linux/security/keys/encrypted.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2010 IBM Corporation
   3 * Copyright (C) 2010 Politecnico di Torino, Italy
   4 *                    TORSEC group -- http://security.polito.it
   5 *
   6 * Authors:
   7 * Mimi Zohar <zohar@us.ibm.com>
   8 * Roberto Sassu <roberto.sassu@polito.it>
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License as published by
  12 * the Free Software Foundation, version 2 of the License.
  13 *
  14 * See Documentation/security/keys-trusted-encrypted.txt
  15 */
  16
  17#include <linux/uaccess.h>
  18#include <linux/module.h>
  19#include <linux/init.h>
  20#include <linux/slab.h>
  21#include <linux/parser.h>
  22#include <linux/string.h>
  23#include <linux/err.h>
  24#include <keys/user-type.h>
  25#include <keys/trusted-type.h>
  26#include <keys/encrypted-type.h>
  27#include <linux/key-type.h>
  28#include <linux/random.h>
  29#include <linux/rcupdate.h>
  30#include <linux/scatterlist.h>
  31#include <linux/crypto.h>
  32#include <linux/ctype.h>
  33#include <crypto/hash.h>
  34#include <crypto/sha.h>
  35#include <crypto/aes.h>
  36
  37#include "encrypted.h"
  38#include "ecryptfs_format.h"
  39
  40static const char KEY_TRUSTED_PREFIX[] = "trusted:";
  41static const char KEY_USER_PREFIX[] = "user:";
  42static const char hash_alg[] = "sha256";
  43static const char hmac_alg[] = "hmac(sha256)";
  44static const char blkcipher_alg[] = "cbc(aes)";
  45static const char key_format_default[] = "default";
  46static const char key_format_ecryptfs[] = "ecryptfs";
  47static unsigned int ivsize;
  48static int blksize;
  49
  50#define KEY_TRUSTED_PREFIX_LEN (sizeof (KEY_TRUSTED_PREFIX) - 1)
  51#define KEY_USER_PREFIX_LEN (sizeof (KEY_USER_PREFIX) - 1)
  52#define KEY_ECRYPTFS_DESC_LEN 16
  53#define HASH_SIZE SHA256_DIGEST_SIZE
  54#define MAX_DATA_SIZE 4096
  55#define MIN_DATA_SIZE  20
  56
  57struct sdesc {
  58        struct shash_desc shash;
  59        char ctx[];
  60};
  61
  62static struct crypto_shash *hashalg;
  63static struct crypto_shash *hmacalg;
  64
  65enum {
  66        Opt_err = -1, Opt_new, Opt_load, Opt_update
  67};
  68
  69enum {
  70        Opt_error = -1, Opt_default, Opt_ecryptfs
  71};
  72
  73static const match_table_t key_format_tokens = {
  74        {Opt_default, "default"},
  75        {Opt_ecryptfs, "ecryptfs"},
  76        {Opt_error, NULL}
  77};
  78
  79static const match_table_t key_tokens = {
  80        {Opt_new, "new"},
  81        {Opt_load, "load"},
  82        {Opt_update, "update"},
  83        {Opt_err, NULL}
  84};
  85
  86static int aes_get_sizes(void)
  87{
  88        struct crypto_blkcipher *tfm;
  89
  90        tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
  91        if (IS_ERR(tfm)) {
  92                pr_err("encrypted_key: failed to alloc_cipher (%ld)\n",
  93                       PTR_ERR(tfm));
  94                return PTR_ERR(tfm);
  95        }
  96        ivsize = crypto_blkcipher_ivsize(tfm);
  97        blksize = crypto_blkcipher_blocksize(tfm);
  98        crypto_free_blkcipher(tfm);
  99        return 0;
 100}
 101
 102/*
 103 * valid_ecryptfs_desc - verify the description of a new/loaded encrypted key
 104 *
 105 * The description of a encrypted key with format 'ecryptfs' must contain
 106 * exactly 16 hexadecimal characters.
 107 *
 108 */
 109static int valid_ecryptfs_desc(const char *ecryptfs_desc)
 110{
 111        int i;
 112
 113        if (strlen(ecryptfs_desc) != KEY_ECRYPTFS_DESC_LEN) {
 114                pr_err("encrypted_key: key description must be %d hexadecimal "
 115                       "characters long\n", KEY_ECRYPTFS_DESC_LEN);
 116                return -EINVAL;
 117        }
 118
 119        for (i = 0; i < KEY_ECRYPTFS_DESC_LEN; i++) {
 120                if (!isxdigit(ecryptfs_desc[i])) {
 121                        pr_err("encrypted_key: key description must contain "
 122                               "only hexadecimal characters\n");
 123                        return -EINVAL;
 124                }
 125        }
 126
 127        return 0;
 128}
 129
 130/*
 131 * valid_master_desc - verify the 'key-type:desc' of a new/updated master-key
 132 *
 133 * key-type:= "trusted:" | "user:"
 134 * desc:= master-key description
 135 *
 136 * Verify that 'key-type' is valid and that 'desc' exists. On key update,
 137 * only the master key description is permitted to change, not the key-type.
 138 * The key-type remains constant.
 139 *
 140 * On success returns 0, otherwise -EINVAL.
 141 */
 142static int valid_master_desc(const char *new_desc, const char *orig_desc)
 143{
 144        if (!memcmp(new_desc, KEY_TRUSTED_PREFIX, KEY_TRUSTED_PREFIX_LEN)) {
 145                if (strlen(new_desc) == KEY_TRUSTED_PREFIX_LEN)
 146                        goto out;
 147                if (orig_desc)
 148                        if (memcmp(new_desc, orig_desc, KEY_TRUSTED_PREFIX_LEN))
 149                                goto out;
 150        } else if (!memcmp(new_desc, KEY_USER_PREFIX, KEY_USER_PREFIX_LEN)) {
 151                if (strlen(new_desc) == KEY_USER_PREFIX_LEN)
 152                        goto out;
 153                if (orig_desc)
 154                        if (memcmp(new_desc, orig_desc, KEY_USER_PREFIX_LEN))
 155                                goto out;
 156        } else
 157                goto out;
 158        return 0;
 159out:
 160        return -EINVAL;
 161}
 162
 163/*
 164 * datablob_parse - parse the keyctl data
 165 *
 166 * datablob format:
 167 * new [<format>] <master-key name> <decrypted data length>
 168 * load [<format>] <master-key name> <decrypted data length>
 169 *     <encrypted iv + data>
 170 * update <new-master-key name>
 171 *
 172 * Tokenizes a copy of the keyctl data, returning a pointer to each token,
 173 * which is null terminated.
 174 *
 175 * On success returns 0, otherwise -EINVAL.
 176 */
 177static int datablob_parse(char *datablob, const char **format,
 178                          char **master_desc, char **decrypted_datalen,
 179                          char **hex_encoded_iv)
 180{
 181        substring_t args[MAX_OPT_ARGS];
 182        int ret = -EINVAL;
 183        int key_cmd;
 184        int key_format;
 185        char *p, *keyword;
 186
 187        keyword = strsep(&datablob, " \t");
 188        if (!keyword) {
 189                pr_info("encrypted_key: insufficient parameters specified\n");
 190                return ret;
 191        }
 192        key_cmd = match_token(keyword, key_tokens, args);
 193
 194        /* Get optional format: default | ecryptfs */
 195        p = strsep(&datablob, " \t");
 196        if (!p) {
 197                pr_err("encrypted_key: insufficient parameters specified\n");
 198                return ret;
 199        }
 200
 201        key_format = match_token(p, key_format_tokens, args);
 202        switch (key_format) {
 203        case Opt_ecryptfs:
 204        case Opt_default:
 205                *format = p;
 206                *master_desc = strsep(&datablob, " \t");
 207                break;
 208        case Opt_error:
 209                *master_desc = p;
 210                break;
 211        }
 212
 213        if (!*master_desc) {
 214                pr_info("encrypted_key: master key parameter is missing\n");
 215                goto out;
 216        }
 217
 218        if (valid_master_desc(*master_desc, NULL) < 0) {
 219                pr_info("encrypted_key: master key parameter \'%s\' "
 220                        "is invalid\n", *master_desc);
 221                goto out;
 222        }
 223
 224        if (decrypted_datalen) {
 225                *decrypted_datalen = strsep(&datablob, " \t");
 226                if (!*decrypted_datalen) {
 227                        pr_info("encrypted_key: keylen parameter is missing\n");
 228                        goto out;
 229                }
 230        }
 231
 232        switch (key_cmd) {
 233        case Opt_new:
 234                if (!decrypted_datalen) {
 235                        pr_info("encrypted_key: keyword \'%s\' not allowed "
 236                                "when called from .update method\n", keyword);
 237                        break;
 238                }
 239                ret = 0;
 240                break;
 241        case Opt_load:
 242                if (!decrypted_datalen) {
 243                        pr_info("encrypted_key: keyword \'%s\' not allowed "
 244                                "when called from .update method\n", keyword);
 245                        break;
 246                }
 247                *hex_encoded_iv = strsep(&datablob, " \t");
 248                if (!*hex_encoded_iv) {
 249                        pr_info("encrypted_key: hex blob is missing\n");
 250                        break;
 251                }
 252                ret = 0;
 253                break;
 254        case Opt_update:
 255                if (decrypted_datalen) {
 256                        pr_info("encrypted_key: keyword \'%s\' not allowed "
 257                                "when called from .instantiate method\n",
 258                                keyword);
 259                        break;
 260                }
 261                ret = 0;
 262                break;
 263        case Opt_err:
 264                pr_info("encrypted_key: keyword \'%s\' not recognized\n",
 265                        keyword);
 266                break;
 267        }
 268out:
 269        return ret;
 270}
 271
 272/*
 273 * datablob_format - format as an ascii string, before copying to userspace
 274 */
 275static char *datablob_format(struct encrypted_key_payload *epayload,
 276                             size_t asciiblob_len)
 277{
 278        char *ascii_buf, *bufp;
 279        u8 *iv = epayload->iv;
 280        int len;
 281        int i;
 282
 283        ascii_buf = kmalloc(asciiblob_len + 1, GFP_KERNEL);
 284        if (!ascii_buf)
 285                goto out;
 286
 287        ascii_buf[asciiblob_len] = '\0';
 288
 289        /* copy datablob master_desc and datalen strings */
 290        len = sprintf(ascii_buf, "%s %s %s ", epayload->format,
 291                      epayload->master_desc, epayload->datalen);
 292
 293        /* convert the hex encoded iv, encrypted-data and HMAC to ascii */
 294        bufp = &ascii_buf[len];
 295        for (i = 0; i < (asciiblob_len - len) / 2; i++)
 296                bufp = pack_hex_byte(bufp, iv[i]);
 297out:
 298        return ascii_buf;
 299}
 300
 301/*
 302 * request_trusted_key - request the trusted key
 303 *
 304 * Trusted keys are sealed to PCRs and other metadata. Although userspace
 305 * manages both trusted/encrypted key-types, like the encrypted key type
 306 * data, trusted key type data is not visible decrypted from userspace.
 307 */
 308static struct key *request_trusted_key(const char *trusted_desc,
 309                                       u8 **master_key, size_t *master_keylen)
 310{
 311        struct trusted_key_payload *tpayload;
 312        struct key *tkey;
 313
 314        tkey = request_key(&key_type_trusted, trusted_desc, NULL);
 315        if (IS_ERR(tkey))
 316                goto error;
 317
 318        down_read(&tkey->sem);
 319        tpayload = rcu_dereference(tkey->payload.data);
 320        *master_key = tpayload->key;
 321        *master_keylen = tpayload->key_len;
 322error:
 323        return tkey;
 324}
 325
 326/*
 327 * request_user_key - request the user key
 328 *
 329 * Use a user provided key to encrypt/decrypt an encrypted-key.
 330 */
 331static struct key *request_user_key(const char *master_desc, u8 **master_key,
 332                                    size_t *master_keylen)
 333{
 334        struct user_key_payload *upayload;
 335        struct key *ukey;
 336
 337        ukey = request_key(&key_type_user, master_desc, NULL);
 338        if (IS_ERR(ukey))
 339                goto error;
 340
 341        down_read(&ukey->sem);
 342        upayload = rcu_dereference(ukey->payload.data);
 343        *master_key = upayload->data;
 344        *master_keylen = upayload->datalen;
 345error:
 346        return ukey;
 347}
 348
 349static struct sdesc *alloc_sdesc(struct crypto_shash *alg)
 350{
 351        struct sdesc *sdesc;
 352        int size;
 353
 354        size = sizeof(struct shash_desc) + crypto_shash_descsize(alg);
 355        sdesc = kmalloc(size, GFP_KERNEL);
 356        if (!sdesc)
 357                return ERR_PTR(-ENOMEM);
 358        sdesc->shash.tfm = alg;
 359        sdesc->shash.flags = 0x0;
 360        return sdesc;
 361}
 362
 363static int calc_hmac(u8 *digest, const u8 *key, unsigned int keylen,
 364                     const u8 *buf, unsigned int buflen)
 365{
 366        struct sdesc *sdesc;
 367        int ret;
 368
 369        sdesc = alloc_sdesc(hmacalg);
 370        if (IS_ERR(sdesc)) {
 371                pr_info("encrypted_key: can't alloc %s\n", hmac_alg);
 372                return PTR_ERR(sdesc);
 373        }
 374
 375        ret = crypto_shash_setkey(hmacalg, key, keylen);
 376        if (!ret)
 377                ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
 378        kfree(sdesc);
 379        return ret;
 380}
 381
 382static int calc_hash(u8 *digest, const u8 *buf, unsigned int buflen)
 383{
 384        struct sdesc *sdesc;
 385        int ret;
 386
 387        sdesc = alloc_sdesc(hashalg);
 388        if (IS_ERR(sdesc)) {
 389                pr_info("encrypted_key: can't alloc %s\n", hash_alg);
 390                return PTR_ERR(sdesc);
 391        }
 392
 393        ret = crypto_shash_digest(&sdesc->shash, buf, buflen, digest);
 394        kfree(sdesc);
 395        return ret;
 396}
 397
 398enum derived_key_type { ENC_KEY, AUTH_KEY };
 399
 400/* Derive authentication/encryption key from trusted key */
 401static int get_derived_key(u8 *derived_key, enum derived_key_type key_type,
 402                           const u8 *master_key, size_t master_keylen)
 403{
 404        u8 *derived_buf;
 405        unsigned int derived_buf_len;
 406        int ret;
 407
 408        derived_buf_len = strlen("AUTH_KEY") + 1 + master_keylen;
 409        if (derived_buf_len < HASH_SIZE)
 410                derived_buf_len = HASH_SIZE;
 411
 412        derived_buf = kzalloc(derived_buf_len, GFP_KERNEL);
 413        if (!derived_buf) {
 414                pr_err("encrypted_key: out of memory\n");
 415                return -ENOMEM;
 416        }
 417        if (key_type)
 418                strcpy(derived_buf, "AUTH_KEY");
 419        else
 420                strcpy(derived_buf, "ENC_KEY");
 421
 422        memcpy(derived_buf + strlen(derived_buf) + 1, master_key,
 423               master_keylen);
 424        ret = calc_hash(derived_key, derived_buf, derived_buf_len);
 425        kfree(derived_buf);
 426        return ret;
 427}
 428
 429static int init_blkcipher_desc(struct blkcipher_desc *desc, const u8 *key,
 430                               unsigned int key_len, const u8 *iv,
 431                               unsigned int ivsize)
 432{
 433        int ret;
 434
 435        desc->tfm = crypto_alloc_blkcipher(blkcipher_alg, 0, CRYPTO_ALG_ASYNC);
 436        if (IS_ERR(desc->tfm)) {
 437                pr_err("encrypted_key: failed to load %s transform (%ld)\n",
 438                       blkcipher_alg, PTR_ERR(desc->tfm));
 439                return PTR_ERR(desc->tfm);
 440        }
 441        desc->flags = 0;
 442
 443        ret = crypto_blkcipher_setkey(desc->tfm, key, key_len);
 444        if (ret < 0) {
 445                pr_err("encrypted_key: failed to setkey (%d)\n", ret);
 446                crypto_free_blkcipher(desc->tfm);
 447                return ret;
 448        }
 449        crypto_blkcipher_set_iv(desc->tfm, iv, ivsize);
 450        return 0;
 451}
 452
 453static struct key *request_master_key(struct encrypted_key_payload *epayload,
 454                                      u8 **master_key, size_t *master_keylen)
 455{
 456        struct key *mkey = NULL;
 457
 458        if (!strncmp(epayload->master_desc, KEY_TRUSTED_PREFIX,
 459                     KEY_TRUSTED_PREFIX_LEN)) {
 460                mkey = request_trusted_key(epayload->master_desc +
 461                                           KEY_TRUSTED_PREFIX_LEN,
 462                                           master_key, master_keylen);
 463        } else if (!strncmp(epayload->master_desc, KEY_USER_PREFIX,
 464                            KEY_USER_PREFIX_LEN)) {
 465                mkey = request_user_key(epayload->master_desc +
 466                                        KEY_USER_PREFIX_LEN,
 467                                        master_key, master_keylen);
 468        } else
 469                goto out;
 470
 471        if (IS_ERR(mkey)) {
 472                pr_info("encrypted_key: key %s not found",
 473                        epayload->master_desc);
 474                goto out;
 475        }
 476
 477        dump_master_key(*master_key, *master_keylen);
 478out:
 479        return mkey;
 480}
 481
 482/* Before returning data to userspace, encrypt decrypted data. */
 483static int derived_key_encrypt(struct encrypted_key_payload *epayload,
 484                               const u8 *derived_key,
 485                               unsigned int derived_keylen)
 486{
 487        struct scatterlist sg_in[2];
 488        struct scatterlist sg_out[1];
 489        struct blkcipher_desc desc;
 490        unsigned int encrypted_datalen;
 491        unsigned int padlen;
 492        char pad[16];
 493        int ret;
 494
 495        encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 496        padlen = encrypted_datalen - epayload->decrypted_datalen;
 497
 498        ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
 499                                  epayload->iv, ivsize);
 500        if (ret < 0)
 501                goto out;
 502        dump_decrypted_data(epayload);
 503
 504        memset(pad, 0, sizeof pad);
 505        sg_init_table(sg_in, 2);
 506        sg_set_buf(&sg_in[0], epayload->decrypted_data,
 507                   epayload->decrypted_datalen);
 508        sg_set_buf(&sg_in[1], pad, padlen);
 509
 510        sg_init_table(sg_out, 1);
 511        sg_set_buf(sg_out, epayload->encrypted_data, encrypted_datalen);
 512
 513        ret = crypto_blkcipher_encrypt(&desc, sg_out, sg_in, encrypted_datalen);
 514        crypto_free_blkcipher(desc.tfm);
 515        if (ret < 0)
 516                pr_err("encrypted_key: failed to encrypt (%d)\n", ret);
 517        else
 518                dump_encrypted_data(epayload, encrypted_datalen);
 519out:
 520        return ret;
 521}
 522
 523static int datablob_hmac_append(struct encrypted_key_payload *epayload,
 524                                const u8 *master_key, size_t master_keylen)
 525{
 526        u8 derived_key[HASH_SIZE];
 527        u8 *digest;
 528        int ret;
 529
 530        ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 531        if (ret < 0)
 532                goto out;
 533
 534        digest = epayload->format + epayload->datablob_len;
 535        ret = calc_hmac(digest, derived_key, sizeof derived_key,
 536                        epayload->format, epayload->datablob_len);
 537        if (!ret)
 538                dump_hmac(NULL, digest, HASH_SIZE);
 539out:
 540        return ret;
 541}
 542
 543/* verify HMAC before decrypting encrypted key */
 544static int datablob_hmac_verify(struct encrypted_key_payload *epayload,
 545                                const u8 *format, const u8 *master_key,
 546                                size_t master_keylen)
 547{
 548        u8 derived_key[HASH_SIZE];
 549        u8 digest[HASH_SIZE];
 550        int ret;
 551        char *p;
 552        unsigned short len;
 553
 554        ret = get_derived_key(derived_key, AUTH_KEY, master_key, master_keylen);
 555        if (ret < 0)
 556                goto out;
 557
 558        len = epayload->datablob_len;
 559        if (!format) {
 560                p = epayload->master_desc;
 561                len -= strlen(epayload->format) + 1;
 562        } else
 563                p = epayload->format;
 564
 565        ret = calc_hmac(digest, derived_key, sizeof derived_key, p, len);
 566        if (ret < 0)
 567                goto out;
 568        ret = memcmp(digest, epayload->format + epayload->datablob_len,
 569                     sizeof digest);
 570        if (ret) {
 571                ret = -EINVAL;
 572                dump_hmac("datablob",
 573                          epayload->format + epayload->datablob_len,
 574                          HASH_SIZE);
 575                dump_hmac("calc", digest, HASH_SIZE);
 576        }
 577out:
 578        return ret;
 579}
 580
 581static int derived_key_decrypt(struct encrypted_key_payload *epayload,
 582                               const u8 *derived_key,
 583                               unsigned int derived_keylen)
 584{
 585        struct scatterlist sg_in[1];
 586        struct scatterlist sg_out[2];
 587        struct blkcipher_desc desc;
 588        unsigned int encrypted_datalen;
 589        char pad[16];
 590        int ret;
 591
 592        encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 593        ret = init_blkcipher_desc(&desc, derived_key, derived_keylen,
 594                                  epayload->iv, ivsize);
 595        if (ret < 0)
 596                goto out;
 597        dump_encrypted_data(epayload, encrypted_datalen);
 598
 599        memset(pad, 0, sizeof pad);
 600        sg_init_table(sg_in, 1);
 601        sg_init_table(sg_out, 2);
 602        sg_set_buf(sg_in, epayload->encrypted_data, encrypted_datalen);
 603        sg_set_buf(&sg_out[0], epayload->decrypted_data,
 604                   epayload->decrypted_datalen);
 605        sg_set_buf(&sg_out[1], pad, sizeof pad);
 606
 607        ret = crypto_blkcipher_decrypt(&desc, sg_out, sg_in, encrypted_datalen);
 608        crypto_free_blkcipher(desc.tfm);
 609        if (ret < 0)
 610                goto out;
 611        dump_decrypted_data(epayload);
 612out:
 613        return ret;
 614}
 615
 616/* Allocate memory for decrypted key and datablob. */
 617static struct encrypted_key_payload *encrypted_key_alloc(struct key *key,
 618                                                         const char *format,
 619                                                         const char *master_desc,
 620                                                         const char *datalen)
 621{
 622        struct encrypted_key_payload *epayload = NULL;
 623        unsigned short datablob_len;
 624        unsigned short decrypted_datalen;
 625        unsigned short payload_datalen;
 626        unsigned int encrypted_datalen;
 627        unsigned int format_len;
 628        long dlen;
 629        int ret;
 630
 631        ret = strict_strtol(datalen, 10, &dlen);
 632        if (ret < 0 || dlen < MIN_DATA_SIZE || dlen > MAX_DATA_SIZE)
 633                return ERR_PTR(-EINVAL);
 634
 635        format_len = (!format) ? strlen(key_format_default) : strlen(format);
 636        decrypted_datalen = dlen;
 637        payload_datalen = decrypted_datalen;
 638        if (format && !strcmp(format, key_format_ecryptfs)) {
 639                if (dlen != ECRYPTFS_MAX_KEY_BYTES) {
 640                        pr_err("encrypted_key: keylen for the ecryptfs format "
 641                               "must be equal to %d bytes\n",
 642                               ECRYPTFS_MAX_KEY_BYTES);
 643                        return ERR_PTR(-EINVAL);
 644                }
 645                decrypted_datalen = ECRYPTFS_MAX_KEY_BYTES;
 646                payload_datalen = sizeof(struct ecryptfs_auth_tok);
 647        }
 648
 649        encrypted_datalen = roundup(decrypted_datalen, blksize);
 650
 651        datablob_len = format_len + 1 + strlen(master_desc) + 1
 652            + strlen(datalen) + 1 + ivsize + 1 + encrypted_datalen;
 653
 654        ret = key_payload_reserve(key, payload_datalen + datablob_len
 655                                  + HASH_SIZE + 1);
 656        if (ret < 0)
 657                return ERR_PTR(ret);
 658
 659        epayload = kzalloc(sizeof(*epayload) + payload_datalen +
 660                           datablob_len + HASH_SIZE + 1, GFP_KERNEL);
 661        if (!epayload)
 662                return ERR_PTR(-ENOMEM);
 663
 664        epayload->payload_datalen = payload_datalen;
 665        epayload->decrypted_datalen = decrypted_datalen;
 666        epayload->datablob_len = datablob_len;
 667        return epayload;
 668}
 669
 670static int encrypted_key_decrypt(struct encrypted_key_payload *epayload,
 671                                 const char *format, const char *hex_encoded_iv)
 672{
 673        struct key *mkey;
 674        u8 derived_key[HASH_SIZE];
 675        u8 *master_key;
 676        u8 *hmac;
 677        const char *hex_encoded_data;
 678        unsigned int encrypted_datalen;
 679        size_t master_keylen;
 680        size_t asciilen;
 681        int ret;
 682
 683        encrypted_datalen = roundup(epayload->decrypted_datalen, blksize);
 684        asciilen = (ivsize + 1 + encrypted_datalen + HASH_SIZE) * 2;
 685        if (strlen(hex_encoded_iv) != asciilen)
 686                return -EINVAL;
 687
 688        hex_encoded_data = hex_encoded_iv + (2 * ivsize) + 2;
 689        hex2bin(epayload->iv, hex_encoded_iv, ivsize);
 690        hex2bin(epayload->encrypted_data, hex_encoded_data, encrypted_datalen);
 691
 692        hmac = epayload->format + epayload->datablob_len;
 693        hex2bin(hmac, hex_encoded_data + (encrypted_datalen * 2), HASH_SIZE);
 694
 695        mkey = request_master_key(epayload, &master_key, &master_keylen);
 696        if (IS_ERR(mkey))
 697                return PTR_ERR(mkey);
 698
 699        ret = datablob_hmac_verify(epayload, format, master_key, master_keylen);
 700        if (ret < 0) {
 701                pr_err("encrypted_key: bad hmac (%d)\n", ret);
 702                goto out;
 703        }
 704
 705        ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 706        if (ret < 0)
 707                goto out;
 708
 709        ret = derived_key_decrypt(epayload, derived_key, sizeof derived_key);
 710        if (ret < 0)
 711                pr_err("encrypted_key: failed to decrypt key (%d)\n", ret);
 712out:
 713        up_read(&mkey->sem);
 714        key_put(mkey);
 715        return ret;
 716}
 717
 718static void __ekey_init(struct encrypted_key_payload *epayload,
 719                        const char *format, const char *master_desc,
 720                        const char *datalen)
 721{
 722        unsigned int format_len;
 723
 724        format_len = (!format) ? strlen(key_format_default) : strlen(format);
 725        epayload->format = epayload->payload_data + epayload->payload_datalen;
 726        epayload->master_desc = epayload->format + format_len + 1;
 727        epayload->datalen = epayload->master_desc + strlen(master_desc) + 1;
 728        epayload->iv = epayload->datalen + strlen(datalen) + 1;
 729        epayload->encrypted_data = epayload->iv + ivsize + 1;
 730        epayload->decrypted_data = epayload->payload_data;
 731
 732        if (!format)
 733                memcpy(epayload->format, key_format_default, format_len);
 734        else {
 735                if (!strcmp(format, key_format_ecryptfs))
 736                        epayload->decrypted_data =
 737                                ecryptfs_get_auth_tok_key((struct ecryptfs_auth_tok *)epayload->payload_data);
 738
 739                memcpy(epayload->format, format, format_len);
 740        }
 741
 742        memcpy(epayload->master_desc, master_desc, strlen(master_desc));
 743        memcpy(epayload->datalen, datalen, strlen(datalen));
 744}
 745
 746/*
 747 * encrypted_init - initialize an encrypted key
 748 *
 749 * For a new key, use a random number for both the iv and data
 750 * itself.  For an old key, decrypt the hex encoded data.
 751 */
 752static int encrypted_init(struct encrypted_key_payload *epayload,
 753                          const char *key_desc, const char *format,
 754                          const char *master_desc, const char *datalen,
 755                          const char *hex_encoded_iv)
 756{
 757        int ret = 0;
 758
 759        if (format && !strcmp(format, key_format_ecryptfs)) {
 760                ret = valid_ecryptfs_desc(key_desc);
 761                if (ret < 0)
 762                        return ret;
 763
 764                ecryptfs_fill_auth_tok((struct ecryptfs_auth_tok *)epayload->payload_data,
 765                                       key_desc);
 766        }
 767
 768        __ekey_init(epayload, format, master_desc, datalen);
 769        if (!hex_encoded_iv) {
 770                get_random_bytes(epayload->iv, ivsize);
 771
 772                get_random_bytes(epayload->decrypted_data,
 773                                 epayload->decrypted_datalen);
 774        } else
 775                ret = encrypted_key_decrypt(epayload, format, hex_encoded_iv);
 776        return ret;
 777}
 778
 779/*
 780 * encrypted_instantiate - instantiate an encrypted key
 781 *
 782 * Decrypt an existing encrypted datablob or create a new encrypted key
 783 * based on a kernel random number.
 784 *
 785 * On success, return 0. Otherwise return errno.
 786 */
 787static int encrypted_instantiate(struct key *key, const void *data,
 788                                 size_t datalen)
 789{
 790        struct encrypted_key_payload *epayload = NULL;
 791        char *datablob = NULL;
 792        const char *format = NULL;
 793        char *master_desc = NULL;
 794        char *decrypted_datalen = NULL;
 795        char *hex_encoded_iv = NULL;
 796        int ret;
 797
 798        if (datalen <= 0 || datalen > 32767 || !data)
 799                return -EINVAL;
 800
 801        datablob = kmalloc(datalen + 1, GFP_KERNEL);
 802        if (!datablob)
 803                return -ENOMEM;
 804        datablob[datalen] = 0;
 805        memcpy(datablob, data, datalen);
 806        ret = datablob_parse(datablob, &format, &master_desc,
 807                             &decrypted_datalen, &hex_encoded_iv);
 808        if (ret < 0)
 809                goto out;
 810
 811        epayload = encrypted_key_alloc(key, format, master_desc,
 812                                       decrypted_datalen);
 813        if (IS_ERR(epayload)) {
 814                ret = PTR_ERR(epayload);
 815                goto out;
 816        }
 817        ret = encrypted_init(epayload, key->description, format, master_desc,
 818                             decrypted_datalen, hex_encoded_iv);
 819        if (ret < 0) {
 820                kfree(epayload);
 821                goto out;
 822        }
 823
 824        rcu_assign_pointer(key->payload.data, epayload);
 825out:
 826        kfree(datablob);
 827        return ret;
 828}
 829
 830static void encrypted_rcu_free(struct rcu_head *rcu)
 831{
 832        struct encrypted_key_payload *epayload;
 833
 834        epayload = container_of(rcu, struct encrypted_key_payload, rcu);
 835        memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
 836        kfree(epayload);
 837}
 838
 839/*
 840 * encrypted_update - update the master key description
 841 *
 842 * Change the master key description for an existing encrypted key.
 843 * The next read will return an encrypted datablob using the new
 844 * master key description.
 845 *
 846 * On success, return 0. Otherwise return errno.
 847 */
 848static int encrypted_update(struct key *key, const void *data, size_t datalen)
 849{
 850        struct encrypted_key_payload *epayload = key->payload.data;
 851        struct encrypted_key_payload *new_epayload;
 852        char *buf;
 853        char *new_master_desc = NULL;
 854        const char *format = NULL;
 855        int ret = 0;
 856
 857        if (datalen <= 0 || datalen > 32767 || !data)
 858                return -EINVAL;
 859
 860        buf = kmalloc(datalen + 1, GFP_KERNEL);
 861        if (!buf)
 862                return -ENOMEM;
 863
 864        buf[datalen] = 0;
 865        memcpy(buf, data, datalen);
 866        ret = datablob_parse(buf, &format, &new_master_desc, NULL, NULL);
 867        if (ret < 0)
 868                goto out;
 869
 870        ret = valid_master_desc(new_master_desc, epayload->master_desc);
 871        if (ret < 0)
 872                goto out;
 873
 874        new_epayload = encrypted_key_alloc(key, epayload->format,
 875                                           new_master_desc, epayload->datalen);
 876        if (IS_ERR(new_epayload)) {
 877                ret = PTR_ERR(new_epayload);
 878                goto out;
 879        }
 880
 881        __ekey_init(new_epayload, epayload->format, new_master_desc,
 882                    epayload->datalen);
 883
 884        memcpy(new_epayload->iv, epayload->iv, ivsize);
 885        memcpy(new_epayload->payload_data, epayload->payload_data,
 886               epayload->payload_datalen);
 887
 888        rcu_assign_pointer(key->payload.data, new_epayload);
 889        call_rcu(&epayload->rcu, encrypted_rcu_free);
 890out:
 891        kfree(buf);
 892        return ret;
 893}
 894
 895/*
 896 * encrypted_read - format and copy the encrypted data to userspace
 897 *
 898 * The resulting datablob format is:
 899 * <master-key name> <decrypted data length> <encrypted iv> <encrypted data>
 900 *
 901 * On success, return to userspace the encrypted key datablob size.
 902 */
 903static long encrypted_read(const struct key *key, char __user *buffer,
 904                           size_t buflen)
 905{
 906        struct encrypted_key_payload *epayload;
 907        struct key *mkey;
 908        u8 *master_key;
 909        size_t master_keylen;
 910        char derived_key[HASH_SIZE];
 911        char *ascii_buf;
 912        size_t asciiblob_len;
 913        int ret;
 914
 915        epayload = rcu_dereference_key(key);
 916
 917        /* returns the hex encoded iv, encrypted-data, and hmac as ascii */
 918        asciiblob_len = epayload->datablob_len + ivsize + 1
 919            + roundup(epayload->decrypted_datalen, blksize)
 920            + (HASH_SIZE * 2);
 921
 922        if (!buffer || buflen < asciiblob_len)
 923                return asciiblob_len;
 924
 925        mkey = request_master_key(epayload, &master_key, &master_keylen);
 926        if (IS_ERR(mkey))
 927                return PTR_ERR(mkey);
 928
 929        ret = get_derived_key(derived_key, ENC_KEY, master_key, master_keylen);
 930        if (ret < 0)
 931                goto out;
 932
 933        ret = derived_key_encrypt(epayload, derived_key, sizeof derived_key);
 934        if (ret < 0)
 935                goto out;
 936
 937        ret = datablob_hmac_append(epayload, master_key, master_keylen);
 938        if (ret < 0)
 939                goto out;
 940
 941        ascii_buf = datablob_format(epayload, asciiblob_len);
 942        if (!ascii_buf) {
 943                ret = -ENOMEM;
 944                goto out;
 945        }
 946
 947        up_read(&mkey->sem);
 948        key_put(mkey);
 949
 950        if (copy_to_user(buffer, ascii_buf, asciiblob_len) != 0)
 951                ret = -EFAULT;
 952        kfree(ascii_buf);
 953
 954        return asciiblob_len;
 955out:
 956        up_read(&mkey->sem);
 957        key_put(mkey);
 958        return ret;
 959}
 960
 961/*
 962 * encrypted_destroy - before freeing the key, clear the decrypted data
 963 *
 964 * Before freeing the key, clear the memory containing the decrypted
 965 * key data.
 966 */
 967static void encrypted_destroy(struct key *key)
 968{
 969        struct encrypted_key_payload *epayload = key->payload.data;
 970
 971        if (!epayload)
 972                return;
 973
 974        memset(epayload->decrypted_data, 0, epayload->decrypted_datalen);
 975        kfree(key->payload.data);
 976}
 977
 978struct key_type key_type_encrypted = {
 979        .name = "encrypted",
 980        .instantiate = encrypted_instantiate,
 981        .update = encrypted_update,
 982        .match = user_match,
 983        .destroy = encrypted_destroy,
 984        .describe = user_describe,
 985        .read = encrypted_read,
 986};
 987EXPORT_SYMBOL_GPL(key_type_encrypted);
 988
 989static void encrypted_shash_release(void)
 990{
 991        if (hashalg)
 992                crypto_free_shash(hashalg);
 993        if (hmacalg)
 994                crypto_free_shash(hmacalg);
 995}
 996
 997static int __init encrypted_shash_alloc(void)
 998{
 999        int ret;
1000
1001        hmacalg = crypto_alloc_shash(hmac_alg, 0, CRYPTO_ALG_ASYNC);
1002        if (IS_ERR(hmacalg)) {
1003                pr_info("encrypted_key: could not allocate crypto %s\n",
1004                        hmac_alg);
1005                return PTR_ERR(hmacalg);
1006        }
1007
1008        hashalg = crypto_alloc_shash(hash_alg, 0, CRYPTO_ALG_ASYNC);
1009        if (IS_ERR(hashalg)) {
1010                pr_info("encrypted_key: could not allocate crypto %s\n",
1011                        hash_alg);
1012                ret = PTR_ERR(hashalg);
1013                goto hashalg_fail;
1014        }
1015
1016        return 0;
1017
1018hashalg_fail:
1019        crypto_free_shash(hmacalg);
1020        return ret;
1021}
1022
1023static int __init init_encrypted(void)
1024{
1025        int ret;
1026
1027        ret = encrypted_shash_alloc();
1028        if (ret < 0)
1029                return ret;
1030        ret = register_key_type(&key_type_encrypted);
1031        if (ret < 0)
1032                goto out;
1033        return aes_get_sizes();
1034out:
1035        encrypted_shash_release();
1036        return ret;
1037
1038}
1039
1040static void __exit cleanup_encrypted(void)
1041{
1042        encrypted_shash_release();
1043        unregister_key_type(&key_type_encrypted);
1044}
1045
1046late_initcall(init_encrypted);
1047module_exit(cleanup_encrypted);
1048
1049MODULE_LICENSE("GPL");
1050