linux/arch/arm/kernel/kprobes.h
<<
>>
Prefs
   1/*
   2 * arch/arm/kernel/kprobes.h
   3 *
   4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
   5 *
   6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is
   7 * Copyright (C) 2006, 2007 Motorola Inc.
   8 *
   9 * This program is free software; you can redistribute it and/or modify
  10 * it under the terms of the GNU General Public License version 2 as
  11 * published by the Free Software Foundation.
  12 *
  13 * This program is distributed in the hope that it will be useful,
  14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 */
  18
  19#ifndef _ARM_KERNEL_KPROBES_H
  20#define _ARM_KERNEL_KPROBES_H
  21
  22/*
  23 * These undefined instructions must be unique and
  24 * reserved solely for kprobes' use.
  25 */
  26#define KPROBE_ARM_BREAKPOINT_INSTRUCTION       0x07f001f8
  27#define KPROBE_THUMB16_BREAKPOINT_INSTRUCTION   0xde18
  28#define KPROBE_THUMB32_BREAKPOINT_INSTRUCTION   0xf7f0a018
  29
  30
  31enum kprobe_insn {
  32        INSN_REJECTED,
  33        INSN_GOOD,
  34        INSN_GOOD_NO_SLOT
  35};
  36
  37typedef enum kprobe_insn (kprobe_decode_insn_t)(kprobe_opcode_t,
  38                                                struct arch_specific_insn *);
  39
  40#ifdef CONFIG_THUMB2_KERNEL
  41
  42enum kprobe_insn thumb16_kprobe_decode_insn(kprobe_opcode_t,
  43                                                struct arch_specific_insn *);
  44enum kprobe_insn thumb32_kprobe_decode_insn(kprobe_opcode_t,
  45                                                struct arch_specific_insn *);
  46
  47#else /* !CONFIG_THUMB2_KERNEL */
  48
  49enum kprobe_insn arm_kprobe_decode_insn(kprobe_opcode_t,
  50                                        struct arch_specific_insn *);
  51#endif
  52
  53void __init arm_kprobe_decode_init(void);
  54
  55extern kprobe_check_cc * const kprobe_condition_checks[16];
  56
  57
  58#if __LINUX_ARM_ARCH__ >= 7
  59
  60/* str_pc_offset is architecturally defined from ARMv7 onwards */
  61#define str_pc_offset 8
  62#define find_str_pc_offset()
  63
  64#else /* __LINUX_ARM_ARCH__ < 7 */
  65
  66/* We need a run-time check to determine str_pc_offset */
  67extern int str_pc_offset;
  68void __init find_str_pc_offset(void);
  69
  70#endif
  71
  72
  73/*
  74 * Update ITSTATE after normal execution of an IT block instruction.
  75 *
  76 * The 8 IT state bits are split into two parts in CPSR:
  77 *      ITSTATE<1:0> are in CPSR<26:25>
  78 *      ITSTATE<7:2> are in CPSR<15:10>
  79 */
  80static inline unsigned long it_advance(unsigned long cpsr)
  81        {
  82        if ((cpsr & 0x06000400) == 0) {
  83                /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
  84                cpsr &= ~PSR_IT_MASK;
  85        } else {
  86                /* We need to shift left ITSTATE<4:0> */
  87                const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
  88                unsigned long it = cpsr & mask;
  89                it <<= 1;
  90                it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
  91                it &= mask;
  92                cpsr &= ~mask;
  93                cpsr |= it;
  94        }
  95        return cpsr;
  96}
  97
  98static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
  99{
 100        long cpsr = regs->ARM_cpsr;
 101        if (pcv & 0x1) {
 102                cpsr |= PSR_T_BIT;
 103                pcv &= ~0x1;
 104        } else {
 105                cpsr &= ~PSR_T_BIT;
 106                pcv &= ~0x2;    /* Avoid UNPREDICTABLE address allignment */
 107        }
 108        regs->ARM_cpsr = cpsr;
 109        regs->ARM_pc = pcv;
 110}
 111
 112
 113#if __LINUX_ARM_ARCH__ >= 6
 114
 115/* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
 116#define load_write_pc_interworks true
 117#define test_load_write_pc_interworking()
 118
 119#else /* __LINUX_ARM_ARCH__ < 6 */
 120
 121/* We need run-time testing to determine if load_write_pc() should interwork. */
 122extern bool load_write_pc_interworks;
 123void __init test_load_write_pc_interworking(void);
 124
 125#endif
 126
 127static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
 128{
 129        if (load_write_pc_interworks)
 130                bx_write_pc(pcv, regs);
 131        else
 132                regs->ARM_pc = pcv;
 133}
 134
 135
 136#if __LINUX_ARM_ARCH__ >= 7
 137
 138#define alu_write_pc_interworks true
 139#define test_alu_write_pc_interworking()
 140
 141#elif __LINUX_ARM_ARCH__ <= 5
 142
 143/* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
 144#define alu_write_pc_interworks false
 145#define test_alu_write_pc_interworking()
 146
 147#else /* __LINUX_ARM_ARCH__ == 6 */
 148
 149/* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
 150extern bool alu_write_pc_interworks;
 151void __init test_alu_write_pc_interworking(void);
 152
 153#endif /* __LINUX_ARM_ARCH__ == 6 */
 154
 155static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
 156{
 157        if (alu_write_pc_interworks)
 158                bx_write_pc(pcv, regs);
 159        else
 160                regs->ARM_pc = pcv;
 161}
 162
 163
 164void __kprobes kprobe_simulate_nop(struct kprobe *p, struct pt_regs *regs);
 165void __kprobes kprobe_emulate_none(struct kprobe *p, struct pt_regs *regs);
 166
 167enum kprobe_insn __kprobes
 168kprobe_decode_ldmstm(kprobe_opcode_t insn, struct arch_specific_insn *asi);
 169
 170/*
 171 * Test if load/store instructions writeback the address register.
 172 * if P (bit 24) == 0 or W (bit 21) == 1
 173 */
 174#define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
 175
 176/*
 177 * The following definitions and macros are used to build instruction
 178 * decoding tables for use by kprobe_decode_insn.
 179 *
 180 * These tables are a concatenation of entries each of which consist of one of
 181 * the decode_* structs. All of the fields in every type of decode structure
 182 * are of the union type decode_item, therefore the entire decode table can be
 183 * viewed as an array of these and declared like:
 184 *
 185 *      static const union decode_item table_name[] = {};
 186 *
 187 * In order to construct each entry in the table, macros are used to
 188 * initialise a number of sequential decode_item values in a layout which
 189 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
 190 * decode_simulate by initialising four decode_item objects like this...
 191 *
 192 *      {.bits = _type},
 193 *      {.bits = _mask},
 194 *      {.bits = _value},
 195 *      {.handler = _handler},
 196 *
 197 * Initialising a specified member of the union means that the compiler
 198 * will produce a warning if the argument is of an incorrect type.
 199 *
 200 * Below is a list of each of the macros used to initialise entries and a
 201 * description of the action performed when that entry is matched to an
 202 * instruction. A match is found when (instruction & mask) == value.
 203 *
 204 * DECODE_TABLE(mask, value, table)
 205 *      Instruction decoding jumps to parsing the new sub-table 'table'.
 206 *
 207 * DECODE_CUSTOM(mask, value, decoder)
 208 *      The custom function 'decoder' is called to the complete decoding
 209 *      of an instruction.
 210 *
 211 * DECODE_SIMULATE(mask, value, handler)
 212 *      Set the probes instruction handler to 'handler', this will be used
 213 *      to simulate the instruction when the probe is hit. Decoding returns
 214 *      with INSN_GOOD_NO_SLOT.
 215 *
 216 * DECODE_EMULATE(mask, value, handler)
 217 *      Set the probes instruction handler to 'handler', this will be used
 218 *      to emulate the instruction when the probe is hit. The modified
 219 *      instruction (see below) is placed in the probes instruction slot so it
 220 *      may be called by the emulation code. Decoding returns with INSN_GOOD.
 221 *
 222 * DECODE_REJECT(mask, value)
 223 *      Instruction decoding fails with INSN_REJECTED
 224 *
 225 * DECODE_OR(mask, value)
 226 *      This allows the mask/value test of multiple table entries to be
 227 *      logically ORed. Once an 'or' entry is matched the decoding action to
 228 *      be performed is that of the next entry which isn't an 'or'. E.g.
 229 *
 230 *              DECODE_OR       (mask1, value1)
 231 *              DECODE_OR       (mask2, value2)
 232 *              DECODE_SIMULATE (mask3, value3, simulation_handler)
 233 *
 234 *      This means that if any of the three mask/value pairs match the
 235 *      instruction being decoded, then 'simulation_handler' will be used
 236 *      for it.
 237 *
 238 * Both the SIMULATE and EMULATE macros have a second form which take an
 239 * additional 'regs' argument.
 240 *
 241 *      DECODE_SIMULATEX(mask, value, handler, regs)
 242 *      DECODE_EMULATEX (mask, value, handler, regs)
 243 *
 244 * These are used to specify what kind of CPU register is encoded in each of the
 245 * least significant 5 nibbles of the instruction being decoded. The regs value
 246 * is specified using the REGS macro, this takes any of the REG_TYPE_* values
 247 * from enum decode_reg_type as arguments; only the '*' part of the name is
 248 * given. E.g.
 249 *
 250 *      REGS(0, ANY, NOPC, 0, ANY)
 251 *
 252 * This indicates an instruction is encoded like:
 253 *
 254 *      bits 19..16     ignore
 255 *      bits 15..12     any register allowed here
 256 *      bits 11.. 8     any register except PC allowed here
 257 *      bits  7.. 4     ignore
 258 *      bits  3.. 0     any register allowed here
 259 *
 260 * This register specification is checked after a decode table entry is found to
 261 * match an instruction (through the mask/value test). Any invalid register then
 262 * found in the instruction will cause decoding to fail with INSN_REJECTED. In
 263 * the above example this would happen if bits 11..8 of the instruction were
 264 * 1111, indicating R15 or PC.
 265 *
 266 * As well as checking for legal combinations of registers, this data is also
 267 * used to modify the registers encoded in the instructions so that an
 268 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
 269 *
 270 * Here is a real example which matches ARM instructions of the form
 271 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
 272 *
 273 *      DECODE_EMULATEX (0x0e000090, 0x00000010, emulate_rd12rn16rm0rs8_rwflags,
 274 *                                               REGS(ANY, ANY, NOPC, 0, ANY)),
 275 *                                                    ^    ^    ^        ^
 276 *                                                    Rn   Rd   Rs       Rm
 277 *
 278 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
 279 * Rs == R15
 280 *
 281 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
 282 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
 283 * the kprobes instruction slot. This can then be called later by the handler
 284 * function emulate_rd12rn16rm0rs8_rwflags in order to simulate the instruction.
 285 */
 286
 287enum decode_type {
 288        DECODE_TYPE_END,
 289        DECODE_TYPE_TABLE,
 290        DECODE_TYPE_CUSTOM,
 291        DECODE_TYPE_SIMULATE,
 292        DECODE_TYPE_EMULATE,
 293        DECODE_TYPE_OR,
 294        DECODE_TYPE_REJECT,
 295        NUM_DECODE_TYPES /* Must be last enum */
 296};
 297
 298#define DECODE_TYPE_BITS        4
 299#define DECODE_TYPE_MASK        ((1 << DECODE_TYPE_BITS) - 1)
 300
 301enum decode_reg_type {
 302        REG_TYPE_NONE = 0, /* Not a register, ignore */
 303        REG_TYPE_ANY,      /* Any register allowed */
 304        REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
 305        REG_TYPE_SP,       /* Register must be SP */
 306        REG_TYPE_PC,       /* Register must be PC */
 307        REG_TYPE_NOSP,     /* Register must not be SP */
 308        REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
 309        REG_TYPE_NOPC,     /* Register must not be PC */
 310        REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
 311
 312        /* The following types are used when the encoding for PC indicates
 313         * another instruction form. This distiction only matters for test
 314         * case coverage checks.
 315         */
 316        REG_TYPE_NOPCX,    /* Register must not be PC */
 317        REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
 318
 319        /* Alias to allow '0' arg to be used in REGS macro. */
 320        REG_TYPE_0 = REG_TYPE_NONE
 321};
 322
 323#define REGS(r16, r12, r8, r4, r0)      \
 324        ((REG_TYPE_##r16) << 16) +      \
 325        ((REG_TYPE_##r12) << 12) +      \
 326        ((REG_TYPE_##r8) << 8) +        \
 327        ((REG_TYPE_##r4) << 4) +        \
 328        (REG_TYPE_##r0)
 329
 330union decode_item {
 331        u32                     bits;
 332        const union decode_item *table;
 333        kprobe_insn_handler_t   *handler;
 334        kprobe_decode_insn_t    *decoder;
 335};
 336
 337
 338#define DECODE_END                      \
 339        {.bits = DECODE_TYPE_END}
 340
 341
 342struct decode_header {
 343        union decode_item       type_regs;
 344        union decode_item       mask;
 345        union decode_item       value;
 346};
 347
 348#define DECODE_HEADER(_type, _mask, _value, _regs)              \
 349        {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},      \
 350        {.bits = (_mask)},                                      \
 351        {.bits = (_value)}
 352
 353
 354struct decode_table {
 355        struct decode_header    header;
 356        union decode_item       table;
 357};
 358
 359#define DECODE_TABLE(_mask, _value, _table)                     \
 360        DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),     \
 361        {.table = (_table)}
 362
 363
 364struct decode_custom {
 365        struct decode_header    header;
 366        union decode_item       decoder;
 367};
 368
 369#define DECODE_CUSTOM(_mask, _value, _decoder)                  \
 370        DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),    \
 371        {.decoder = (_decoder)}
 372
 373
 374struct decode_simulate {
 375        struct decode_header    header;
 376        union decode_item       handler;
 377};
 378
 379#define DECODE_SIMULATEX(_mask, _value, _handler, _regs)                \
 380        DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),      \
 381        {.handler = (_handler)}
 382
 383#define DECODE_SIMULATE(_mask, _value, _handler)        \
 384        DECODE_SIMULATEX(_mask, _value, _handler, 0)
 385
 386
 387struct decode_emulate {
 388        struct decode_header    header;
 389        union decode_item       handler;
 390};
 391
 392#define DECODE_EMULATEX(_mask, _value, _handler, _regs)                 \
 393        DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),       \
 394        {.handler = (_handler)}
 395
 396#define DECODE_EMULATE(_mask, _value, _handler)         \
 397        DECODE_EMULATEX(_mask, _value, _handler, 0)
 398
 399
 400struct decode_or {
 401        struct decode_header    header;
 402};
 403
 404#define DECODE_OR(_mask, _value)                                \
 405        DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
 406
 407
 408struct decode_reject {
 409        struct decode_header    header;
 410};
 411
 412#define DECODE_REJECT(_mask, _value)                            \
 413        DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
 414
 415
 416#ifdef CONFIG_THUMB2_KERNEL
 417extern const union decode_item kprobe_decode_thumb16_table[];
 418extern const union decode_item kprobe_decode_thumb32_table[];
 419#else
 420extern const union decode_item kprobe_decode_arm_table[];
 421#endif
 422
 423
 424int kprobe_decode_insn(kprobe_opcode_t insn, struct arch_specific_insn *asi,
 425                        const union decode_item *table, bool thumb16);
 426
 427
 428#endif /* _ARM_KERNEL_KPROBES_H */
 429