linux/include/linux/skbuff.h
<<
>>
Prefs
   1/*
   2 *      Definitions for the 'struct sk_buff' memory handlers.
   3 *
   4 *      Authors:
   5 *              Alan Cox, <gw4pts@gw4pts.ampr.org>
   6 *              Florian La Roche, <rzsfl@rz.uni-sb.de>
   7 *
   8 *      This program is free software; you can redistribute it and/or
   9 *      modify it under the terms of the GNU General Public License
  10 *      as published by the Free Software Foundation; either version
  11 *      2 of the License, or (at your option) any later version.
  12 */
  13
  14#ifndef _LINUX_SKBUFF_H
  15#define _LINUX_SKBUFF_H
  16
  17#include <linux/kernel.h>
  18#include <linux/kmemcheck.h>
  19#include <linux/compiler.h>
  20#include <linux/time.h>
  21#include <linux/cache.h>
  22
  23#include <linux/atomic.h>
  24#include <asm/types.h>
  25#include <linux/spinlock.h>
  26#include <linux/net.h>
  27#include <linux/textsearch.h>
  28#include <net/checksum.h>
  29#include <linux/rcupdate.h>
  30#include <linux/dmaengine.h>
  31#include <linux/hrtimer.h>
  32
  33/* Don't change this without changing skb_csum_unnecessary! */
  34#define CHECKSUM_NONE 0
  35#define CHECKSUM_UNNECESSARY 1
  36#define CHECKSUM_COMPLETE 2
  37#define CHECKSUM_PARTIAL 3
  38
  39#define SKB_DATA_ALIGN(X)       (((X) + (SMP_CACHE_BYTES - 1)) & \
  40                                 ~(SMP_CACHE_BYTES - 1))
  41#define SKB_WITH_OVERHEAD(X)    \
  42        ((X) - SKB_DATA_ALIGN(sizeof(struct skb_shared_info)))
  43#define SKB_MAX_ORDER(X, ORDER) \
  44        SKB_WITH_OVERHEAD((PAGE_SIZE << (ORDER)) - (X))
  45#define SKB_MAX_HEAD(X)         (SKB_MAX_ORDER((X), 0))
  46#define SKB_MAX_ALLOC           (SKB_MAX_ORDER(0, 2))
  47
  48/* A. Checksumming of received packets by device.
  49 *
  50 *      NONE: device failed to checksum this packet.
  51 *              skb->csum is undefined.
  52 *
  53 *      UNNECESSARY: device parsed packet and wouldbe verified checksum.
  54 *              skb->csum is undefined.
  55 *            It is bad option, but, unfortunately, many of vendors do this.
  56 *            Apparently with secret goal to sell you new device, when you
  57 *            will add new protocol to your host. F.e. IPv6. 8)
  58 *
  59 *      COMPLETE: the most generic way. Device supplied checksum of _all_
  60 *          the packet as seen by netif_rx in skb->csum.
  61 *          NOTE: Even if device supports only some protocols, but
  62 *          is able to produce some skb->csum, it MUST use COMPLETE,
  63 *          not UNNECESSARY.
  64 *
  65 *      PARTIAL: identical to the case for output below.  This may occur
  66 *          on a packet received directly from another Linux OS, e.g.,
  67 *          a virtualised Linux kernel on the same host.  The packet can
  68 *          be treated in the same way as UNNECESSARY except that on
  69 *          output (i.e., forwarding) the checksum must be filled in
  70 *          by the OS or the hardware.
  71 *
  72 * B. Checksumming on output.
  73 *
  74 *      NONE: skb is checksummed by protocol or csum is not required.
  75 *
  76 *      PARTIAL: device is required to csum packet as seen by hard_start_xmit
  77 *      from skb->csum_start to the end and to record the checksum
  78 *      at skb->csum_start + skb->csum_offset.
  79 *
  80 *      Device must show its capabilities in dev->features, set
  81 *      at device setup time.
  82 *      NETIF_F_HW_CSUM - it is clever device, it is able to checksum
  83 *                        everything.
  84 *      NETIF_F_NO_CSUM - loopback or reliable single hop media.
  85 *      NETIF_F_IP_CSUM - device is dumb. It is able to csum only
  86 *                        TCP/UDP over IPv4. Sigh. Vendors like this
  87 *                        way by an unknown reason. Though, see comment above
  88 *                        about CHECKSUM_UNNECESSARY. 8)
  89 *      NETIF_F_IPV6_CSUM about as dumb as the last one but does IPv6 instead.
  90 *
  91 *      Any questions? No questions, good.              --ANK
  92 */
  93
  94struct net_device;
  95struct scatterlist;
  96struct pipe_inode_info;
  97
  98#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
  99struct nf_conntrack {
 100        atomic_t use;
 101};
 102#endif
 103
 104#ifdef CONFIG_BRIDGE_NETFILTER
 105struct nf_bridge_info {
 106        atomic_t use;
 107        struct net_device *physindev;
 108        struct net_device *physoutdev;
 109        unsigned int mask;
 110        unsigned long data[32 / sizeof(unsigned long)];
 111};
 112#endif
 113
 114struct sk_buff_head {
 115        /* These two members must be first. */
 116        struct sk_buff  *next;
 117        struct sk_buff  *prev;
 118
 119        __u32           qlen;
 120        spinlock_t      lock;
 121};
 122
 123struct sk_buff;
 124
 125/* To allow 64K frame to be packed as single skb without frag_list. Since
 126 * GRO uses frags we allocate at least 16 regardless of page size.
 127 */
 128#if (65536/PAGE_SIZE + 2) < 16
 129#define MAX_SKB_FRAGS 16UL
 130#else
 131#define MAX_SKB_FRAGS (65536/PAGE_SIZE + 2)
 132#endif
 133
 134typedef struct skb_frag_struct skb_frag_t;
 135
 136struct skb_frag_struct {
 137        struct page *page;
 138#if (BITS_PER_LONG > 32) || (PAGE_SIZE >= 65536)
 139        __u32 page_offset;
 140        __u32 size;
 141#else
 142        __u16 page_offset;
 143        __u16 size;
 144#endif
 145};
 146
 147#define HAVE_HW_TIME_STAMP
 148
 149/**
 150 * struct skb_shared_hwtstamps - hardware time stamps
 151 * @hwtstamp:   hardware time stamp transformed into duration
 152 *              since arbitrary point in time
 153 * @syststamp:  hwtstamp transformed to system time base
 154 *
 155 * Software time stamps generated by ktime_get_real() are stored in
 156 * skb->tstamp. The relation between the different kinds of time
 157 * stamps is as follows:
 158 *
 159 * syststamp and tstamp can be compared against each other in
 160 * arbitrary combinations.  The accuracy of a
 161 * syststamp/tstamp/"syststamp from other device" comparison is
 162 * limited by the accuracy of the transformation into system time
 163 * base. This depends on the device driver and its underlying
 164 * hardware.
 165 *
 166 * hwtstamps can only be compared against other hwtstamps from
 167 * the same device.
 168 *
 169 * This structure is attached to packets as part of the
 170 * &skb_shared_info. Use skb_hwtstamps() to get a pointer.
 171 */
 172struct skb_shared_hwtstamps {
 173        ktime_t hwtstamp;
 174        ktime_t syststamp;
 175};
 176
 177/* Definitions for tx_flags in struct skb_shared_info */
 178enum {
 179        /* generate hardware time stamp */
 180        SKBTX_HW_TSTAMP = 1 << 0,
 181
 182        /* generate software time stamp */
 183        SKBTX_SW_TSTAMP = 1 << 1,
 184
 185        /* device driver is going to provide hardware time stamp */
 186        SKBTX_IN_PROGRESS = 1 << 2,
 187
 188        /* ensure the originating sk reference is available on driver level */
 189        SKBTX_DRV_NEEDS_SK_REF = 1 << 3,
 190
 191        /* device driver supports TX zero-copy buffers */
 192        SKBTX_DEV_ZEROCOPY = 1 << 4,
 193};
 194
 195/*
 196 * The callback notifies userspace to release buffers when skb DMA is done in
 197 * lower device, the skb last reference should be 0 when calling this.
 198 * The desc is used to track userspace buffer index.
 199 */
 200struct ubuf_info {
 201        void (*callback)(void *);
 202        void *arg;
 203        unsigned long desc;
 204};
 205
 206/* This data is invariant across clones and lives at
 207 * the end of the header data, ie. at skb->end.
 208 */
 209struct skb_shared_info {
 210        unsigned short  nr_frags;
 211        unsigned short  gso_size;
 212        /* Warning: this field is not always filled in (UFO)! */
 213        unsigned short  gso_segs;
 214        unsigned short  gso_type;
 215        __be32          ip6_frag_id;
 216        __u8            tx_flags;
 217        struct sk_buff  *frag_list;
 218        struct skb_shared_hwtstamps hwtstamps;
 219
 220        /*
 221         * Warning : all fields before dataref are cleared in __alloc_skb()
 222         */
 223        atomic_t        dataref;
 224
 225        /* Intermediate layers must ensure that destructor_arg
 226         * remains valid until skb destructor */
 227        void *          destructor_arg;
 228
 229        /* must be last field, see pskb_expand_head() */
 230        skb_frag_t      frags[MAX_SKB_FRAGS];
 231};
 232
 233/* We divide dataref into two halves.  The higher 16 bits hold references
 234 * to the payload part of skb->data.  The lower 16 bits hold references to
 235 * the entire skb->data.  A clone of a headerless skb holds the length of
 236 * the header in skb->hdr_len.
 237 *
 238 * All users must obey the rule that the skb->data reference count must be
 239 * greater than or equal to the payload reference count.
 240 *
 241 * Holding a reference to the payload part means that the user does not
 242 * care about modifications to the header part of skb->data.
 243 */
 244#define SKB_DATAREF_SHIFT 16
 245#define SKB_DATAREF_MASK ((1 << SKB_DATAREF_SHIFT) - 1)
 246
 247
 248enum {
 249        SKB_FCLONE_UNAVAILABLE,
 250        SKB_FCLONE_ORIG,
 251        SKB_FCLONE_CLONE,
 252};
 253
 254enum {
 255        SKB_GSO_TCPV4 = 1 << 0,
 256        SKB_GSO_UDP = 1 << 1,
 257
 258        /* This indicates the skb is from an untrusted source. */
 259        SKB_GSO_DODGY = 1 << 2,
 260
 261        /* This indicates the tcp segment has CWR set. */
 262        SKB_GSO_TCP_ECN = 1 << 3,
 263
 264        SKB_GSO_TCPV6 = 1 << 4,
 265
 266        SKB_GSO_FCOE = 1 << 5,
 267};
 268
 269#if BITS_PER_LONG > 32
 270#define NET_SKBUFF_DATA_USES_OFFSET 1
 271#endif
 272
 273#ifdef NET_SKBUFF_DATA_USES_OFFSET
 274typedef unsigned int sk_buff_data_t;
 275#else
 276typedef unsigned char *sk_buff_data_t;
 277#endif
 278
 279#if defined(CONFIG_NF_DEFRAG_IPV4) || defined(CONFIG_NF_DEFRAG_IPV4_MODULE) || \
 280    defined(CONFIG_NF_DEFRAG_IPV6) || defined(CONFIG_NF_DEFRAG_IPV6_MODULE)
 281#define NET_SKBUFF_NF_DEFRAG_NEEDED 1
 282#endif
 283
 284/** 
 285 *      struct sk_buff - socket buffer
 286 *      @next: Next buffer in list
 287 *      @prev: Previous buffer in list
 288 *      @tstamp: Time we arrived
 289 *      @sk: Socket we are owned by
 290 *      @dev: Device we arrived on/are leaving by
 291 *      @cb: Control buffer. Free for use by every layer. Put private vars here
 292 *      @_skb_refdst: destination entry (with norefcount bit)
 293 *      @sp: the security path, used for xfrm
 294 *      @len: Length of actual data
 295 *      @data_len: Data length
 296 *      @mac_len: Length of link layer header
 297 *      @hdr_len: writable header length of cloned skb
 298 *      @csum: Checksum (must include start/offset pair)
 299 *      @csum_start: Offset from skb->head where checksumming should start
 300 *      @csum_offset: Offset from csum_start where checksum should be stored
 301 *      @priority: Packet queueing priority
 302 *      @local_df: allow local fragmentation
 303 *      @cloned: Head may be cloned (check refcnt to be sure)
 304 *      @ip_summed: Driver fed us an IP checksum
 305 *      @nohdr: Payload reference only, must not modify header
 306 *      @nfctinfo: Relationship of this skb to the connection
 307 *      @pkt_type: Packet class
 308 *      @fclone: skbuff clone status
 309 *      @ipvs_property: skbuff is owned by ipvs
 310 *      @peeked: this packet has been seen already, so stats have been
 311 *              done for it, don't do them again
 312 *      @nf_trace: netfilter packet trace flag
 313 *      @protocol: Packet protocol from driver
 314 *      @destructor: Destruct function
 315 *      @nfct: Associated connection, if any
 316 *      @nfct_reasm: netfilter conntrack re-assembly pointer
 317 *      @nf_bridge: Saved data about a bridged frame - see br_netfilter.c
 318 *      @skb_iif: ifindex of device we arrived on
 319 *      @tc_index: Traffic control index
 320 *      @tc_verd: traffic control verdict
 321 *      @rxhash: the packet hash computed on receive
 322 *      @queue_mapping: Queue mapping for multiqueue devices
 323 *      @ndisc_nodetype: router type (from link layer)
 324 *      @ooo_okay: allow the mapping of a socket to a queue to be changed
 325 *      @dma_cookie: a cookie to one of several possible DMA operations
 326 *              done by skb DMA functions
 327 *      @secmark: security marking
 328 *      @mark: Generic packet mark
 329 *      @dropcount: total number of sk_receive_queue overflows
 330 *      @vlan_tci: vlan tag control information
 331 *      @transport_header: Transport layer header
 332 *      @network_header: Network layer header
 333 *      @mac_header: Link layer header
 334 *      @tail: Tail pointer
 335 *      @end: End pointer
 336 *      @head: Head of buffer
 337 *      @data: Data head pointer
 338 *      @truesize: Buffer size
 339 *      @users: User count - see {datagram,tcp}.c
 340 */
 341
 342struct sk_buff {
 343        /* These two members must be first. */
 344        struct sk_buff          *next;
 345        struct sk_buff          *prev;
 346
 347        ktime_t                 tstamp;
 348
 349        struct sock             *sk;
 350        struct net_device       *dev;
 351
 352        /*
 353         * This is the control buffer. It is free to use for every
 354         * layer. Please put your private variables there. If you
 355         * want to keep them across layers you have to do a skb_clone()
 356         * first. This is owned by whoever has the skb queued ATM.
 357         */
 358        char                    cb[48] __aligned(8);
 359
 360        unsigned long           _skb_refdst;
 361#ifdef CONFIG_XFRM
 362        struct  sec_path        *sp;
 363#endif
 364        unsigned int            len,
 365                                data_len;
 366        __u16                   mac_len,
 367                                hdr_len;
 368        union {
 369                __wsum          csum;
 370                struct {
 371                        __u16   csum_start;
 372                        __u16   csum_offset;
 373                };
 374        };
 375        __u32                   priority;
 376        kmemcheck_bitfield_begin(flags1);
 377        __u8                    local_df:1,
 378                                cloned:1,
 379                                ip_summed:2,
 380                                nohdr:1,
 381                                nfctinfo:3;
 382        __u8                    pkt_type:3,
 383                                fclone:2,
 384                                ipvs_property:1,
 385                                peeked:1,
 386                                nf_trace:1;
 387        kmemcheck_bitfield_end(flags1);
 388        __be16                  protocol;
 389
 390        void                    (*destructor)(struct sk_buff *skb);
 391#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
 392        struct nf_conntrack     *nfct;
 393#endif
 394#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
 395        struct sk_buff          *nfct_reasm;
 396#endif
 397#ifdef CONFIG_BRIDGE_NETFILTER
 398        struct nf_bridge_info   *nf_bridge;
 399#endif
 400
 401        int                     skb_iif;
 402#ifdef CONFIG_NET_SCHED
 403        __u16                   tc_index;       /* traffic control index */
 404#ifdef CONFIG_NET_CLS_ACT
 405        __u16                   tc_verd;        /* traffic control verdict */
 406#endif
 407#endif
 408
 409        __u32                   rxhash;
 410
 411        __u16                   queue_mapping;
 412        kmemcheck_bitfield_begin(flags2);
 413#ifdef CONFIG_IPV6_NDISC_NODETYPE
 414        __u8                    ndisc_nodetype:2;
 415#endif
 416        __u8                    ooo_okay:1;
 417        kmemcheck_bitfield_end(flags2);
 418
 419        /* 0/13 bit hole */
 420
 421#ifdef CONFIG_NET_DMA
 422        dma_cookie_t            dma_cookie;
 423#endif
 424#ifdef CONFIG_NETWORK_SECMARK
 425        __u32                   secmark;
 426#endif
 427        union {
 428                __u32           mark;
 429                __u32           dropcount;
 430        };
 431
 432        __u16                   vlan_tci;
 433
 434        sk_buff_data_t          transport_header;
 435        sk_buff_data_t          network_header;
 436        sk_buff_data_t          mac_header;
 437        /* These elements must be at the end, see alloc_skb() for details.  */
 438        sk_buff_data_t          tail;
 439        sk_buff_data_t          end;
 440        unsigned char           *head,
 441                                *data;
 442        unsigned int            truesize;
 443        atomic_t                users;
 444};
 445
 446#ifdef __KERNEL__
 447/*
 448 *      Handling routines are only of interest to the kernel
 449 */
 450#include <linux/slab.h>
 451
 452#include <asm/system.h>
 453
 454/*
 455 * skb might have a dst pointer attached, refcounted or not.
 456 * _skb_refdst low order bit is set if refcount was _not_ taken
 457 */
 458#define SKB_DST_NOREF   1UL
 459#define SKB_DST_PTRMASK ~(SKB_DST_NOREF)
 460
 461/**
 462 * skb_dst - returns skb dst_entry
 463 * @skb: buffer
 464 *
 465 * Returns skb dst_entry, regardless of reference taken or not.
 466 */
 467static inline struct dst_entry *skb_dst(const struct sk_buff *skb)
 468{
 469        /* If refdst was not refcounted, check we still are in a 
 470         * rcu_read_lock section
 471         */
 472        WARN_ON((skb->_skb_refdst & SKB_DST_NOREF) &&
 473                !rcu_read_lock_held() &&
 474                !rcu_read_lock_bh_held());
 475        return (struct dst_entry *)(skb->_skb_refdst & SKB_DST_PTRMASK);
 476}
 477
 478/**
 479 * skb_dst_set - sets skb dst
 480 * @skb: buffer
 481 * @dst: dst entry
 482 *
 483 * Sets skb dst, assuming a reference was taken on dst and should
 484 * be released by skb_dst_drop()
 485 */
 486static inline void skb_dst_set(struct sk_buff *skb, struct dst_entry *dst)
 487{
 488        skb->_skb_refdst = (unsigned long)dst;
 489}
 490
 491extern void skb_dst_set_noref(struct sk_buff *skb, struct dst_entry *dst);
 492
 493/**
 494 * skb_dst_is_noref - Test if skb dst isn't refcounted
 495 * @skb: buffer
 496 */
 497static inline bool skb_dst_is_noref(const struct sk_buff *skb)
 498{
 499        return (skb->_skb_refdst & SKB_DST_NOREF) && skb_dst(skb);
 500}
 501
 502static inline struct rtable *skb_rtable(const struct sk_buff *skb)
 503{
 504        return (struct rtable *)skb_dst(skb);
 505}
 506
 507extern void kfree_skb(struct sk_buff *skb);
 508extern void consume_skb(struct sk_buff *skb);
 509extern void            __kfree_skb(struct sk_buff *skb);
 510extern struct sk_buff *__alloc_skb(unsigned int size,
 511                                   gfp_t priority, int fclone, int node);
 512static inline struct sk_buff *alloc_skb(unsigned int size,
 513                                        gfp_t priority)
 514{
 515        return __alloc_skb(size, priority, 0, NUMA_NO_NODE);
 516}
 517
 518static inline struct sk_buff *alloc_skb_fclone(unsigned int size,
 519                                               gfp_t priority)
 520{
 521        return __alloc_skb(size, priority, 1, NUMA_NO_NODE);
 522}
 523
 524extern bool skb_recycle_check(struct sk_buff *skb, int skb_size);
 525
 526extern struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src);
 527extern int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask);
 528extern struct sk_buff *skb_clone(struct sk_buff *skb,
 529                                 gfp_t priority);
 530extern struct sk_buff *skb_copy(const struct sk_buff *skb,
 531                                gfp_t priority);
 532extern struct sk_buff *pskb_copy(struct sk_buff *skb,
 533                                 gfp_t gfp_mask);
 534extern int             pskb_expand_head(struct sk_buff *skb,
 535                                        int nhead, int ntail,
 536                                        gfp_t gfp_mask);
 537extern struct sk_buff *skb_realloc_headroom(struct sk_buff *skb,
 538                                            unsigned int headroom);
 539extern struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
 540                                       int newheadroom, int newtailroom,
 541                                       gfp_t priority);
 542extern int             skb_to_sgvec(struct sk_buff *skb,
 543                                    struct scatterlist *sg, int offset,
 544                                    int len);
 545extern int             skb_cow_data(struct sk_buff *skb, int tailbits,
 546                                    struct sk_buff **trailer);
 547extern int             skb_pad(struct sk_buff *skb, int pad);
 548#define dev_kfree_skb(a)        consume_skb(a)
 549
 550extern int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
 551                        int getfrag(void *from, char *to, int offset,
 552                        int len,int odd, struct sk_buff *skb),
 553                        void *from, int length);
 554
 555struct skb_seq_state {
 556        __u32           lower_offset;
 557        __u32           upper_offset;
 558        __u32           frag_idx;
 559        __u32           stepped_offset;
 560        struct sk_buff  *root_skb;
 561        struct sk_buff  *cur_skb;
 562        __u8            *frag_data;
 563};
 564
 565extern void           skb_prepare_seq_read(struct sk_buff *skb,
 566                                           unsigned int from, unsigned int to,
 567                                           struct skb_seq_state *st);
 568extern unsigned int   skb_seq_read(unsigned int consumed, const u8 **data,
 569                                   struct skb_seq_state *st);
 570extern void           skb_abort_seq_read(struct skb_seq_state *st);
 571
 572extern unsigned int   skb_find_text(struct sk_buff *skb, unsigned int from,
 573                                    unsigned int to, struct ts_config *config,
 574                                    struct ts_state *state);
 575
 576extern __u32 __skb_get_rxhash(struct sk_buff *skb);
 577static inline __u32 skb_get_rxhash(struct sk_buff *skb)
 578{
 579        if (!skb->rxhash)
 580                skb->rxhash = __skb_get_rxhash(skb);
 581
 582        return skb->rxhash;
 583}
 584
 585#ifdef NET_SKBUFF_DATA_USES_OFFSET
 586static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 587{
 588        return skb->head + skb->end;
 589}
 590#else
 591static inline unsigned char *skb_end_pointer(const struct sk_buff *skb)
 592{
 593        return skb->end;
 594}
 595#endif
 596
 597/* Internal */
 598#define skb_shinfo(SKB) ((struct skb_shared_info *)(skb_end_pointer(SKB)))
 599
 600static inline struct skb_shared_hwtstamps *skb_hwtstamps(struct sk_buff *skb)
 601{
 602        return &skb_shinfo(skb)->hwtstamps;
 603}
 604
 605/**
 606 *      skb_queue_empty - check if a queue is empty
 607 *      @list: queue head
 608 *
 609 *      Returns true if the queue is empty, false otherwise.
 610 */
 611static inline int skb_queue_empty(const struct sk_buff_head *list)
 612{
 613        return list->next == (struct sk_buff *)list;
 614}
 615
 616/**
 617 *      skb_queue_is_last - check if skb is the last entry in the queue
 618 *      @list: queue head
 619 *      @skb: buffer
 620 *
 621 *      Returns true if @skb is the last buffer on the list.
 622 */
 623static inline bool skb_queue_is_last(const struct sk_buff_head *list,
 624                                     const struct sk_buff *skb)
 625{
 626        return skb->next == (struct sk_buff *)list;
 627}
 628
 629/**
 630 *      skb_queue_is_first - check if skb is the first entry in the queue
 631 *      @list: queue head
 632 *      @skb: buffer
 633 *
 634 *      Returns true if @skb is the first buffer on the list.
 635 */
 636static inline bool skb_queue_is_first(const struct sk_buff_head *list,
 637                                      const struct sk_buff *skb)
 638{
 639        return skb->prev == (struct sk_buff *)list;
 640}
 641
 642/**
 643 *      skb_queue_next - return the next packet in the queue
 644 *      @list: queue head
 645 *      @skb: current buffer
 646 *
 647 *      Return the next packet in @list after @skb.  It is only valid to
 648 *      call this if skb_queue_is_last() evaluates to false.
 649 */
 650static inline struct sk_buff *skb_queue_next(const struct sk_buff_head *list,
 651                                             const struct sk_buff *skb)
 652{
 653        /* This BUG_ON may seem severe, but if we just return then we
 654         * are going to dereference garbage.
 655         */
 656        BUG_ON(skb_queue_is_last(list, skb));
 657        return skb->next;
 658}
 659
 660/**
 661 *      skb_queue_prev - return the prev packet in the queue
 662 *      @list: queue head
 663 *      @skb: current buffer
 664 *
 665 *      Return the prev packet in @list before @skb.  It is only valid to
 666 *      call this if skb_queue_is_first() evaluates to false.
 667 */
 668static inline struct sk_buff *skb_queue_prev(const struct sk_buff_head *list,
 669                                             const struct sk_buff *skb)
 670{
 671        /* This BUG_ON may seem severe, but if we just return then we
 672         * are going to dereference garbage.
 673         */
 674        BUG_ON(skb_queue_is_first(list, skb));
 675        return skb->prev;
 676}
 677
 678/**
 679 *      skb_get - reference buffer
 680 *      @skb: buffer to reference
 681 *
 682 *      Makes another reference to a socket buffer and returns a pointer
 683 *      to the buffer.
 684 */
 685static inline struct sk_buff *skb_get(struct sk_buff *skb)
 686{
 687        atomic_inc(&skb->users);
 688        return skb;
 689}
 690
 691/*
 692 * If users == 1, we are the only owner and are can avoid redundant
 693 * atomic change.
 694 */
 695
 696/**
 697 *      skb_cloned - is the buffer a clone
 698 *      @skb: buffer to check
 699 *
 700 *      Returns true if the buffer was generated with skb_clone() and is
 701 *      one of multiple shared copies of the buffer. Cloned buffers are
 702 *      shared data so must not be written to under normal circumstances.
 703 */
 704static inline int skb_cloned(const struct sk_buff *skb)
 705{
 706        return skb->cloned &&
 707               (atomic_read(&skb_shinfo(skb)->dataref) & SKB_DATAREF_MASK) != 1;
 708}
 709
 710/**
 711 *      skb_header_cloned - is the header a clone
 712 *      @skb: buffer to check
 713 *
 714 *      Returns true if modifying the header part of the buffer requires
 715 *      the data to be copied.
 716 */
 717static inline int skb_header_cloned(const struct sk_buff *skb)
 718{
 719        int dataref;
 720
 721        if (!skb->cloned)
 722                return 0;
 723
 724        dataref = atomic_read(&skb_shinfo(skb)->dataref);
 725        dataref = (dataref & SKB_DATAREF_MASK) - (dataref >> SKB_DATAREF_SHIFT);
 726        return dataref != 1;
 727}
 728
 729/**
 730 *      skb_header_release - release reference to header
 731 *      @skb: buffer to operate on
 732 *
 733 *      Drop a reference to the header part of the buffer.  This is done
 734 *      by acquiring a payload reference.  You must not read from the header
 735 *      part of skb->data after this.
 736 */
 737static inline void skb_header_release(struct sk_buff *skb)
 738{
 739        BUG_ON(skb->nohdr);
 740        skb->nohdr = 1;
 741        atomic_add(1 << SKB_DATAREF_SHIFT, &skb_shinfo(skb)->dataref);
 742}
 743
 744/**
 745 *      skb_shared - is the buffer shared
 746 *      @skb: buffer to check
 747 *
 748 *      Returns true if more than one person has a reference to this
 749 *      buffer.
 750 */
 751static inline int skb_shared(const struct sk_buff *skb)
 752{
 753        return atomic_read(&skb->users) != 1;
 754}
 755
 756/**
 757 *      skb_share_check - check if buffer is shared and if so clone it
 758 *      @skb: buffer to check
 759 *      @pri: priority for memory allocation
 760 *
 761 *      If the buffer is shared the buffer is cloned and the old copy
 762 *      drops a reference. A new clone with a single reference is returned.
 763 *      If the buffer is not shared the original buffer is returned. When
 764 *      being called from interrupt status or with spinlocks held pri must
 765 *      be GFP_ATOMIC.
 766 *
 767 *      NULL is returned on a memory allocation failure.
 768 */
 769static inline struct sk_buff *skb_share_check(struct sk_buff *skb,
 770                                              gfp_t pri)
 771{
 772        might_sleep_if(pri & __GFP_WAIT);
 773        if (skb_shared(skb)) {
 774                struct sk_buff *nskb = skb_clone(skb, pri);
 775                kfree_skb(skb);
 776                skb = nskb;
 777        }
 778        return skb;
 779}
 780
 781/*
 782 *      Copy shared buffers into a new sk_buff. We effectively do COW on
 783 *      packets to handle cases where we have a local reader and forward
 784 *      and a couple of other messy ones. The normal one is tcpdumping
 785 *      a packet thats being forwarded.
 786 */
 787
 788/**
 789 *      skb_unshare - make a copy of a shared buffer
 790 *      @skb: buffer to check
 791 *      @pri: priority for memory allocation
 792 *
 793 *      If the socket buffer is a clone then this function creates a new
 794 *      copy of the data, drops a reference count on the old copy and returns
 795 *      the new copy with the reference count at 1. If the buffer is not a clone
 796 *      the original buffer is returned. When called with a spinlock held or
 797 *      from interrupt state @pri must be %GFP_ATOMIC
 798 *
 799 *      %NULL is returned on a memory allocation failure.
 800 */
 801static inline struct sk_buff *skb_unshare(struct sk_buff *skb,
 802                                          gfp_t pri)
 803{
 804        might_sleep_if(pri & __GFP_WAIT);
 805        if (skb_cloned(skb)) {
 806                struct sk_buff *nskb = skb_copy(skb, pri);
 807                kfree_skb(skb); /* Free our shared copy */
 808                skb = nskb;
 809        }
 810        return skb;
 811}
 812
 813/**
 814 *      skb_peek - peek at the head of an &sk_buff_head
 815 *      @list_: list to peek at
 816 *
 817 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 818 *      be careful with this one. A peek leaves the buffer on the
 819 *      list and someone else may run off with it. You must hold
 820 *      the appropriate locks or have a private queue to do this.
 821 *
 822 *      Returns %NULL for an empty list or a pointer to the head element.
 823 *      The reference count is not incremented and the reference is therefore
 824 *      volatile. Use with caution.
 825 */
 826static inline struct sk_buff *skb_peek(struct sk_buff_head *list_)
 827{
 828        struct sk_buff *list = ((struct sk_buff *)list_)->next;
 829        if (list == (struct sk_buff *)list_)
 830                list = NULL;
 831        return list;
 832}
 833
 834/**
 835 *      skb_peek_tail - peek at the tail of an &sk_buff_head
 836 *      @list_: list to peek at
 837 *
 838 *      Peek an &sk_buff. Unlike most other operations you _MUST_
 839 *      be careful with this one. A peek leaves the buffer on the
 840 *      list and someone else may run off with it. You must hold
 841 *      the appropriate locks or have a private queue to do this.
 842 *
 843 *      Returns %NULL for an empty list or a pointer to the tail element.
 844 *      The reference count is not incremented and the reference is therefore
 845 *      volatile. Use with caution.
 846 */
 847static inline struct sk_buff *skb_peek_tail(struct sk_buff_head *list_)
 848{
 849        struct sk_buff *list = ((struct sk_buff *)list_)->prev;
 850        if (list == (struct sk_buff *)list_)
 851                list = NULL;
 852        return list;
 853}
 854
 855/**
 856 *      skb_queue_len   - get queue length
 857 *      @list_: list to measure
 858 *
 859 *      Return the length of an &sk_buff queue.
 860 */
 861static inline __u32 skb_queue_len(const struct sk_buff_head *list_)
 862{
 863        return list_->qlen;
 864}
 865
 866/**
 867 *      __skb_queue_head_init - initialize non-spinlock portions of sk_buff_head
 868 *      @list: queue to initialize
 869 *
 870 *      This initializes only the list and queue length aspects of
 871 *      an sk_buff_head object.  This allows to initialize the list
 872 *      aspects of an sk_buff_head without reinitializing things like
 873 *      the spinlock.  It can also be used for on-stack sk_buff_head
 874 *      objects where the spinlock is known to not be used.
 875 */
 876static inline void __skb_queue_head_init(struct sk_buff_head *list)
 877{
 878        list->prev = list->next = (struct sk_buff *)list;
 879        list->qlen = 0;
 880}
 881
 882/*
 883 * This function creates a split out lock class for each invocation;
 884 * this is needed for now since a whole lot of users of the skb-queue
 885 * infrastructure in drivers have different locking usage (in hardirq)
 886 * than the networking core (in softirq only). In the long run either the
 887 * network layer or drivers should need annotation to consolidate the
 888 * main types of usage into 3 classes.
 889 */
 890static inline void skb_queue_head_init(struct sk_buff_head *list)
 891{
 892        spin_lock_init(&list->lock);
 893        __skb_queue_head_init(list);
 894}
 895
 896static inline void skb_queue_head_init_class(struct sk_buff_head *list,
 897                struct lock_class_key *class)
 898{
 899        skb_queue_head_init(list);
 900        lockdep_set_class(&list->lock, class);
 901}
 902
 903/*
 904 *      Insert an sk_buff on a list.
 905 *
 906 *      The "__skb_xxxx()" functions are the non-atomic ones that
 907 *      can only be called with interrupts disabled.
 908 */
 909extern void        skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list);
 910static inline void __skb_insert(struct sk_buff *newsk,
 911                                struct sk_buff *prev, struct sk_buff *next,
 912                                struct sk_buff_head *list)
 913{
 914        newsk->next = next;
 915        newsk->prev = prev;
 916        next->prev  = prev->next = newsk;
 917        list->qlen++;
 918}
 919
 920static inline void __skb_queue_splice(const struct sk_buff_head *list,
 921                                      struct sk_buff *prev,
 922                                      struct sk_buff *next)
 923{
 924        struct sk_buff *first = list->next;
 925        struct sk_buff *last = list->prev;
 926
 927        first->prev = prev;
 928        prev->next = first;
 929
 930        last->next = next;
 931        next->prev = last;
 932}
 933
 934/**
 935 *      skb_queue_splice - join two skb lists, this is designed for stacks
 936 *      @list: the new list to add
 937 *      @head: the place to add it in the first list
 938 */
 939static inline void skb_queue_splice(const struct sk_buff_head *list,
 940                                    struct sk_buff_head *head)
 941{
 942        if (!skb_queue_empty(list)) {
 943                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
 944                head->qlen += list->qlen;
 945        }
 946}
 947
 948/**
 949 *      skb_queue_splice - join two skb lists and reinitialise the emptied list
 950 *      @list: the new list to add
 951 *      @head: the place to add it in the first list
 952 *
 953 *      The list at @list is reinitialised
 954 */
 955static inline void skb_queue_splice_init(struct sk_buff_head *list,
 956                                         struct sk_buff_head *head)
 957{
 958        if (!skb_queue_empty(list)) {
 959                __skb_queue_splice(list, (struct sk_buff *) head, head->next);
 960                head->qlen += list->qlen;
 961                __skb_queue_head_init(list);
 962        }
 963}
 964
 965/**
 966 *      skb_queue_splice_tail - join two skb lists, each list being a queue
 967 *      @list: the new list to add
 968 *      @head: the place to add it in the first list
 969 */
 970static inline void skb_queue_splice_tail(const struct sk_buff_head *list,
 971                                         struct sk_buff_head *head)
 972{
 973        if (!skb_queue_empty(list)) {
 974                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
 975                head->qlen += list->qlen;
 976        }
 977}
 978
 979/**
 980 *      skb_queue_splice_tail - join two skb lists and reinitialise the emptied list
 981 *      @list: the new list to add
 982 *      @head: the place to add it in the first list
 983 *
 984 *      Each of the lists is a queue.
 985 *      The list at @list is reinitialised
 986 */
 987static inline void skb_queue_splice_tail_init(struct sk_buff_head *list,
 988                                              struct sk_buff_head *head)
 989{
 990        if (!skb_queue_empty(list)) {
 991                __skb_queue_splice(list, head->prev, (struct sk_buff *) head);
 992                head->qlen += list->qlen;
 993                __skb_queue_head_init(list);
 994        }
 995}
 996
 997/**
 998 *      __skb_queue_after - queue a buffer at the list head
 999 *      @list: list to use
1000 *      @prev: place after this buffer
1001 *      @newsk: buffer to queue
1002 *
1003 *      Queue a buffer int the middle of a list. This function takes no locks
1004 *      and you must therefore hold required locks before calling it.
1005 *
1006 *      A buffer cannot be placed on two lists at the same time.
1007 */
1008static inline void __skb_queue_after(struct sk_buff_head *list,
1009                                     struct sk_buff *prev,
1010                                     struct sk_buff *newsk)
1011{
1012        __skb_insert(newsk, prev, prev->next, list);
1013}
1014
1015extern void skb_append(struct sk_buff *old, struct sk_buff *newsk,
1016                       struct sk_buff_head *list);
1017
1018static inline void __skb_queue_before(struct sk_buff_head *list,
1019                                      struct sk_buff *next,
1020                                      struct sk_buff *newsk)
1021{
1022        __skb_insert(newsk, next->prev, next, list);
1023}
1024
1025/**
1026 *      __skb_queue_head - queue a buffer at the list head
1027 *      @list: list to use
1028 *      @newsk: buffer to queue
1029 *
1030 *      Queue a buffer at the start of a list. This function takes no locks
1031 *      and you must therefore hold required locks before calling it.
1032 *
1033 *      A buffer cannot be placed on two lists at the same time.
1034 */
1035extern void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk);
1036static inline void __skb_queue_head(struct sk_buff_head *list,
1037                                    struct sk_buff *newsk)
1038{
1039        __skb_queue_after(list, (struct sk_buff *)list, newsk);
1040}
1041
1042/**
1043 *      __skb_queue_tail - queue a buffer at the list tail
1044 *      @list: list to use
1045 *      @newsk: buffer to queue
1046 *
1047 *      Queue a buffer at the end of a list. This function takes no locks
1048 *      and you must therefore hold required locks before calling it.
1049 *
1050 *      A buffer cannot be placed on two lists at the same time.
1051 */
1052extern void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk);
1053static inline void __skb_queue_tail(struct sk_buff_head *list,
1054                                   struct sk_buff *newsk)
1055{
1056        __skb_queue_before(list, (struct sk_buff *)list, newsk);
1057}
1058
1059/*
1060 * remove sk_buff from list. _Must_ be called atomically, and with
1061 * the list known..
1062 */
1063extern void        skb_unlink(struct sk_buff *skb, struct sk_buff_head *list);
1064static inline void __skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
1065{
1066        struct sk_buff *next, *prev;
1067
1068        list->qlen--;
1069        next       = skb->next;
1070        prev       = skb->prev;
1071        skb->next  = skb->prev = NULL;
1072        next->prev = prev;
1073        prev->next = next;
1074}
1075
1076/**
1077 *      __skb_dequeue - remove from the head of the queue
1078 *      @list: list to dequeue from
1079 *
1080 *      Remove the head of the list. This function does not take any locks
1081 *      so must be used with appropriate locks held only. The head item is
1082 *      returned or %NULL if the list is empty.
1083 */
1084extern struct sk_buff *skb_dequeue(struct sk_buff_head *list);
1085static inline struct sk_buff *__skb_dequeue(struct sk_buff_head *list)
1086{
1087        struct sk_buff *skb = skb_peek(list);
1088        if (skb)
1089                __skb_unlink(skb, list);
1090        return skb;
1091}
1092
1093/**
1094 *      __skb_dequeue_tail - remove from the tail of the queue
1095 *      @list: list to dequeue from
1096 *
1097 *      Remove the tail of the list. This function does not take any locks
1098 *      so must be used with appropriate locks held only. The tail item is
1099 *      returned or %NULL if the list is empty.
1100 */
1101extern struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list);
1102static inline struct sk_buff *__skb_dequeue_tail(struct sk_buff_head *list)
1103{
1104        struct sk_buff *skb = skb_peek_tail(list);
1105        if (skb)
1106                __skb_unlink(skb, list);
1107        return skb;
1108}
1109
1110
1111static inline int skb_is_nonlinear(const struct sk_buff *skb)
1112{
1113        return skb->data_len;
1114}
1115
1116static inline unsigned int skb_headlen(const struct sk_buff *skb)
1117{
1118        return skb->len - skb->data_len;
1119}
1120
1121static inline int skb_pagelen(const struct sk_buff *skb)
1122{
1123        int i, len = 0;
1124
1125        for (i = (int)skb_shinfo(skb)->nr_frags - 1; i >= 0; i--)
1126                len += skb_shinfo(skb)->frags[i].size;
1127        return len + skb_headlen(skb);
1128}
1129
1130static inline void skb_fill_page_desc(struct sk_buff *skb, int i,
1131                                      struct page *page, int off, int size)
1132{
1133        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1134
1135        frag->page                = page;
1136        frag->page_offset         = off;
1137        frag->size                = size;
1138        skb_shinfo(skb)->nr_frags = i + 1;
1139}
1140
1141extern void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page,
1142                            int off, int size);
1143
1144#define SKB_PAGE_ASSERT(skb)    BUG_ON(skb_shinfo(skb)->nr_frags)
1145#define SKB_FRAG_ASSERT(skb)    BUG_ON(skb_has_frag_list(skb))
1146#define SKB_LINEAR_ASSERT(skb)  BUG_ON(skb_is_nonlinear(skb))
1147
1148#ifdef NET_SKBUFF_DATA_USES_OFFSET
1149static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1150{
1151        return skb->head + skb->tail;
1152}
1153
1154static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1155{
1156        skb->tail = skb->data - skb->head;
1157}
1158
1159static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1160{
1161        skb_reset_tail_pointer(skb);
1162        skb->tail += offset;
1163}
1164#else /* NET_SKBUFF_DATA_USES_OFFSET */
1165static inline unsigned char *skb_tail_pointer(const struct sk_buff *skb)
1166{
1167        return skb->tail;
1168}
1169
1170static inline void skb_reset_tail_pointer(struct sk_buff *skb)
1171{
1172        skb->tail = skb->data;
1173}
1174
1175static inline void skb_set_tail_pointer(struct sk_buff *skb, const int offset)
1176{
1177        skb->tail = skb->data + offset;
1178}
1179
1180#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1181
1182/*
1183 *      Add data to an sk_buff
1184 */
1185extern unsigned char *skb_put(struct sk_buff *skb, unsigned int len);
1186static inline unsigned char *__skb_put(struct sk_buff *skb, unsigned int len)
1187{
1188        unsigned char *tmp = skb_tail_pointer(skb);
1189        SKB_LINEAR_ASSERT(skb);
1190        skb->tail += len;
1191        skb->len  += len;
1192        return tmp;
1193}
1194
1195extern unsigned char *skb_push(struct sk_buff *skb, unsigned int len);
1196static inline unsigned char *__skb_push(struct sk_buff *skb, unsigned int len)
1197{
1198        skb->data -= len;
1199        skb->len  += len;
1200        return skb->data;
1201}
1202
1203extern unsigned char *skb_pull(struct sk_buff *skb, unsigned int len);
1204static inline unsigned char *__skb_pull(struct sk_buff *skb, unsigned int len)
1205{
1206        skb->len -= len;
1207        BUG_ON(skb->len < skb->data_len);
1208        return skb->data += len;
1209}
1210
1211static inline unsigned char *skb_pull_inline(struct sk_buff *skb, unsigned int len)
1212{
1213        return unlikely(len > skb->len) ? NULL : __skb_pull(skb, len);
1214}
1215
1216extern unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta);
1217
1218static inline unsigned char *__pskb_pull(struct sk_buff *skb, unsigned int len)
1219{
1220        if (len > skb_headlen(skb) &&
1221            !__pskb_pull_tail(skb, len - skb_headlen(skb)))
1222                return NULL;
1223        skb->len -= len;
1224        return skb->data += len;
1225}
1226
1227static inline unsigned char *pskb_pull(struct sk_buff *skb, unsigned int len)
1228{
1229        return unlikely(len > skb->len) ? NULL : __pskb_pull(skb, len);
1230}
1231
1232static inline int pskb_may_pull(struct sk_buff *skb, unsigned int len)
1233{
1234        if (likely(len <= skb_headlen(skb)))
1235                return 1;
1236        if (unlikely(len > skb->len))
1237                return 0;
1238        return __pskb_pull_tail(skb, len - skb_headlen(skb)) != NULL;
1239}
1240
1241/**
1242 *      skb_headroom - bytes at buffer head
1243 *      @skb: buffer to check
1244 *
1245 *      Return the number of bytes of free space at the head of an &sk_buff.
1246 */
1247static inline unsigned int skb_headroom(const struct sk_buff *skb)
1248{
1249        return skb->data - skb->head;
1250}
1251
1252/**
1253 *      skb_tailroom - bytes at buffer end
1254 *      @skb: buffer to check
1255 *
1256 *      Return the number of bytes of free space at the tail of an sk_buff
1257 */
1258static inline int skb_tailroom(const struct sk_buff *skb)
1259{
1260        return skb_is_nonlinear(skb) ? 0 : skb->end - skb->tail;
1261}
1262
1263/**
1264 *      skb_reserve - adjust headroom
1265 *      @skb: buffer to alter
1266 *      @len: bytes to move
1267 *
1268 *      Increase the headroom of an empty &sk_buff by reducing the tail
1269 *      room. This is only allowed for an empty buffer.
1270 */
1271static inline void skb_reserve(struct sk_buff *skb, int len)
1272{
1273        skb->data += len;
1274        skb->tail += len;
1275}
1276
1277static inline void skb_reset_mac_len(struct sk_buff *skb)
1278{
1279        skb->mac_len = skb->network_header - skb->mac_header;
1280}
1281
1282#ifdef NET_SKBUFF_DATA_USES_OFFSET
1283static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1284{
1285        return skb->head + skb->transport_header;
1286}
1287
1288static inline void skb_reset_transport_header(struct sk_buff *skb)
1289{
1290        skb->transport_header = skb->data - skb->head;
1291}
1292
1293static inline void skb_set_transport_header(struct sk_buff *skb,
1294                                            const int offset)
1295{
1296        skb_reset_transport_header(skb);
1297        skb->transport_header += offset;
1298}
1299
1300static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1301{
1302        return skb->head + skb->network_header;
1303}
1304
1305static inline void skb_reset_network_header(struct sk_buff *skb)
1306{
1307        skb->network_header = skb->data - skb->head;
1308}
1309
1310static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1311{
1312        skb_reset_network_header(skb);
1313        skb->network_header += offset;
1314}
1315
1316static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1317{
1318        return skb->head + skb->mac_header;
1319}
1320
1321static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1322{
1323        return skb->mac_header != ~0U;
1324}
1325
1326static inline void skb_reset_mac_header(struct sk_buff *skb)
1327{
1328        skb->mac_header = skb->data - skb->head;
1329}
1330
1331static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1332{
1333        skb_reset_mac_header(skb);
1334        skb->mac_header += offset;
1335}
1336
1337#else /* NET_SKBUFF_DATA_USES_OFFSET */
1338
1339static inline unsigned char *skb_transport_header(const struct sk_buff *skb)
1340{
1341        return skb->transport_header;
1342}
1343
1344static inline void skb_reset_transport_header(struct sk_buff *skb)
1345{
1346        skb->transport_header = skb->data;
1347}
1348
1349static inline void skb_set_transport_header(struct sk_buff *skb,
1350                                            const int offset)
1351{
1352        skb->transport_header = skb->data + offset;
1353}
1354
1355static inline unsigned char *skb_network_header(const struct sk_buff *skb)
1356{
1357        return skb->network_header;
1358}
1359
1360static inline void skb_reset_network_header(struct sk_buff *skb)
1361{
1362        skb->network_header = skb->data;
1363}
1364
1365static inline void skb_set_network_header(struct sk_buff *skb, const int offset)
1366{
1367        skb->network_header = skb->data + offset;
1368}
1369
1370static inline unsigned char *skb_mac_header(const struct sk_buff *skb)
1371{
1372        return skb->mac_header;
1373}
1374
1375static inline int skb_mac_header_was_set(const struct sk_buff *skb)
1376{
1377        return skb->mac_header != NULL;
1378}
1379
1380static inline void skb_reset_mac_header(struct sk_buff *skb)
1381{
1382        skb->mac_header = skb->data;
1383}
1384
1385static inline void skb_set_mac_header(struct sk_buff *skb, const int offset)
1386{
1387        skb->mac_header = skb->data + offset;
1388}
1389#endif /* NET_SKBUFF_DATA_USES_OFFSET */
1390
1391static inline int skb_checksum_start_offset(const struct sk_buff *skb)
1392{
1393        return skb->csum_start - skb_headroom(skb);
1394}
1395
1396static inline int skb_transport_offset(const struct sk_buff *skb)
1397{
1398        return skb_transport_header(skb) - skb->data;
1399}
1400
1401static inline u32 skb_network_header_len(const struct sk_buff *skb)
1402{
1403        return skb->transport_header - skb->network_header;
1404}
1405
1406static inline int skb_network_offset(const struct sk_buff *skb)
1407{
1408        return skb_network_header(skb) - skb->data;
1409}
1410
1411static inline int pskb_network_may_pull(struct sk_buff *skb, unsigned int len)
1412{
1413        return pskb_may_pull(skb, skb_network_offset(skb) + len);
1414}
1415
1416/*
1417 * CPUs often take a performance hit when accessing unaligned memory
1418 * locations. The actual performance hit varies, it can be small if the
1419 * hardware handles it or large if we have to take an exception and fix it
1420 * in software.
1421 *
1422 * Since an ethernet header is 14 bytes network drivers often end up with
1423 * the IP header at an unaligned offset. The IP header can be aligned by
1424 * shifting the start of the packet by 2 bytes. Drivers should do this
1425 * with:
1426 *
1427 * skb_reserve(skb, NET_IP_ALIGN);
1428 *
1429 * The downside to this alignment of the IP header is that the DMA is now
1430 * unaligned. On some architectures the cost of an unaligned DMA is high
1431 * and this cost outweighs the gains made by aligning the IP header.
1432 *
1433 * Since this trade off varies between architectures, we allow NET_IP_ALIGN
1434 * to be overridden.
1435 */
1436#ifndef NET_IP_ALIGN
1437#define NET_IP_ALIGN    2
1438#endif
1439
1440/*
1441 * The networking layer reserves some headroom in skb data (via
1442 * dev_alloc_skb). This is used to avoid having to reallocate skb data when
1443 * the header has to grow. In the default case, if the header has to grow
1444 * 32 bytes or less we avoid the reallocation.
1445 *
1446 * Unfortunately this headroom changes the DMA alignment of the resulting
1447 * network packet. As for NET_IP_ALIGN, this unaligned DMA is expensive
1448 * on some architectures. An architecture can override this value,
1449 * perhaps setting it to a cacheline in size (since that will maintain
1450 * cacheline alignment of the DMA). It must be a power of 2.
1451 *
1452 * Various parts of the networking layer expect at least 32 bytes of
1453 * headroom, you should not reduce this.
1454 *
1455 * Using max(32, L1_CACHE_BYTES) makes sense (especially with RPS)
1456 * to reduce average number of cache lines per packet.
1457 * get_rps_cpus() for example only access one 64 bytes aligned block :
1458 * NET_IP_ALIGN(2) + ethernet_header(14) + IP_header(20/40) + ports(8)
1459 */
1460#ifndef NET_SKB_PAD
1461#define NET_SKB_PAD     max(32, L1_CACHE_BYTES)
1462#endif
1463
1464extern int ___pskb_trim(struct sk_buff *skb, unsigned int len);
1465
1466static inline void __skb_trim(struct sk_buff *skb, unsigned int len)
1467{
1468        if (unlikely(skb_is_nonlinear(skb))) {
1469                WARN_ON(1);
1470                return;
1471        }
1472        skb->len = len;
1473        skb_set_tail_pointer(skb, len);
1474}
1475
1476extern void skb_trim(struct sk_buff *skb, unsigned int len);
1477
1478static inline int __pskb_trim(struct sk_buff *skb, unsigned int len)
1479{
1480        if (skb->data_len)
1481                return ___pskb_trim(skb, len);
1482        __skb_trim(skb, len);
1483        return 0;
1484}
1485
1486static inline int pskb_trim(struct sk_buff *skb, unsigned int len)
1487{
1488        return (len < skb->len) ? __pskb_trim(skb, len) : 0;
1489}
1490
1491/**
1492 *      pskb_trim_unique - remove end from a paged unique (not cloned) buffer
1493 *      @skb: buffer to alter
1494 *      @len: new length
1495 *
1496 *      This is identical to pskb_trim except that the caller knows that
1497 *      the skb is not cloned so we should never get an error due to out-
1498 *      of-memory.
1499 */
1500static inline void pskb_trim_unique(struct sk_buff *skb, unsigned int len)
1501{
1502        int err = pskb_trim(skb, len);
1503        BUG_ON(err);
1504}
1505
1506/**
1507 *      skb_orphan - orphan a buffer
1508 *      @skb: buffer to orphan
1509 *
1510 *      If a buffer currently has an owner then we call the owner's
1511 *      destructor function and make the @skb unowned. The buffer continues
1512 *      to exist but is no longer charged to its former owner.
1513 */
1514static inline void skb_orphan(struct sk_buff *skb)
1515{
1516        if (skb->destructor)
1517                skb->destructor(skb);
1518        skb->destructor = NULL;
1519        skb->sk         = NULL;
1520}
1521
1522/**
1523 *      __skb_queue_purge - empty a list
1524 *      @list: list to empty
1525 *
1526 *      Delete all buffers on an &sk_buff list. Each buffer is removed from
1527 *      the list and one reference dropped. This function does not take the
1528 *      list lock and the caller must hold the relevant locks to use it.
1529 */
1530extern void skb_queue_purge(struct sk_buff_head *list);
1531static inline void __skb_queue_purge(struct sk_buff_head *list)
1532{
1533        struct sk_buff *skb;
1534        while ((skb = __skb_dequeue(list)) != NULL)
1535                kfree_skb(skb);
1536}
1537
1538/**
1539 *      __dev_alloc_skb - allocate an skbuff for receiving
1540 *      @length: length to allocate
1541 *      @gfp_mask: get_free_pages mask, passed to alloc_skb
1542 *
1543 *      Allocate a new &sk_buff and assign it a usage count of one. The
1544 *      buffer has unspecified headroom built in. Users should allocate
1545 *      the headroom they think they need without accounting for the
1546 *      built in space. The built in space is used for optimisations.
1547 *
1548 *      %NULL is returned if there is no free memory.
1549 */
1550static inline struct sk_buff *__dev_alloc_skb(unsigned int length,
1551                                              gfp_t gfp_mask)
1552{
1553        struct sk_buff *skb = alloc_skb(length + NET_SKB_PAD, gfp_mask);
1554        if (likely(skb))
1555                skb_reserve(skb, NET_SKB_PAD);
1556        return skb;
1557}
1558
1559extern struct sk_buff *dev_alloc_skb(unsigned int length);
1560
1561extern struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
1562                unsigned int length, gfp_t gfp_mask);
1563
1564/**
1565 *      netdev_alloc_skb - allocate an skbuff for rx on a specific device
1566 *      @dev: network device to receive on
1567 *      @length: length to allocate
1568 *
1569 *      Allocate a new &sk_buff and assign it a usage count of one. The
1570 *      buffer has unspecified headroom built in. Users should allocate
1571 *      the headroom they think they need without accounting for the
1572 *      built in space. The built in space is used for optimisations.
1573 *
1574 *      %NULL is returned if there is no free memory. Although this function
1575 *      allocates memory it can be called from an interrupt.
1576 */
1577static inline struct sk_buff *netdev_alloc_skb(struct net_device *dev,
1578                unsigned int length)
1579{
1580        return __netdev_alloc_skb(dev, length, GFP_ATOMIC);
1581}
1582
1583static inline struct sk_buff *__netdev_alloc_skb_ip_align(struct net_device *dev,
1584                unsigned int length, gfp_t gfp)
1585{
1586        struct sk_buff *skb = __netdev_alloc_skb(dev, length + NET_IP_ALIGN, gfp);
1587
1588        if (NET_IP_ALIGN && skb)
1589                skb_reserve(skb, NET_IP_ALIGN);
1590        return skb;
1591}
1592
1593static inline struct sk_buff *netdev_alloc_skb_ip_align(struct net_device *dev,
1594                unsigned int length)
1595{
1596        return __netdev_alloc_skb_ip_align(dev, length, GFP_ATOMIC);
1597}
1598
1599/**
1600 *      __netdev_alloc_page - allocate a page for ps-rx on a specific device
1601 *      @dev: network device to receive on
1602 *      @gfp_mask: alloc_pages_node mask
1603 *
1604 *      Allocate a new page. dev currently unused.
1605 *
1606 *      %NULL is returned if there is no free memory.
1607 */
1608static inline struct page *__netdev_alloc_page(struct net_device *dev, gfp_t gfp_mask)
1609{
1610        return alloc_pages_node(NUMA_NO_NODE, gfp_mask, 0);
1611}
1612
1613/**
1614 *      netdev_alloc_page - allocate a page for ps-rx on a specific device
1615 *      @dev: network device to receive on
1616 *
1617 *      Allocate a new page. dev currently unused.
1618 *
1619 *      %NULL is returned if there is no free memory.
1620 */
1621static inline struct page *netdev_alloc_page(struct net_device *dev)
1622{
1623        return __netdev_alloc_page(dev, GFP_ATOMIC);
1624}
1625
1626static inline void netdev_free_page(struct net_device *dev, struct page *page)
1627{
1628        __free_page(page);
1629}
1630
1631/**
1632 *      skb_clone_writable - is the header of a clone writable
1633 *      @skb: buffer to check
1634 *      @len: length up to which to write
1635 *
1636 *      Returns true if modifying the header part of the cloned buffer
1637 *      does not requires the data to be copied.
1638 */
1639static inline int skb_clone_writable(struct sk_buff *skb, unsigned int len)
1640{
1641        return !skb_header_cloned(skb) &&
1642               skb_headroom(skb) + len <= skb->hdr_len;
1643}
1644
1645static inline int __skb_cow(struct sk_buff *skb, unsigned int headroom,
1646                            int cloned)
1647{
1648        int delta = 0;
1649
1650        if (headroom < NET_SKB_PAD)
1651                headroom = NET_SKB_PAD;
1652        if (headroom > skb_headroom(skb))
1653                delta = headroom - skb_headroom(skb);
1654
1655        if (delta || cloned)
1656                return pskb_expand_head(skb, ALIGN(delta, NET_SKB_PAD), 0,
1657                                        GFP_ATOMIC);
1658        return 0;
1659}
1660
1661/**
1662 *      skb_cow - copy header of skb when it is required
1663 *      @skb: buffer to cow
1664 *      @headroom: needed headroom
1665 *
1666 *      If the skb passed lacks sufficient headroom or its data part
1667 *      is shared, data is reallocated. If reallocation fails, an error
1668 *      is returned and original skb is not changed.
1669 *
1670 *      The result is skb with writable area skb->head...skb->tail
1671 *      and at least @headroom of space at head.
1672 */
1673static inline int skb_cow(struct sk_buff *skb, unsigned int headroom)
1674{
1675        return __skb_cow(skb, headroom, skb_cloned(skb));
1676}
1677
1678/**
1679 *      skb_cow_head - skb_cow but only making the head writable
1680 *      @skb: buffer to cow
1681 *      @headroom: needed headroom
1682 *
1683 *      This function is identical to skb_cow except that we replace the
1684 *      skb_cloned check by skb_header_cloned.  It should be used when
1685 *      you only need to push on some header and do not need to modify
1686 *      the data.
1687 */
1688static inline int skb_cow_head(struct sk_buff *skb, unsigned int headroom)
1689{
1690        return __skb_cow(skb, headroom, skb_header_cloned(skb));
1691}
1692
1693/**
1694 *      skb_padto       - pad an skbuff up to a minimal size
1695 *      @skb: buffer to pad
1696 *      @len: minimal length
1697 *
1698 *      Pads up a buffer to ensure the trailing bytes exist and are
1699 *      blanked. If the buffer already contains sufficient data it
1700 *      is untouched. Otherwise it is extended. Returns zero on
1701 *      success. The skb is freed on error.
1702 */
1703 
1704static inline int skb_padto(struct sk_buff *skb, unsigned int len)
1705{
1706        unsigned int size = skb->len;
1707        if (likely(size >= len))
1708                return 0;
1709        return skb_pad(skb, len - size);
1710}
1711
1712static inline int skb_add_data(struct sk_buff *skb,
1713                               char __user *from, int copy)
1714{
1715        const int off = skb->len;
1716
1717        if (skb->ip_summed == CHECKSUM_NONE) {
1718                int err = 0;
1719                __wsum csum = csum_and_copy_from_user(from, skb_put(skb, copy),
1720                                                            copy, 0, &err);
1721                if (!err) {
1722                        skb->csum = csum_block_add(skb->csum, csum, off);
1723                        return 0;
1724                }
1725        } else if (!copy_from_user(skb_put(skb, copy), from, copy))
1726                return 0;
1727
1728        __skb_trim(skb, off);
1729        return -EFAULT;
1730}
1731
1732static inline int skb_can_coalesce(struct sk_buff *skb, int i,
1733                                   struct page *page, int off)
1734{
1735        if (i) {
1736                struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[i - 1];
1737
1738                return page == frag->page &&
1739                       off == frag->page_offset + frag->size;
1740        }
1741        return 0;
1742}
1743
1744static inline int __skb_linearize(struct sk_buff *skb)
1745{
1746        return __pskb_pull_tail(skb, skb->data_len) ? 0 : -ENOMEM;
1747}
1748
1749/**
1750 *      skb_linearize - convert paged skb to linear one
1751 *      @skb: buffer to linarize
1752 *
1753 *      If there is no free memory -ENOMEM is returned, otherwise zero
1754 *      is returned and the old skb data released.
1755 */
1756static inline int skb_linearize(struct sk_buff *skb)
1757{
1758        return skb_is_nonlinear(skb) ? __skb_linearize(skb) : 0;
1759}
1760
1761/**
1762 *      skb_linearize_cow - make sure skb is linear and writable
1763 *      @skb: buffer to process
1764 *
1765 *      If there is no free memory -ENOMEM is returned, otherwise zero
1766 *      is returned and the old skb data released.
1767 */
1768static inline int skb_linearize_cow(struct sk_buff *skb)
1769{
1770        return skb_is_nonlinear(skb) || skb_cloned(skb) ?
1771               __skb_linearize(skb) : 0;
1772}
1773
1774/**
1775 *      skb_postpull_rcsum - update checksum for received skb after pull
1776 *      @skb: buffer to update
1777 *      @start: start of data before pull
1778 *      @len: length of data pulled
1779 *
1780 *      After doing a pull on a received packet, you need to call this to
1781 *      update the CHECKSUM_COMPLETE checksum, or set ip_summed to
1782 *      CHECKSUM_NONE so that it can be recomputed from scratch.
1783 */
1784
1785static inline void skb_postpull_rcsum(struct sk_buff *skb,
1786                                      const void *start, unsigned int len)
1787{
1788        if (skb->ip_summed == CHECKSUM_COMPLETE)
1789                skb->csum = csum_sub(skb->csum, csum_partial(start, len, 0));
1790}
1791
1792unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len);
1793
1794/**
1795 *      pskb_trim_rcsum - trim received skb and update checksum
1796 *      @skb: buffer to trim
1797 *      @len: new length
1798 *
1799 *      This is exactly the same as pskb_trim except that it ensures the
1800 *      checksum of received packets are still valid after the operation.
1801 */
1802
1803static inline int pskb_trim_rcsum(struct sk_buff *skb, unsigned int len)
1804{
1805        if (likely(len >= skb->len))
1806                return 0;
1807        if (skb->ip_summed == CHECKSUM_COMPLETE)
1808                skb->ip_summed = CHECKSUM_NONE;
1809        return __pskb_trim(skb, len);
1810}
1811
1812#define skb_queue_walk(queue, skb) \
1813                for (skb = (queue)->next;                                       \
1814                     skb != (struct sk_buff *)(queue);                          \
1815                     skb = skb->next)
1816
1817#define skb_queue_walk_safe(queue, skb, tmp)                                    \
1818                for (skb = (queue)->next, tmp = skb->next;                      \
1819                     skb != (struct sk_buff *)(queue);                          \
1820                     skb = tmp, tmp = skb->next)
1821
1822#define skb_queue_walk_from(queue, skb)                                         \
1823                for (; skb != (struct sk_buff *)(queue);                        \
1824                     skb = skb->next)
1825
1826#define skb_queue_walk_from_safe(queue, skb, tmp)                               \
1827                for (tmp = skb->next;                                           \
1828                     skb != (struct sk_buff *)(queue);                          \
1829                     skb = tmp, tmp = skb->next)
1830
1831#define skb_queue_reverse_walk(queue, skb) \
1832                for (skb = (queue)->prev;                                       \
1833                     skb != (struct sk_buff *)(queue);                          \
1834                     skb = skb->prev)
1835
1836#define skb_queue_reverse_walk_safe(queue, skb, tmp)                            \
1837                for (skb = (queue)->prev, tmp = skb->prev;                      \
1838                     skb != (struct sk_buff *)(queue);                          \
1839                     skb = tmp, tmp = skb->prev)
1840
1841#define skb_queue_reverse_walk_from_safe(queue, skb, tmp)                       \
1842                for (tmp = skb->prev;                                           \
1843                     skb != (struct sk_buff *)(queue);                          \
1844                     skb = tmp, tmp = skb->prev)
1845
1846static inline bool skb_has_frag_list(const struct sk_buff *skb)
1847{
1848        return skb_shinfo(skb)->frag_list != NULL;
1849}
1850
1851static inline void skb_frag_list_init(struct sk_buff *skb)
1852{
1853        skb_shinfo(skb)->frag_list = NULL;
1854}
1855
1856static inline void skb_frag_add_head(struct sk_buff *skb, struct sk_buff *frag)
1857{
1858        frag->next = skb_shinfo(skb)->frag_list;
1859        skb_shinfo(skb)->frag_list = frag;
1860}
1861
1862#define skb_walk_frags(skb, iter)       \
1863        for (iter = skb_shinfo(skb)->frag_list; iter; iter = iter->next)
1864
1865extern struct sk_buff *__skb_recv_datagram(struct sock *sk, unsigned flags,
1866                                           int *peeked, int *err);
1867extern struct sk_buff *skb_recv_datagram(struct sock *sk, unsigned flags,
1868                                         int noblock, int *err);
1869extern unsigned int    datagram_poll(struct file *file, struct socket *sock,
1870                                     struct poll_table_struct *wait);
1871extern int             skb_copy_datagram_iovec(const struct sk_buff *from,
1872                                               int offset, struct iovec *to,
1873                                               int size);
1874extern int             skb_copy_and_csum_datagram_iovec(struct sk_buff *skb,
1875                                                        int hlen,
1876                                                        struct iovec *iov);
1877extern int             skb_copy_datagram_from_iovec(struct sk_buff *skb,
1878                                                    int offset,
1879                                                    const struct iovec *from,
1880                                                    int from_offset,
1881                                                    int len);
1882extern int             skb_copy_datagram_const_iovec(const struct sk_buff *from,
1883                                                     int offset,
1884                                                     const struct iovec *to,
1885                                                     int to_offset,
1886                                                     int size);
1887extern void            skb_free_datagram(struct sock *sk, struct sk_buff *skb);
1888extern void            skb_free_datagram_locked(struct sock *sk,
1889                                                struct sk_buff *skb);
1890extern int             skb_kill_datagram(struct sock *sk, struct sk_buff *skb,
1891                                         unsigned int flags);
1892extern __wsum          skb_checksum(const struct sk_buff *skb, int offset,
1893                                    int len, __wsum csum);
1894extern int             skb_copy_bits(const struct sk_buff *skb, int offset,
1895                                     void *to, int len);
1896extern int             skb_store_bits(struct sk_buff *skb, int offset,
1897                                      const void *from, int len);
1898extern __wsum          skb_copy_and_csum_bits(const struct sk_buff *skb,
1899                                              int offset, u8 *to, int len,
1900                                              __wsum csum);
1901extern int             skb_splice_bits(struct sk_buff *skb,
1902                                                unsigned int offset,
1903                                                struct pipe_inode_info *pipe,
1904                                                unsigned int len,
1905                                                unsigned int flags);
1906extern void            skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to);
1907extern void            skb_split(struct sk_buff *skb,
1908                                 struct sk_buff *skb1, const u32 len);
1909extern int             skb_shift(struct sk_buff *tgt, struct sk_buff *skb,
1910                                 int shiftlen);
1911
1912extern struct sk_buff *skb_segment(struct sk_buff *skb, u32 features);
1913
1914static inline void *skb_header_pointer(const struct sk_buff *skb, int offset,
1915                                       int len, void *buffer)
1916{
1917        int hlen = skb_headlen(skb);
1918
1919        if (hlen - offset >= len)
1920                return skb->data + offset;
1921
1922        if (skb_copy_bits(skb, offset, buffer, len) < 0)
1923                return NULL;
1924
1925        return buffer;
1926}
1927
1928static inline void skb_copy_from_linear_data(const struct sk_buff *skb,
1929                                             void *to,
1930                                             const unsigned int len)
1931{
1932        memcpy(to, skb->data, len);
1933}
1934
1935static inline void skb_copy_from_linear_data_offset(const struct sk_buff *skb,
1936                                                    const int offset, void *to,
1937                                                    const unsigned int len)
1938{
1939        memcpy(to, skb->data + offset, len);
1940}
1941
1942static inline void skb_copy_to_linear_data(struct sk_buff *skb,
1943                                           const void *from,
1944                                           const unsigned int len)
1945{
1946        memcpy(skb->data, from, len);
1947}
1948
1949static inline void skb_copy_to_linear_data_offset(struct sk_buff *skb,
1950                                                  const int offset,
1951                                                  const void *from,
1952                                                  const unsigned int len)
1953{
1954        memcpy(skb->data + offset, from, len);
1955}
1956
1957extern void skb_init(void);
1958
1959static inline ktime_t skb_get_ktime(const struct sk_buff *skb)
1960{
1961        return skb->tstamp;
1962}
1963
1964/**
1965 *      skb_get_timestamp - get timestamp from a skb
1966 *      @skb: skb to get stamp from
1967 *      @stamp: pointer to struct timeval to store stamp in
1968 *
1969 *      Timestamps are stored in the skb as offsets to a base timestamp.
1970 *      This function converts the offset back to a struct timeval and stores
1971 *      it in stamp.
1972 */
1973static inline void skb_get_timestamp(const struct sk_buff *skb,
1974                                     struct timeval *stamp)
1975{
1976        *stamp = ktime_to_timeval(skb->tstamp);
1977}
1978
1979static inline void skb_get_timestampns(const struct sk_buff *skb,
1980                                       struct timespec *stamp)
1981{
1982        *stamp = ktime_to_timespec(skb->tstamp);
1983}
1984
1985static inline void __net_timestamp(struct sk_buff *skb)
1986{
1987        skb->tstamp = ktime_get_real();
1988}
1989
1990static inline ktime_t net_timedelta(ktime_t t)
1991{
1992        return ktime_sub(ktime_get_real(), t);
1993}
1994
1995static inline ktime_t net_invalid_timestamp(void)
1996{
1997        return ktime_set(0, 0);
1998}
1999
2000extern void skb_timestamping_init(void);
2001
2002#ifdef CONFIG_NETWORK_PHY_TIMESTAMPING
2003
2004extern void skb_clone_tx_timestamp(struct sk_buff *skb);
2005extern bool skb_defer_rx_timestamp(struct sk_buff *skb);
2006
2007#else /* CONFIG_NETWORK_PHY_TIMESTAMPING */
2008
2009static inline void skb_clone_tx_timestamp(struct sk_buff *skb)
2010{
2011}
2012
2013static inline bool skb_defer_rx_timestamp(struct sk_buff *skb)
2014{
2015        return false;
2016}
2017
2018#endif /* !CONFIG_NETWORK_PHY_TIMESTAMPING */
2019
2020/**
2021 * skb_complete_tx_timestamp() - deliver cloned skb with tx timestamps
2022 *
2023 * @skb: clone of the the original outgoing packet
2024 * @hwtstamps: hardware time stamps
2025 *
2026 */
2027void skb_complete_tx_timestamp(struct sk_buff *skb,
2028                               struct skb_shared_hwtstamps *hwtstamps);
2029
2030/**
2031 * skb_tstamp_tx - queue clone of skb with send time stamps
2032 * @orig_skb:   the original outgoing packet
2033 * @hwtstamps:  hardware time stamps, may be NULL if not available
2034 *
2035 * If the skb has a socket associated, then this function clones the
2036 * skb (thus sharing the actual data and optional structures), stores
2037 * the optional hardware time stamping information (if non NULL) or
2038 * generates a software time stamp (otherwise), then queues the clone
2039 * to the error queue of the socket.  Errors are silently ignored.
2040 */
2041extern void skb_tstamp_tx(struct sk_buff *orig_skb,
2042                        struct skb_shared_hwtstamps *hwtstamps);
2043
2044static inline void sw_tx_timestamp(struct sk_buff *skb)
2045{
2046        if (skb_shinfo(skb)->tx_flags & SKBTX_SW_TSTAMP &&
2047            !(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2048                skb_tstamp_tx(skb, NULL);
2049}
2050
2051/**
2052 * skb_tx_timestamp() - Driver hook for transmit timestamping
2053 *
2054 * Ethernet MAC Drivers should call this function in their hard_xmit()
2055 * function immediately before giving the sk_buff to the MAC hardware.
2056 *
2057 * @skb: A socket buffer.
2058 */
2059static inline void skb_tx_timestamp(struct sk_buff *skb)
2060{
2061        skb_clone_tx_timestamp(skb);
2062        sw_tx_timestamp(skb);
2063}
2064
2065extern __sum16 __skb_checksum_complete_head(struct sk_buff *skb, int len);
2066extern __sum16 __skb_checksum_complete(struct sk_buff *skb);
2067
2068static inline int skb_csum_unnecessary(const struct sk_buff *skb)
2069{
2070        return skb->ip_summed & CHECKSUM_UNNECESSARY;
2071}
2072
2073/**
2074 *      skb_checksum_complete - Calculate checksum of an entire packet
2075 *      @skb: packet to process
2076 *
2077 *      This function calculates the checksum over the entire packet plus
2078 *      the value of skb->csum.  The latter can be used to supply the
2079 *      checksum of a pseudo header as used by TCP/UDP.  It returns the
2080 *      checksum.
2081 *
2082 *      For protocols that contain complete checksums such as ICMP/TCP/UDP,
2083 *      this function can be used to verify that checksum on received
2084 *      packets.  In that case the function should return zero if the
2085 *      checksum is correct.  In particular, this function will return zero
2086 *      if skb->ip_summed is CHECKSUM_UNNECESSARY which indicates that the
2087 *      hardware has already verified the correctness of the checksum.
2088 */
2089static inline __sum16 skb_checksum_complete(struct sk_buff *skb)
2090{
2091        return skb_csum_unnecessary(skb) ?
2092               0 : __skb_checksum_complete(skb);
2093}
2094
2095#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2096extern void nf_conntrack_destroy(struct nf_conntrack *nfct);
2097static inline void nf_conntrack_put(struct nf_conntrack *nfct)
2098{
2099        if (nfct && atomic_dec_and_test(&nfct->use))
2100                nf_conntrack_destroy(nfct);
2101}
2102static inline void nf_conntrack_get(struct nf_conntrack *nfct)
2103{
2104        if (nfct)
2105                atomic_inc(&nfct->use);
2106}
2107#endif
2108#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2109static inline void nf_conntrack_get_reasm(struct sk_buff *skb)
2110{
2111        if (skb)
2112                atomic_inc(&skb->users);
2113}
2114static inline void nf_conntrack_put_reasm(struct sk_buff *skb)
2115{
2116        if (skb)
2117                kfree_skb(skb);
2118}
2119#endif
2120#ifdef CONFIG_BRIDGE_NETFILTER
2121static inline void nf_bridge_put(struct nf_bridge_info *nf_bridge)
2122{
2123        if (nf_bridge && atomic_dec_and_test(&nf_bridge->use))
2124                kfree(nf_bridge);
2125}
2126static inline void nf_bridge_get(struct nf_bridge_info *nf_bridge)
2127{
2128        if (nf_bridge)
2129                atomic_inc(&nf_bridge->use);
2130}
2131#endif /* CONFIG_BRIDGE_NETFILTER */
2132static inline void nf_reset(struct sk_buff *skb)
2133{
2134#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2135        nf_conntrack_put(skb->nfct);
2136        skb->nfct = NULL;
2137#endif
2138#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2139        nf_conntrack_put_reasm(skb->nfct_reasm);
2140        skb->nfct_reasm = NULL;
2141#endif
2142#ifdef CONFIG_BRIDGE_NETFILTER
2143        nf_bridge_put(skb->nf_bridge);
2144        skb->nf_bridge = NULL;
2145#endif
2146}
2147
2148/* Note: This doesn't put any conntrack and bridge info in dst. */
2149static inline void __nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2150{
2151#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2152        dst->nfct = src->nfct;
2153        nf_conntrack_get(src->nfct);
2154        dst->nfctinfo = src->nfctinfo;
2155#endif
2156#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2157        dst->nfct_reasm = src->nfct_reasm;
2158        nf_conntrack_get_reasm(src->nfct_reasm);
2159#endif
2160#ifdef CONFIG_BRIDGE_NETFILTER
2161        dst->nf_bridge  = src->nf_bridge;
2162        nf_bridge_get(src->nf_bridge);
2163#endif
2164}
2165
2166static inline void nf_copy(struct sk_buff *dst, const struct sk_buff *src)
2167{
2168#if defined(CONFIG_NF_CONNTRACK) || defined(CONFIG_NF_CONNTRACK_MODULE)
2169        nf_conntrack_put(dst->nfct);
2170#endif
2171#ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
2172        nf_conntrack_put_reasm(dst->nfct_reasm);
2173#endif
2174#ifdef CONFIG_BRIDGE_NETFILTER
2175        nf_bridge_put(dst->nf_bridge);
2176#endif
2177        __nf_copy(dst, src);
2178}
2179
2180#ifdef CONFIG_NETWORK_SECMARK
2181static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2182{
2183        to->secmark = from->secmark;
2184}
2185
2186static inline void skb_init_secmark(struct sk_buff *skb)
2187{
2188        skb->secmark = 0;
2189}
2190#else
2191static inline void skb_copy_secmark(struct sk_buff *to, const struct sk_buff *from)
2192{ }
2193
2194static inline void skb_init_secmark(struct sk_buff *skb)
2195{ }
2196#endif
2197
2198static inline void skb_set_queue_mapping(struct sk_buff *skb, u16 queue_mapping)
2199{
2200        skb->queue_mapping = queue_mapping;
2201}
2202
2203static inline u16 skb_get_queue_mapping(const struct sk_buff *skb)
2204{
2205        return skb->queue_mapping;
2206}
2207
2208static inline void skb_copy_queue_mapping(struct sk_buff *to, const struct sk_buff *from)
2209{
2210        to->queue_mapping = from->queue_mapping;
2211}
2212
2213static inline void skb_record_rx_queue(struct sk_buff *skb, u16 rx_queue)
2214{
2215        skb->queue_mapping = rx_queue + 1;
2216}
2217
2218static inline u16 skb_get_rx_queue(const struct sk_buff *skb)
2219{
2220        return skb->queue_mapping - 1;
2221}
2222
2223static inline bool skb_rx_queue_recorded(const struct sk_buff *skb)
2224{
2225        return skb->queue_mapping != 0;
2226}
2227
2228extern u16 __skb_tx_hash(const struct net_device *dev,
2229                         const struct sk_buff *skb,
2230                         unsigned int num_tx_queues);
2231
2232#ifdef CONFIG_XFRM
2233static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2234{
2235        return skb->sp;
2236}
2237#else
2238static inline struct sec_path *skb_sec_path(struct sk_buff *skb)
2239{
2240        return NULL;
2241}
2242#endif
2243
2244static inline int skb_is_gso(const struct sk_buff *skb)
2245{
2246        return skb_shinfo(skb)->gso_size;
2247}
2248
2249static inline int skb_is_gso_v6(const struct sk_buff *skb)
2250{
2251        return skb_shinfo(skb)->gso_type & SKB_GSO_TCPV6;
2252}
2253
2254extern void __skb_warn_lro_forwarding(const struct sk_buff *skb);
2255
2256static inline bool skb_warn_if_lro(const struct sk_buff *skb)
2257{
2258        /* LRO sets gso_size but not gso_type, whereas if GSO is really
2259         * wanted then gso_type will be set. */
2260        struct skb_shared_info *shinfo = skb_shinfo(skb);
2261        if (skb_is_nonlinear(skb) && shinfo->gso_size != 0 &&
2262            unlikely(shinfo->gso_type == 0)) {
2263                __skb_warn_lro_forwarding(skb);
2264                return true;
2265        }
2266        return false;
2267}
2268
2269static inline void skb_forward_csum(struct sk_buff *skb)
2270{
2271        /* Unfortunately we don't support this one.  Any brave souls? */
2272        if (skb->ip_summed == CHECKSUM_COMPLETE)
2273                skb->ip_summed = CHECKSUM_NONE;
2274}
2275
2276/**
2277 * skb_checksum_none_assert - make sure skb ip_summed is CHECKSUM_NONE
2278 * @skb: skb to check
2279 *
2280 * fresh skbs have their ip_summed set to CHECKSUM_NONE.
2281 * Instead of forcing ip_summed to CHECKSUM_NONE, we can
2282 * use this helper, to document places where we make this assertion.
2283 */
2284static inline void skb_checksum_none_assert(struct sk_buff *skb)
2285{
2286#ifdef DEBUG
2287        BUG_ON(skb->ip_summed != CHECKSUM_NONE);
2288#endif
2289}
2290
2291bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off);
2292
2293#endif  /* __KERNEL__ */
2294#endif  /* _LINUX_SKBUFF_H */
2295