linux/arch/arm/kernel/process.c
<<
>>
Prefs
   1/*
   2 *  linux/arch/arm/kernel/process.c
   3 *
   4 *  Copyright (C) 1996-2000 Russell King - Converted to ARM.
   5 *  Original Copyright (C) 1995  Linus Torvalds
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <stdarg.h>
  12
  13#include <linux/export.h>
  14#include <linux/sched.h>
  15#include <linux/kernel.h>
  16#include <linux/mm.h>
  17#include <linux/stddef.h>
  18#include <linux/unistd.h>
  19#include <linux/user.h>
  20#include <linux/delay.h>
  21#include <linux/reboot.h>
  22#include <linux/interrupt.h>
  23#include <linux/kallsyms.h>
  24#include <linux/init.h>
  25#include <linux/cpu.h>
  26#include <linux/elfcore.h>
  27#include <linux/pm.h>
  28#include <linux/tick.h>
  29#include <linux/utsname.h>
  30#include <linux/uaccess.h>
  31#include <linux/random.h>
  32#include <linux/hw_breakpoint.h>
  33#include <linux/cpuidle.h>
  34#include <linux/leds.h>
  35
  36#include <asm/cacheflush.h>
  37#include <asm/idmap.h>
  38#include <asm/processor.h>
  39#include <asm/thread_notify.h>
  40#include <asm/stacktrace.h>
  41#include <asm/mach/time.h>
  42
  43#ifdef CONFIG_CC_STACKPROTECTOR
  44#include <linux/stackprotector.h>
  45unsigned long __stack_chk_guard __read_mostly;
  46EXPORT_SYMBOL(__stack_chk_guard);
  47#endif
  48
  49static const char *processor_modes[] = {
  50  "USER_26", "FIQ_26" , "IRQ_26" , "SVC_26" , "UK4_26" , "UK5_26" , "UK6_26" , "UK7_26" ,
  51  "UK8_26" , "UK9_26" , "UK10_26", "UK11_26", "UK12_26", "UK13_26", "UK14_26", "UK15_26",
  52  "USER_32", "FIQ_32" , "IRQ_32" , "SVC_32" , "UK4_32" , "UK5_32" , "UK6_32" , "ABT_32" ,
  53  "UK8_32" , "UK9_32" , "UK10_32", "UND_32" , "UK12_32", "UK13_32", "UK14_32", "SYS_32"
  54};
  55
  56static const char *isa_modes[] = {
  57  "ARM" , "Thumb" , "Jazelle", "ThumbEE"
  58};
  59
  60extern void call_with_stack(void (*fn)(void *), void *arg, void *sp);
  61typedef void (*phys_reset_t)(unsigned long);
  62
  63/*
  64 * A temporary stack to use for CPU reset. This is static so that we
  65 * don't clobber it with the identity mapping. When running with this
  66 * stack, any references to the current task *will not work* so you
  67 * should really do as little as possible before jumping to your reset
  68 * code.
  69 */
  70static u64 soft_restart_stack[16];
  71
  72static void __soft_restart(void *addr)
  73{
  74        phys_reset_t phys_reset;
  75
  76        /* Take out a flat memory mapping. */
  77        setup_mm_for_reboot();
  78
  79        /* Clean and invalidate caches */
  80        flush_cache_all();
  81
  82        /* Turn off caching */
  83        cpu_proc_fin();
  84
  85        /* Push out any further dirty data, and ensure cache is empty */
  86        flush_cache_all();
  87
  88        /* Switch to the identity mapping. */
  89        phys_reset = (phys_reset_t)(unsigned long)virt_to_phys(cpu_reset);
  90        phys_reset((unsigned long)addr);
  91
  92        /* Should never get here. */
  93        BUG();
  94}
  95
  96void soft_restart(unsigned long addr)
  97{
  98        u64 *stack = soft_restart_stack + ARRAY_SIZE(soft_restart_stack);
  99
 100        /* Disable interrupts first */
 101        local_irq_disable();
 102        local_fiq_disable();
 103
 104        /* Disable the L2 if we're the last man standing. */
 105        if (num_online_cpus() == 1)
 106                outer_disable();
 107
 108        /* Change to the new stack and continue with the reset. */
 109        call_with_stack(__soft_restart, (void *)addr, (void *)stack);
 110
 111        /* Should never get here. */
 112        BUG();
 113}
 114
 115static void null_restart(char mode, const char *cmd)
 116{
 117}
 118
 119/*
 120 * Function pointers to optional machine specific functions
 121 */
 122void (*pm_power_off)(void);
 123EXPORT_SYMBOL(pm_power_off);
 124
 125void (*arm_pm_restart)(char str, const char *cmd) = null_restart;
 126EXPORT_SYMBOL_GPL(arm_pm_restart);
 127
 128/*
 129 * This is our default idle handler.
 130 */
 131
 132void (*arm_pm_idle)(void);
 133
 134static void default_idle(void)
 135{
 136        if (arm_pm_idle)
 137                arm_pm_idle();
 138        else
 139                cpu_do_idle();
 140        local_irq_enable();
 141}
 142
 143void arch_cpu_idle_prepare(void)
 144{
 145        local_fiq_enable();
 146}
 147
 148void arch_cpu_idle_enter(void)
 149{
 150        ledtrig_cpu(CPU_LED_IDLE_START);
 151#ifdef CONFIG_PL310_ERRATA_769419
 152        wmb();
 153#endif
 154}
 155
 156void arch_cpu_idle_exit(void)
 157{
 158        ledtrig_cpu(CPU_LED_IDLE_END);
 159}
 160
 161#ifdef CONFIG_HOTPLUG_CPU
 162void arch_cpu_idle_dead(void)
 163{
 164        cpu_die();
 165}
 166#endif
 167
 168/*
 169 * Called from the core idle loop.
 170 */
 171void arch_cpu_idle(void)
 172{
 173        if (cpuidle_idle_call())
 174                default_idle();
 175}
 176
 177static char reboot_mode = 'h';
 178
 179int __init reboot_setup(char *str)
 180{
 181        reboot_mode = str[0];
 182        return 1;
 183}
 184
 185__setup("reboot=", reboot_setup);
 186
 187/*
 188 * Called by kexec, immediately prior to machine_kexec().
 189 *
 190 * This must completely disable all secondary CPUs; simply causing those CPUs
 191 * to execute e.g. a RAM-based pin loop is not sufficient. This allows the
 192 * kexec'd kernel to use any and all RAM as it sees fit, without having to
 193 * avoid any code or data used by any SW CPU pin loop. The CPU hotplug
 194 * functionality embodied in disable_nonboot_cpus() to achieve this.
 195 */
 196void machine_shutdown(void)
 197{
 198        disable_nonboot_cpus();
 199}
 200
 201/*
 202 * Halting simply requires that the secondary CPUs stop performing any
 203 * activity (executing tasks, handling interrupts). smp_send_stop()
 204 * achieves this.
 205 */
 206void machine_halt(void)
 207{
 208        smp_send_stop();
 209
 210        local_irq_disable();
 211        while (1);
 212}
 213
 214/*
 215 * Power-off simply requires that the secondary CPUs stop performing any
 216 * activity (executing tasks, handling interrupts). smp_send_stop()
 217 * achieves this. When the system power is turned off, it will take all CPUs
 218 * with it.
 219 */
 220void machine_power_off(void)
 221{
 222        smp_send_stop();
 223
 224        if (pm_power_off)
 225                pm_power_off();
 226}
 227
 228/*
 229 * Restart requires that the secondary CPUs stop performing any activity
 230 * while the primary CPU resets the system. Systems with a single CPU can
 231 * use soft_restart() as their machine descriptor's .restart hook, since that
 232 * will cause the only available CPU to reset. Systems with multiple CPUs must
 233 * provide a HW restart implementation, to ensure that all CPUs reset at once.
 234 * This is required so that any code running after reset on the primary CPU
 235 * doesn't have to co-ordinate with other CPUs to ensure they aren't still
 236 * executing pre-reset code, and using RAM that the primary CPU's code wishes
 237 * to use. Implementing such co-ordination would be essentially impossible.
 238 */
 239void machine_restart(char *cmd)
 240{
 241        smp_send_stop();
 242
 243        arm_pm_restart(reboot_mode, cmd);
 244
 245        /* Give a grace period for failure to restart of 1s */
 246        mdelay(1000);
 247
 248        /* Whoops - the platform was unable to reboot. Tell the user! */
 249        printk("Reboot failed -- System halted\n");
 250        local_irq_disable();
 251        while (1);
 252}
 253
 254void __show_regs(struct pt_regs *regs)
 255{
 256        unsigned long flags;
 257        char buf[64];
 258
 259        show_regs_print_info(KERN_DEFAULT);
 260
 261        print_symbol("PC is at %s\n", instruction_pointer(regs));
 262        print_symbol("LR is at %s\n", regs->ARM_lr);
 263        printk("pc : [<%08lx>]    lr : [<%08lx>]    psr: %08lx\n"
 264               "sp : %08lx  ip : %08lx  fp : %08lx\n",
 265                regs->ARM_pc, regs->ARM_lr, regs->ARM_cpsr,
 266                regs->ARM_sp, regs->ARM_ip, regs->ARM_fp);
 267        printk("r10: %08lx  r9 : %08lx  r8 : %08lx\n",
 268                regs->ARM_r10, regs->ARM_r9,
 269                regs->ARM_r8);
 270        printk("r7 : %08lx  r6 : %08lx  r5 : %08lx  r4 : %08lx\n",
 271                regs->ARM_r7, regs->ARM_r6,
 272                regs->ARM_r5, regs->ARM_r4);
 273        printk("r3 : %08lx  r2 : %08lx  r1 : %08lx  r0 : %08lx\n",
 274                regs->ARM_r3, regs->ARM_r2,
 275                regs->ARM_r1, regs->ARM_r0);
 276
 277        flags = regs->ARM_cpsr;
 278        buf[0] = flags & PSR_N_BIT ? 'N' : 'n';
 279        buf[1] = flags & PSR_Z_BIT ? 'Z' : 'z';
 280        buf[2] = flags & PSR_C_BIT ? 'C' : 'c';
 281        buf[3] = flags & PSR_V_BIT ? 'V' : 'v';
 282        buf[4] = '\0';
 283
 284        printk("Flags: %s  IRQs o%s  FIQs o%s  Mode %s  ISA %s  Segment %s\n",
 285                buf, interrupts_enabled(regs) ? "n" : "ff",
 286                fast_interrupts_enabled(regs) ? "n" : "ff",
 287                processor_modes[processor_mode(regs)],
 288                isa_modes[isa_mode(regs)],
 289                get_fs() == get_ds() ? "kernel" : "user");
 290#ifdef CONFIG_CPU_CP15
 291        {
 292                unsigned int ctrl;
 293
 294                buf[0] = '\0';
 295#ifdef CONFIG_CPU_CP15_MMU
 296                {
 297                        unsigned int transbase, dac;
 298                        asm("mrc p15, 0, %0, c2, c0\n\t"
 299                            "mrc p15, 0, %1, c3, c0\n"
 300                            : "=r" (transbase), "=r" (dac));
 301                        snprintf(buf, sizeof(buf), "  Table: %08x  DAC: %08x",
 302                                transbase, dac);
 303                }
 304#endif
 305                asm("mrc p15, 0, %0, c1, c0\n" : "=r" (ctrl));
 306
 307                printk("Control: %08x%s\n", ctrl, buf);
 308        }
 309#endif
 310}
 311
 312void show_regs(struct pt_regs * regs)
 313{
 314        printk("\n");
 315        __show_regs(regs);
 316        dump_stack();
 317}
 318
 319ATOMIC_NOTIFIER_HEAD(thread_notify_head);
 320
 321EXPORT_SYMBOL_GPL(thread_notify_head);
 322
 323/*
 324 * Free current thread data structures etc..
 325 */
 326void exit_thread(void)
 327{
 328        thread_notify(THREAD_NOTIFY_EXIT, current_thread_info());
 329}
 330
 331void flush_thread(void)
 332{
 333        struct thread_info *thread = current_thread_info();
 334        struct task_struct *tsk = current;
 335
 336        flush_ptrace_hw_breakpoint(tsk);
 337
 338        memset(thread->used_cp, 0, sizeof(thread->used_cp));
 339        memset(&tsk->thread.debug, 0, sizeof(struct debug_info));
 340        memset(&thread->fpstate, 0, sizeof(union fp_state));
 341
 342        thread_notify(THREAD_NOTIFY_FLUSH, thread);
 343}
 344
 345void release_thread(struct task_struct *dead_task)
 346{
 347}
 348
 349asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
 350
 351int
 352copy_thread(unsigned long clone_flags, unsigned long stack_start,
 353            unsigned long stk_sz, struct task_struct *p)
 354{
 355        struct thread_info *thread = task_thread_info(p);
 356        struct pt_regs *childregs = task_pt_regs(p);
 357
 358        memset(&thread->cpu_context, 0, sizeof(struct cpu_context_save));
 359
 360        if (likely(!(p->flags & PF_KTHREAD))) {
 361                *childregs = *current_pt_regs();
 362                childregs->ARM_r0 = 0;
 363                if (stack_start)
 364                        childregs->ARM_sp = stack_start;
 365        } else {
 366                memset(childregs, 0, sizeof(struct pt_regs));
 367                thread->cpu_context.r4 = stk_sz;
 368                thread->cpu_context.r5 = stack_start;
 369                childregs->ARM_cpsr = SVC_MODE;
 370        }
 371        thread->cpu_context.pc = (unsigned long)ret_from_fork;
 372        thread->cpu_context.sp = (unsigned long)childregs;
 373
 374        clear_ptrace_hw_breakpoint(p);
 375
 376        if (clone_flags & CLONE_SETTLS)
 377                thread->tp_value = childregs->ARM_r3;
 378
 379        thread_notify(THREAD_NOTIFY_COPY, thread);
 380
 381        return 0;
 382}
 383
 384/*
 385 * Fill in the task's elfregs structure for a core dump.
 386 */
 387int dump_task_regs(struct task_struct *t, elf_gregset_t *elfregs)
 388{
 389        elf_core_copy_regs(elfregs, task_pt_regs(t));
 390        return 1;
 391}
 392
 393/*
 394 * fill in the fpe structure for a core dump...
 395 */
 396int dump_fpu (struct pt_regs *regs, struct user_fp *fp)
 397{
 398        struct thread_info *thread = current_thread_info();
 399        int used_math = thread->used_cp[1] | thread->used_cp[2];
 400
 401        if (used_math)
 402                memcpy(fp, &thread->fpstate.soft, sizeof (*fp));
 403
 404        return used_math != 0;
 405}
 406EXPORT_SYMBOL(dump_fpu);
 407
 408unsigned long get_wchan(struct task_struct *p)
 409{
 410        struct stackframe frame;
 411        int count = 0;
 412        if (!p || p == current || p->state == TASK_RUNNING)
 413                return 0;
 414
 415        frame.fp = thread_saved_fp(p);
 416        frame.sp = thread_saved_sp(p);
 417        frame.lr = 0;                   /* recovered from the stack */
 418        frame.pc = thread_saved_pc(p);
 419        do {
 420                int ret = unwind_frame(&frame);
 421                if (ret < 0)
 422                        return 0;
 423                if (!in_sched_functions(frame.pc))
 424                        return frame.pc;
 425        } while (count ++ < 16);
 426        return 0;
 427}
 428
 429unsigned long arch_randomize_brk(struct mm_struct *mm)
 430{
 431        unsigned long range_end = mm->brk + 0x02000000;
 432        return randomize_range(mm->brk, range_end, 0) ? : mm->brk;
 433}
 434
 435#ifdef CONFIG_MMU
 436/*
 437 * The vectors page is always readable from user space for the
 438 * atomic helpers and the signal restart code. Insert it into the
 439 * gate_vma so that it is visible through ptrace and /proc/<pid>/mem.
 440 */
 441static struct vm_area_struct gate_vma = {
 442        .vm_start       = 0xffff0000,
 443        .vm_end         = 0xffff0000 + PAGE_SIZE,
 444        .vm_flags       = VM_READ | VM_EXEC | VM_MAYREAD | VM_MAYEXEC,
 445};
 446
 447static int __init gate_vma_init(void)
 448{
 449        gate_vma.vm_page_prot = PAGE_READONLY_EXEC;
 450        return 0;
 451}
 452arch_initcall(gate_vma_init);
 453
 454struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
 455{
 456        return &gate_vma;
 457}
 458
 459int in_gate_area(struct mm_struct *mm, unsigned long addr)
 460{
 461        return (addr >= gate_vma.vm_start) && (addr < gate_vma.vm_end);
 462}
 463
 464int in_gate_area_no_mm(unsigned long addr)
 465{
 466        return in_gate_area(NULL, addr);
 467}
 468
 469const char *arch_vma_name(struct vm_area_struct *vma)
 470{
 471        return (vma == &gate_vma) ? "[vectors]" : NULL;
 472}
 473#endif
 474