linux/include/linux/uwb.h
<<
>>
Prefs
   1/*
   2 * Ultra Wide Band
   3 * UWB API
   4 *
   5 * Copyright (C) 2005-2006 Intel Corporation
   6 * Inaky Perez-Gonzalez <inaky.perez-gonzalez@intel.com>
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License version
  10 * 2 as published by the Free Software Foundation.
  11 *
  12 * This program is distributed in the hope that it will be useful,
  13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  15 * GNU General Public License for more details.
  16 *
  17 * You should have received a copy of the GNU General Public License
  18 * along with this program; if not, write to the Free Software
  19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
  20 * 02110-1301, USA.
  21 *
  22 *
  23 * FIXME: doc: overview of the API, different parts and pointers
  24 */
  25
  26#ifndef __LINUX__UWB_H__
  27#define __LINUX__UWB_H__
  28
  29#include <linux/limits.h>
  30#include <linux/device.h>
  31#include <linux/mutex.h>
  32#include <linux/timer.h>
  33#include <linux/wait.h>
  34#include <linux/workqueue.h>
  35#include <linux/uwb/spec.h>
  36
  37struct uwb_dev;
  38struct uwb_beca_e;
  39struct uwb_rc;
  40struct uwb_rsv;
  41struct uwb_dbg;
  42
  43/**
  44 * struct uwb_dev - a UWB Device
  45 * @rc: UWB Radio Controller that discovered the device (kind of its
  46 *     parent).
  47 * @bce: a beacon cache entry for this device; or NULL if the device
  48 *     is a local radio controller.
  49 * @mac_addr: the EUI-48 address of this device.
  50 * @dev_addr: the current DevAddr used by this device.
  51 * @beacon_slot: the slot number the beacon is using.
  52 * @streams: bitmap of streams allocated to reservations targeted at
  53 *     this device.  For an RC, this is the streams allocated for
  54 *     reservations targeted at DevAddrs.
  55 *
  56 * A UWB device may either by a neighbor or part of a local radio
  57 * controller.
  58 */
  59struct uwb_dev {
  60        struct mutex mutex;
  61        struct list_head list_node;
  62        struct device dev;
  63        struct uwb_rc *rc;              /* radio controller */
  64        struct uwb_beca_e *bce;         /* Beacon Cache Entry */
  65
  66        struct uwb_mac_addr mac_addr;
  67        struct uwb_dev_addr dev_addr;
  68        int beacon_slot;
  69        DECLARE_BITMAP(streams, UWB_NUM_STREAMS);
  70        DECLARE_BITMAP(last_availability_bm, UWB_NUM_MAS);
  71};
  72#define to_uwb_dev(d) container_of(d, struct uwb_dev, dev)
  73
  74/**
  75 * UWB HWA/WHCI Radio Control {Command|Event} Block context IDs
  76 *
  77 * RC[CE]Bs have a 'context ID' field that matches the command with
  78 * the event received to confirm it.
  79 *
  80 * Maximum number of context IDs
  81 */
  82enum { UWB_RC_CTX_MAX = 256 };
  83
  84
  85/** Notification chain head for UWB generated events to listeners */
  86struct uwb_notifs_chain {
  87        struct list_head list;
  88        struct mutex mutex;
  89};
  90
  91/* Beacon cache list */
  92struct uwb_beca {
  93        struct list_head list;
  94        size_t entries;
  95        struct mutex mutex;
  96};
  97
  98/* Event handling thread. */
  99struct uwbd {
 100        int pid;
 101        struct task_struct *task;
 102        wait_queue_head_t wq;
 103        struct list_head event_list;
 104        spinlock_t event_list_lock;
 105};
 106
 107/**
 108 * struct uwb_mas_bm - a bitmap of all MAS in a superframe
 109 * @bm: a bitmap of length #UWB_NUM_MAS
 110 */
 111struct uwb_mas_bm {
 112        DECLARE_BITMAP(bm, UWB_NUM_MAS);
 113        DECLARE_BITMAP(unsafe_bm, UWB_NUM_MAS);
 114        int safe;
 115        int unsafe;
 116};
 117
 118/**
 119 * uwb_rsv_state - UWB Reservation state.
 120 *
 121 * NONE - reservation is not active (no DRP IE being transmitted).
 122 *
 123 * Owner reservation states:
 124 *
 125 * INITIATED - owner has sent an initial DRP request.
 126 * PENDING - target responded with pending Reason Code.
 127 * MODIFIED - reservation manager is modifying an established
 128 * reservation with a different MAS allocation.
 129 * ESTABLISHED - the reservation has been successfully negotiated.
 130 *
 131 * Target reservation states:
 132 *
 133 * DENIED - request is denied.
 134 * ACCEPTED - request is accepted.
 135 * PENDING - PAL has yet to make a decision to whether to accept or
 136 * deny.
 137 *
 138 * FIXME: further target states TBD.
 139 */
 140enum uwb_rsv_state {
 141        UWB_RSV_STATE_NONE = 0,
 142        UWB_RSV_STATE_O_INITIATED,
 143        UWB_RSV_STATE_O_PENDING,
 144        UWB_RSV_STATE_O_MODIFIED,
 145        UWB_RSV_STATE_O_ESTABLISHED,
 146        UWB_RSV_STATE_O_TO_BE_MOVED,
 147        UWB_RSV_STATE_O_MOVE_EXPANDING,
 148        UWB_RSV_STATE_O_MOVE_COMBINING,
 149        UWB_RSV_STATE_O_MOVE_REDUCING,
 150        UWB_RSV_STATE_T_ACCEPTED,
 151        UWB_RSV_STATE_T_DENIED,
 152        UWB_RSV_STATE_T_CONFLICT,
 153        UWB_RSV_STATE_T_PENDING,
 154        UWB_RSV_STATE_T_EXPANDING_ACCEPTED,
 155        UWB_RSV_STATE_T_EXPANDING_CONFLICT,
 156        UWB_RSV_STATE_T_EXPANDING_PENDING,
 157        UWB_RSV_STATE_T_EXPANDING_DENIED,
 158        UWB_RSV_STATE_T_RESIZED,
 159
 160        UWB_RSV_STATE_LAST,
 161};
 162
 163enum uwb_rsv_target_type {
 164        UWB_RSV_TARGET_DEV,
 165        UWB_RSV_TARGET_DEVADDR,
 166};
 167
 168/**
 169 * struct uwb_rsv_target - the target of a reservation.
 170 *
 171 * Reservations unicast and targeted at a single device
 172 * (UWB_RSV_TARGET_DEV); or (e.g., in the case of WUSB) targeted at a
 173 * specific (private) DevAddr (UWB_RSV_TARGET_DEVADDR).
 174 */
 175struct uwb_rsv_target {
 176        enum uwb_rsv_target_type type;
 177        union {
 178                struct uwb_dev *dev;
 179                struct uwb_dev_addr devaddr;
 180        };
 181};
 182
 183struct uwb_rsv_move {
 184        struct uwb_mas_bm final_mas;
 185        struct uwb_ie_drp *companion_drp_ie;
 186        struct uwb_mas_bm companion_mas;
 187};
 188
 189/*
 190 * Number of streams reserved for reservations targeted at DevAddrs.
 191 */
 192#define UWB_NUM_GLOBAL_STREAMS 1
 193
 194typedef void (*uwb_rsv_cb_f)(struct uwb_rsv *rsv);
 195
 196/**
 197 * struct uwb_rsv - a DRP reservation
 198 *
 199 * Data structure management:
 200 *
 201 * @rc:             the radio controller this reservation is for
 202 *                  (as target or owner)
 203 * @rc_node:        a list node for the RC
 204 * @pal_node:       a list node for the PAL
 205 *
 206 * Owner and target parameters:
 207 *
 208 * @owner:          the UWB device owning this reservation
 209 * @target:         the target UWB device
 210 * @type:           reservation type
 211 *
 212 * Owner parameters:
 213 *
 214 * @max_mas:        maxiumum number of MAS
 215 * @min_mas:        minimum number of MAS
 216 * @sparsity:       owner selected sparsity
 217 * @is_multicast:   true iff multicast
 218 *
 219 * @callback:       callback function when the reservation completes
 220 * @pal_priv:       private data for the PAL making the reservation
 221 *
 222 * Reservation status:
 223 *
 224 * @status:         negotiation status
 225 * @stream:         stream index allocated for this reservation
 226 * @tiebreaker:     conflict tiebreaker for this reservation
 227 * @mas:            reserved MAS
 228 * @drp_ie:         the DRP IE
 229 * @ie_valid:       true iff the DRP IE matches the reservation parameters
 230 *
 231 * DRP reservations are uniquely identified by the owner, target and
 232 * stream index.  However, when using a DevAddr as a target (e.g., for
 233 * a WUSB cluster reservation) the responses may be received from
 234 * devices with different DevAddrs.  In this case, reservations are
 235 * uniquely identified by just the stream index.  A number of stream
 236 * indexes (UWB_NUM_GLOBAL_STREAMS) are reserved for this.
 237 */
 238struct uwb_rsv {
 239        struct uwb_rc *rc;
 240        struct list_head rc_node;
 241        struct list_head pal_node;
 242        struct kref kref;
 243
 244        struct uwb_dev *owner;
 245        struct uwb_rsv_target target;
 246        enum uwb_drp_type type;
 247        int max_mas;
 248        int min_mas;
 249        int max_interval;
 250        bool is_multicast;
 251
 252        uwb_rsv_cb_f callback;
 253        void *pal_priv;
 254
 255        enum uwb_rsv_state state;
 256        bool needs_release_companion_mas;
 257        u8 stream;
 258        u8 tiebreaker;
 259        struct uwb_mas_bm mas;
 260        struct uwb_ie_drp *drp_ie;
 261        struct uwb_rsv_move mv;
 262        bool ie_valid;
 263        struct timer_list timer;
 264        struct work_struct handle_timeout_work;
 265};
 266
 267static const
 268struct uwb_mas_bm uwb_mas_bm_zero = { .bm = { 0 } };
 269
 270static inline void uwb_mas_bm_copy_le(void *dst, const struct uwb_mas_bm *mas)
 271{
 272        bitmap_copy_le(dst, mas->bm, UWB_NUM_MAS);
 273}
 274
 275/**
 276 * struct uwb_drp_avail - a radio controller's view of MAS usage
 277 * @global:   MAS unused by neighbors (excluding reservations targeted
 278 *            or owned by the local radio controller) or the beaon period
 279 * @local:    MAS unused by local established reservations
 280 * @pending:  MAS unused by local pending reservations
 281 * @ie:       DRP Availability IE to be included in the beacon
 282 * @ie_valid: true iff @ie is valid and does not need to regenerated from
 283 *            @global and @local
 284 *
 285 * Each radio controller maintains a view of MAS usage or
 286 * availability. MAS available for a new reservation are determined
 287 * from the intersection of @global, @local, and @pending.
 288 *
 289 * The radio controller must transmit a DRP Availability IE that's the
 290 * intersection of @global and @local.
 291 *
 292 * A set bit indicates the MAS is unused and available.
 293 *
 294 * rc->rsvs_mutex should be held before accessing this data structure.
 295 *
 296 * [ECMA-368] section 17.4.3.
 297 */
 298struct uwb_drp_avail {
 299        DECLARE_BITMAP(global, UWB_NUM_MAS);
 300        DECLARE_BITMAP(local, UWB_NUM_MAS);
 301        DECLARE_BITMAP(pending, UWB_NUM_MAS);
 302        struct uwb_ie_drp_avail ie;
 303        bool ie_valid;
 304};
 305
 306struct uwb_drp_backoff_win {
 307        u8 window;
 308        u8 n;
 309        int total_expired;
 310        struct timer_list timer;
 311        bool can_reserve_extra_mases;
 312};
 313
 314const char *uwb_rsv_state_str(enum uwb_rsv_state state);
 315const char *uwb_rsv_type_str(enum uwb_drp_type type);
 316
 317struct uwb_rsv *uwb_rsv_create(struct uwb_rc *rc, uwb_rsv_cb_f cb,
 318                               void *pal_priv);
 319void uwb_rsv_destroy(struct uwb_rsv *rsv);
 320
 321int uwb_rsv_establish(struct uwb_rsv *rsv);
 322int uwb_rsv_modify(struct uwb_rsv *rsv,
 323                   int max_mas, int min_mas, int sparsity);
 324void uwb_rsv_terminate(struct uwb_rsv *rsv);
 325
 326void uwb_rsv_accept(struct uwb_rsv *rsv, uwb_rsv_cb_f cb, void *pal_priv);
 327
 328void uwb_rsv_get_usable_mas(struct uwb_rsv *orig_rsv, struct uwb_mas_bm *mas);
 329
 330/**
 331 * Radio Control Interface instance
 332 *
 333 *
 334 * Life cycle rules: those of the UWB Device.
 335 *
 336 * @index:    an index number for this radio controller, as used in the
 337 *            device name.
 338 * @version:  version of protocol supported by this device
 339 * @priv:     Backend implementation; rw with uwb_dev.dev.sem taken.
 340 * @cmd:      Backend implementation to execute commands; rw and call
 341 *            only  with uwb_dev.dev.sem taken.
 342 * @reset:    Hardware reset of radio controller and any PAL controllers.
 343 * @filter:   Backend implementation to manipulate data to and from device
 344 *            to be compliant to specification assumed by driver (WHCI
 345 *            0.95).
 346 *
 347 *            uwb_dev.dev.mutex is used to execute commands and update
 348 *            the corresponding structures; can't use a spinlock
 349 *            because rc->cmd() can sleep.
 350 * @ies:         This is a dynamically allocated array cacheing the
 351 *               IEs (settable by the host) that the beacon of this
 352 *               radio controller is currently sending.
 353 *
 354 *               In reality, we store here the full command we set to
 355 *               the radio controller (which is basically a command
 356 *               prefix followed by all the IEs the beacon currently
 357 *               contains). This way we don't have to realloc and
 358 *               memcpy when setting it.
 359 *
 360 *               We set this up in uwb_rc_ie_setup(), where we alloc
 361 *               this struct, call get_ie() [so we know which IEs are
 362 *               currently being sent, if any].
 363 *
 364 * @ies_capacity:Amount of space (in bytes) allocated in @ies. The
 365 *               amount used is given by sizeof(*ies) plus ies->wIELength
 366 *               (which is a little endian quantity all the time).
 367 * @ies_mutex:   protect the IE cache
 368 * @dbg:         information for the debug interface
 369 */
 370struct uwb_rc {
 371        struct uwb_dev uwb_dev;
 372        int index;
 373        u16 version;
 374
 375        struct module *owner;
 376        void *priv;
 377        int (*start)(struct uwb_rc *rc);
 378        void (*stop)(struct uwb_rc *rc);
 379        int (*cmd)(struct uwb_rc *, const struct uwb_rccb *, size_t);
 380        int (*reset)(struct uwb_rc *rc);
 381        int (*filter_cmd)(struct uwb_rc *, struct uwb_rccb **, size_t *);
 382        int (*filter_event)(struct uwb_rc *, struct uwb_rceb **, const size_t,
 383                            size_t *, size_t *);
 384
 385        spinlock_t neh_lock;            /* protects neh_* and ctx_* */
 386        struct list_head neh_list;      /* Open NE handles */
 387        unsigned long ctx_bm[UWB_RC_CTX_MAX / 8 / sizeof(unsigned long)];
 388        u8 ctx_roll;
 389
 390        int beaconing;                  /* Beaconing state [channel number] */
 391        int beaconing_forced;
 392        int scanning;
 393        enum uwb_scan_type scan_type:3;
 394        unsigned ready:1;
 395        struct uwb_notifs_chain notifs_chain;
 396        struct uwb_beca uwb_beca;
 397
 398        struct uwbd uwbd;
 399
 400        struct uwb_drp_backoff_win bow;
 401        struct uwb_drp_avail drp_avail;
 402        struct list_head reservations;
 403        struct list_head cnflt_alien_list;
 404        struct uwb_mas_bm cnflt_alien_bitmap;
 405        struct mutex rsvs_mutex;
 406        spinlock_t rsvs_lock;
 407        struct workqueue_struct *rsv_workq;
 408
 409        struct delayed_work rsv_update_work;
 410        struct delayed_work rsv_alien_bp_work;
 411        int set_drp_ie_pending;
 412        struct mutex ies_mutex;
 413        struct uwb_rc_cmd_set_ie *ies;
 414        size_t ies_capacity;
 415
 416        struct list_head pals;
 417        int active_pals;
 418
 419        struct uwb_dbg *dbg;
 420};
 421
 422
 423/**
 424 * struct uwb_pal - a UWB PAL
 425 * @name:    descriptive name for this PAL (wusbhc, wlp, etc.).
 426 * @device:  a device for the PAL.  Used to link the PAL and the radio
 427 *           controller in sysfs.
 428 * @rc:      the radio controller the PAL uses.
 429 * @channel_changed: called when the channel used by the radio changes.
 430 *           A channel of -1 means the channel has been stopped.
 431 * @new_rsv: called when a peer requests a reservation (may be NULL if
 432 *           the PAL cannot accept reservation requests).
 433 * @channel: channel being used by the PAL; 0 if the PAL isn't using
 434 *           the radio; -1 if the PAL wishes to use the radio but
 435 *           cannot.
 436 * @debugfs_dir: a debugfs directory which the PAL can use for its own
 437 *           debugfs files.
 438 *
 439 * A Protocol Adaptation Layer (PAL) is a user of the WiMedia UWB
 440 * radio platform (e.g., WUSB, WLP or Bluetooth UWB AMP).
 441 *
 442 * The PALs using a radio controller must register themselves to
 443 * permit the UWB stack to coordinate usage of the radio between the
 444 * various PALs or to allow PALs to response to certain requests from
 445 * peers.
 446 *
 447 * A struct uwb_pal should be embedded in a containing structure
 448 * belonging to the PAL and initialized with uwb_pal_init()).  Fields
 449 * should be set appropriately by the PAL before registering the PAL
 450 * with uwb_pal_register().
 451 */
 452struct uwb_pal {
 453        struct list_head node;
 454        const char *name;
 455        struct device *device;
 456        struct uwb_rc *rc;
 457
 458        void (*channel_changed)(struct uwb_pal *pal, int channel);
 459        void (*new_rsv)(struct uwb_pal *pal, struct uwb_rsv *rsv);
 460
 461        int channel;
 462        struct dentry *debugfs_dir;
 463};
 464
 465void uwb_pal_init(struct uwb_pal *pal);
 466int uwb_pal_register(struct uwb_pal *pal);
 467void uwb_pal_unregister(struct uwb_pal *pal);
 468
 469int uwb_radio_start(struct uwb_pal *pal);
 470void uwb_radio_stop(struct uwb_pal *pal);
 471
 472/*
 473 * General public API
 474 *
 475 * This API can be used by UWB device drivers or by those implementing
 476 * UWB Radio Controllers
 477 */
 478struct uwb_dev *uwb_dev_get_by_devaddr(struct uwb_rc *rc,
 479                                       const struct uwb_dev_addr *devaddr);
 480struct uwb_dev *uwb_dev_get_by_rc(struct uwb_dev *, struct uwb_rc *);
 481static inline void uwb_dev_get(struct uwb_dev *uwb_dev)
 482{
 483        get_device(&uwb_dev->dev);
 484}
 485static inline void uwb_dev_put(struct uwb_dev *uwb_dev)
 486{
 487        put_device(&uwb_dev->dev);
 488}
 489struct uwb_dev *uwb_dev_try_get(struct uwb_rc *rc, struct uwb_dev *uwb_dev);
 490
 491/**
 492 * Callback function for 'uwb_{dev,rc}_foreach()'.
 493 *
 494 * @dev:  Linux device instance
 495 *        'uwb_dev = container_of(dev, struct uwb_dev, dev)'
 496 * @priv: Data passed by the caller to 'uwb_{dev,rc}_foreach()'.
 497 *
 498 * @returns: 0 to continue the iterations, any other val to stop
 499 *           iterating and return the value to the caller of
 500 *           _foreach().
 501 */
 502typedef int (*uwb_dev_for_each_f)(struct device *dev, void *priv);
 503int uwb_dev_for_each(struct uwb_rc *rc, uwb_dev_for_each_f func, void *priv);
 504
 505struct uwb_rc *uwb_rc_alloc(void);
 506struct uwb_rc *uwb_rc_get_by_dev(const struct uwb_dev_addr *);
 507struct uwb_rc *uwb_rc_get_by_grandpa(const struct device *);
 508void uwb_rc_put(struct uwb_rc *rc);
 509
 510typedef void (*uwb_rc_cmd_cb_f)(struct uwb_rc *rc, void *arg,
 511                                struct uwb_rceb *reply, ssize_t reply_size);
 512
 513int uwb_rc_cmd_async(struct uwb_rc *rc, const char *cmd_name,
 514                     struct uwb_rccb *cmd, size_t cmd_size,
 515                     u8 expected_type, u16 expected_event,
 516                     uwb_rc_cmd_cb_f cb, void *arg);
 517ssize_t uwb_rc_cmd(struct uwb_rc *rc, const char *cmd_name,
 518                   struct uwb_rccb *cmd, size_t cmd_size,
 519                   struct uwb_rceb *reply, size_t reply_size);
 520ssize_t uwb_rc_vcmd(struct uwb_rc *rc, const char *cmd_name,
 521                    struct uwb_rccb *cmd, size_t cmd_size,
 522                    u8 expected_type, u16 expected_event,
 523                    struct uwb_rceb **preply);
 524
 525size_t __uwb_addr_print(char *, size_t, const unsigned char *, int);
 526
 527int uwb_rc_dev_addr_set(struct uwb_rc *, const struct uwb_dev_addr *);
 528int uwb_rc_dev_addr_get(struct uwb_rc *, struct uwb_dev_addr *);
 529int uwb_rc_mac_addr_set(struct uwb_rc *, const struct uwb_mac_addr *);
 530int uwb_rc_mac_addr_get(struct uwb_rc *, struct uwb_mac_addr *);
 531int __uwb_mac_addr_assigned_check(struct device *, void *);
 532int __uwb_dev_addr_assigned_check(struct device *, void *);
 533
 534/* Print in @buf a pretty repr of @addr */
 535static inline size_t uwb_dev_addr_print(char *buf, size_t buf_size,
 536                                        const struct uwb_dev_addr *addr)
 537{
 538        return __uwb_addr_print(buf, buf_size, addr->data, 0);
 539}
 540
 541/* Print in @buf a pretty repr of @addr */
 542static inline size_t uwb_mac_addr_print(char *buf, size_t buf_size,
 543                                        const struct uwb_mac_addr *addr)
 544{
 545        return __uwb_addr_print(buf, buf_size, addr->data, 1);
 546}
 547
 548/* @returns 0 if device addresses @addr2 and @addr1 are equal */
 549static inline int uwb_dev_addr_cmp(const struct uwb_dev_addr *addr1,
 550                                   const struct uwb_dev_addr *addr2)
 551{
 552        return memcmp(addr1, addr2, sizeof(*addr1));
 553}
 554
 555/* @returns 0 if MAC addresses @addr2 and @addr1 are equal */
 556static inline int uwb_mac_addr_cmp(const struct uwb_mac_addr *addr1,
 557                                   const struct uwb_mac_addr *addr2)
 558{
 559        return memcmp(addr1, addr2, sizeof(*addr1));
 560}
 561
 562/* @returns !0 if a MAC @addr is a broadcast address */
 563static inline int uwb_mac_addr_bcast(const struct uwb_mac_addr *addr)
 564{
 565        struct uwb_mac_addr bcast = {
 566                .data = { 0xff, 0xff, 0xff, 0xff, 0xff, 0xff }
 567        };
 568        return !uwb_mac_addr_cmp(addr, &bcast);
 569}
 570
 571/* @returns !0 if a MAC @addr is all zeroes*/
 572static inline int uwb_mac_addr_unset(const struct uwb_mac_addr *addr)
 573{
 574        struct uwb_mac_addr unset = {
 575                .data = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }
 576        };
 577        return !uwb_mac_addr_cmp(addr, &unset);
 578}
 579
 580/* @returns !0 if the address is in use. */
 581static inline unsigned __uwb_dev_addr_assigned(struct uwb_rc *rc,
 582                                               struct uwb_dev_addr *addr)
 583{
 584        return uwb_dev_for_each(rc, __uwb_dev_addr_assigned_check, addr);
 585}
 586
 587/*
 588 * UWB Radio Controller API
 589 *
 590 * This API is used (in addition to the general API) to implement UWB
 591 * Radio Controllers.
 592 */
 593void uwb_rc_init(struct uwb_rc *);
 594int uwb_rc_add(struct uwb_rc *, struct device *dev, void *rc_priv);
 595void uwb_rc_rm(struct uwb_rc *);
 596void uwb_rc_neh_grok(struct uwb_rc *, void *, size_t);
 597void uwb_rc_neh_error(struct uwb_rc *, int);
 598void uwb_rc_reset_all(struct uwb_rc *rc);
 599void uwb_rc_pre_reset(struct uwb_rc *rc);
 600int uwb_rc_post_reset(struct uwb_rc *rc);
 601
 602/**
 603 * uwb_rsv_is_owner - is the owner of this reservation the RC?
 604 * @rsv: the reservation
 605 */
 606static inline bool uwb_rsv_is_owner(struct uwb_rsv *rsv)
 607{
 608        return rsv->owner == &rsv->rc->uwb_dev;
 609}
 610
 611/**
 612 * enum uwb_notifs - UWB events that can be passed to any listeners
 613 * @UWB_NOTIF_ONAIR: a new neighbour has joined the beacon group.
 614 * @UWB_NOTIF_OFFAIR: a neighbour has left the beacon group.
 615 *
 616 * Higher layers can register callback functions with the radio
 617 * controller using uwb_notifs_register(). The radio controller
 618 * maintains a list of all registered handlers and will notify all
 619 * nodes when an event occurs.
 620 */
 621enum uwb_notifs {
 622        UWB_NOTIF_ONAIR,
 623        UWB_NOTIF_OFFAIR,
 624};
 625
 626/* Callback function registered with UWB */
 627struct uwb_notifs_handler {
 628        struct list_head list_node;
 629        void (*cb)(void *, struct uwb_dev *, enum uwb_notifs);
 630        void *data;
 631};
 632
 633int uwb_notifs_register(struct uwb_rc *, struct uwb_notifs_handler *);
 634int uwb_notifs_deregister(struct uwb_rc *, struct uwb_notifs_handler *);
 635
 636
 637/**
 638 * UWB radio controller Event Size Entry (for creating entry tables)
 639 *
 640 * WUSB and WHCI define events and notifications, and they might have
 641 * fixed or variable size.
 642 *
 643 * Each event/notification has a size which is not necessarily known
 644 * in advance based on the event code. As well, vendor specific
 645 * events/notifications will have a size impossible to determine
 646 * unless we know about the device's specific details.
 647 *
 648 * It was way too smart of the spec writers not to think that it would
 649 * be impossible for a generic driver to skip over vendor specific
 650 * events/notifications if there are no LENGTH fields in the HEADER of
 651 * each message...the transaction size cannot be counted on as the
 652 * spec does not forbid to pack more than one event in a single
 653 * transaction.
 654 *
 655 * Thus, we guess sizes with tables (or for events, when you know the
 656 * size ahead of time you can use uwb_rc_neh_extra_size*()). We
 657 * register tables with the known events and their sizes, and then we
 658 * traverse those tables. For those with variable length, we provide a
 659 * way to lookup the size inside the event/notification's
 660 * payload. This allows device-specific event size tables to be
 661 * registered.
 662 *
 663 * @size:   Size of the payload
 664 *
 665 * @offset: if != 0, at offset @offset-1 starts a field with a length
 666 *          that has to be added to @size. The format of the field is
 667 *          given by @type.
 668 *
 669 * @type:   Type and length of the offset field. Most common is LE 16
 670 *          bits (that's why that is zero); others are there mostly to
 671 *          cover for bugs and weirdos.
 672 */
 673struct uwb_est_entry {
 674        size_t size;
 675        unsigned offset;
 676        enum { UWB_EST_16 = 0, UWB_EST_8 = 1 } type;
 677};
 678
 679int uwb_est_register(u8 type, u8 code_high, u16 vendor, u16 product,
 680                     const struct uwb_est_entry *, size_t entries);
 681int uwb_est_unregister(u8 type, u8 code_high, u16 vendor, u16 product,
 682                       const struct uwb_est_entry *, size_t entries);
 683ssize_t uwb_est_find_size(struct uwb_rc *rc, const struct uwb_rceb *rceb,
 684                          size_t len);
 685
 686/* -- Misc */
 687
 688enum {
 689        EDC_MAX_ERRORS = 10,
 690        EDC_ERROR_TIMEFRAME = HZ,
 691};
 692
 693/* error density counter */
 694struct edc {
 695        unsigned long timestart;
 696        u16 errorcount;
 697};
 698
 699static inline
 700void edc_init(struct edc *edc)
 701{
 702        edc->timestart = jiffies;
 703}
 704
 705/* Called when an error occurred.
 706 * This is way to determine if the number of acceptable errors per time
 707 * period has been exceeded. It is not accurate as there are cases in which
 708 * this scheme will not work, for example if there are periodic occurrences
 709 * of errors that straddle updates to the start time. This scheme is
 710 * sufficient for our usage.
 711 *
 712 * @returns 1 if maximum acceptable errors per timeframe has been exceeded.
 713 */
 714static inline int edc_inc(struct edc *err_hist, u16 max_err, u16 timeframe)
 715{
 716        unsigned long now;
 717
 718        now = jiffies;
 719        if (now - err_hist->timestart > timeframe) {
 720                err_hist->errorcount = 1;
 721                err_hist->timestart = now;
 722        } else if (++err_hist->errorcount > max_err) {
 723                        err_hist->errorcount = 0;
 724                        err_hist->timestart = now;
 725                        return 1;
 726        }
 727        return 0;
 728}
 729
 730
 731/* Information Element handling */
 732
 733struct uwb_ie_hdr *uwb_ie_next(void **ptr, size_t *len);
 734int uwb_rc_ie_add(struct uwb_rc *uwb_rc, const struct uwb_ie_hdr *ies, size_t size);
 735int uwb_rc_ie_rm(struct uwb_rc *uwb_rc, enum uwb_ie element_id);
 736
 737/*
 738 * Transmission statistics
 739 *
 740 * UWB uses LQI and RSSI (one byte values) for reporting radio signal
 741 * strength and line quality indication. We do quick and dirty
 742 * averages of those. They are signed values, btw.
 743 *
 744 * For 8 bit quantities, we keep the min, the max, an accumulator
 745 * (@sigma) and a # of samples. When @samples gets to 255, we compute
 746 * the average (@sigma / @samples), place it in @sigma and reset
 747 * @samples to 1 (so we use it as the first sample).
 748 *
 749 * Now, statistically speaking, probably I am kicking the kidneys of
 750 * some books I have in my shelves collecting dust, but I just want to
 751 * get an approx, not the Nobel.
 752 *
 753 * LOCKING: there is no locking per se, but we try to keep a lockless
 754 * schema. Only _add_samples() modifies the values--as long as you
 755 * have other locking on top that makes sure that no two calls of
 756 * _add_sample() happen at the same time, then we are fine. Now, for
 757 * resetting the values we just set @samples to 0 and that makes the
 758 * next _add_sample() to start with defaults. Reading the values in
 759 * _show() currently can race, so you need to make sure the calls are
 760 * under the same lock that protects calls to _add_sample(). FIXME:
 761 * currently unlocked (It is not ultraprecise but does the trick. Bite
 762 * me).
 763 */
 764struct stats {
 765        s8 min, max;
 766        s16 sigma;
 767        atomic_t samples;
 768};
 769
 770static inline
 771void stats_init(struct stats *stats)
 772{
 773        atomic_set(&stats->samples, 0);
 774        wmb();
 775}
 776
 777static inline
 778void stats_add_sample(struct stats *stats, s8 sample)
 779{
 780        s8 min, max;
 781        s16 sigma;
 782        unsigned samples = atomic_read(&stats->samples);
 783        if (samples == 0) {     /* it was zero before, so we initialize */
 784                min = 127;
 785                max = -128;
 786                sigma = 0;
 787        } else {
 788                min = stats->min;
 789                max = stats->max;
 790                sigma = stats->sigma;
 791        }
 792
 793        if (sample < min)       /* compute new values */
 794                min = sample;
 795        else if (sample > max)
 796                max = sample;
 797        sigma += sample;
 798
 799        stats->min = min;       /* commit */
 800        stats->max = max;
 801        stats->sigma = sigma;
 802        if (atomic_add_return(1, &stats->samples) > 255) {
 803                /* wrapped around! reset */
 804                stats->sigma = sigma / 256;
 805                atomic_set(&stats->samples, 1);
 806        }
 807}
 808
 809static inline ssize_t stats_show(struct stats *stats, char *buf)
 810{
 811        int min, max, avg;
 812        int samples = atomic_read(&stats->samples);
 813        if (samples == 0)
 814                min = max = avg = 0;
 815        else {
 816                min = stats->min;
 817                max = stats->max;
 818                avg = stats->sigma / samples;
 819        }
 820        return scnprintf(buf, PAGE_SIZE, "%d %d %d\n", min, max, avg);
 821}
 822
 823static inline ssize_t stats_store(struct stats *stats, const char *buf,
 824                                  size_t size)
 825{
 826        stats_init(stats);
 827        return size;
 828}
 829
 830#endif /* #ifndef __LINUX__UWB_H__ */
 831