linux/kernel/time/tick-broadcast.c
<<
>>
Prefs
   1/*
   2 * linux/kernel/time/tick-broadcast.c
   3 *
   4 * This file contains functions which emulate a local clock-event
   5 * device via a broadcast event source.
   6 *
   7 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   8 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   9 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
  10 *
  11 * This code is licenced under the GPL version 2. For details see
  12 * kernel-base/COPYING.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/percpu.h>
  19#include <linux/profile.h>
  20#include <linux/sched.h>
  21
  22#include "tick-internal.h"
  23
  24/*
  25 * Broadcast support for broken x86 hardware, where the local apic
  26 * timer stops in C3 state.
  27 */
  28
  29static struct tick_device tick_broadcast_device;
  30/* FIXME: Use cpumask_var_t. */
  31static DECLARE_BITMAP(tick_broadcast_mask, NR_CPUS);
  32static DECLARE_BITMAP(tmpmask, NR_CPUS);
  33static DEFINE_RAW_SPINLOCK(tick_broadcast_lock);
  34static int tick_broadcast_force;
  35
  36#ifdef CONFIG_TICK_ONESHOT
  37static void tick_broadcast_clear_oneshot(int cpu);
  38#else
  39static inline void tick_broadcast_clear_oneshot(int cpu) { }
  40#endif
  41
  42/*
  43 * Debugging: see timer_list.c
  44 */
  45struct tick_device *tick_get_broadcast_device(void)
  46{
  47        return &tick_broadcast_device;
  48}
  49
  50struct cpumask *tick_get_broadcast_mask(void)
  51{
  52        return to_cpumask(tick_broadcast_mask);
  53}
  54
  55/*
  56 * Start the device in periodic mode
  57 */
  58static void tick_broadcast_start_periodic(struct clock_event_device *bc)
  59{
  60        if (bc)
  61                tick_setup_periodic(bc, 1);
  62}
  63
  64/*
  65 * Check, if the device can be utilized as broadcast device:
  66 */
  67int tick_check_broadcast_device(struct clock_event_device *dev)
  68{
  69        if ((tick_broadcast_device.evtdev &&
  70             tick_broadcast_device.evtdev->rating >= dev->rating) ||
  71             (dev->features & CLOCK_EVT_FEAT_C3STOP))
  72                return 0;
  73
  74        clockevents_exchange_device(NULL, dev);
  75        tick_broadcast_device.evtdev = dev;
  76        if (!cpumask_empty(tick_get_broadcast_mask()))
  77                tick_broadcast_start_periodic(dev);
  78        return 1;
  79}
  80
  81/*
  82 * Check, if the device is the broadcast device
  83 */
  84int tick_is_broadcast_device(struct clock_event_device *dev)
  85{
  86        return (dev && tick_broadcast_device.evtdev == dev);
  87}
  88
  89/*
  90 * Check, if the device is disfunctional and a place holder, which
  91 * needs to be handled by the broadcast device.
  92 */
  93int tick_device_uses_broadcast(struct clock_event_device *dev, int cpu)
  94{
  95        unsigned long flags;
  96        int ret = 0;
  97
  98        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
  99
 100        /*
 101         * Devices might be registered with both periodic and oneshot
 102         * mode disabled. This signals, that the device needs to be
 103         * operated from the broadcast device and is a placeholder for
 104         * the cpu local device.
 105         */
 106        if (!tick_device_is_functional(dev)) {
 107                dev->event_handler = tick_handle_periodic;
 108                cpumask_set_cpu(cpu, tick_get_broadcast_mask());
 109                tick_broadcast_start_periodic(tick_broadcast_device.evtdev);
 110                ret = 1;
 111        } else {
 112                /*
 113                 * When the new device is not affected by the stop
 114                 * feature and the cpu is marked in the broadcast mask
 115                 * then clear the broadcast bit.
 116                 */
 117                if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) {
 118                        int cpu = smp_processor_id();
 119
 120                        cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
 121                        tick_broadcast_clear_oneshot(cpu);
 122                }
 123        }
 124        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 125        return ret;
 126}
 127
 128/*
 129 * Broadcast the event to the cpus, which are set in the mask (mangled).
 130 */
 131static void tick_do_broadcast(struct cpumask *mask)
 132{
 133        int cpu = smp_processor_id();
 134        struct tick_device *td;
 135
 136        /*
 137         * Check, if the current cpu is in the mask
 138         */
 139        if (cpumask_test_cpu(cpu, mask)) {
 140                cpumask_clear_cpu(cpu, mask);
 141                td = &per_cpu(tick_cpu_device, cpu);
 142                td->evtdev->event_handler(td->evtdev);
 143        }
 144
 145        if (!cpumask_empty(mask)) {
 146                /*
 147                 * It might be necessary to actually check whether the devices
 148                 * have different broadcast functions. For now, just use the
 149                 * one of the first device. This works as long as we have this
 150                 * misfeature only on x86 (lapic)
 151                 */
 152                td = &per_cpu(tick_cpu_device, cpumask_first(mask));
 153                td->evtdev->broadcast(mask);
 154        }
 155}
 156
 157/*
 158 * Periodic broadcast:
 159 * - invoke the broadcast handlers
 160 */
 161static void tick_do_periodic_broadcast(void)
 162{
 163        raw_spin_lock(&tick_broadcast_lock);
 164
 165        cpumask_and(to_cpumask(tmpmask),
 166                    cpu_online_mask, tick_get_broadcast_mask());
 167        tick_do_broadcast(to_cpumask(tmpmask));
 168
 169        raw_spin_unlock(&tick_broadcast_lock);
 170}
 171
 172/*
 173 * Event handler for periodic broadcast ticks
 174 */
 175static void tick_handle_periodic_broadcast(struct clock_event_device *dev)
 176{
 177        ktime_t next;
 178
 179        tick_do_periodic_broadcast();
 180
 181        /*
 182         * The device is in periodic mode. No reprogramming necessary:
 183         */
 184        if (dev->mode == CLOCK_EVT_MODE_PERIODIC)
 185                return;
 186
 187        /*
 188         * Setup the next period for devices, which do not have
 189         * periodic mode. We read dev->next_event first and add to it
 190         * when the event already expired. clockevents_program_event()
 191         * sets dev->next_event only when the event is really
 192         * programmed to the device.
 193         */
 194        for (next = dev->next_event; ;) {
 195                next = ktime_add(next, tick_period);
 196
 197                if (!clockevents_program_event(dev, next, ktime_get()))
 198                        return;
 199                tick_do_periodic_broadcast();
 200        }
 201}
 202
 203/*
 204 * Powerstate information: The system enters/leaves a state, where
 205 * affected devices might stop
 206 */
 207static void tick_do_broadcast_on_off(unsigned long *reason)
 208{
 209        struct clock_event_device *bc, *dev;
 210        struct tick_device *td;
 211        unsigned long flags;
 212        int cpu, bc_stopped;
 213
 214        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 215
 216        cpu = smp_processor_id();
 217        td = &per_cpu(tick_cpu_device, cpu);
 218        dev = td->evtdev;
 219        bc = tick_broadcast_device.evtdev;
 220
 221        /*
 222         * Is the device not affected by the powerstate ?
 223         */
 224        if (!dev || !(dev->features & CLOCK_EVT_FEAT_C3STOP))
 225                goto out;
 226
 227        if (!tick_device_is_functional(dev))
 228                goto out;
 229
 230        bc_stopped = cpumask_empty(tick_get_broadcast_mask());
 231
 232        switch (*reason) {
 233        case CLOCK_EVT_NOTIFY_BROADCAST_ON:
 234        case CLOCK_EVT_NOTIFY_BROADCAST_FORCE:
 235                if (!cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
 236                        cpumask_set_cpu(cpu, tick_get_broadcast_mask());
 237                        if (tick_broadcast_device.mode ==
 238                            TICKDEV_MODE_PERIODIC)
 239                                clockevents_shutdown(dev);
 240                }
 241                if (*reason == CLOCK_EVT_NOTIFY_BROADCAST_FORCE)
 242                        tick_broadcast_force = 1;
 243                break;
 244        case CLOCK_EVT_NOTIFY_BROADCAST_OFF:
 245                if (!tick_broadcast_force &&
 246                    cpumask_test_cpu(cpu, tick_get_broadcast_mask())) {
 247                        cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
 248                        if (tick_broadcast_device.mode ==
 249                            TICKDEV_MODE_PERIODIC)
 250                                tick_setup_periodic(dev, 0);
 251                }
 252                break;
 253        }
 254
 255        if (cpumask_empty(tick_get_broadcast_mask())) {
 256                if (!bc_stopped)
 257                        clockevents_shutdown(bc);
 258        } else if (bc_stopped) {
 259                if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 260                        tick_broadcast_start_periodic(bc);
 261                else
 262                        tick_broadcast_setup_oneshot(bc);
 263        }
 264out:
 265        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 266}
 267
 268/*
 269 * Powerstate information: The system enters/leaves a state, where
 270 * affected devices might stop.
 271 */
 272void tick_broadcast_on_off(unsigned long reason, int *oncpu)
 273{
 274        if (!cpumask_test_cpu(*oncpu, cpu_online_mask))
 275                printk(KERN_ERR "tick-broadcast: ignoring broadcast for "
 276                       "offline CPU #%d\n", *oncpu);
 277        else
 278                tick_do_broadcast_on_off(&reason);
 279}
 280
 281/*
 282 * Set the periodic handler depending on broadcast on/off
 283 */
 284void tick_set_periodic_handler(struct clock_event_device *dev, int broadcast)
 285{
 286        if (!broadcast)
 287                dev->event_handler = tick_handle_periodic;
 288        else
 289                dev->event_handler = tick_handle_periodic_broadcast;
 290}
 291
 292/*
 293 * Remove a CPU from broadcasting
 294 */
 295void tick_shutdown_broadcast(unsigned int *cpup)
 296{
 297        struct clock_event_device *bc;
 298        unsigned long flags;
 299        unsigned int cpu = *cpup;
 300
 301        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 302
 303        bc = tick_broadcast_device.evtdev;
 304        cpumask_clear_cpu(cpu, tick_get_broadcast_mask());
 305
 306        if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC) {
 307                if (bc && cpumask_empty(tick_get_broadcast_mask()))
 308                        clockevents_shutdown(bc);
 309        }
 310
 311        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 312}
 313
 314void tick_suspend_broadcast(void)
 315{
 316        struct clock_event_device *bc;
 317        unsigned long flags;
 318
 319        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 320
 321        bc = tick_broadcast_device.evtdev;
 322        if (bc)
 323                clockevents_shutdown(bc);
 324
 325        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 326}
 327
 328int tick_resume_broadcast(void)
 329{
 330        struct clock_event_device *bc;
 331        unsigned long flags;
 332        int broadcast = 0;
 333
 334        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 335
 336        bc = tick_broadcast_device.evtdev;
 337
 338        if (bc) {
 339                clockevents_set_mode(bc, CLOCK_EVT_MODE_RESUME);
 340
 341                switch (tick_broadcast_device.mode) {
 342                case TICKDEV_MODE_PERIODIC:
 343                        if (!cpumask_empty(tick_get_broadcast_mask()))
 344                                tick_broadcast_start_periodic(bc);
 345                        broadcast = cpumask_test_cpu(smp_processor_id(),
 346                                                     tick_get_broadcast_mask());
 347                        break;
 348                case TICKDEV_MODE_ONESHOT:
 349                        broadcast = tick_resume_broadcast_oneshot(bc);
 350                        break;
 351                }
 352        }
 353        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 354
 355        return broadcast;
 356}
 357
 358
 359#ifdef CONFIG_TICK_ONESHOT
 360
 361/* FIXME: use cpumask_var_t. */
 362static DECLARE_BITMAP(tick_broadcast_oneshot_mask, NR_CPUS);
 363
 364/*
 365 * Exposed for debugging: see timer_list.c
 366 */
 367struct cpumask *tick_get_broadcast_oneshot_mask(void)
 368{
 369        return to_cpumask(tick_broadcast_oneshot_mask);
 370}
 371
 372static int tick_broadcast_set_event(ktime_t expires, int force)
 373{
 374        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 375
 376        return tick_dev_program_event(bc, expires, force);
 377}
 378
 379int tick_resume_broadcast_oneshot(struct clock_event_device *bc)
 380{
 381        clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
 382        return 0;
 383}
 384
 385/*
 386 * Called from irq_enter() when idle was interrupted to reenable the
 387 * per cpu device.
 388 */
 389void tick_check_oneshot_broadcast(int cpu)
 390{
 391        if (cpumask_test_cpu(cpu, to_cpumask(tick_broadcast_oneshot_mask))) {
 392                struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
 393
 394                clockevents_set_mode(td->evtdev, CLOCK_EVT_MODE_ONESHOT);
 395        }
 396}
 397
 398/*
 399 * Handle oneshot mode broadcasting
 400 */
 401static void tick_handle_oneshot_broadcast(struct clock_event_device *dev)
 402{
 403        struct tick_device *td;
 404        ktime_t now, next_event;
 405        int cpu;
 406
 407        raw_spin_lock(&tick_broadcast_lock);
 408again:
 409        dev->next_event.tv64 = KTIME_MAX;
 410        next_event.tv64 = KTIME_MAX;
 411        cpumask_clear(to_cpumask(tmpmask));
 412        now = ktime_get();
 413        /* Find all expired events */
 414        for_each_cpu(cpu, tick_get_broadcast_oneshot_mask()) {
 415                td = &per_cpu(tick_cpu_device, cpu);
 416                if (td->evtdev->next_event.tv64 <= now.tv64)
 417                        cpumask_set_cpu(cpu, to_cpumask(tmpmask));
 418                else if (td->evtdev->next_event.tv64 < next_event.tv64)
 419                        next_event.tv64 = td->evtdev->next_event.tv64;
 420        }
 421
 422        /*
 423         * Wakeup the cpus which have an expired event.
 424         */
 425        tick_do_broadcast(to_cpumask(tmpmask));
 426
 427        /*
 428         * Two reasons for reprogram:
 429         *
 430         * - The global event did not expire any CPU local
 431         * events. This happens in dyntick mode, as the maximum PIT
 432         * delta is quite small.
 433         *
 434         * - There are pending events on sleeping CPUs which were not
 435         * in the event mask
 436         */
 437        if (next_event.tv64 != KTIME_MAX) {
 438                /*
 439                 * Rearm the broadcast device. If event expired,
 440                 * repeat the above
 441                 */
 442                if (tick_broadcast_set_event(next_event, 0))
 443                        goto again;
 444        }
 445        raw_spin_unlock(&tick_broadcast_lock);
 446}
 447
 448/*
 449 * Powerstate information: The system enters/leaves a state, where
 450 * affected devices might stop
 451 */
 452void tick_broadcast_oneshot_control(unsigned long reason)
 453{
 454        struct clock_event_device *bc, *dev;
 455        struct tick_device *td;
 456        unsigned long flags;
 457        int cpu;
 458
 459        /*
 460         * Periodic mode does not care about the enter/exit of power
 461         * states
 462         */
 463        if (tick_broadcast_device.mode == TICKDEV_MODE_PERIODIC)
 464                return;
 465
 466        /*
 467         * We are called with preemtion disabled from the depth of the
 468         * idle code, so we can't be moved away.
 469         */
 470        cpu = smp_processor_id();
 471        td = &per_cpu(tick_cpu_device, cpu);
 472        dev = td->evtdev;
 473
 474        if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
 475                return;
 476
 477        bc = tick_broadcast_device.evtdev;
 478
 479        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 480        if (reason == CLOCK_EVT_NOTIFY_BROADCAST_ENTER) {
 481                if (!cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
 482                        cpumask_set_cpu(cpu, tick_get_broadcast_oneshot_mask());
 483                        clockevents_set_mode(dev, CLOCK_EVT_MODE_SHUTDOWN);
 484                        if (dev->next_event.tv64 < bc->next_event.tv64)
 485                                tick_broadcast_set_event(dev->next_event, 1);
 486                }
 487        } else {
 488                if (cpumask_test_cpu(cpu, tick_get_broadcast_oneshot_mask())) {
 489                        cpumask_clear_cpu(cpu,
 490                                          tick_get_broadcast_oneshot_mask());
 491                        clockevents_set_mode(dev, CLOCK_EVT_MODE_ONESHOT);
 492                        if (dev->next_event.tv64 != KTIME_MAX)
 493                                tick_program_event(dev->next_event, 1);
 494                }
 495        }
 496        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 497}
 498
 499/*
 500 * Reset the one shot broadcast for a cpu
 501 *
 502 * Called with tick_broadcast_lock held
 503 */
 504static void tick_broadcast_clear_oneshot(int cpu)
 505{
 506        cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
 507}
 508
 509static void tick_broadcast_init_next_event(struct cpumask *mask,
 510                                           ktime_t expires)
 511{
 512        struct tick_device *td;
 513        int cpu;
 514
 515        for_each_cpu(cpu, mask) {
 516                td = &per_cpu(tick_cpu_device, cpu);
 517                if (td->evtdev)
 518                        td->evtdev->next_event = expires;
 519        }
 520}
 521
 522/**
 523 * tick_broadcast_setup_oneshot - setup the broadcast device
 524 */
 525void tick_broadcast_setup_oneshot(struct clock_event_device *bc)
 526{
 527        int cpu = smp_processor_id();
 528
 529        /* Set it up only once ! */
 530        if (bc->event_handler != tick_handle_oneshot_broadcast) {
 531                int was_periodic = bc->mode == CLOCK_EVT_MODE_PERIODIC;
 532
 533                bc->event_handler = tick_handle_oneshot_broadcast;
 534                clockevents_set_mode(bc, CLOCK_EVT_MODE_ONESHOT);
 535
 536                /* Take the do_timer update */
 537                tick_do_timer_cpu = cpu;
 538
 539                /*
 540                 * We must be careful here. There might be other CPUs
 541                 * waiting for periodic broadcast. We need to set the
 542                 * oneshot_mask bits for those and program the
 543                 * broadcast device to fire.
 544                 */
 545                cpumask_copy(to_cpumask(tmpmask), tick_get_broadcast_mask());
 546                cpumask_clear_cpu(cpu, to_cpumask(tmpmask));
 547                cpumask_or(tick_get_broadcast_oneshot_mask(),
 548                           tick_get_broadcast_oneshot_mask(),
 549                           to_cpumask(tmpmask));
 550
 551                if (was_periodic && !cpumask_empty(to_cpumask(tmpmask))) {
 552                        tick_broadcast_init_next_event(to_cpumask(tmpmask),
 553                                                       tick_next_period);
 554                        tick_broadcast_set_event(tick_next_period, 1);
 555                } else
 556                        bc->next_event.tv64 = KTIME_MAX;
 557        } else {
 558                /*
 559                 * The first cpu which switches to oneshot mode sets
 560                 * the bit for all other cpus which are in the general
 561                 * (periodic) broadcast mask. So the bit is set and
 562                 * would prevent the first broadcast enter after this
 563                 * to program the bc device.
 564                 */
 565                tick_broadcast_clear_oneshot(cpu);
 566        }
 567}
 568
 569/*
 570 * Select oneshot operating mode for the broadcast device
 571 */
 572void tick_broadcast_switch_to_oneshot(void)
 573{
 574        struct clock_event_device *bc;
 575        unsigned long flags;
 576
 577        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 578
 579        tick_broadcast_device.mode = TICKDEV_MODE_ONESHOT;
 580        bc = tick_broadcast_device.evtdev;
 581        if (bc)
 582                tick_broadcast_setup_oneshot(bc);
 583        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 584}
 585
 586
 587/*
 588 * Remove a dead CPU from broadcasting
 589 */
 590void tick_shutdown_broadcast_oneshot(unsigned int *cpup)
 591{
 592        unsigned long flags;
 593        unsigned int cpu = *cpup;
 594
 595        raw_spin_lock_irqsave(&tick_broadcast_lock, flags);
 596
 597        /*
 598         * Clear the broadcast mask flag for the dead cpu, but do not
 599         * stop the broadcast device!
 600         */
 601        cpumask_clear_cpu(cpu, tick_get_broadcast_oneshot_mask());
 602
 603        raw_spin_unlock_irqrestore(&tick_broadcast_lock, flags);
 604}
 605
 606/*
 607 * Check, whether the broadcast device is in one shot mode
 608 */
 609int tick_broadcast_oneshot_active(void)
 610{
 611        return tick_broadcast_device.mode == TICKDEV_MODE_ONESHOT;
 612}
 613
 614/*
 615 * Check whether the broadcast device supports oneshot.
 616 */
 617bool tick_broadcast_oneshot_available(void)
 618{
 619        struct clock_event_device *bc = tick_broadcast_device.evtdev;
 620
 621        return bc ? bc->features & CLOCK_EVT_FEAT_ONESHOT : false;
 622}
 623
 624#endif
 625