linux/arch/powerpc/kernel/time.c
<<
>>
Prefs
   1/*
   2 * Common time routines among all ppc machines.
   3 *
   4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
   5 * Paul Mackerras' version and mine for PReP and Pmac.
   6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
   7 * Converted for 64-bit by Mike Corrigan (mikejc@us.ibm.com)
   8 *
   9 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
  10 * to make clock more stable (2.4.0-test5). The only thing
  11 * that this code assumes is that the timebases have been synchronized
  12 * by firmware on SMP and are never stopped (never do sleep
  13 * on SMP then, nap and doze are OK).
  14 * 
  15 * Speeded up do_gettimeofday by getting rid of references to
  16 * xtime (which required locks for consistency). (mikejc@us.ibm.com)
  17 *
  18 * TODO (not necessarily in this file):
  19 * - improve precision and reproducibility of timebase frequency
  20 * measurement at boot time.
  21 * - for astronomical applications: add a new function to get
  22 * non ambiguous timestamps even around leap seconds. This needs
  23 * a new timestamp format and a good name.
  24 *
  25 * 1997-09-10  Updated NTP code according to technical memorandum Jan '96
  26 *             "A Kernel Model for Precision Timekeeping" by Dave Mills
  27 *
  28 *      This program is free software; you can redistribute it and/or
  29 *      modify it under the terms of the GNU General Public License
  30 *      as published by the Free Software Foundation; either version
  31 *      2 of the License, or (at your option) any later version.
  32 */
  33
  34#include <linux/errno.h>
  35#include <linux/export.h>
  36#include <linux/sched.h>
  37#include <linux/kernel.h>
  38#include <linux/param.h>
  39#include <linux/string.h>
  40#include <linux/mm.h>
  41#include <linux/interrupt.h>
  42#include <linux/timex.h>
  43#include <linux/kernel_stat.h>
  44#include <linux/time.h>
  45#include <linux/init.h>
  46#include <linux/profile.h>
  47#include <linux/cpu.h>
  48#include <linux/security.h>
  49#include <linux/percpu.h>
  50#include <linux/rtc.h>
  51#include <linux/jiffies.h>
  52#include <linux/posix-timers.h>
  53#include <linux/irq.h>
  54#include <linux/delay.h>
  55#include <linux/irq_work.h>
  56#include <asm/trace.h>
  57
  58#include <asm/io.h>
  59#include <asm/processor.h>
  60#include <asm/nvram.h>
  61#include <asm/cache.h>
  62#include <asm/machdep.h>
  63#include <asm/uaccess.h>
  64#include <asm/time.h>
  65#include <asm/prom.h>
  66#include <asm/irq.h>
  67#include <asm/div64.h>
  68#include <asm/smp.h>
  69#include <asm/vdso_datapage.h>
  70#include <asm/firmware.h>
  71#include <asm/cputime.h>
  72
  73/* powerpc clocksource/clockevent code */
  74
  75#include <linux/clockchips.h>
  76#include <linux/timekeeper_internal.h>
  77
  78static cycle_t rtc_read(struct clocksource *);
  79static struct clocksource clocksource_rtc = {
  80        .name         = "rtc",
  81        .rating       = 400,
  82        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  83        .mask         = CLOCKSOURCE_MASK(64),
  84        .read         = rtc_read,
  85};
  86
  87static cycle_t timebase_read(struct clocksource *);
  88static struct clocksource clocksource_timebase = {
  89        .name         = "timebase",
  90        .rating       = 400,
  91        .flags        = CLOCK_SOURCE_IS_CONTINUOUS,
  92        .mask         = CLOCKSOURCE_MASK(64),
  93        .read         = timebase_read,
  94};
  95
  96#define DECREMENTER_MAX 0x7fffffff
  97
  98static int decrementer_set_next_event(unsigned long evt,
  99                                      struct clock_event_device *dev);
 100static void decrementer_set_mode(enum clock_event_mode mode,
 101                                 struct clock_event_device *dev);
 102
 103struct clock_event_device decrementer_clockevent = {
 104        .name           = "decrementer",
 105        .rating         = 200,
 106        .irq            = 0,
 107        .set_next_event = decrementer_set_next_event,
 108        .set_mode       = decrementer_set_mode,
 109        .features       = CLOCK_EVT_FEAT_ONESHOT,
 110};
 111EXPORT_SYMBOL(decrementer_clockevent);
 112
 113DEFINE_PER_CPU(u64, decrementers_next_tb);
 114static DEFINE_PER_CPU(struct clock_event_device, decrementers);
 115
 116#define XSEC_PER_SEC (1024*1024)
 117
 118#ifdef CONFIG_PPC64
 119#define SCALE_XSEC(xsec, max)   (((xsec) * max) / XSEC_PER_SEC)
 120#else
 121/* compute ((xsec << 12) * max) >> 32 */
 122#define SCALE_XSEC(xsec, max)   mulhwu((xsec) << 12, max)
 123#endif
 124
 125unsigned long tb_ticks_per_jiffy;
 126unsigned long tb_ticks_per_usec = 100; /* sane default */
 127EXPORT_SYMBOL(tb_ticks_per_usec);
 128unsigned long tb_ticks_per_sec;
 129EXPORT_SYMBOL(tb_ticks_per_sec);        /* for cputime_t conversions */
 130
 131DEFINE_SPINLOCK(rtc_lock);
 132EXPORT_SYMBOL_GPL(rtc_lock);
 133
 134static u64 tb_to_ns_scale __read_mostly;
 135static unsigned tb_to_ns_shift __read_mostly;
 136static u64 boot_tb __read_mostly;
 137
 138extern struct timezone sys_tz;
 139static long timezone_offset;
 140
 141unsigned long ppc_proc_freq;
 142EXPORT_SYMBOL_GPL(ppc_proc_freq);
 143unsigned long ppc_tb_freq;
 144EXPORT_SYMBOL_GPL(ppc_tb_freq);
 145
 146#ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 147/*
 148 * Factors for converting from cputime_t (timebase ticks) to
 149 * jiffies, microseconds, seconds, and clock_t (1/USER_HZ seconds).
 150 * These are all stored as 0.64 fixed-point binary fractions.
 151 */
 152u64 __cputime_jiffies_factor;
 153EXPORT_SYMBOL(__cputime_jiffies_factor);
 154u64 __cputime_usec_factor;
 155EXPORT_SYMBOL(__cputime_usec_factor);
 156u64 __cputime_sec_factor;
 157EXPORT_SYMBOL(__cputime_sec_factor);
 158u64 __cputime_clockt_factor;
 159EXPORT_SYMBOL(__cputime_clockt_factor);
 160DEFINE_PER_CPU(unsigned long, cputime_last_delta);
 161DEFINE_PER_CPU(unsigned long, cputime_scaled_last_delta);
 162
 163cputime_t cputime_one_jiffy;
 164
 165void (*dtl_consumer)(struct dtl_entry *, u64);
 166
 167static void calc_cputime_factors(void)
 168{
 169        struct div_result res;
 170
 171        div128_by_32(HZ, 0, tb_ticks_per_sec, &res);
 172        __cputime_jiffies_factor = res.result_low;
 173        div128_by_32(1000000, 0, tb_ticks_per_sec, &res);
 174        __cputime_usec_factor = res.result_low;
 175        div128_by_32(1, 0, tb_ticks_per_sec, &res);
 176        __cputime_sec_factor = res.result_low;
 177        div128_by_32(USER_HZ, 0, tb_ticks_per_sec, &res);
 178        __cputime_clockt_factor = res.result_low;
 179}
 180
 181/*
 182 * Read the SPURR on systems that have it, otherwise the PURR,
 183 * or if that doesn't exist return the timebase value passed in.
 184 */
 185static u64 read_spurr(u64 tb)
 186{
 187        if (cpu_has_feature(CPU_FTR_SPURR))
 188                return mfspr(SPRN_SPURR);
 189        if (cpu_has_feature(CPU_FTR_PURR))
 190                return mfspr(SPRN_PURR);
 191        return tb;
 192}
 193
 194#ifdef CONFIG_PPC_SPLPAR
 195
 196/*
 197 * Scan the dispatch trace log and count up the stolen time.
 198 * Should be called with interrupts disabled.
 199 */
 200static u64 scan_dispatch_log(u64 stop_tb)
 201{
 202        u64 i = local_paca->dtl_ridx;
 203        struct dtl_entry *dtl = local_paca->dtl_curr;
 204        struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
 205        struct lppaca *vpa = local_paca->lppaca_ptr;
 206        u64 tb_delta;
 207        u64 stolen = 0;
 208        u64 dtb;
 209
 210        if (!dtl)
 211                return 0;
 212
 213        if (i == vpa->dtl_idx)
 214                return 0;
 215        while (i < vpa->dtl_idx) {
 216                if (dtl_consumer)
 217                        dtl_consumer(dtl, i);
 218                dtb = dtl->timebase;
 219                tb_delta = dtl->enqueue_to_dispatch_time +
 220                        dtl->ready_to_enqueue_time;
 221                barrier();
 222                if (i + N_DISPATCH_LOG < vpa->dtl_idx) {
 223                        /* buffer has overflowed */
 224                        i = vpa->dtl_idx - N_DISPATCH_LOG;
 225                        dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
 226                        continue;
 227                }
 228                if (dtb > stop_tb)
 229                        break;
 230                stolen += tb_delta;
 231                ++i;
 232                ++dtl;
 233                if (dtl == dtl_end)
 234                        dtl = local_paca->dispatch_log;
 235        }
 236        local_paca->dtl_ridx = i;
 237        local_paca->dtl_curr = dtl;
 238        return stolen;
 239}
 240
 241/*
 242 * Accumulate stolen time by scanning the dispatch trace log.
 243 * Called on entry from user mode.
 244 */
 245void accumulate_stolen_time(void)
 246{
 247        u64 sst, ust;
 248
 249        u8 save_soft_enabled = local_paca->soft_enabled;
 250
 251        /* We are called early in the exception entry, before
 252         * soft/hard_enabled are sync'ed to the expected state
 253         * for the exception. We are hard disabled but the PACA
 254         * needs to reflect that so various debug stuff doesn't
 255         * complain
 256         */
 257        local_paca->soft_enabled = 0;
 258
 259        sst = scan_dispatch_log(local_paca->starttime_user);
 260        ust = scan_dispatch_log(local_paca->starttime);
 261        local_paca->system_time -= sst;
 262        local_paca->user_time -= ust;
 263        local_paca->stolen_time += ust + sst;
 264
 265        local_paca->soft_enabled = save_soft_enabled;
 266}
 267
 268static inline u64 calculate_stolen_time(u64 stop_tb)
 269{
 270        u64 stolen = 0;
 271
 272        if (get_paca()->dtl_ridx != get_paca()->lppaca_ptr->dtl_idx) {
 273                stolen = scan_dispatch_log(stop_tb);
 274                get_paca()->system_time -= stolen;
 275        }
 276
 277        stolen += get_paca()->stolen_time;
 278        get_paca()->stolen_time = 0;
 279        return stolen;
 280}
 281
 282#else /* CONFIG_PPC_SPLPAR */
 283static inline u64 calculate_stolen_time(u64 stop_tb)
 284{
 285        return 0;
 286}
 287
 288#endif /* CONFIG_PPC_SPLPAR */
 289
 290/*
 291 * Account time for a transition between system, hard irq
 292 * or soft irq state.
 293 */
 294static u64 vtime_delta(struct task_struct *tsk,
 295                        u64 *sys_scaled, u64 *stolen)
 296{
 297        u64 now, nowscaled, deltascaled;
 298        u64 udelta, delta, user_scaled;
 299
 300        WARN_ON_ONCE(!irqs_disabled());
 301
 302        now = mftb();
 303        nowscaled = read_spurr(now);
 304        get_paca()->system_time += now - get_paca()->starttime;
 305        get_paca()->starttime = now;
 306        deltascaled = nowscaled - get_paca()->startspurr;
 307        get_paca()->startspurr = nowscaled;
 308
 309        *stolen = calculate_stolen_time(now);
 310
 311        delta = get_paca()->system_time;
 312        get_paca()->system_time = 0;
 313        udelta = get_paca()->user_time - get_paca()->utime_sspurr;
 314        get_paca()->utime_sspurr = get_paca()->user_time;
 315
 316        /*
 317         * Because we don't read the SPURR on every kernel entry/exit,
 318         * deltascaled includes both user and system SPURR ticks.
 319         * Apportion these ticks to system SPURR ticks and user
 320         * SPURR ticks in the same ratio as the system time (delta)
 321         * and user time (udelta) values obtained from the timebase
 322         * over the same interval.  The system ticks get accounted here;
 323         * the user ticks get saved up in paca->user_time_scaled to be
 324         * used by account_process_tick.
 325         */
 326        *sys_scaled = delta;
 327        user_scaled = udelta;
 328        if (deltascaled != delta + udelta) {
 329                if (udelta) {
 330                        *sys_scaled = deltascaled * delta / (delta + udelta);
 331                        user_scaled = deltascaled - *sys_scaled;
 332                } else {
 333                        *sys_scaled = deltascaled;
 334                }
 335        }
 336        get_paca()->user_time_scaled += user_scaled;
 337
 338        return delta;
 339}
 340
 341void vtime_account_system(struct task_struct *tsk)
 342{
 343        u64 delta, sys_scaled, stolen;
 344
 345        delta = vtime_delta(tsk, &sys_scaled, &stolen);
 346        account_system_time(tsk, 0, delta, sys_scaled);
 347        if (stolen)
 348                account_steal_time(stolen);
 349}
 350EXPORT_SYMBOL_GPL(vtime_account_system);
 351
 352void vtime_account_idle(struct task_struct *tsk)
 353{
 354        u64 delta, sys_scaled, stolen;
 355
 356        delta = vtime_delta(tsk, &sys_scaled, &stolen);
 357        account_idle_time(delta + stolen);
 358}
 359
 360/*
 361 * Transfer the user time accumulated in the paca
 362 * by the exception entry and exit code to the generic
 363 * process user time records.
 364 * Must be called with interrupts disabled.
 365 * Assumes that vtime_account_system/idle() has been called
 366 * recently (i.e. since the last entry from usermode) so that
 367 * get_paca()->user_time_scaled is up to date.
 368 */
 369void vtime_account_user(struct task_struct *tsk)
 370{
 371        cputime_t utime, utimescaled;
 372
 373        utime = get_paca()->user_time;
 374        utimescaled = get_paca()->user_time_scaled;
 375        get_paca()->user_time = 0;
 376        get_paca()->user_time_scaled = 0;
 377        get_paca()->utime_sspurr = 0;
 378        account_user_time(tsk, utime, utimescaled);
 379}
 380
 381#else /* ! CONFIG_VIRT_CPU_ACCOUNTING_NATIVE */
 382#define calc_cputime_factors()
 383#endif
 384
 385void __delay(unsigned long loops)
 386{
 387        unsigned long start;
 388        int diff;
 389
 390        if (__USE_RTC()) {
 391                start = get_rtcl();
 392                do {
 393                        /* the RTCL register wraps at 1000000000 */
 394                        diff = get_rtcl() - start;
 395                        if (diff < 0)
 396                                diff += 1000000000;
 397                } while (diff < loops);
 398        } else {
 399                start = get_tbl();
 400                while (get_tbl() - start < loops)
 401                        HMT_low();
 402                HMT_medium();
 403        }
 404}
 405EXPORT_SYMBOL(__delay);
 406
 407void udelay(unsigned long usecs)
 408{
 409        __delay(tb_ticks_per_usec * usecs);
 410}
 411EXPORT_SYMBOL(udelay);
 412
 413#ifdef CONFIG_SMP
 414unsigned long profile_pc(struct pt_regs *regs)
 415{
 416        unsigned long pc = instruction_pointer(regs);
 417
 418        if (in_lock_functions(pc))
 419                return regs->link;
 420
 421        return pc;
 422}
 423EXPORT_SYMBOL(profile_pc);
 424#endif
 425
 426#ifdef CONFIG_IRQ_WORK
 427
 428/*
 429 * 64-bit uses a byte in the PACA, 32-bit uses a per-cpu variable...
 430 */
 431#ifdef CONFIG_PPC64
 432static inline unsigned long test_irq_work_pending(void)
 433{
 434        unsigned long x;
 435
 436        asm volatile("lbz %0,%1(13)"
 437                : "=r" (x)
 438                : "i" (offsetof(struct paca_struct, irq_work_pending)));
 439        return x;
 440}
 441
 442static inline void set_irq_work_pending_flag(void)
 443{
 444        asm volatile("stb %0,%1(13)" : :
 445                "r" (1),
 446                "i" (offsetof(struct paca_struct, irq_work_pending)));
 447}
 448
 449static inline void clear_irq_work_pending(void)
 450{
 451        asm volatile("stb %0,%1(13)" : :
 452                "r" (0),
 453                "i" (offsetof(struct paca_struct, irq_work_pending)));
 454}
 455
 456#else /* 32-bit */
 457
 458DEFINE_PER_CPU(u8, irq_work_pending);
 459
 460#define set_irq_work_pending_flag()     __get_cpu_var(irq_work_pending) = 1
 461#define test_irq_work_pending()         __get_cpu_var(irq_work_pending)
 462#define clear_irq_work_pending()        __get_cpu_var(irq_work_pending) = 0
 463
 464#endif /* 32 vs 64 bit */
 465
 466void arch_irq_work_raise(void)
 467{
 468        preempt_disable();
 469        set_irq_work_pending_flag();
 470        set_dec(1);
 471        preempt_enable();
 472}
 473
 474#else  /* CONFIG_IRQ_WORK */
 475
 476#define test_irq_work_pending() 0
 477#define clear_irq_work_pending()
 478
 479#endif /* CONFIG_IRQ_WORK */
 480
 481/*
 482 * timer_interrupt - gets called when the decrementer overflows,
 483 * with interrupts disabled.
 484 */
 485void timer_interrupt(struct pt_regs * regs)
 486{
 487        struct pt_regs *old_regs;
 488        u64 *next_tb = &__get_cpu_var(decrementers_next_tb);
 489        struct clock_event_device *evt = &__get_cpu_var(decrementers);
 490        u64 now;
 491
 492        /* Ensure a positive value is written to the decrementer, or else
 493         * some CPUs will continue to take decrementer exceptions.
 494         */
 495        set_dec(DECREMENTER_MAX);
 496
 497        /* Some implementations of hotplug will get timer interrupts while
 498         * offline, just ignore these and we also need to set
 499         * decrementers_next_tb as MAX to make sure __check_irq_replay
 500         * don't replay timer interrupt when return, otherwise we'll trap
 501         * here infinitely :(
 502         */
 503        if (!cpu_online(smp_processor_id())) {
 504                *next_tb = ~(u64)0;
 505                return;
 506        }
 507
 508        /* Conditionally hard-enable interrupts now that the DEC has been
 509         * bumped to its maximum value
 510         */
 511        may_hard_irq_enable();
 512
 513        __get_cpu_var(irq_stat).timer_irqs++;
 514
 515#if defined(CONFIG_PPC32) && defined(CONFIG_PMAC)
 516        if (atomic_read(&ppc_n_lost_interrupts) != 0)
 517                do_IRQ(regs);
 518#endif
 519
 520        old_regs = set_irq_regs(regs);
 521        irq_enter();
 522
 523        trace_timer_interrupt_entry(regs);
 524
 525        if (test_irq_work_pending()) {
 526                clear_irq_work_pending();
 527                irq_work_run();
 528        }
 529
 530        now = get_tb_or_rtc();
 531        if (now >= *next_tb) {
 532                *next_tb = ~(u64)0;
 533                if (evt->event_handler)
 534                        evt->event_handler(evt);
 535        } else {
 536                now = *next_tb - now;
 537                if (now <= DECREMENTER_MAX)
 538                        set_dec((int)now);
 539        }
 540
 541#ifdef CONFIG_PPC64
 542        /* collect purr register values often, for accurate calculations */
 543        if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
 544                struct cpu_usage *cu = &__get_cpu_var(cpu_usage_array);
 545                cu->current_tb = mfspr(SPRN_PURR);
 546        }
 547#endif
 548
 549        trace_timer_interrupt_exit(regs);
 550
 551        irq_exit();
 552        set_irq_regs(old_regs);
 553}
 554
 555/*
 556 * Hypervisor decrementer interrupts shouldn't occur but are sometimes
 557 * left pending on exit from a KVM guest.  We don't need to do anything
 558 * to clear them, as they are edge-triggered.
 559 */
 560void hdec_interrupt(struct pt_regs *regs)
 561{
 562}
 563
 564#ifdef CONFIG_SUSPEND
 565static void generic_suspend_disable_irqs(void)
 566{
 567        /* Disable the decrementer, so that it doesn't interfere
 568         * with suspending.
 569         */
 570
 571        set_dec(DECREMENTER_MAX);
 572        local_irq_disable();
 573        set_dec(DECREMENTER_MAX);
 574}
 575
 576static void generic_suspend_enable_irqs(void)
 577{
 578        local_irq_enable();
 579}
 580
 581/* Overrides the weak version in kernel/power/main.c */
 582void arch_suspend_disable_irqs(void)
 583{
 584        if (ppc_md.suspend_disable_irqs)
 585                ppc_md.suspend_disable_irqs();
 586        generic_suspend_disable_irqs();
 587}
 588
 589/* Overrides the weak version in kernel/power/main.c */
 590void arch_suspend_enable_irqs(void)
 591{
 592        generic_suspend_enable_irqs();
 593        if (ppc_md.suspend_enable_irqs)
 594                ppc_md.suspend_enable_irqs();
 595}
 596#endif
 597
 598/*
 599 * Scheduler clock - returns current time in nanosec units.
 600 *
 601 * Note: mulhdu(a, b) (multiply high double unsigned) returns
 602 * the high 64 bits of a * b, i.e. (a * b) >> 64, where a and b
 603 * are 64-bit unsigned numbers.
 604 */
 605unsigned long long sched_clock(void)
 606{
 607        if (__USE_RTC())
 608                return get_rtc();
 609        return mulhdu(get_tb() - boot_tb, tb_to_ns_scale) << tb_to_ns_shift;
 610}
 611
 612static int __init get_freq(char *name, int cells, unsigned long *val)
 613{
 614        struct device_node *cpu;
 615        const unsigned int *fp;
 616        int found = 0;
 617
 618        /* The cpu node should have timebase and clock frequency properties */
 619        cpu = of_find_node_by_type(NULL, "cpu");
 620
 621        if (cpu) {
 622                fp = of_get_property(cpu, name, NULL);
 623                if (fp) {
 624                        found = 1;
 625                        *val = of_read_ulong(fp, cells);
 626                }
 627
 628                of_node_put(cpu);
 629        }
 630
 631        return found;
 632}
 633
 634/* should become __cpuinit when secondary_cpu_time_init also is */
 635void start_cpu_decrementer(void)
 636{
 637#if defined(CONFIG_BOOKE) || defined(CONFIG_40x)
 638        /* Clear any pending timer interrupts */
 639        mtspr(SPRN_TSR, TSR_ENW | TSR_WIS | TSR_DIS | TSR_FIS);
 640
 641        /* Enable decrementer interrupt */
 642        mtspr(SPRN_TCR, TCR_DIE);
 643#endif /* defined(CONFIG_BOOKE) || defined(CONFIG_40x) */
 644}
 645
 646void __init generic_calibrate_decr(void)
 647{
 648        ppc_tb_freq = DEFAULT_TB_FREQ;          /* hardcoded default */
 649
 650        if (!get_freq("ibm,extended-timebase-frequency", 2, &ppc_tb_freq) &&
 651            !get_freq("timebase-frequency", 1, &ppc_tb_freq)) {
 652
 653                printk(KERN_ERR "WARNING: Estimating decrementer frequency "
 654                                "(not found)\n");
 655        }
 656
 657        ppc_proc_freq = DEFAULT_PROC_FREQ;      /* hardcoded default */
 658
 659        if (!get_freq("ibm,extended-clock-frequency", 2, &ppc_proc_freq) &&
 660            !get_freq("clock-frequency", 1, &ppc_proc_freq)) {
 661
 662                printk(KERN_ERR "WARNING: Estimating processor frequency "
 663                                "(not found)\n");
 664        }
 665}
 666
 667int update_persistent_clock(struct timespec now)
 668{
 669        struct rtc_time tm;
 670
 671        if (!ppc_md.set_rtc_time)
 672                return -ENODEV;
 673
 674        to_tm(now.tv_sec + 1 + timezone_offset, &tm);
 675        tm.tm_year -= 1900;
 676        tm.tm_mon -= 1;
 677
 678        return ppc_md.set_rtc_time(&tm);
 679}
 680
 681static void __read_persistent_clock(struct timespec *ts)
 682{
 683        struct rtc_time tm;
 684        static int first = 1;
 685
 686        ts->tv_nsec = 0;
 687        /* XXX this is a litle fragile but will work okay in the short term */
 688        if (first) {
 689                first = 0;
 690                if (ppc_md.time_init)
 691                        timezone_offset = ppc_md.time_init();
 692
 693                /* get_boot_time() isn't guaranteed to be safe to call late */
 694                if (ppc_md.get_boot_time) {
 695                        ts->tv_sec = ppc_md.get_boot_time() - timezone_offset;
 696                        return;
 697                }
 698        }
 699        if (!ppc_md.get_rtc_time) {
 700                ts->tv_sec = 0;
 701                return;
 702        }
 703        ppc_md.get_rtc_time(&tm);
 704
 705        ts->tv_sec = mktime(tm.tm_year+1900, tm.tm_mon+1, tm.tm_mday,
 706                            tm.tm_hour, tm.tm_min, tm.tm_sec);
 707}
 708
 709void read_persistent_clock(struct timespec *ts)
 710{
 711        __read_persistent_clock(ts);
 712
 713        /* Sanitize it in case real time clock is set below EPOCH */
 714        if (ts->tv_sec < 0) {
 715                ts->tv_sec = 0;
 716                ts->tv_nsec = 0;
 717        }
 718                
 719}
 720
 721/* clocksource code */
 722static cycle_t rtc_read(struct clocksource *cs)
 723{
 724        return (cycle_t)get_rtc();
 725}
 726
 727static cycle_t timebase_read(struct clocksource *cs)
 728{
 729        return (cycle_t)get_tb();
 730}
 731
 732void update_vsyscall_old(struct timespec *wall_time, struct timespec *wtm,
 733                        struct clocksource *clock, u32 mult)
 734{
 735        u64 new_tb_to_xs, new_stamp_xsec;
 736        u32 frac_sec;
 737
 738        if (clock != &clocksource_timebase)
 739                return;
 740
 741        /* Make userspace gettimeofday spin until we're done. */
 742        ++vdso_data->tb_update_count;
 743        smp_mb();
 744
 745        /* 19342813113834067 ~= 2^(20+64) / 1e9 */
 746        new_tb_to_xs = (u64) mult * (19342813113834067ULL >> clock->shift);
 747        new_stamp_xsec = (u64) wall_time->tv_nsec * XSEC_PER_SEC;
 748        do_div(new_stamp_xsec, 1000000000);
 749        new_stamp_xsec += (u64) wall_time->tv_sec * XSEC_PER_SEC;
 750
 751        BUG_ON(wall_time->tv_nsec >= NSEC_PER_SEC);
 752        /* this is tv_nsec / 1e9 as a 0.32 fraction */
 753        frac_sec = ((u64) wall_time->tv_nsec * 18446744073ULL) >> 32;
 754
 755        /*
 756         * tb_update_count is used to allow the userspace gettimeofday code
 757         * to assure itself that it sees a consistent view of the tb_to_xs and
 758         * stamp_xsec variables.  It reads the tb_update_count, then reads
 759         * tb_to_xs and stamp_xsec and then reads tb_update_count again.  If
 760         * the two values of tb_update_count match and are even then the
 761         * tb_to_xs and stamp_xsec values are consistent.  If not, then it
 762         * loops back and reads them again until this criteria is met.
 763         * We expect the caller to have done the first increment of
 764         * vdso_data->tb_update_count already.
 765         */
 766        vdso_data->tb_orig_stamp = clock->cycle_last;
 767        vdso_data->stamp_xsec = new_stamp_xsec;
 768        vdso_data->tb_to_xs = new_tb_to_xs;
 769        vdso_data->wtom_clock_sec = wtm->tv_sec;
 770        vdso_data->wtom_clock_nsec = wtm->tv_nsec;
 771        vdso_data->stamp_xtime = *wall_time;
 772        vdso_data->stamp_sec_fraction = frac_sec;
 773        smp_wmb();
 774        ++(vdso_data->tb_update_count);
 775}
 776
 777void update_vsyscall_tz(void)
 778{
 779        vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
 780        vdso_data->tz_dsttime = sys_tz.tz_dsttime;
 781}
 782
 783static void __init clocksource_init(void)
 784{
 785        struct clocksource *clock;
 786
 787        if (__USE_RTC())
 788                clock = &clocksource_rtc;
 789        else
 790                clock = &clocksource_timebase;
 791
 792        if (clocksource_register_hz(clock, tb_ticks_per_sec)) {
 793                printk(KERN_ERR "clocksource: %s is already registered\n",
 794                       clock->name);
 795                return;
 796        }
 797
 798        printk(KERN_INFO "clocksource: %s mult[%x] shift[%d] registered\n",
 799               clock->name, clock->mult, clock->shift);
 800}
 801
 802static int decrementer_set_next_event(unsigned long evt,
 803                                      struct clock_event_device *dev)
 804{
 805        __get_cpu_var(decrementers_next_tb) = get_tb_or_rtc() + evt;
 806        set_dec(evt);
 807        return 0;
 808}
 809
 810static void decrementer_set_mode(enum clock_event_mode mode,
 811                                 struct clock_event_device *dev)
 812{
 813        if (mode != CLOCK_EVT_MODE_ONESHOT)
 814                decrementer_set_next_event(DECREMENTER_MAX, dev);
 815}
 816
 817static void register_decrementer_clockevent(int cpu)
 818{
 819        struct clock_event_device *dec = &per_cpu(decrementers, cpu);
 820
 821        *dec = decrementer_clockevent;
 822        dec->cpumask = cpumask_of(cpu);
 823
 824        printk_once(KERN_DEBUG "clockevent: %s mult[%x] shift[%d] cpu[%d]\n",
 825                    dec->name, dec->mult, dec->shift, cpu);
 826
 827        clockevents_register_device(dec);
 828}
 829
 830static void __init init_decrementer_clockevent(void)
 831{
 832        int cpu = smp_processor_id();
 833
 834        clockevents_calc_mult_shift(&decrementer_clockevent, ppc_tb_freq, 4);
 835
 836        decrementer_clockevent.max_delta_ns =
 837                clockevent_delta2ns(DECREMENTER_MAX, &decrementer_clockevent);
 838        decrementer_clockevent.min_delta_ns =
 839                clockevent_delta2ns(2, &decrementer_clockevent);
 840
 841        register_decrementer_clockevent(cpu);
 842}
 843
 844void secondary_cpu_time_init(void)
 845{
 846        /* Start the decrementer on CPUs that have manual control
 847         * such as BookE
 848         */
 849        start_cpu_decrementer();
 850
 851        /* FIME: Should make unrelatred change to move snapshot_timebase
 852         * call here ! */
 853        register_decrementer_clockevent(smp_processor_id());
 854}
 855
 856/* This function is only called on the boot processor */
 857void __init time_init(void)
 858{
 859        struct div_result res;
 860        u64 scale;
 861        unsigned shift;
 862
 863        if (__USE_RTC()) {
 864                /* 601 processor: dec counts down by 128 every 128ns */
 865                ppc_tb_freq = 1000000000;
 866        } else {
 867                /* Normal PowerPC with timebase register */
 868                ppc_md.calibrate_decr();
 869                printk(KERN_DEBUG "time_init: decrementer frequency = %lu.%.6lu MHz\n",
 870                       ppc_tb_freq / 1000000, ppc_tb_freq % 1000000);
 871                printk(KERN_DEBUG "time_init: processor frequency   = %lu.%.6lu MHz\n",
 872                       ppc_proc_freq / 1000000, ppc_proc_freq % 1000000);
 873        }
 874
 875        tb_ticks_per_jiffy = ppc_tb_freq / HZ;
 876        tb_ticks_per_sec = ppc_tb_freq;
 877        tb_ticks_per_usec = ppc_tb_freq / 1000000;
 878        calc_cputime_factors();
 879        setup_cputime_one_jiffy();
 880
 881        /*
 882         * Compute scale factor for sched_clock.
 883         * The calibrate_decr() function has set tb_ticks_per_sec,
 884         * which is the timebase frequency.
 885         * We compute 1e9 * 2^64 / tb_ticks_per_sec and interpret
 886         * the 128-bit result as a 64.64 fixed-point number.
 887         * We then shift that number right until it is less than 1.0,
 888         * giving us the scale factor and shift count to use in
 889         * sched_clock().
 890         */
 891        div128_by_32(1000000000, 0, tb_ticks_per_sec, &res);
 892        scale = res.result_low;
 893        for (shift = 0; res.result_high != 0; ++shift) {
 894                scale = (scale >> 1) | (res.result_high << 63);
 895                res.result_high >>= 1;
 896        }
 897        tb_to_ns_scale = scale;
 898        tb_to_ns_shift = shift;
 899        /* Save the current timebase to pretty up CONFIG_PRINTK_TIME */
 900        boot_tb = get_tb_or_rtc();
 901
 902        /* If platform provided a timezone (pmac), we correct the time */
 903        if (timezone_offset) {
 904                sys_tz.tz_minuteswest = -timezone_offset / 60;
 905                sys_tz.tz_dsttime = 0;
 906        }
 907
 908        vdso_data->tb_update_count = 0;
 909        vdso_data->tb_ticks_per_sec = tb_ticks_per_sec;
 910
 911        /* Start the decrementer on CPUs that have manual control
 912         * such as BookE
 913         */
 914        start_cpu_decrementer();
 915
 916        /* Register the clocksource */
 917        clocksource_init();
 918
 919        init_decrementer_clockevent();
 920}
 921
 922
 923#define FEBRUARY        2
 924#define STARTOFTIME     1970
 925#define SECDAY          86400L
 926#define SECYR           (SECDAY * 365)
 927#define leapyear(year)          ((year) % 4 == 0 && \
 928                                 ((year) % 100 != 0 || (year) % 400 == 0))
 929#define days_in_year(a)         (leapyear(a) ? 366 : 365)
 930#define days_in_month(a)        (month_days[(a) - 1])
 931
 932static int month_days[12] = {
 933        31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
 934};
 935
 936/*
 937 * This only works for the Gregorian calendar - i.e. after 1752 (in the UK)
 938 */
 939void GregorianDay(struct rtc_time * tm)
 940{
 941        int leapsToDate;
 942        int lastYear;
 943        int day;
 944        int MonthOffset[] = { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };
 945
 946        lastYear = tm->tm_year - 1;
 947
 948        /*
 949         * Number of leap corrections to apply up to end of last year
 950         */
 951        leapsToDate = lastYear / 4 - lastYear / 100 + lastYear / 400;
 952
 953        /*
 954         * This year is a leap year if it is divisible by 4 except when it is
 955         * divisible by 100 unless it is divisible by 400
 956         *
 957         * e.g. 1904 was a leap year, 1900 was not, 1996 is, and 2000 was
 958         */
 959        day = tm->tm_mon > 2 && leapyear(tm->tm_year);
 960
 961        day += lastYear*365 + leapsToDate + MonthOffset[tm->tm_mon-1] +
 962                   tm->tm_mday;
 963
 964        tm->tm_wday = day % 7;
 965}
 966
 967void to_tm(int tim, struct rtc_time * tm)
 968{
 969        register int    i;
 970        register long   hms, day;
 971
 972        day = tim / SECDAY;
 973        hms = tim % SECDAY;
 974
 975        /* Hours, minutes, seconds are easy */
 976        tm->tm_hour = hms / 3600;
 977        tm->tm_min = (hms % 3600) / 60;
 978        tm->tm_sec = (hms % 3600) % 60;
 979
 980        /* Number of years in days */
 981        for (i = STARTOFTIME; day >= days_in_year(i); i++)
 982                day -= days_in_year(i);
 983        tm->tm_year = i;
 984
 985        /* Number of months in days left */
 986        if (leapyear(tm->tm_year))
 987                days_in_month(FEBRUARY) = 29;
 988        for (i = 1; day >= days_in_month(i); i++)
 989                day -= days_in_month(i);
 990        days_in_month(FEBRUARY) = 28;
 991        tm->tm_mon = i;
 992
 993        /* Days are what is left over (+1) from all that. */
 994        tm->tm_mday = day + 1;
 995
 996        /*
 997         * Determine the day of week
 998         */
 999        GregorianDay(tm);
1000}
1001
1002/*
1003 * Divide a 128-bit dividend by a 32-bit divisor, leaving a 128 bit
1004 * result.
1005 */
1006void div128_by_32(u64 dividend_high, u64 dividend_low,
1007                  unsigned divisor, struct div_result *dr)
1008{
1009        unsigned long a, b, c, d;
1010        unsigned long w, x, y, z;
1011        u64 ra, rb, rc;
1012
1013        a = dividend_high >> 32;
1014        b = dividend_high & 0xffffffff;
1015        c = dividend_low >> 32;
1016        d = dividend_low & 0xffffffff;
1017
1018        w = a / divisor;
1019        ra = ((u64)(a - (w * divisor)) << 32) + b;
1020
1021        rb = ((u64) do_div(ra, divisor) << 32) + c;
1022        x = ra;
1023
1024        rc = ((u64) do_div(rb, divisor) << 32) + d;
1025        y = rb;
1026
1027        do_div(rc, divisor);
1028        z = rc;
1029
1030        dr->result_high = ((u64)w << 32) + x;
1031        dr->result_low  = ((u64)y << 32) + z;
1032
1033}
1034
1035/* We don't need to calibrate delay, we use the CPU timebase for that */
1036void calibrate_delay(void)
1037{
1038        /* Some generic code (such as spinlock debug) use loops_per_jiffy
1039         * as the number of __delay(1) in a jiffy, so make it so
1040         */
1041        loops_per_jiffy = tb_ticks_per_jiffy;
1042}
1043
1044static int __init rtc_init(void)
1045{
1046        struct platform_device *pdev;
1047
1048        if (!ppc_md.get_rtc_time)
1049                return -ENODEV;
1050
1051        pdev = platform_device_register_simple("rtc-generic", -1, NULL, 0);
1052
1053        return PTR_RET(pdev);
1054}
1055
1056module_init(rtc_init);
1057