linux/arch/alpha/kernel/sys_eb64p.c
<<
>>
Prefs
   1/*
   2 *      linux/arch/alpha/kernel/sys_eb64p.c
   3 *
   4 *      Copyright (C) 1995 David A Rusling
   5 *      Copyright (C) 1996 Jay A Estabrook
   6 *      Copyright (C) 1998, 1999 Richard Henderson
   7 *
   8 * Code supporting the EB64+ and EB66.
   9 */
  10
  11#include <linux/kernel.h>
  12#include <linux/types.h>
  13#include <linux/mm.h>
  14#include <linux/sched.h>
  15#include <linux/pci.h>
  16#include <linux/init.h>
  17#include <linux/bitops.h>
  18
  19#include <asm/ptrace.h>
  20#include <asm/dma.h>
  21#include <asm/irq.h>
  22#include <asm/mmu_context.h>
  23#include <asm/io.h>
  24#include <asm/pgtable.h>
  25#include <asm/core_apecs.h>
  26#include <asm/core_lca.h>
  27#include <asm/hwrpb.h>
  28#include <asm/tlbflush.h>
  29
  30#include "proto.h"
  31#include "irq_impl.h"
  32#include "pci_impl.h"
  33#include "machvec_impl.h"
  34
  35
  36/* Note mask bit is true for DISABLED irqs.  */
  37static unsigned int cached_irq_mask = -1;
  38
  39static inline void
  40eb64p_update_irq_hw(unsigned int irq, unsigned long mask)
  41{
  42        outb(mask >> (irq >= 24 ? 24 : 16), (irq >= 24 ? 0x27 : 0x26));
  43}
  44
  45static inline void
  46eb64p_enable_irq(struct irq_data *d)
  47{
  48        eb64p_update_irq_hw(d->irq, cached_irq_mask &= ~(1 << d->irq));
  49}
  50
  51static void
  52eb64p_disable_irq(struct irq_data *d)
  53{
  54        eb64p_update_irq_hw(d->irq, cached_irq_mask |= 1 << d->irq);
  55}
  56
  57static struct irq_chip eb64p_irq_type = {
  58        .name           = "EB64P",
  59        .irq_unmask     = eb64p_enable_irq,
  60        .irq_mask       = eb64p_disable_irq,
  61        .irq_mask_ack   = eb64p_disable_irq,
  62};
  63
  64static void 
  65eb64p_device_interrupt(unsigned long vector)
  66{
  67        unsigned long pld;
  68        unsigned int i;
  69
  70        /* Read the interrupt summary registers */
  71        pld = inb(0x26) | (inb(0x27) << 8);
  72
  73        /*
  74         * Now, for every possible bit set, work through
  75         * them and call the appropriate interrupt handler.
  76         */
  77        while (pld) {
  78                i = ffz(~pld);
  79                pld &= pld - 1; /* clear least bit set */
  80
  81                if (i == 5) {
  82                        isa_device_interrupt(vector);
  83                } else {
  84                        handle_irq(16 + i);
  85                }
  86        }
  87}
  88
  89static void __init
  90eb64p_init_irq(void)
  91{
  92        long i;
  93
  94#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_CABRIOLET)
  95        /*
  96         * CABRIO SRM may not set variation correctly, so here we test
  97         * the high word of the interrupt summary register for the RAZ
  98         * bits, and hope that a true EB64+ would read all ones...
  99         */
 100        if (inw(0x806) != 0xffff) {
 101                extern struct alpha_machine_vector cabriolet_mv;
 102
 103                printk("Detected Cabriolet: correcting HWRPB.\n");
 104
 105                hwrpb->sys_variation |= 2L << 10;
 106                hwrpb_update_checksum(hwrpb);
 107
 108                alpha_mv = cabriolet_mv;
 109                alpha_mv.init_irq();
 110                return;
 111        }
 112#endif /* GENERIC */
 113
 114        outb(0xff, 0x26);
 115        outb(0xff, 0x27);
 116
 117        init_i8259a_irqs();
 118
 119        for (i = 16; i < 32; ++i) {
 120                irq_set_chip_and_handler(i, &eb64p_irq_type, handle_level_irq);
 121                irq_set_status_flags(i, IRQ_LEVEL);
 122        }
 123
 124        common_init_isa_dma();
 125        setup_irq(16+5, &isa_cascade_irqaction);
 126}
 127
 128/*
 129 * PCI Fixup configuration.
 130 *
 131 * There are two 8 bit external summary registers as follows:
 132 *
 133 * Summary @ 0x26:
 134 * Bit      Meaning
 135 * 0        Interrupt Line A from slot 0
 136 * 1        Interrupt Line A from slot 1
 137 * 2        Interrupt Line B from slot 0
 138 * 3        Interrupt Line B from slot 1
 139 * 4        Interrupt Line C from slot 0
 140 * 5        Interrupt line from the two ISA PICs
 141 * 6        Tulip
 142 * 7        NCR SCSI
 143 *
 144 * Summary @ 0x27
 145 * Bit      Meaning
 146 * 0        Interrupt Line C from slot 1
 147 * 1        Interrupt Line D from slot 0
 148 * 2        Interrupt Line D from slot 1
 149 * 3        RAZ
 150 * 4        RAZ
 151 * 5        RAZ
 152 * 6        RAZ
 153 * 7        RAZ
 154 *
 155 * The device to slot mapping looks like:
 156 *
 157 * Slot     Device
 158 *  5       NCR SCSI controller
 159 *  6       PCI on board slot 0
 160 *  7       PCI on board slot 1
 161 *  8       Intel SIO PCI-ISA bridge chip
 162 *  9       Tulip - DECchip 21040 Ethernet controller
 163 *   
 164 *
 165 * This two layered interrupt approach means that we allocate IRQ 16 and 
 166 * above for PCI interrupts.  The IRQ relates to which bit the interrupt
 167 * comes in on.  This makes interrupt processing much easier.
 168 */
 169
 170static int __init
 171eb64p_map_irq(const struct pci_dev *dev, u8 slot, u8 pin)
 172{
 173        static char irq_tab[5][5] __initdata = {
 174                /*INT  INTA  INTB  INTC   INTD */
 175                {16+7, 16+7, 16+7, 16+7,  16+7},  /* IdSel 5,  slot ?, ?? */
 176                {16+0, 16+0, 16+2, 16+4,  16+9},  /* IdSel 6,  slot ?, ?? */
 177                {16+1, 16+1, 16+3, 16+8, 16+10},  /* IdSel 7,  slot ?, ?? */
 178                {  -1,   -1,   -1,   -1,    -1},  /* IdSel 8,  SIO */
 179                {16+6, 16+6, 16+6, 16+6,  16+6},  /* IdSel 9,  TULIP */
 180        };
 181        const long min_idsel = 5, max_idsel = 9, irqs_per_slot = 5;
 182        return COMMON_TABLE_LOOKUP;
 183}
 184
 185
 186/*
 187 * The System Vector
 188 */
 189
 190#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_EB64P)
 191struct alpha_machine_vector eb64p_mv __initmv = {
 192        .vector_name            = "EB64+",
 193        DO_EV4_MMU,
 194        DO_DEFAULT_RTC,
 195        DO_APECS_IO,
 196        .machine_check          = apecs_machine_check,
 197        .max_isa_dma_address    = ALPHA_MAX_ISA_DMA_ADDRESS,
 198        .min_io_address         = DEFAULT_IO_BASE,
 199        .min_mem_address        = APECS_AND_LCA_DEFAULT_MEM_BASE,
 200
 201        .nr_irqs                = 32,
 202        .device_interrupt       = eb64p_device_interrupt,
 203
 204        .init_arch              = apecs_init_arch,
 205        .init_irq               = eb64p_init_irq,
 206        .init_rtc               = common_init_rtc,
 207        .init_pci               = common_init_pci,
 208        .kill_arch              = NULL,
 209        .pci_map_irq            = eb64p_map_irq,
 210        .pci_swizzle            = common_swizzle,
 211};
 212ALIAS_MV(eb64p)
 213#endif
 214
 215#if defined(CONFIG_ALPHA_GENERIC) || defined(CONFIG_ALPHA_EB66)
 216struct alpha_machine_vector eb66_mv __initmv = {
 217        .vector_name            = "EB66",
 218        DO_EV4_MMU,
 219        DO_DEFAULT_RTC,
 220        DO_LCA_IO,
 221        .machine_check          = lca_machine_check,
 222        .max_isa_dma_address    = ALPHA_MAX_ISA_DMA_ADDRESS,
 223        .min_io_address         = DEFAULT_IO_BASE,
 224        .min_mem_address        = APECS_AND_LCA_DEFAULT_MEM_BASE,
 225
 226        .nr_irqs                = 32,
 227        .device_interrupt       = eb64p_device_interrupt,
 228
 229        .init_arch              = lca_init_arch,
 230        .init_irq               = eb64p_init_irq,
 231        .init_rtc               = common_init_rtc,
 232        .init_pci               = common_init_pci,
 233        .pci_map_irq            = eb64p_map_irq,
 234        .pci_swizzle            = common_swizzle,
 235};
 236ALIAS_MV(eb66)
 237#endif
 238