linux/arch/powerpc/perf/callchain.c
<<
>>
Prefs
   1/*
   2 * Performance counter callchain support - powerpc architecture code
   3 *
   4 * Copyright © 2009 Paul Mackerras, IBM Corporation.
   5 *
   6 * This program is free software; you can redistribute it and/or
   7 * modify it under the terms of the GNU General Public License
   8 * as published by the Free Software Foundation; either version
   9 * 2 of the License, or (at your option) any later version.
  10 */
  11#include <linux/kernel.h>
  12#include <linux/sched.h>
  13#include <linux/perf_event.h>
  14#include <linux/percpu.h>
  15#include <linux/uaccess.h>
  16#include <linux/mm.h>
  17#include <asm/ptrace.h>
  18#include <asm/pgtable.h>
  19#include <asm/sigcontext.h>
  20#include <asm/ucontext.h>
  21#include <asm/vdso.h>
  22#ifdef CONFIG_PPC64
  23#include "../kernel/ppc32.h"
  24#endif
  25
  26
  27/*
  28 * Is sp valid as the address of the next kernel stack frame after prev_sp?
  29 * The next frame may be in a different stack area but should not go
  30 * back down in the same stack area.
  31 */
  32static int valid_next_sp(unsigned long sp, unsigned long prev_sp)
  33{
  34        if (sp & 0xf)
  35                return 0;               /* must be 16-byte aligned */
  36        if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  37                return 0;
  38        if (sp >= prev_sp + STACK_FRAME_OVERHEAD)
  39                return 1;
  40        /*
  41         * sp could decrease when we jump off an interrupt stack
  42         * back to the regular process stack.
  43         */
  44        if ((sp & ~(THREAD_SIZE - 1)) != (prev_sp & ~(THREAD_SIZE - 1)))
  45                return 1;
  46        return 0;
  47}
  48
  49void
  50perf_callchain_kernel(struct perf_callchain_entry *entry, struct pt_regs *regs)
  51{
  52        unsigned long sp, next_sp;
  53        unsigned long next_ip;
  54        unsigned long lr;
  55        long level = 0;
  56        unsigned long *fp;
  57
  58        lr = regs->link;
  59        sp = regs->gpr[1];
  60        perf_callchain_store(entry, perf_instruction_pointer(regs));
  61
  62        if (!validate_sp(sp, current, STACK_FRAME_OVERHEAD))
  63                return;
  64
  65        for (;;) {
  66                fp = (unsigned long *) sp;
  67                next_sp = fp[0];
  68
  69                if (next_sp == sp + STACK_INT_FRAME_SIZE &&
  70                    fp[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
  71                        /*
  72                         * This looks like an interrupt frame for an
  73                         * interrupt that occurred in the kernel
  74                         */
  75                        regs = (struct pt_regs *)(sp + STACK_FRAME_OVERHEAD);
  76                        next_ip = regs->nip;
  77                        lr = regs->link;
  78                        level = 0;
  79                        perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
  80
  81                } else {
  82                        if (level == 0)
  83                                next_ip = lr;
  84                        else
  85                                next_ip = fp[STACK_FRAME_LR_SAVE];
  86
  87                        /*
  88                         * We can't tell which of the first two addresses
  89                         * we get are valid, but we can filter out the
  90                         * obviously bogus ones here.  We replace them
  91                         * with 0 rather than removing them entirely so
  92                         * that userspace can tell which is which.
  93                         */
  94                        if ((level == 1 && next_ip == lr) ||
  95                            (level <= 1 && !kernel_text_address(next_ip)))
  96                                next_ip = 0;
  97
  98                        ++level;
  99                }
 100
 101                perf_callchain_store(entry, next_ip);
 102                if (!valid_next_sp(next_sp, sp))
 103                        return;
 104                sp = next_sp;
 105        }
 106}
 107
 108#ifdef CONFIG_PPC64
 109/*
 110 * On 64-bit we don't want to invoke hash_page on user addresses from
 111 * interrupt context, so if the access faults, we read the page tables
 112 * to find which page (if any) is mapped and access it directly.
 113 */
 114static int read_user_stack_slow(void __user *ptr, void *ret, int nb)
 115{
 116        pgd_t *pgdir;
 117        pte_t *ptep, pte;
 118        unsigned shift;
 119        unsigned long addr = (unsigned long) ptr;
 120        unsigned long offset;
 121        unsigned long pfn;
 122        void *kaddr;
 123
 124        pgdir = current->mm->pgd;
 125        if (!pgdir)
 126                return -EFAULT;
 127
 128        ptep = find_linux_pte_or_hugepte(pgdir, addr, &shift);
 129        if (!shift)
 130                shift = PAGE_SHIFT;
 131
 132        /* align address to page boundary */
 133        offset = addr & ((1UL << shift) - 1);
 134        addr -= offset;
 135
 136        if (ptep == NULL)
 137                return -EFAULT;
 138        pte = *ptep;
 139        if (!pte_present(pte) || !(pte_val(pte) & _PAGE_USER))
 140                return -EFAULT;
 141        pfn = pte_pfn(pte);
 142        if (!page_is_ram(pfn))
 143                return -EFAULT;
 144
 145        /* no highmem to worry about here */
 146        kaddr = pfn_to_kaddr(pfn);
 147        memcpy(ret, kaddr + offset, nb);
 148        return 0;
 149}
 150
 151static int read_user_stack_64(unsigned long __user *ptr, unsigned long *ret)
 152{
 153        if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned long) ||
 154            ((unsigned long)ptr & 7))
 155                return -EFAULT;
 156
 157        pagefault_disable();
 158        if (!__get_user_inatomic(*ret, ptr)) {
 159                pagefault_enable();
 160                return 0;
 161        }
 162        pagefault_enable();
 163
 164        return read_user_stack_slow(ptr, ret, 8);
 165}
 166
 167static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
 168{
 169        if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
 170            ((unsigned long)ptr & 3))
 171                return -EFAULT;
 172
 173        pagefault_disable();
 174        if (!__get_user_inatomic(*ret, ptr)) {
 175                pagefault_enable();
 176                return 0;
 177        }
 178        pagefault_enable();
 179
 180        return read_user_stack_slow(ptr, ret, 4);
 181}
 182
 183static inline int valid_user_sp(unsigned long sp, int is_64)
 184{
 185        if (!sp || (sp & 7) || sp > (is_64 ? TASK_SIZE : 0x100000000UL) - 32)
 186                return 0;
 187        return 1;
 188}
 189
 190/*
 191 * 64-bit user processes use the same stack frame for RT and non-RT signals.
 192 */
 193struct signal_frame_64 {
 194        char            dummy[__SIGNAL_FRAMESIZE];
 195        struct ucontext uc;
 196        unsigned long   unused[2];
 197        unsigned int    tramp[6];
 198        struct siginfo  *pinfo;
 199        void            *puc;
 200        struct siginfo  info;
 201        char            abigap[288];
 202};
 203
 204static int is_sigreturn_64_address(unsigned long nip, unsigned long fp)
 205{
 206        if (nip == fp + offsetof(struct signal_frame_64, tramp))
 207                return 1;
 208        if (vdso64_rt_sigtramp && current->mm->context.vdso_base &&
 209            nip == current->mm->context.vdso_base + vdso64_rt_sigtramp)
 210                return 1;
 211        return 0;
 212}
 213
 214/*
 215 * Do some sanity checking on the signal frame pointed to by sp.
 216 * We check the pinfo and puc pointers in the frame.
 217 */
 218static int sane_signal_64_frame(unsigned long sp)
 219{
 220        struct signal_frame_64 __user *sf;
 221        unsigned long pinfo, puc;
 222
 223        sf = (struct signal_frame_64 __user *) sp;
 224        if (read_user_stack_64((unsigned long __user *) &sf->pinfo, &pinfo) ||
 225            read_user_stack_64((unsigned long __user *) &sf->puc, &puc))
 226                return 0;
 227        return pinfo == (unsigned long) &sf->info &&
 228                puc == (unsigned long) &sf->uc;
 229}
 230
 231static void perf_callchain_user_64(struct perf_callchain_entry *entry,
 232                                   struct pt_regs *regs)
 233{
 234        unsigned long sp, next_sp;
 235        unsigned long next_ip;
 236        unsigned long lr;
 237        long level = 0;
 238        struct signal_frame_64 __user *sigframe;
 239        unsigned long __user *fp, *uregs;
 240
 241        next_ip = perf_instruction_pointer(regs);
 242        lr = regs->link;
 243        sp = regs->gpr[1];
 244        perf_callchain_store(entry, next_ip);
 245
 246        for (;;) {
 247                fp = (unsigned long __user *) sp;
 248                if (!valid_user_sp(sp, 1) || read_user_stack_64(fp, &next_sp))
 249                        return;
 250                if (level > 0 && read_user_stack_64(&fp[2], &next_ip))
 251                        return;
 252
 253                /*
 254                 * Note: the next_sp - sp >= signal frame size check
 255                 * is true when next_sp < sp, which can happen when
 256                 * transitioning from an alternate signal stack to the
 257                 * normal stack.
 258                 */
 259                if (next_sp - sp >= sizeof(struct signal_frame_64) &&
 260                    (is_sigreturn_64_address(next_ip, sp) ||
 261                     (level <= 1 && is_sigreturn_64_address(lr, sp))) &&
 262                    sane_signal_64_frame(sp)) {
 263                        /*
 264                         * This looks like an signal frame
 265                         */
 266                        sigframe = (struct signal_frame_64 __user *) sp;
 267                        uregs = sigframe->uc.uc_mcontext.gp_regs;
 268                        if (read_user_stack_64(&uregs[PT_NIP], &next_ip) ||
 269                            read_user_stack_64(&uregs[PT_LNK], &lr) ||
 270                            read_user_stack_64(&uregs[PT_R1], &sp))
 271                                return;
 272                        level = 0;
 273                        perf_callchain_store(entry, PERF_CONTEXT_USER);
 274                        perf_callchain_store(entry, next_ip);
 275                        continue;
 276                }
 277
 278                if (level == 0)
 279                        next_ip = lr;
 280                perf_callchain_store(entry, next_ip);
 281                ++level;
 282                sp = next_sp;
 283        }
 284}
 285
 286static inline int current_is_64bit(void)
 287{
 288        /*
 289         * We can't use test_thread_flag() here because we may be on an
 290         * interrupt stack, and the thread flags don't get copied over
 291         * from the thread_info on the main stack to the interrupt stack.
 292         */
 293        return !test_ti_thread_flag(task_thread_info(current), TIF_32BIT);
 294}
 295
 296#else  /* CONFIG_PPC64 */
 297/*
 298 * On 32-bit we just access the address and let hash_page create a
 299 * HPTE if necessary, so there is no need to fall back to reading
 300 * the page tables.  Since this is called at interrupt level,
 301 * do_page_fault() won't treat a DSI as a page fault.
 302 */
 303static int read_user_stack_32(unsigned int __user *ptr, unsigned int *ret)
 304{
 305        int rc;
 306
 307        if ((unsigned long)ptr > TASK_SIZE - sizeof(unsigned int) ||
 308            ((unsigned long)ptr & 3))
 309                return -EFAULT;
 310
 311        pagefault_disable();
 312        rc = __get_user_inatomic(*ret, ptr);
 313        pagefault_enable();
 314
 315        return rc;
 316}
 317
 318static inline void perf_callchain_user_64(struct perf_callchain_entry *entry,
 319                                          struct pt_regs *regs)
 320{
 321}
 322
 323static inline int current_is_64bit(void)
 324{
 325        return 0;
 326}
 327
 328static inline int valid_user_sp(unsigned long sp, int is_64)
 329{
 330        if (!sp || (sp & 7) || sp > TASK_SIZE - 32)
 331                return 0;
 332        return 1;
 333}
 334
 335#define __SIGNAL_FRAMESIZE32    __SIGNAL_FRAMESIZE
 336#define sigcontext32            sigcontext
 337#define mcontext32              mcontext
 338#define ucontext32              ucontext
 339#define compat_siginfo_t        struct siginfo
 340
 341#endif /* CONFIG_PPC64 */
 342
 343/*
 344 * Layout for non-RT signal frames
 345 */
 346struct signal_frame_32 {
 347        char                    dummy[__SIGNAL_FRAMESIZE32];
 348        struct sigcontext32     sctx;
 349        struct mcontext32       mctx;
 350        int                     abigap[56];
 351};
 352
 353/*
 354 * Layout for RT signal frames
 355 */
 356struct rt_signal_frame_32 {
 357        char                    dummy[__SIGNAL_FRAMESIZE32 + 16];
 358        compat_siginfo_t        info;
 359        struct ucontext32       uc;
 360        int                     abigap[56];
 361};
 362
 363static int is_sigreturn_32_address(unsigned int nip, unsigned int fp)
 364{
 365        if (nip == fp + offsetof(struct signal_frame_32, mctx.mc_pad))
 366                return 1;
 367        if (vdso32_sigtramp && current->mm->context.vdso_base &&
 368            nip == current->mm->context.vdso_base + vdso32_sigtramp)
 369                return 1;
 370        return 0;
 371}
 372
 373static int is_rt_sigreturn_32_address(unsigned int nip, unsigned int fp)
 374{
 375        if (nip == fp + offsetof(struct rt_signal_frame_32,
 376                                 uc.uc_mcontext.mc_pad))
 377                return 1;
 378        if (vdso32_rt_sigtramp && current->mm->context.vdso_base &&
 379            nip == current->mm->context.vdso_base + vdso32_rt_sigtramp)
 380                return 1;
 381        return 0;
 382}
 383
 384static int sane_signal_32_frame(unsigned int sp)
 385{
 386        struct signal_frame_32 __user *sf;
 387        unsigned int regs;
 388
 389        sf = (struct signal_frame_32 __user *) (unsigned long) sp;
 390        if (read_user_stack_32((unsigned int __user *) &sf->sctx.regs, &regs))
 391                return 0;
 392        return regs == (unsigned long) &sf->mctx;
 393}
 394
 395static int sane_rt_signal_32_frame(unsigned int sp)
 396{
 397        struct rt_signal_frame_32 __user *sf;
 398        unsigned int regs;
 399
 400        sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
 401        if (read_user_stack_32((unsigned int __user *) &sf->uc.uc_regs, &regs))
 402                return 0;
 403        return regs == (unsigned long) &sf->uc.uc_mcontext;
 404}
 405
 406static unsigned int __user *signal_frame_32_regs(unsigned int sp,
 407                                unsigned int next_sp, unsigned int next_ip)
 408{
 409        struct mcontext32 __user *mctx = NULL;
 410        struct signal_frame_32 __user *sf;
 411        struct rt_signal_frame_32 __user *rt_sf;
 412
 413        /*
 414         * Note: the next_sp - sp >= signal frame size check
 415         * is true when next_sp < sp, for example, when
 416         * transitioning from an alternate signal stack to the
 417         * normal stack.
 418         */
 419        if (next_sp - sp >= sizeof(struct signal_frame_32) &&
 420            is_sigreturn_32_address(next_ip, sp) &&
 421            sane_signal_32_frame(sp)) {
 422                sf = (struct signal_frame_32 __user *) (unsigned long) sp;
 423                mctx = &sf->mctx;
 424        }
 425
 426        if (!mctx && next_sp - sp >= sizeof(struct rt_signal_frame_32) &&
 427            is_rt_sigreturn_32_address(next_ip, sp) &&
 428            sane_rt_signal_32_frame(sp)) {
 429                rt_sf = (struct rt_signal_frame_32 __user *) (unsigned long) sp;
 430                mctx = &rt_sf->uc.uc_mcontext;
 431        }
 432
 433        if (!mctx)
 434                return NULL;
 435        return mctx->mc_gregs;
 436}
 437
 438static void perf_callchain_user_32(struct perf_callchain_entry *entry,
 439                                   struct pt_regs *regs)
 440{
 441        unsigned int sp, next_sp;
 442        unsigned int next_ip;
 443        unsigned int lr;
 444        long level = 0;
 445        unsigned int __user *fp, *uregs;
 446
 447        next_ip = perf_instruction_pointer(regs);
 448        lr = regs->link;
 449        sp = regs->gpr[1];
 450        perf_callchain_store(entry, next_ip);
 451
 452        while (entry->nr < PERF_MAX_STACK_DEPTH) {
 453                fp = (unsigned int __user *) (unsigned long) sp;
 454                if (!valid_user_sp(sp, 0) || read_user_stack_32(fp, &next_sp))
 455                        return;
 456                if (level > 0 && read_user_stack_32(&fp[1], &next_ip))
 457                        return;
 458
 459                uregs = signal_frame_32_regs(sp, next_sp, next_ip);
 460                if (!uregs && level <= 1)
 461                        uregs = signal_frame_32_regs(sp, next_sp, lr);
 462                if (uregs) {
 463                        /*
 464                         * This looks like an signal frame, so restart
 465                         * the stack trace with the values in it.
 466                         */
 467                        if (read_user_stack_32(&uregs[PT_NIP], &next_ip) ||
 468                            read_user_stack_32(&uregs[PT_LNK], &lr) ||
 469                            read_user_stack_32(&uregs[PT_R1], &sp))
 470                                return;
 471                        level = 0;
 472                        perf_callchain_store(entry, PERF_CONTEXT_USER);
 473                        perf_callchain_store(entry, next_ip);
 474                        continue;
 475                }
 476
 477                if (level == 0)
 478                        next_ip = lr;
 479                perf_callchain_store(entry, next_ip);
 480                ++level;
 481                sp = next_sp;
 482        }
 483}
 484
 485void
 486perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
 487{
 488        if (current_is_64bit())
 489                perf_callchain_user_64(entry, regs);
 490        else
 491                perf_callchain_user_32(entry, regs);
 492}
 493