRITE;
 746
 747                        if (!xfs_imap_valid(inode, imap, offset)) {
 748                                done = 1;
 749                                continue;
 750                        }
 751
 752                        lock_buffer(bh);
 753                        if (type != IO_OVERWRITE)
 754                                xfs_map_at_offset(inode, bh, imap, offset);
 755                        xfs_add_to_ioend(inode, bh, offset, type,
 756                                         ioendp, done);
 757
 758                        page_dirty--;
 759                        count++;
 760                } else {
 761                        done = 1;
 762                }
 763        } while (offset += len, (bh = bh->b_this_page) != head);
 764
 765        if (uptodate && bh == head)
 766                SetPageUptodate(page);
 767
 768        if (count) {
 769                if (--wbc->nr_to_write <= 0 &&
 770                    wbc->sync_mode == WB_SYNC_NONE)
 771                        done = 1;
 772        }
 773        xfs_start_page_writeback(page, !page_dirty, count);
 774
 775        return done;
 776 fail_unlock_page:
 777        unlock_page(page);
 778 fail:
 779        return 1;
 780}
 781
 782/*
 783 * Convert & write out a cluster of pages in the same extent as defined
 784 * by mp and following the start page.
 785 */
 786STATIC void
 787xfs_cluster_write(
 788        struct inode            *inode,
 789        pgoff_t                 tindex,
 790        struct xfs_bmbt_irec    *imap,
 791        xfs_ioend_t             **ioendp,
 792        struct writeback_control *wbc,
 793        pgoff_t                 tlast)
 794{
 795        struct pagevec          pvec;
 796        int                     done = 0, i;
 797
 798        pagevec_init(&pvec, 0);
 799        while (!done && tindex <= tlast) {
 800                unsigned len = min_t(pgoff_t, PAGEVEC_SIZE, tlast - tindex + 1);
 801
 802                if (!pagevec_lookup(&pvec, inode->i_mapping, tindex, len))
 803                        break;
 804
 805                for (i = 0; i < pagevec_count(&pvec); i++) {
 806                        done = xfs_convert_page(inode, pvec.pages[i], tindex++,
 807                                        imap, ioendp, wbc);
 808                        if (done)
 809                                break;
 810                }
 811
 812                pagevec_release(&pvec);
 813                cond_resched();
 814        }
 815}
 816
 817STATIC void
 818xfs_vm_invalidatepage(
 819        struct page             *page,
 820        unsigned long           offset)
 821{
 822        trace_xfs_invalidatepage(page->mapping->host, page, offset);
 823        block_invalidatepage(page, offset);
 824}
 825
 826/*
 827 * If the page has delalloc buffers on it, we need to punch them out before we
 828 * invalidate the page. If we don't, we leave a stale delalloc mapping on the
 829 * inode that can trip a BUG() in xfs_get_blocks() later on if a direct IO read
 830 * is done on that same region - the delalloc extent is returned when none is
 831 * supposed to be there.
 832 *
 833 * We prevent this by truncating away the delalloc regions on the page before
 834 * invalidating it. Because they are delalloc, we can do this without needing a
 835 * transaction. Indeed - if we get ENOSPC errors, we have to be able to do this
 836 * truncation without a transaction as there is no space left for block
 837 * reservation (typically why we see a ENOSPC in writeback).
 838 *
 839 * This is not a performance critical path, so for now just do the punching a
 840 * buffer head at a time.
 841 */
 842STATIC void
 843xfs_aops_discard_page(
 844        struct page             *page)
 845{
 846        struct inode            *inode = page->mapping->host;
 847        struct xfs_inode        *ip = XFS_I(inode);
 848        struct buffer_head      *bh, *head;
 849        loff_t                  offset = page_offset(page);
 850
 851        if (!xfs_is_delayed_page(page, IO_DELALLOC))
 852                goto out_invalidate;
 853
 854        if (XFS_FORCED_SHUTDOWN(ip->i_mount))
 855                goto out_invalidate;
 856
 857        xfs_alert(ip->i_mount,
 858                "page discard on page %p, inode 0x%llx, offset %llu.",
 859                        page, ip->i_ino, offset);
 860
 861        xfs_ilock(ip, XFS_ILOCK_EXCL);
 862        bh = head = page_buffers(page);
 863        do {
 864                int             error;
 865                xfs_fileoff_t   start_fsb;
 866
 867                if (!buffer_delay(bh))
 868                        goto next_buffer;
 869
 870                start_fsb = XFS_B_TO_FSBT(ip->i_mount, offset);
 871                error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 1);
 872                if (error) {
 873                        /* something screwed, just bail */
 874                        if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
 875                                xfs_alert(ip->i_mount,
 876                        "page discard unable to remove delalloc mapping.");
 877                        }
 878                        break;
 879                }
 880next_buffer:
 881                offset += 1 << inode->i_blkbits;
 882
 883        } while ((bh = bh->b_this_page) != head);
 884
 885        xfs_iunlock(ip, XFS_ILOCK_EXCL);
 886out_invalidate:
 887        xfs_vm_invalidatepage(page, 0);
 888        return;
 889}
 890
 891/*
 892 * Write out a dirty page.
 893 *
 894 * For delalloc space on the page we need to allocate space and flush it.
 895 * For unwritten space on the page we need to start the conversion to
 896 * regular allocated space.
 897 * For any other dirty buffer heads on the page we should flush them.
 898 */
 899STATIC int
 900xfs_vm_writepage(
 901        struct page             *page,
 902        struct writeback_control *wbc)
 903{
 904        struct inode            *inode = page->mapping->host;
 905        struct buffer_head      *bh, *head;
 906        struct xfs_bmbt_irec    imap;
 907        xfs_ioend_t             *ioend = NULL, *iohead = NULL;
 908        loff_t                  offset;
 909        unsigned int            type;
 910        __uint64_t              end_offset;
 911        pgoff_t                 end_index, last_index;
 912        ssize_t                 len;
 913        int                     err, imap_valid = 0, uptodate = 1;
 914        int                     count = 0;
 915        int                     nonblocking = 0;
 916
 917        trace_xfs_writepage(inode, page, 0);
 918
 919        ASSERT(page_has_buffers(page));
 920
 921        /*
 922         * Refuse to write the page out if we are called from reclaim context.
 923         *
 924         * This avoids stack overflows when called from deeply used stacks in
 925         * random callers for direct reclaim or memcg reclaim.  We explicitly
 926         * allow reclaim from kswapd as the stack usage there is relatively low.
 927         *
 928         * This should really be done by the core VM, but until that happens
 929         * filesystems like XFS, btrfs and ext4 have to take care of this
 930         * by themselves.
 931         */
 932        if ((current->flags & (PF_MEMALLOC|PF_KSWAPD)) == PF_MEMALLOC)
 933                goto redirty;
 934
 935        /*
 936         * Given that we do not allow direct reclaim to call us, we should
 937         * never be called while in a filesystem transaction.
 938         */
 939        if (WARN_ON(current->flags & PF_FSTRANS))
 940                goto redirty;
 941
 942        /* Is this page beyond the end of the file? */
 943        offset = i_size_read(inode);
 944        end_index = offset >> PAGE_CACHE_SHIFT;
 945        last_index = (offset - 1) >> PAGE_CACHE_SHIFT;
 946        if (page->index >= end_index) {
 947                if ((page->index >= end_index + 1) ||
 948                    !(i_size_read(inode) & (PAGE_CACHE_SIZE - 1))) {
 949                        unlock_page(page);
 950                        return 0;
 951                }
 952        }
 953
 954        end_offset = min_t(unsigned long long,
 955                        (xfs_off_t)(page->index + 1) << PAGE_CACHE_SHIFT,
 956                        offset);
 957        len = 1 << inode->i_blkbits;
 958
 959        bh = head = page_buffers(page);
 960        offset = page_offset(page);
 961        type = IO_OVERWRITE;
 962
 963        if (wbc->sync_mode == WB_SYNC_NONE)
 964                nonblocking = 1;
 965
 966        do {
 967                int new_ioend = 0;
 968
 969                if (offset >= end_offset)
 970                        break;
 971                if (!buffer_uptodate(bh))
 972                        uptodate = 0;
 973
 974                /*
 975                 * set_page_dirty dirties all buffers in a page, independent
 976                 * of their state.  The dirty state however is entirely
 977                 * meaningless for holes (!mapped && uptodate), so skip
 978                 * buffers covering holes here.
 979                 */
 980                if (!buffer_mapped(bh) && buffer_uptodate(bh)) {
 981                        imap_valid = 0;
 982                        continue;
 983                }
 984
 985                if (buffer_unwritten(bh)) {
 986                        if (type != IO_UNWRITTEN) {
 987                                type = IO_UNWRITTEN;
 988                                imap_valid = 0;
 989                        }
 990                } else if (buffer_delay(bh)) {
 991                        if (type != IO_DELALLOC) {
 992                                type = IO_DELALLOC;
 993                                imap_valid = 0;
 994                        }
 995                } else if (buffer_uptodate(bh)) {
 996                        if (type != IO_OVERWRITE) {
 997                                type = IO_OVERWRITE;
 998                                imap_valid = 0;
 999                        }
1000                } else {
1001                        if (PageUptodate(page)) {
1002                                ASSERT(buffer_mapped(bh));
1003                                imap_valid = 0;
1004                        }
1005                        continue;
1006                }
1007
1008                if (imap_valid)
1009                        imap_valid = xfs_imap_valid(inode, &imap, offset);
1010                if (!imap_valid) {
1011                        /*
1012                         * If we didn't have a valid mapping then we need to
1013                         * put the new mapping into a separate ioend structure.
1014                         * This ensures non-contiguous extents always have
1015                         * separate ioends, which is particularly important
1016                         * for unwritten extent conversion at I/O completion
1017                         * time.
1018                         */
1019                        new_ioend = 1;
1020                        err = xfs_map_blocks(inode, offset, &imap, type,
1021                                             nonblocking);
1022                        if (err)
1023                                goto error;
1024                        imap_valid = xfs_imap_valid(inode, &imap, offset);
1025                }
1026                if (imap_valid) {
1027                        lock_buffer(bh);
1028                        if (type != IO_OVERWRITE)
1029                                xfs_map_at_offset(inode, bh, &imap, offset);
1030                        xfs_add_to_ioend(inode, bh, offset, type, &ioend,
1031                                         new_ioend);
1032                        count++;
1033                }
1034
1035                if (!iohead)
1036                        iohead = ioend;
1037
1038        } while (offset += len, ((bh = bh->b_this_page) != head));
1039
1040        if (uptodate && bh == head)
1041                SetPageUptodate(page);
1042
1043        xfs_start_page_writeback(page, 1, count);
1044
1045        if (ioend && imap_valid) {
1046                xfs_off_t               end_index;
1047
1048                end_index = imap.br_startoff + imap.br_blockcount;
1049
1050                /* to bytes */
1051                end_index <<= inode->i_blkbits;
1052
1053                /* to pages */
1054                end_index = (end_index - 1) >> PAGE_CACHE_SHIFT;
1055
1056                /* check against file size */
1057                if (end_index > last_index)
1058                        end_index = last_index;
1059
1060                xfs_cluster_write(inode, page->index + 1, &imap, &ioend,
1061                                  wbc, end_index);
1062        }
1063
1064        if (iohead)
1065                xfs_submit_ioend(wbc, iohead);
1066
1067        return 0;
1068
1069error:
1070        if (iohead)
1071                xfs_cancel_ioend(iohead);
1072
1073        if (err == -EAGAIN)
1074                goto redirty;
1075
1076        xfs_aops_discard_page(page);
1077        ClearPageUptodate(page);
1078        unlock_page(page);
1079        return err;
1080
1081redirty:
1082        redirty_page_for_writepage(wbc, page);
1083        unlock_page(page);
1084        return 0;
1085}
1086
1087STATIC int
1088xfs_vm_writepages(
1089        struct address_space    *mapping,
1090        struct writeback_control *wbc)
1091{
1092        xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED);
1093        return generic_writepages(mapping, wbc);
1094}
1095
1096/*
1097 * Called to move a page into cleanable state - and from there
1098 * to be released. The page should already be clean. We always
1099 * have buffer heads in this call.
1100 *
1101 * Returns 1 if the page is ok to release, 0 otherwise.
1102 */
1103STATIC int
1104xfs_vm_releasepage(
1105        struct page             *page,
1106        gfp_t                   gfp_mask)
1107{
1108        int                     delalloc, unwritten;
1109
1110        trace_xfs_releasepage(page->mapping->host, page, 0);
1111
1112        xfs_count_page_state(page, &delalloc, &unwritten);
1113
1114        if (WARN_ON(delalloc))
1115                return 0;
1116        if (WARN_ON(unwritten))
1117                return 0;
1118
1119        return try_to_free_buffers(page);
1120}
1121
1122STATIC int
1123__xfs_get_blocks(
1124        struct inode            *inode,
1125        sector_t                iblock,
1126        struct buffer_head      *bh_result,
1127        int                     create,
1128        int                     direct)
1129{
1130        struct xfs_inode        *ip = XFS_I(inode);
1131        struct xfs_mount        *mp = ip->i_mount;
1132        xfs_fileoff_t           offset_fsb, end_fsb;
1133        int                     error = 0;
1134        int                     lockmode = 0;
1135        struct xfs_bmbt_irec    imap;
1136        int                     nimaps = 1;
1137        xfs_off_t               offset;
1138        ssize_t                 size;
1139        int                     new = 0;
1140
1141        if (XFS_FORCED_SHUTDOWN(mp))
1142                return -XFS_ERROR(EIO);
1143
1144        offset = (xfs_off_t)iblock << inode->i_blkbits;
1145        ASSERT(bh_result->b_size >= (1 << inode->i_blkbits));
1146        size = bh_result->b_size;
1147
1148        if (!create && direct && offset >= i_size_read(inode))
1149                return 0;
1150
1151        if (create) {
1152                lockmode = XFS_ILOCK_EXCL;
1153                xfs_ilock(ip, lockmode);
1154        } else {
1155                lockmode = xfs_ilock_map_shared(ip);
1156        }
1157
1158        ASSERT(offset <= mp->m_maxioffset);
1159        if (offset + size > mp->m_maxioffset)
1160                size = mp->m_maxioffset - offset;
1161        end_fsb = XFS_B_TO_FSB(mp, (xfs_ufsize_t)offset + size);
1162        offset_fsb = XFS_B_TO_FSBT(mp, offset);
1163
1164        error = xfs_bmapi(NULL, ip, offset_fsb, end_fsb - offset_fsb,
1165                          XFS_BMAPI_ENTIRE,  NULL, 0, &imap, &nimaps, NULL);
1166        if (error)
1167                goto out_unlock;
1168
1169        if (create &&
1170            (!nimaps ||
1171             (imap.br_startblock == HOLESTARTBLOCK ||
1172              imap.br_startblock == DELAYSTARTBLOCK))) {
1173                if (direct) {
1174                        error = xfs_iomap_write_direct(ip, offset, size,
1175                                                       &imap, nimaps);
1176                } else {
1177                        error = xfs_iomap_write_delay(ip, offset, size, &imap);
1178                }
1179                if (error)
1180                        goto out_unlock;
1181
1182                trace_xfs_get_blocks_alloc(ip, offset, size, 0, &imap);
1183        } else if (nimaps) {
1184                trace_xfs_get_blocks_found(ip, offset, size, 0, &imap);
1185        } else {
1186                trace_xfs_get_blocks_notfound(ip, offset, size);
1187                goto out_unlock;
1188        }
1189        xfs_iunlock(ip, lockmode);
1190
1191        if (imap.br_startblock != HOLESTARTBLOCK &&
1192            imap.br_startblock != DELAYSTARTBLOCK) {
1193                /*
1194                 * For unwritten extents do not report a disk address on
1195                 * the read case (treat as if we're reading into a hole).
1196                 */
1197                if (create || !ISUNWRITTEN(&imap))
1198                        xfs_map_buffer(inode, bh_result, &imap, offset);
1199                if (create && ISUNWRITTEN(&imap)) {
1200                        if (direct)
1201                                bh_result->b_private = inode;
1202                        set_buffer_unwritten(bh_result);
1203                }
1204        }
1205
1206        /*
1207         * If this is a realtime file, data may be on a different device.
1208         * to that pointed to from the buffer_head b_bdev currently.
1209         */
1210        bh_result->b_bdev = xfs_find_bdev_for_inode(inode);
1211
1212        /*
1213         * If we previously allocated a block out beyond eof and we are now
1214         * coming back to use it then we will need to flag it as new even if it
1215         * has a disk address.
1216         *
1217         * With sub-block writes into unwritten extents we also need to mark
1218         * the buffer as new so that the unwritten parts of the buffer gets
1219         * correctly zeroed.
1220         */
1221        if (create &&
1222            ((!buffer_mapped(bh_result) && !buffer_uptodate(bh_result)) ||
1223             (offset >= i_size_read(inode)) ||
1224             (new || ISUNWRITTEN(&imap))))
1225                set_buffer_new(bh_result);
1226
1227        if (imap.br_startblock == DELAYSTARTBLOCK) {
1228                BUG_ON(direct);
1229                if (create) {
1230                        set_buffer_uptodate(bh_result);
1231                        set_buffer_mapped(bh_result);
1232                        set_buffer_delay(bh_result);
1233                }
1234        }
1235
1236        /*
1237         * If this is O_DIRECT or the mpage code calling tell them how large
1238         * the mapping is, so that we can avoid repeated get_blocks calls.
1239         */
1240        if (direct || size > (1 << inode->i_blkbits)) {
1241                xfs_off_t               mapping_size;
1242
1243                mapping_size = imap.br_startoff + imap.br_blockcount - iblock;
1244                mapping_size <<= inode->i_blkbits;
1245
1246                ASSERT(mapping_size > 0);
1247                if (mapping_size > size)
1248                        mapping_size = size;
1249                if (mapping_size > LONG_MAX)
1250                        mapping_size = LONG_MAX;
1251
1252                bh_result->b_size = mapping_size;
1253        }
1254
1255        return 0;
1256
1257out_unlock:
1258        xfs_iunlock(ip, lockmode);
1259        return -error;
1260}
1261
1262int
1263xfs_get_blocks(
1264        struct inode            *inode,
1265        sector_t                iblock,
1266        struct buffer_head      *bh_result,
1267        int                     create)
1268{
1269        return __xfs_get_blocks(inode, iblock, bh_result, create, 0);
1270}
1271
1272STATIC int
1273xfs_get_blocks_direct(
1274        struct inode            *inode,
1275        sector_t                iblock,
1276        struct buffer_head      *bh_result,
1277        int                     create)
1278{
1279        return __xfs_get_blocks(inode, iblock, bh_result, create, 1);
1280}
1281
1282/*
1283 * Complete a direct I/O write request.
1284 *
1285 * If the private argument is non-NULL __xfs_get_blocks signals us that we
1286 * need to issue a transaction to convert the range from unwritten to written
1287 * extents.  In case this is regular synchronous I/O we just call xfs_end_io
1288 * to do this and we are done.  But in case this was a successful AIO
1289 * request this handler is called from interrupt context, from which we
1290 * can't start transactions.  In that case offload the I/O completion to
1291 * the workqueues we also use for buffered I/O completion.
1292 */
1293STATIC void
1294xfs_end_io_direct_write(
1295        struct kiocb            *iocb,
1296        loff_t                  offset,
1297        ssize_t                 size,
1298        void                    *private,
1299        int                     ret,
1300        bool                    is_async)
1301{
1302        struct xfs_ioend        *ioend = iocb->private;
1303        struct inode            *inode = ioend->io_inode;
1304
1305        /*
1306         * blockdev_direct_IO can return an error even after the I/O
1307         * completion handler was called.  Thus we need to protect
1308         * against double-freeing.
1309         */
1310        iocb->private = NULL;
1311
1312        ioend->io_offset = offset;
1313        ioend->io_size = size;
1314        if (private && size > 0)
1315                ioend->io_type = IO_UNWRITTEN;
1316
1317        if (is_async) {
1318                /*
1319                 * If we are converting an unwritten extent we need to delay
1320                 * the AIO completion until after the unwrittent extent
1321                 * conversion has completed, otherwise do it ASAP.
1322                 */
1323                if (ioend->io_type == IO_UNWRITTEN) {
1324                        ioend->io_iocb = iocb;
1325                        ioend->io_result = ret;
1326                } else {
1327                        aio_complete(iocb, ret, 0);
1328                }
1329                xfs_finish_ioend(ioend);
1330        } else {
1331                xfs_finish_ioend_sync(ioend);
1332        }
1333
1334        /* XXX: probably should move into the real I/O completion handler */
1335        inode_dio_done(inode);
1336}
1337
1338STATIC ssize_t
1339xfs_vm_direct_IO(
1340        int                     rw,
1341        struct kiocb            *iocb,
1342        const struct iovec      *iov,
1343        loff_t                  offset,
1344        unsigned long           nr_segs)
1345{
1346        struct inode            *inode = iocb->ki_filp->f_mapping->host;
1347        struct block_device     *bdev = xfs_find_bdev_for_inode(inode);
1348        ssize_t                 ret;
1349
1350        if (rw & WRITE) {
1351                iocb->private = xfs_alloc_ioend(inode, IO_DIRECT);
1352
1353                ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1354                                            offset, nr_segs,
1355                                            xfs_get_blocks_direct,
1356                                            xfs_end_io_direct_write, NULL, 0);
1357                if (ret != -EIOCBQUEUED && iocb->private)
1358                        xfs_destroy_ioend(iocb->private);
1359        } else {
1360                ret = __blockdev_direct_IO(rw, iocb, inode, bdev, iov,
1361                                            offset, nr_segs,
1362                                            xfs_get_blocks_direct,
1363                                            NULL, NULL, 0);
1364        }
1365
1366        return ret;
1367}
1368
1369STATIC void
1370xfs_vm_write_failed(
1371        struct address_space    *mapping,
1372        loff_t                  to)
1373{
1374        struct inode            *inode = mapping->host;
1375
1376        if (to > inode->i_size) {
1377                /*
1378                 * punch out the delalloc blocks we have already allocated. We
1379                 * don't call xfs_setattr() to do this as we may be in the
1380                 * middle of a multi-iovec write and so the vfs inode->i_size
1381                 * will not match the xfs ip->i_size and so it will zero too
1382                 * much. Hence we jus truncate the page cache to zero what is
1383                 * necessary and punch the delalloc blocks directly.
1384                 */
1385                struct xfs_inode        *ip = XFS_I(inode);
1386                xfs_fileoff_t           start_fsb;
1387                xfs_fileoff_t           end_fsb;
1388                int                     error;
1389
1390                truncate_pagecache(inode, to, inode->i_size);
1391
1392                /*
1393                 * Check if there are any blocks that are outside of i_size
1394                 * that need to be trimmed back.
1395                 */
1396                start_fsb = XFS_B_TO_FSB(ip->i_mount, inode->i_size) + 1;
1397                end_fsb = XFS_B_TO_FSB(ip->i_mount, to);
1398                if (end_fsb <= start_fsb)
1399                        return;
1400
1401                xfs_ilock(ip, XFS_ILOCK_EXCL);
1402                error = xfs_bmap_punch_delalloc_range(ip, start_fsb,
1403                                                        end_fsb - start_fsb);
1404                if (error) {
1405                        /* something screwed, just bail */
1406                        if (!XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1407                                xfs_alert(ip->i_mount,
1408                        "xfs_vm_write_failed: unable to clean up ino %lld",
1409                                                ip->i_ino);
1410                        }
1411                }
1412                xfs_iunlock(ip, XFS_ILOCK_EXCL);
1413        }
1414}
1415
1416STATIC int
1417xfs_vm_write_begin(
1418        struct file             *file,
1419        struct address_space    *mapping,
1420        loff_t                  pos,
1421        unsigned                len,
1422        unsigned                flags,
1423        struct page             **pagep,
1424        void                    **fsdata)
1425{
1426        int                     ret;
1427
1428        ret = block_write_begin(mapping, pos, len, flags | AOP_FLAG_NOFS,
1429                                pagep, xfs_get_blocks);
1430        if (unlikely(ret))
1431                xfs_vm_write_failed(mapping, pos + len);
1432        return ret;
1433}
1434
1435STATIC int
1436xfs_vm_write_end(
1437        struct file             *file,
1438        struct address_space    *mapping,
1439        loff_t                  pos,
1440        unsigned                len,
1441        unsigned                copied,
1442        struct page             *page,
1443        void                    *fsdata)
1444{
1445        int                     ret;
1446
1447        ret = generic_write_end(file, mapping, pos, len, copied, page, fsdata);
1448        if (unlikely(ret < len))
1449                xfs_vm_write_failed(mapping, pos + len);
1450        return ret;
1451}
1452
1453STATIC sector_t
1454xfs_vm_bmap(
1455        struct address_space    *mapping,
1456        sector_t                block)
1457{
1458        struct inode            *inode = (struct inode *)mapping->host;
1459        struct xfs_inode        *ip = XFS_I(inode);
1460
1461        trace_xfs_vm_bmap(XFS_I(inode));
1462        xfs_ilock(ip, XFS_IOLOCK_SHARED);
1463        xfs_flush_pages(ip, (xfs_off_t)0, -1, 0, FI_REMAPF);
1464        xfs_iunlock(ip, XFS_IOLOCK_SHARED);
1465        return generic_block_bmap(mapping, block, xfs_get_blocks);
1466}
1467
1468STATIC int
1469xfs_vm_readpage(
1470        struct file             *unused,
1471        struct page             *page)
1472{
1473        return mpage_readpage(page, xfs_get_blocks);
1474}
1475
1476STATIC int
1477xfs_vm_readpages(
1478        struct file             *unused,
1479        struct address_space    *mapping,
1480        struct list_head        *pages,
1481        unsigned                nr_pages)
1482{
1483        return mpage_readpages(mapping, pages, nr_pages, xfs_get_blocks);
1484}
1485
1486const struct address_space_operations xfs_address_space_operations = {
1487        .readpage               = xfs_vm_readpage,
1488        .readpages              = xfs_vm_readpages,
1489        .writepage              = xfs_vm_writepage,
1490        .writepages             = xfs_vm_writepages,
1491        .releasepage            = xfs_vm_releasepage,
1492        .invalidatepage         = xfs_vm_invalidatepage,
1493        .write_begin            = xfs_vm_write_begin,
1494        .write_end              = xfs_vm_write_end,
1495        .bmap                   = xfs_vm_bmap,
1496        .direct_IO              = xfs_vm_direct_IO,
1497        .migratepage            = buffer_migrate_page,
1498        .is_partially_uptodate  = block_is_partially_uptodate,
1499        .error_remove_page      = generic_error_remove_page,
1500};
1501