linux/include/linux/mmzone.h
<<
>>
Prefs
   1#ifndef _LINUX_MMZONE_H
   2#define _LINUX_MMZONE_H
   3
   4#ifndef __ASSEMBLY__
   5#ifndef __GENERATING_BOUNDS_H
   6
   7#include <linux/spinlock.h>
   8#include <linux/list.h>
   9#include <linux/wait.h>
  10#include <linux/bitops.h>
  11#include <linux/cache.h>
  12#include <linux/threads.h>
  13#include <linux/numa.h>
  14#include <linux/init.h>
  15#include <linux/seqlock.h>
  16#include <linux/nodemask.h>
  17#include <linux/pageblock-flags.h>
  18#include <generated/bounds.h>
  19#include <linux/atomic.h>
  20#include <asm/page.h>
  21
  22/* Free memory management - zoned buddy allocator.  */
  23#ifndef CONFIG_FORCE_MAX_ZONEORDER
  24#define MAX_ORDER 11
  25#else
  26#define MAX_ORDER CONFIG_FORCE_MAX_ZONEORDER
  27#endif
  28#define MAX_ORDER_NR_PAGES (1 << (MAX_ORDER - 1))
  29
  30/*
  31 * PAGE_ALLOC_COSTLY_ORDER is the order at which allocations are deemed
  32 * costly to service.  That is between allocation orders which should
  33 * coelesce naturally under reasonable reclaim pressure and those which
  34 * will not.
  35 */
  36#define PAGE_ALLOC_COSTLY_ORDER 3
  37
  38#define MIGRATE_UNMOVABLE     0
  39#define MIGRATE_RECLAIMABLE   1
  40#define MIGRATE_MOVABLE       2
  41#define MIGRATE_PCPTYPES      3 /* the number of types on the pcp lists */
  42#define MIGRATE_RESERVE       3
  43#define MIGRATE_ISOLATE       4 /* can't allocate from here */
  44#define MIGRATE_TYPES         5
  45
  46#define for_each_migratetype_order(order, type) \
  47        for (order = 0; order < MAX_ORDER; order++) \
  48                for (type = 0; type < MIGRATE_TYPES; type++)
  49
  50extern int page_group_by_mobility_disabled;
  51
  52static inline int get_pageblock_migratetype(struct page *page)
  53{
  54        return get_pageblock_flags_group(page, PB_migrate, PB_migrate_end);
  55}
  56
  57struct free_area {
  58        struct list_head        free_list[MIGRATE_TYPES];
  59        unsigned long           nr_free;
  60};
  61
  62struct pglist_data;
  63
  64/*
  65 * zone->lock and zone->lru_lock are two of the hottest locks in the kernel.
  66 * So add a wild amount of padding here to ensure that they fall into separate
  67 * cachelines.  There are very few zone structures in the machine, so space
  68 * consumption is not a concern here.
  69 */
  70#if defined(CONFIG_SMP)
  71struct zone_padding {
  72        char x[0];
  73} ____cacheline_internodealigned_in_smp;
  74#define ZONE_PADDING(name)      struct zone_padding name;
  75#else
  76#define ZONE_PADDING(name)
  77#endif
  78
  79enum zone_stat_item {
  80        /* First 128 byte cacheline (assuming 64 bit words) */
  81        NR_FREE_PAGES,
  82        NR_LRU_BASE,
  83        NR_INACTIVE_ANON = NR_LRU_BASE, /* must match order of LRU_[IN]ACTIVE */
  84        NR_ACTIVE_ANON,         /*  "     "     "   "       "         */
  85        NR_INACTIVE_FILE,       /*  "     "     "   "       "         */
  86        NR_ACTIVE_FILE,         /*  "     "     "   "       "         */
  87        NR_UNEVICTABLE,         /*  "     "     "   "       "         */
  88        NR_MLOCK,               /* mlock()ed pages found and moved off LRU */
  89        NR_ANON_PAGES,  /* Mapped anonymous pages */
  90        NR_FILE_MAPPED, /* pagecache pages mapped into pagetables.
  91                           only modified from process context */
  92        NR_FILE_PAGES,
  93        NR_FILE_DIRTY,
  94        NR_WRITEBACK,
  95        NR_SLAB_RECLAIMABLE,
  96        NR_SLAB_UNRECLAIMABLE,
  97        NR_PAGETABLE,           /* used for pagetables */
  98        NR_KERNEL_STACK,
  99        /* Second 128 byte cacheline */
 100        NR_UNSTABLE_NFS,        /* NFS unstable pages */
 101        NR_BOUNCE,
 102        NR_VMSCAN_WRITE,
 103        NR_WRITEBACK_TEMP,      /* Writeback using temporary buffers */
 104        NR_ISOLATED_ANON,       /* Temporary isolated pages from anon lru */
 105        NR_ISOLATED_FILE,       /* Temporary isolated pages from file lru */
 106        NR_SHMEM,               /* shmem pages (included tmpfs/GEM pages) */
 107        NR_DIRTIED,             /* page dirtyings since bootup */
 108        NR_WRITTEN,             /* page writings since bootup */
 109#ifdef CONFIG_NUMA
 110        NUMA_HIT,               /* allocated in intended node */
 111        NUMA_MISS,              /* allocated in non intended node */
 112        NUMA_FOREIGN,           /* was intended here, hit elsewhere */
 113        NUMA_INTERLEAVE_HIT,    /* interleaver preferred this zone */
 114        NUMA_LOCAL,             /* allocation from local node */
 115        NUMA_OTHER,             /* allocation from other node */
 116#endif
 117        NR_ANON_TRANSPARENT_HUGEPAGES,
 118        NR_VM_ZONE_STAT_ITEMS };
 119
 120/*
 121 * We do arithmetic on the LRU lists in various places in the code,
 122 * so it is important to keep the active lists LRU_ACTIVE higher in
 123 * the array than the corresponding inactive lists, and to keep
 124 * the *_FILE lists LRU_FILE higher than the corresponding _ANON lists.
 125 *
 126 * This has to be kept in sync with the statistics in zone_stat_item
 127 * above and the descriptions in vmstat_text in mm/vmstat.c
 128 */
 129#define LRU_BASE 0
 130#define LRU_ACTIVE 1
 131#define LRU_FILE 2
 132
 133enum lru_list {
 134        LRU_INACTIVE_ANON = LRU_BASE,
 135        LRU_ACTIVE_ANON = LRU_BASE + LRU_ACTIVE,
 136        LRU_INACTIVE_FILE = LRU_BASE + LRU_FILE,
 137        LRU_ACTIVE_FILE = LRU_BASE + LRU_FILE + LRU_ACTIVE,
 138        LRU_UNEVICTABLE,
 139        NR_LRU_LISTS
 140};
 141
 142#define for_each_lru(l) for (l = 0; l < NR_LRU_LISTS; l++)
 143
 144#define for_each_evictable_lru(l) for (l = 0; l <= LRU_ACTIVE_FILE; l++)
 145
 146static inline int is_file_lru(enum lru_list l)
 147{
 148        return (l == LRU_INACTIVE_FILE || l == LRU_ACTIVE_FILE);
 149}
 150
 151static inline int is_active_lru(enum lru_list l)
 152{
 153        return (l == LRU_ACTIVE_ANON || l == LRU_ACTIVE_FILE);
 154}
 155
 156static inline int is_unevictable_lru(enum lru_list l)
 157{
 158        return (l == LRU_UNEVICTABLE);
 159}
 160
 161/* Mask used at gathering information at once (see memcontrol.c) */
 162#define LRU_ALL_FILE (BIT(LRU_INACTIVE_FILE) | BIT(LRU_ACTIVE_FILE))
 163#define LRU_ALL_ANON (BIT(LRU_INACTIVE_ANON) | BIT(LRU_ACTIVE_ANON))
 164#define LRU_ALL_EVICTABLE (LRU_ALL_FILE | LRU_ALL_ANON)
 165#define LRU_ALL      ((1 << NR_LRU_LISTS) - 1)
 166
 167enum zone_watermarks {
 168        WMARK_MIN,
 169        WMARK_LOW,
 170        WMARK_HIGH,
 171        NR_WMARK
 172};
 173
 174#define min_wmark_pages(z) (z->watermark[WMARK_MIN])
 175#define low_wmark_pages(z) (z->watermark[WMARK_LOW])
 176#define high_wmark_pages(z) (z->watermark[WMARK_HIGH])
 177
 178struct per_cpu_pages {
 179        int count;              /* number of pages in the list */
 180        int high;               /* high watermark, emptying needed */
 181        int batch;              /* chunk size for buddy add/remove */
 182
 183        /* Lists of pages, one per migrate type stored on the pcp-lists */
 184        struct list_head lists[MIGRATE_PCPTYPES];
 185};
 186
 187struct per_cpu_pageset {
 188        struct per_cpu_pages pcp;
 189#ifdef CONFIG_NUMA
 190        s8 expire;
 191#endif
 192#ifdef CONFIG_SMP
 193        s8 stat_threshold;
 194        s8 vm_stat_diff[NR_VM_ZONE_STAT_ITEMS];
 195#endif
 196};
 197
 198#endif /* !__GENERATING_BOUNDS.H */
 199
 200enum zone_type {
 201#ifdef CONFIG_ZONE_DMA
 202        /*
 203         * ZONE_DMA is used when there are devices that are not able
 204         * to do DMA to all of addressable memory (ZONE_NORMAL). Then we
 205         * carve out the portion of memory that is needed for these devices.
 206         * The range is arch specific.
 207         *
 208         * Some examples
 209         *
 210         * Architecture         Limit
 211         * ---------------------------
 212         * parisc, ia64, sparc  <4G
 213         * s390                 <2G
 214         * arm                  Various
 215         * alpha                Unlimited or 0-16MB.
 216         *
 217         * i386, x86_64 and multiple other arches
 218         *                      <16M.
 219         */
 220        ZONE_DMA,
 221#endif
 222#ifdef CONFIG_ZONE_DMA32
 223        /*
 224         * x86_64 needs two ZONE_DMAs because it supports devices that are
 225         * only able to do DMA to the lower 16M but also 32 bit devices that
 226         * can only do DMA areas below 4G.
 227         */
 228        ZONE_DMA32,
 229#endif
 230        /*
 231         * Normal addressable memory is in ZONE_NORMAL. DMA operations can be
 232         * performed on pages in ZONE_NORMAL if the DMA devices support
 233         * transfers to all addressable memory.
 234         */
 235        ZONE_NORMAL,
 236#ifdef CONFIG_HIGHMEM
 237        /*
 238         * A memory area that is only addressable by the kernel through
 239         * mapping portions into its own address space. This is for example
 240         * used by i386 to allow the kernel to address the memory beyond
 241         * 900MB. The kernel will set up special mappings (page
 242         * table entries on i386) for each page that the kernel needs to
 243         * access.
 244         */
 245        ZONE_HIGHMEM,
 246#endif
 247        ZONE_MOVABLE,
 248        __MAX_NR_ZONES
 249};
 250
 251#ifndef __GENERATING_BOUNDS_H
 252
 253/*
 254 * When a memory allocation must conform to specific limitations (such
 255 * as being suitable for DMA) the caller will pass in hints to the
 256 * allocator in the gfp_mask, in the zone modifier bits.  These bits
 257 * are used to select a priority ordered list of memory zones which
 258 * match the requested limits. See gfp_zone() in include/linux/gfp.h
 259 */
 260
 261#if MAX_NR_ZONES < 2
 262#define ZONES_SHIFT 0
 263#elif MAX_NR_ZONES <= 2
 264#define ZONES_SHIFT 1
 265#elif MAX_NR_ZONES <= 4
 266#define ZONES_SHIFT 2
 267#else
 268#error ZONES_SHIFT -- too many zones configured adjust calculation
 269#endif
 270
 271struct zone_reclaim_stat {
 272        /*
 273         * The pageout code in vmscan.c keeps track of how many of the
 274         * mem/swap backed and file backed pages are refeferenced.
 275         * The higher the rotated/scanned ratio, the more valuable
 276         * that cache is.
 277         *
 278         * The anon LRU stats live in [0], file LRU stats in [1]
 279         */
 280        unsigned long           recent_rotated[2];
 281        unsigned long           recent_scanned[2];
 282};
 283
 284struct zone {
 285        /* Fields commonly accessed by the page allocator */
 286
 287        /* zone watermarks, access with *_wmark_pages(zone) macros */
 288        unsigned long watermark[NR_WMARK];
 289
 290        /*
 291         * When free pages are below this point, additional steps are taken
 292         * when reading the number of free pages to avoid per-cpu counter
 293         * drift allowing watermarks to be breached
 294         */
 295        unsigned long percpu_drift_mark;
 296
 297        /*
 298         * We don't know if the memory that we're going to allocate will be freeable
 299         * or/and it will be released eventually, so to avoid totally wasting several
 300         * GB of ram we must reserve some of the lower zone memory (otherwise we risk
 301         * to run OOM on the lower zones despite there's tons of freeable ram
 302         * on the higher zones). This array is recalculated at runtime if the
 303         * sysctl_lowmem_reserve_ratio sysctl changes.
 304         */
 305        unsigned long           lowmem_reserve[MAX_NR_ZONES];
 306
 307#ifdef CONFIG_NUMA
 308        int node;
 309        /*
 310         * zone reclaim becomes active if more unmapped pages exist.
 311         */
 312        unsigned long           min_unmapped_pages;
 313        unsigned long           min_slab_pages;
 314#endif
 315        struct per_cpu_pageset __percpu *pageset;
 316        /*
 317         * free areas of different sizes
 318         */
 319        spinlock_t              lock;
 320        int                     all_unreclaimable; /* All pages pinned */
 321#ifdef CONFIG_MEMORY_HOTPLUG
 322        /* see spanned/present_pages for more description */
 323        seqlock_t               span_seqlock;
 324#endif
 325        struct free_area        free_area[MAX_ORDER];
 326
 327#ifndef CONFIG_SPARSEMEM
 328        /*
 329         * Flags for a pageblock_nr_pages block. See pageblock-flags.h.
 330         * In SPARSEMEM, this map is stored in struct mem_section
 331         */
 332        unsigned long           *pageblock_flags;
 333#endif /* CONFIG_SPARSEMEM */
 334
 335#ifdef CONFIG_COMPACTION
 336        /*
 337         * On compaction failure, 1<<compact_defer_shift compactions
 338         * are skipped before trying again. The number attempted since
 339         * last failure is tracked with compact_considered.
 340         */
 341        unsigned int            compact_considered;
 342        unsigned int            compact_defer_shift;
 343#endif
 344
 345        ZONE_PADDING(_pad1_)
 346
 347        /* Fields commonly accessed by the page reclaim scanner */
 348        spinlock_t              lru_lock;       
 349        struct zone_lru {
 350                struct list_head list;
 351        } lru[NR_LRU_LISTS];
 352
 353        struct zone_reclaim_stat reclaim_stat;
 354
 355        unsigned long           pages_scanned;     /* since last reclaim */
 356        unsigned long           flags;             /* zone flags, see below */
 357
 358        /* Zone statistics */
 359        atomic_long_t           vm_stat[NR_VM_ZONE_STAT_ITEMS];
 360
 361        /*
 362         * The target ratio of ACTIVE_ANON to INACTIVE_ANON pages on
 363         * this zone's LRU.  Maintained by the pageout code.
 364         */
 365        unsigned int inactive_ratio;
 366
 367
 368        ZONE_PADDING(_pad2_)
 369        /* Rarely used or read-mostly fields */
 370
 371        /*
 372         * wait_table           -- the array holding the hash table
 373         * wait_table_hash_nr_entries   -- the size of the hash table array
 374         * wait_table_bits      -- wait_table_size == (1 << wait_table_bits)
 375         *
 376         * The purpose of all these is to keep track of the people
 377         * waiting for a page to become available and make them
 378         * runnable again when possible. The trouble is that this
 379         * consumes a lot of space, especially when so few things
 380         * wait on pages at a given time. So instead of using
 381         * per-page waitqueues, we use a waitqueue hash table.
 382         *
 383         * The bucket discipline is to sleep on the same queue when
 384         * colliding and wake all in that wait queue when removing.
 385         * When something wakes, it must check to be sure its page is
 386         * truly available, a la thundering herd. The cost of a
 387         * collision is great, but given the expected load of the
 388         * table, they should be so rare as to be outweighed by the
 389         * benefits from the saved space.
 390         *
 391         * __wait_on_page_locked() and unlock_page() in mm/filemap.c, are the
 392         * primary users of these fields, and in mm/page_alloc.c
 393         * free_area_init_core() performs the initialization of them.
 394         */
 395        wait_queue_head_t       * wait_table;
 396        unsigned long           wait_table_hash_nr_entries;
 397        unsigned long           wait_table_bits;
 398
 399        /*
 400         * Discontig memory support fields.
 401         */
 402        struct pglist_data      *zone_pgdat;
 403        /* zone_start_pfn == zone_start_paddr >> PAGE_SHIFT */
 404        unsigned long           zone_start_pfn;
 405
 406        /*
 407         * zone_start_pfn, spanned_pages and present_pages are all
 408         * protected by span_seqlock.  It is a seqlock because it has
 409         * to be read outside of zone->lock, and it is done in the main
 410         * allocator path.  But, it is written quite infrequently.
 411         *
 412         * The lock is declared along with zone->lock because it is
 413         * frequently read in proximity to zone->lock.  It's good to
 414         * give them a chance of being in the same cacheline.
 415         */
 416        unsigned long           spanned_pages;  /* total size, including holes */
 417        unsigned long           present_pages;  /* amount of memory (excluding holes) */
 418
 419        /*
 420         * rarely used fields:
 421         */
 422        const char              *name;
 423} ____cacheline_internodealigned_in_smp;
 424
 425typedef enum {
 426        ZONE_RECLAIM_LOCKED,            /* prevents concurrent reclaim */
 427        ZONE_OOM_LOCKED,                /* zone is in OOM killer zonelist */
 428        ZONE_CONGESTED,                 /* zone has many dirty pages backed by
 429                                         * a congested BDI
 430                                         */
 431} zone_flags_t;
 432
 433static inline void zone_set_flag(struct zone *zone, zone_flags_t flag)
 434{
 435        set_bit(flag, &zone->flags);
 436}
 437
 438static inline int zone_test_and_set_flag(struct zone *zone, zone_flags_t flag)
 439{
 440        return test_and_set_bit(flag, &zone->flags);
 441}
 442
 443static inline void zone_clear_flag(struct zone *zone, zone_flags_t flag)
 444{
 445        clear_bit(flag, &zone->flags);
 446}
 447
 448static inline int zone_is_reclaim_congested(const struct zone *zone)
 449{
 450        return test_bit(ZONE_CONGESTED, &zone->flags);
 451}
 452
 453static inline int zone_is_reclaim_locked(const struct zone *zone)
 454{
 455        return test_bit(ZONE_RECLAIM_LOCKED, &zone->flags);
 456}
 457
 458static inline int zone_is_oom_locked(const struct zone *zone)
 459{
 460        return test_bit(ZONE_OOM_LOCKED, &zone->flags);
 461}
 462
 463/*
 464 * The "priority" of VM scanning is how much of the queues we will scan in one
 465 * go. A value of 12 for DEF_PRIORITY implies that we will scan 1/4096th of the
 466 * queues ("queue_length >> 12") during an aging round.
 467 */
 468#define DEF_PRIORITY 12
 469
 470/* Maximum number of zones on a zonelist */
 471#define MAX_ZONES_PER_ZONELIST (MAX_NUMNODES * MAX_NR_ZONES)
 472
 473#ifdef CONFIG_NUMA
 474
 475/*
 476 * The NUMA zonelists are doubled because we need zonelists that restrict the
 477 * allocations to a single node for GFP_THISNODE.
 478 *
 479 * [0]  : Zonelist with fallback
 480 * [1]  : No fallback (GFP_THISNODE)
 481 */
 482#define MAX_ZONELISTS 2
 483
 484
 485/*
 486 * We cache key information from each zonelist for smaller cache
 487 * footprint when scanning for free pages in get_page_from_freelist().
 488 *
 489 * 1) The BITMAP fullzones tracks which zones in a zonelist have come
 490 *    up short of free memory since the last time (last_fullzone_zap)
 491 *    we zero'd fullzones.
 492 * 2) The array z_to_n[] maps each zone in the zonelist to its node
 493 *    id, so that we can efficiently evaluate whether that node is
 494 *    set in the current tasks mems_allowed.
 495 *
 496 * Both fullzones and z_to_n[] are one-to-one with the zonelist,
 497 * indexed by a zones offset in the zonelist zones[] array.
 498 *
 499 * The get_page_from_freelist() routine does two scans.  During the
 500 * first scan, we skip zones whose corresponding bit in 'fullzones'
 501 * is set or whose corresponding node in current->mems_allowed (which
 502 * comes from cpusets) is not set.  During the second scan, we bypass
 503 * this zonelist_cache, to ensure we look methodically at each zone.
 504 *
 505 * Once per second, we zero out (zap) fullzones, forcing us to
 506 * reconsider nodes that might have regained more free memory.
 507 * The field last_full_zap is the time we last zapped fullzones.
 508 *
 509 * This mechanism reduces the amount of time we waste repeatedly
 510 * reexaming zones for free memory when they just came up low on
 511 * memory momentarilly ago.
 512 *
 513 * The zonelist_cache struct members logically belong in struct
 514 * zonelist.  However, the mempolicy zonelists constructed for
 515 * MPOL_BIND are intentionally variable length (and usually much
 516 * shorter).  A general purpose mechanism for handling structs with
 517 * multiple variable length members is more mechanism than we want
 518 * here.  We resort to some special case hackery instead.
 519 *
 520 * The MPOL_BIND zonelists don't need this zonelist_cache (in good
 521 * part because they are shorter), so we put the fixed length stuff
 522 * at the front of the zonelist struct, ending in a variable length
 523 * zones[], as is needed by MPOL_BIND.
 524 *
 525 * Then we put the optional zonelist cache on the end of the zonelist
 526 * struct.  This optional stuff is found by a 'zlcache_ptr' pointer in
 527 * the fixed length portion at the front of the struct.  This pointer
 528 * both enables us to find the zonelist cache, and in the case of
 529 * MPOL_BIND zonelists, (which will just set the zlcache_ptr to NULL)
 530 * to know that the zonelist cache is not there.
 531 *
 532 * The end result is that struct zonelists come in two flavors:
 533 *  1) The full, fixed length version, shown below, and
 534 *  2) The custom zonelists for MPOL_BIND.
 535 * The custom MPOL_BIND zonelists have a NULL zlcache_ptr and no zlcache.
 536 *
 537 * Even though there may be multiple CPU cores on a node modifying
 538 * fullzones or last_full_zap in the same zonelist_cache at the same
 539 * time, we don't lock it.  This is just hint data - if it is wrong now
 540 * and then, the allocator will still function, perhaps a bit slower.
 541 */
 542
 543
 544struct zonelist_cache {
 545        unsigned short z_to_n[MAX_ZONES_PER_ZONELIST];          /* zone->nid */
 546        DECLARE_BITMAP(fullzones, MAX_ZONES_PER_ZONELIST);      /* zone full? */
 547        unsigned long last_full_zap;            /* when last zap'd (jiffies) */
 548};
 549#else
 550#define MAX_ZONELISTS 1
 551struct zonelist_cache;
 552#endif
 553
 554/*
 555 * This struct contains information about a zone in a zonelist. It is stored
 556 * here to avoid dereferences into large structures and lookups of tables
 557 */
 558struct zoneref {
 559        struct zone *zone;      /* Pointer to actual zone */
 560        int zone_idx;           /* zone_idx(zoneref->zone) */
 561};
 562
 563/*
 564 * One allocation request operates on a zonelist. A zonelist
 565 * is a list of zones, the first one is the 'goal' of the
 566 * allocation, the other zones are fallback zones, in decreasing
 567 * priority.
 568 *
 569 * If zlcache_ptr is not NULL, then it is just the address of zlcache,
 570 * as explained above.  If zlcache_ptr is NULL, there is no zlcache.
 571 * *
 572 * To speed the reading of the zonelist, the zonerefs contain the zone index
 573 * of the entry being read. Helper functions to access information given
 574 * a struct zoneref are
 575 *
 576 * zonelist_zone()      - Return the struct zone * for an entry in _zonerefs
 577 * zonelist_zone_idx()  - Return the index of the zone for an entry
 578 * zonelist_node_idx()  - Return the index of the node for an entry
 579 */
 580struct zonelist {
 581        struct zonelist_cache *zlcache_ptr;                  // NULL or &zlcache
 582        struct zoneref _zonerefs[MAX_ZONES_PER_ZONELIST + 1];
 583#ifdef CONFIG_NUMA
 584        struct zonelist_cache zlcache;                       // optional ...
 585#endif
 586};
 587
 588#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
 589struct node_active_region {
 590        unsigned long start_pfn;
 591        unsigned long end_pfn;
 592        int nid;
 593};
 594#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
 595
 596#ifndef CONFIG_DISCONTIGMEM
 597/* The array of struct pages - for discontigmem use pgdat->lmem_map */
 598extern struct page *mem_map;
 599#endif
 600
 601/*
 602 * The pg_data_t structure is used in machines with CONFIG_DISCONTIGMEM
 603 * (mostly NUMA machines?) to denote a higher-level memory zone than the
 604 * zone denotes.
 605 *
 606 * On NUMA machines, each NUMA node would have a pg_data_t to describe
 607 * it's memory layout.
 608 *
 609 * Memory statistics and page replacement data structures are maintained on a
 610 * per-zone basis.
 611 */
 612struct bootmem_data;
 613typedef struct pglist_data {
 614        struct zone node_zones[MAX_NR_ZONES];
 615        struct zonelist node_zonelists[MAX_ZONELISTS];
 616        int nr_zones;
 617#ifdef CONFIG_FLAT_NODE_MEM_MAP /* means !SPARSEMEM */
 618        struct page *node_mem_map;
 619#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 620        struct page_cgroup *node_page_cgroup;
 621#endif
 622#endif
 623#ifndef CONFIG_NO_BOOTMEM
 624        struct bootmem_data *bdata;
 625#endif
 626#ifdef CONFIG_MEMORY_HOTPLUG
 627        /*
 628         * Must be held any time you expect node_start_pfn, node_present_pages
 629         * or node_spanned_pages stay constant.  Holding this will also
 630         * guarantee that any pfn_valid() stays that way.
 631         *
 632         * Nests above zone->lock and zone->size_seqlock.
 633         */
 634        spinlock_t node_size_lock;
 635#endif
 636        unsigned long node_start_pfn;
 637        unsigned long node_present_pages; /* total number of physical pages */
 638        unsigned long node_spanned_pages; /* total size of physical page
 639                                             range, including holes */
 640        int node_id;
 641        wait_queue_head_t kswapd_wait;
 642        struct task_struct *kswapd;
 643        int kswapd_max_order;
 644        enum zone_type classzone_idx;
 645} pg_data_t;
 646
 647#define node_present_pages(nid) (NODE_DATA(nid)->node_present_pages)
 648#define node_spanned_pages(nid) (NODE_DATA(nid)->node_spanned_pages)
 649#ifdef CONFIG_FLAT_NODE_MEM_MAP
 650#define pgdat_page_nr(pgdat, pagenr)    ((pgdat)->node_mem_map + (pagenr))
 651#else
 652#define pgdat_page_nr(pgdat, pagenr)    pfn_to_page((pgdat)->node_start_pfn + (pagenr))
 653#endif
 654#define nid_page_nr(nid, pagenr)        pgdat_page_nr(NODE_DATA(nid),(pagenr))
 655
 656#define node_start_pfn(nid)     (NODE_DATA(nid)->node_start_pfn)
 657
 658#define node_end_pfn(nid) ({\
 659        pg_data_t *__pgdat = NODE_DATA(nid);\
 660        __pgdat->node_start_pfn + __pgdat->node_spanned_pages;\
 661})
 662
 663#include <linux/memory_hotplug.h>
 664
 665extern struct mutex zonelists_mutex;
 666void build_all_zonelists(void *data);
 667void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx);
 668bool zone_watermark_ok(struct zone *z, int order, unsigned long mark,
 669                int classzone_idx, int alloc_flags);
 670bool zone_watermark_ok_safe(struct zone *z, int order, unsigned long mark,
 671                int classzone_idx, int alloc_flags);
 672enum memmap_context {
 673        MEMMAP_EARLY,
 674        MEMMAP_HOTPLUG,
 675};
 676extern int init_currently_empty_zone(struct zone *zone, unsigned long start_pfn,
 677                                     unsigned long size,
 678                                     enum memmap_context context);
 679
 680#ifdef CONFIG_HAVE_MEMORY_PRESENT
 681void memory_present(int nid, unsigned long start, unsigned long end);
 682#else
 683static inline void memory_present(int nid, unsigned long start, unsigned long end) {}
 684#endif
 685
 686#ifdef CONFIG_HAVE_MEMORYLESS_NODES
 687int local_memory_node(int node_id);
 688#else
 689static inline int local_memory_node(int node_id) { return node_id; };
 690#endif
 691
 692#ifdef CONFIG_NEED_NODE_MEMMAP_SIZE
 693unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
 694#endif
 695
 696/*
 697 * zone_idx() returns 0 for the ZONE_DMA zone, 1 for the ZONE_NORMAL zone, etc.
 698 */
 699#define zone_idx(zone)          ((zone) - (zone)->zone_pgdat->node_zones)
 700
 701static inline int populated_zone(struct zone *zone)
 702{
 703        return (!!zone->present_pages);
 704}
 705
 706extern int movable_zone;
 707
 708static inline int zone_movable_is_highmem(void)
 709{
 710#if defined(CONFIG_HIGHMEM) && defined(CONFIG_ARCH_POPULATES_NODE_MAP)
 711        return movable_zone == ZONE_HIGHMEM;
 712#else
 713        return 0;
 714#endif
 715}
 716
 717static inline int is_highmem_idx(enum zone_type idx)
 718{
 719#ifdef CONFIG_HIGHMEM
 720        return (idx == ZONE_HIGHMEM ||
 721                (idx == ZONE_MOVABLE && zone_movable_is_highmem()));
 722#else
 723        return 0;
 724#endif
 725}
 726
 727static inline int is_normal_idx(enum zone_type idx)
 728{
 729        return (idx == ZONE_NORMAL);
 730}
 731
 732/**
 733 * is_highmem - helper function to quickly check if a struct zone is a 
 734 *              highmem zone or not.  This is an attempt to keep references
 735 *              to ZONE_{DMA/NORMAL/HIGHMEM/etc} in general code to a minimum.
 736 * @zone - pointer to struct zone variable
 737 */
 738static inline int is_highmem(struct zone *zone)
 739{
 740#ifdef CONFIG_HIGHMEM
 741        int zone_off = (char *)zone - (char *)zone->zone_pgdat->node_zones;
 742        return zone_off == ZONE_HIGHMEM * sizeof(*zone) ||
 743               (zone_off == ZONE_MOVABLE * sizeof(*zone) &&
 744                zone_movable_is_highmem());
 745#else
 746        return 0;
 747#endif
 748}
 749
 750static inline int is_normal(struct zone *zone)
 751{
 752        return zone == zone->zone_pgdat->node_zones + ZONE_NORMAL;
 753}
 754
 755static inline int is_dma32(struct zone *zone)
 756{
 757#ifdef CONFIG_ZONE_DMA32
 758        return zone == zone->zone_pgdat->node_zones + ZONE_DMA32;
 759#else
 760        return 0;
 761#endif
 762}
 763
 764static inline int is_dma(struct zone *zone)
 765{
 766#ifdef CONFIG_ZONE_DMA
 767        return zone == zone->zone_pgdat->node_zones + ZONE_DMA;
 768#else
 769        return 0;
 770#endif
 771}
 772
 773/* These two functions are used to setup the per zone pages min values */
 774struct ctl_table;
 775int min_free_kbytes_sysctl_handler(struct ctl_table *, int,
 776                                        void __user *, size_t *, loff_t *);
 777extern int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1];
 778int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *, int,
 779                                        void __user *, size_t *, loff_t *);
 780int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *, int,
 781                                        void __user *, size_t *, loff_t *);
 782int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *, int,
 783                        void __user *, size_t *, loff_t *);
 784int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *, int,
 785                        void __user *, size_t *, loff_t *);
 786
 787extern int numa_zonelist_order_handler(struct ctl_table *, int,
 788                        void __user *, size_t *, loff_t *);
 789extern char numa_zonelist_order[];
 790#define NUMA_ZONELIST_ORDER_LEN 16      /* string buffer size */
 791
 792#ifndef CONFIG_NEED_MULTIPLE_NODES
 793
 794extern struct pglist_data contig_page_data;
 795#define NODE_DATA(nid)          (&contig_page_data)
 796#define NODE_MEM_MAP(nid)       mem_map
 797
 798#else /* CONFIG_NEED_MULTIPLE_NODES */
 799
 800#include <asm/mmzone.h>
 801
 802#endif /* !CONFIG_NEED_MULTIPLE_NODES */
 803
 804extern struct pglist_data *first_online_pgdat(void);
 805extern struct pglist_data *next_online_pgdat(struct pglist_data *pgdat);
 806extern struct zone *next_zone(struct zone *zone);
 807
 808/**
 809 * for_each_online_pgdat - helper macro to iterate over all online nodes
 810 * @pgdat - pointer to a pg_data_t variable
 811 */
 812#define for_each_online_pgdat(pgdat)                    \
 813        for (pgdat = first_online_pgdat();              \
 814             pgdat;                                     \
 815             pgdat = next_online_pgdat(pgdat))
 816/**
 817 * for_each_zone - helper macro to iterate over all memory zones
 818 * @zone - pointer to struct zone variable
 819 *
 820 * The user only needs to declare the zone variable, for_each_zone
 821 * fills it in.
 822 */
 823#define for_each_zone(zone)                             \
 824        for (zone = (first_online_pgdat())->node_zones; \
 825             zone;                                      \
 826             zone = next_zone(zone))
 827
 828#define for_each_populated_zone(zone)                   \
 829        for (zone = (first_online_pgdat())->node_zones; \
 830             zone;                                      \
 831             zone = next_zone(zone))                    \
 832                if (!populated_zone(zone))              \
 833                        ; /* do nothing */              \
 834                else
 835
 836static inline struct zone *zonelist_zone(struct zoneref *zoneref)
 837{
 838        return zoneref->zone;
 839}
 840
 841static inline int zonelist_zone_idx(struct zoneref *zoneref)
 842{
 843        return zoneref->zone_idx;
 844}
 845
 846static inline int zonelist_node_idx(struct zoneref *zoneref)
 847{
 848#ifdef CONFIG_NUMA
 849        /* zone_to_nid not available in this context */
 850        return zoneref->zone->node;
 851#else
 852        return 0;
 853#endif /* CONFIG_NUMA */
 854}
 855
 856/**
 857 * next_zones_zonelist - Returns the next zone at or below highest_zoneidx within the allowed nodemask using a cursor within a zonelist as a starting point
 858 * @z - The cursor used as a starting point for the search
 859 * @highest_zoneidx - The zone index of the highest zone to return
 860 * @nodes - An optional nodemask to filter the zonelist with
 861 * @zone - The first suitable zone found is returned via this parameter
 862 *
 863 * This function returns the next zone at or below a given zone index that is
 864 * within the allowed nodemask using a cursor as the starting point for the
 865 * search. The zoneref returned is a cursor that represents the current zone
 866 * being examined. It should be advanced by one before calling
 867 * next_zones_zonelist again.
 868 */
 869struct zoneref *next_zones_zonelist(struct zoneref *z,
 870                                        enum zone_type highest_zoneidx,
 871                                        nodemask_t *nodes,
 872                                        struct zone **zone);
 873
 874/**
 875 * first_zones_zonelist - Returns the first zone at or below highest_zoneidx within the allowed nodemask in a zonelist
 876 * @zonelist - The zonelist to search for a suitable zone
 877 * @highest_zoneidx - The zone index of the highest zone to return
 878 * @nodes - An optional nodemask to filter the zonelist with
 879 * @zone - The first suitable zone found is returned via this parameter
 880 *
 881 * This function returns the first zone at or below a given zone index that is
 882 * within the allowed nodemask. The zoneref returned is a cursor that can be
 883 * used to iterate the zonelist with next_zones_zonelist by advancing it by
 884 * one before calling.
 885 */
 886static inline struct zoneref *first_zones_zonelist(struct zonelist *zonelist,
 887                                        enum zone_type highest_zoneidx,
 888                                        nodemask_t *nodes,
 889                                        struct zone **zone)
 890{
 891        return next_zones_zonelist(zonelist->_zonerefs, highest_zoneidx, nodes,
 892                                                                zone);
 893}
 894
 895/**
 896 * for_each_zone_zonelist_nodemask - helper macro to iterate over valid zones in a zonelist at or below a given zone index and within a nodemask
 897 * @zone - The current zone in the iterator
 898 * @z - The current pointer within zonelist->zones being iterated
 899 * @zlist - The zonelist being iterated
 900 * @highidx - The zone index of the highest zone to return
 901 * @nodemask - Nodemask allowed by the allocator
 902 *
 903 * This iterator iterates though all zones at or below a given zone index and
 904 * within a given nodemask
 905 */
 906#define for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, nodemask) \
 907        for (z = first_zones_zonelist(zlist, highidx, nodemask, &zone); \
 908                zone;                                                   \
 909                z = next_zones_zonelist(++z, highidx, nodemask, &zone)) \
 910
 911/**
 912 * for_each_zone_zonelist - helper macro to iterate over valid zones in a zonelist at or below a given zone index
 913 * @zone - The current zone in the iterator
 914 * @z - The current pointer within zonelist->zones being iterated
 915 * @zlist - The zonelist being iterated
 916 * @highidx - The zone index of the highest zone to return
 917 *
 918 * This iterator iterates though all zones at or below a given zone index.
 919 */
 920#define for_each_zone_zonelist(zone, z, zlist, highidx) \
 921        for_each_zone_zonelist_nodemask(zone, z, zlist, highidx, NULL)
 922
 923#ifdef CONFIG_SPARSEMEM
 924#include <asm/sparsemem.h>
 925#endif
 926
 927#if !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) && \
 928        !defined(CONFIG_ARCH_POPULATES_NODE_MAP)
 929static inline unsigned long early_pfn_to_nid(unsigned long pfn)
 930{
 931        return 0;
 932}
 933#endif
 934
 935#ifdef CONFIG_FLATMEM
 936#define pfn_to_nid(pfn)         (0)
 937#endif
 938
 939#ifdef CONFIG_SPARSEMEM
 940
 941/*
 942 * SECTION_SHIFT                #bits space required to store a section #
 943 *
 944 * PA_SECTION_SHIFT             physical address to/from section number
 945 * PFN_SECTION_SHIFT            pfn to/from section number
 946 */
 947#define SECTIONS_SHIFT          (MAX_PHYSMEM_BITS - SECTION_SIZE_BITS)
 948
 949#define PA_SECTION_SHIFT        (SECTION_SIZE_BITS)
 950#define PFN_SECTION_SHIFT       (SECTION_SIZE_BITS - PAGE_SHIFT)
 951
 952#define NR_MEM_SECTIONS         (1UL << SECTIONS_SHIFT)
 953
 954#define PAGES_PER_SECTION       (1UL << PFN_SECTION_SHIFT)
 955#define PAGE_SECTION_MASK       (~(PAGES_PER_SECTION-1))
 956
 957#define SECTION_BLOCKFLAGS_BITS \
 958        ((1UL << (PFN_SECTION_SHIFT - pageblock_order)) * NR_PAGEBLOCK_BITS)
 959
 960#if (MAX_ORDER - 1 + PAGE_SHIFT) > SECTION_SIZE_BITS
 961#error Allocator MAX_ORDER exceeds SECTION_SIZE
 962#endif
 963
 964#define pfn_to_section_nr(pfn) ((pfn) >> PFN_SECTION_SHIFT)
 965#define section_nr_to_pfn(sec) ((sec) << PFN_SECTION_SHIFT)
 966
 967#define SECTION_ALIGN_UP(pfn)   (((pfn) + PAGES_PER_SECTION - 1) & PAGE_SECTION_MASK)
 968#define SECTION_ALIGN_DOWN(pfn) ((pfn) & PAGE_SECTION_MASK)
 969
 970struct page;
 971struct page_cgroup;
 972struct mem_section {
 973        /*
 974         * This is, logically, a pointer to an array of struct
 975         * pages.  However, it is stored with some other magic.
 976         * (see sparse.c::sparse_init_one_section())
 977         *
 978         * Additionally during early boot we encode node id of
 979         * the location of the section here to guide allocation.
 980         * (see sparse.c::memory_present())
 981         *
 982         * Making it a UL at least makes someone do a cast
 983         * before using it wrong.
 984         */
 985        unsigned long section_mem_map;
 986
 987        /* See declaration of similar field in struct zone */
 988        unsigned long *pageblock_flags;
 989#ifdef CONFIG_CGROUP_MEM_RES_CTLR
 990        /*
 991         * If !SPARSEMEM, pgdat doesn't have page_cgroup pointer. We use
 992         * section. (see memcontrol.h/page_cgroup.h about this.)
 993         */
 994        struct page_cgroup *page_cgroup;
 995        unsigned long pad;
 996#endif
 997};
 998
 999#ifdef CONFIG_SPARSEMEM_EXTREME
1000#define SECTIONS_PER_ROOT       (PAGE_SIZE / sizeof (struct mem_section))
1001#else
1002#define SECTIONS_PER_ROOT       1
1003#endif
1004
1005#define SECTION_NR_TO_ROOT(sec) ((sec) / SECTIONS_PER_ROOT)
1006#define NR_SECTION_ROOTS        DIV_ROUND_UP(NR_MEM_SECTIONS, SECTIONS_PER_ROOT)
1007#define SECTION_ROOT_MASK       (SECTIONS_PER_ROOT - 1)
1008
1009#ifdef CONFIG_SPARSEMEM_EXTREME
1010extern struct mem_section *mem_section[NR_SECTION_ROOTS];
1011#else
1012extern struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT];
1013#endif
1014
1015static inline struct mem_section *__nr_to_section(unsigned long nr)
1016{
1017        if (!mem_section[SECTION_NR_TO_ROOT(nr)])
1018                return NULL;
1019        return &mem_section[SECTION_NR_TO_ROOT(nr)][nr & SECTION_ROOT_MASK];
1020}
1021extern int __section_nr(struct mem_section* ms);
1022extern unsigned long usemap_size(void);
1023
1024/*
1025 * We use the lower bits of the mem_map pointer to store
1026 * a little bit of information.  There should be at least
1027 * 3 bits here due to 32-bit alignment.
1028 */
1029#define SECTION_MARKED_PRESENT  (1UL<<0)
1030#define SECTION_HAS_MEM_MAP     (1UL<<1)
1031#define SECTION_MAP_LAST_BIT    (1UL<<2)
1032#define SECTION_MAP_MASK        (~(SECTION_MAP_LAST_BIT-1))
1033#define SECTION_NID_SHIFT       2
1034
1035static inline struct page *__section_mem_map_addr(struct mem_section *section)
1036{
1037        unsigned long map = section->section_mem_map;
1038        map &= SECTION_MAP_MASK;
1039        return (struct page *)map;
1040}
1041
1042static inline int present_section(struct mem_section *section)
1043{
1044        return (section && (section->section_mem_map & SECTION_MARKED_PRESENT));
1045}
1046
1047static inline int present_section_nr(unsigned long nr)
1048{
1049        return present_section(__nr_to_section(nr));
1050}
1051
1052static inline int valid_section(struct mem_section *section)
1053{
1054        return (section && (section->section_mem_map & SECTION_HAS_MEM_MAP));
1055}
1056
1057static inline int valid_section_nr(unsigned long nr)
1058{
1059        return valid_section(__nr_to_section(nr));
1060}
1061
1062static inline struct mem_section *__pfn_to_section(unsigned long pfn)
1063{
1064        return __nr_to_section(pfn_to_section_nr(pfn));
1065}
1066
1067#ifndef CONFIG_HAVE_ARCH_PFN_VALID
1068static inline int pfn_valid(unsigned long pfn)
1069{
1070        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1071                return 0;
1072        return valid_section(__nr_to_section(pfn_to_section_nr(pfn)));
1073}
1074#endif
1075
1076static inline int pfn_present(unsigned long pfn)
1077{
1078        if (pfn_to_section_nr(pfn) >= NR_MEM_SECTIONS)
1079                return 0;
1080        return present_section(__nr_to_section(pfn_to_section_nr(pfn)));
1081}
1082
1083/*
1084 * These are _only_ used during initialisation, therefore they
1085 * can use __initdata ...  They could have names to indicate
1086 * this restriction.
1087 */
1088#ifdef CONFIG_NUMA
1089#define pfn_to_nid(pfn)                                                 \
1090({                                                                      \
1091        unsigned long __pfn_to_nid_pfn = (pfn);                         \
1092        page_to_nid(pfn_to_page(__pfn_to_nid_pfn));                     \
1093})
1094#else
1095#define pfn_to_nid(pfn)         (0)
1096#endif
1097
1098#define early_pfn_valid(pfn)    pfn_valid(pfn)
1099void sparse_init(void);
1100#else
1101#define sparse_init()   do {} while (0)
1102#define sparse_index_init(_sec, _nid)  do {} while (0)
1103#endif /* CONFIG_SPARSEMEM */
1104
1105#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1106bool early_pfn_in_nid(unsigned long pfn, int nid);
1107#else
1108#define early_pfn_in_nid(pfn, nid)      (1)
1109#endif
1110
1111#ifndef early_pfn_valid
1112#define early_pfn_valid(pfn)    (1)
1113#endif
1114
1115void memory_present(int nid, unsigned long start, unsigned long end);
1116unsigned long __init node_memmap_size_bytes(int, unsigned long, unsigned long);
1117
1118/*
1119 * If it is possible to have holes within a MAX_ORDER_NR_PAGES, then we
1120 * need to check pfn validility within that MAX_ORDER_NR_PAGES block.
1121 * pfn_valid_within() should be used in this case; we optimise this away
1122 * when we have no holes within a MAX_ORDER_NR_PAGES block.
1123 */
1124#ifdef CONFIG_HOLES_IN_ZONE
1125#define pfn_valid_within(pfn) pfn_valid(pfn)
1126#else
1127#define pfn_valid_within(pfn) (1)
1128#endif
1129
1130#ifdef CONFIG_ARCH_HAS_HOLES_MEMORYMODEL
1131/*
1132 * pfn_valid() is meant to be able to tell if a given PFN has valid memmap
1133 * associated with it or not. In FLATMEM, it is expected that holes always
1134 * have valid memmap as long as there is valid PFNs either side of the hole.
1135 * In SPARSEMEM, it is assumed that a valid section has a memmap for the
1136 * entire section.
1137 *
1138 * However, an ARM, and maybe other embedded architectures in the future
1139 * free memmap backing holes to save memory on the assumption the memmap is
1140 * never used. The page_zone linkages are then broken even though pfn_valid()
1141 * returns true. A walker of the full memmap must then do this additional
1142 * check to ensure the memmap they are looking at is sane by making sure
1143 * the zone and PFN linkages are still valid. This is expensive, but walkers
1144 * of the full memmap are extremely rare.
1145 */
1146int memmap_valid_within(unsigned long pfn,
1147                                        struct page *page, struct zone *zone);
1148#else
1149static inline int memmap_valid_within(unsigned long pfn,
1150                                        struct page *page, struct zone *zone)
1151{
1152        return 1;
1153}
1154#endif /* CONFIG_ARCH_HAS_HOLES_MEMORYMODEL */
1155
1156#endif /* !__GENERATING_BOUNDS.H */
1157#endif /* !__ASSEMBLY__ */
1158#endif /* _LINUX_MMZONE_H */
1159