linux/arch/s390/include/asm/pgtable.h
<<
>>
Prefs
   1/*
   2 *  S390 version
   3 *    Copyright IBM Corp. 1999, 2000
   4 *    Author(s): Hartmut Penner (hp@de.ibm.com)
   5 *               Ulrich Weigand (weigand@de.ibm.com)
   6 *               Martin Schwidefsky (schwidefsky@de.ibm.com)
   7 *
   8 *  Derived from "include/asm-i386/pgtable.h"
   9 */
  10
  11#ifndef _ASM_S390_PGTABLE_H
  12#define _ASM_S390_PGTABLE_H
  13
  14/*
  15 * The Linux memory management assumes a three-level page table setup. For
  16 * s390 31 bit we "fold" the mid level into the top-level page table, so
  17 * that we physically have the same two-level page table as the s390 mmu
  18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
  19 * the hardware provides (region first and region second tables are not
  20 * used).
  21 *
  22 * The "pgd_xxx()" functions are trivial for a folded two-level
  23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
  24 * into the pgd entry)
  25 *
  26 * This file contains the functions and defines necessary to modify and use
  27 * the S390 page table tree.
  28 */
  29#ifndef __ASSEMBLY__
  30#include <linux/sched.h>
  31#include <linux/mm_types.h>
  32#include <linux/page-flags.h>
  33#include <asm/bug.h>
  34#include <asm/page.h>
  35
  36extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
  37extern void paging_init(void);
  38extern void vmem_map_init(void);
  39
  40/*
  41 * The S390 doesn't have any external MMU info: the kernel page
  42 * tables contain all the necessary information.
  43 */
  44#define update_mmu_cache(vma, address, ptep)     do { } while (0)
  45#define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
  46
  47/*
  48 * ZERO_PAGE is a global shared page that is always zero; used
  49 * for zero-mapped memory areas etc..
  50 */
  51
  52extern unsigned long empty_zero_page;
  53extern unsigned long zero_page_mask;
  54
  55#define ZERO_PAGE(vaddr) \
  56        (virt_to_page((void *)(empty_zero_page + \
  57         (((unsigned long)(vaddr)) &zero_page_mask))))
  58#define __HAVE_COLOR_ZERO_PAGE
  59
  60/* TODO: s390 cannot support io_remap_pfn_range... */
  61#define io_remap_pfn_range(vma, vaddr, pfn, size, prot)                \
  62        remap_pfn_range(vma, vaddr, pfn, size, prot)
  63
  64#endif /* !__ASSEMBLY__ */
  65
  66/*
  67 * PMD_SHIFT determines the size of the area a second-level page
  68 * table can map
  69 * PGDIR_SHIFT determines what a third-level page table entry can map
  70 */
  71#ifndef CONFIG_64BIT
  72# define PMD_SHIFT      20
  73# define PUD_SHIFT      20
  74# define PGDIR_SHIFT    20
  75#else /* CONFIG_64BIT */
  76# define PMD_SHIFT      20
  77# define PUD_SHIFT      31
  78# define PGDIR_SHIFT    42
  79#endif /* CONFIG_64BIT */
  80
  81#define PMD_SIZE        (1UL << PMD_SHIFT)
  82#define PMD_MASK        (~(PMD_SIZE-1))
  83#define PUD_SIZE        (1UL << PUD_SHIFT)
  84#define PUD_MASK        (~(PUD_SIZE-1))
  85#define PGDIR_SIZE      (1UL << PGDIR_SHIFT)
  86#define PGDIR_MASK      (~(PGDIR_SIZE-1))
  87
  88/*
  89 * entries per page directory level: the S390 is two-level, so
  90 * we don't really have any PMD directory physically.
  91 * for S390 segment-table entries are combined to one PGD
  92 * that leads to 1024 pte per pgd
  93 */
  94#define PTRS_PER_PTE    256
  95#ifndef CONFIG_64BIT
  96#define PTRS_PER_PMD    1
  97#define PTRS_PER_PUD    1
  98#else /* CONFIG_64BIT */
  99#define PTRS_PER_PMD    2048
 100#define PTRS_PER_PUD    2048
 101#endif /* CONFIG_64BIT */
 102#define PTRS_PER_PGD    2048
 103
 104#define FIRST_USER_ADDRESS  0
 105
 106#define pte_ERROR(e) \
 107        printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
 108#define pmd_ERROR(e) \
 109        printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
 110#define pud_ERROR(e) \
 111        printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
 112#define pgd_ERROR(e) \
 113        printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
 114
 115#ifndef __ASSEMBLY__
 116/*
 117 * The vmalloc and module area will always be on the topmost area of the kernel
 118 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
 119 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
 120 * modules will reside. That makes sure that inter module branches always
 121 * happen without trampolines and in addition the placement within a 2GB frame
 122 * is branch prediction unit friendly.
 123 */
 124extern unsigned long VMALLOC_START;
 125extern unsigned long VMALLOC_END;
 126extern struct page *vmemmap;
 127
 128#define VMEM_MAX_PHYS ((unsigned long) vmemmap)
 129
 130#ifdef CONFIG_64BIT
 131extern unsigned long MODULES_VADDR;
 132extern unsigned long MODULES_END;
 133#define MODULES_VADDR   MODULES_VADDR
 134#define MODULES_END     MODULES_END
 135#define MODULES_LEN     (1UL << 31)
 136#endif
 137
 138/*
 139 * A 31 bit pagetable entry of S390 has following format:
 140 *  |   PFRA          |    |  OS  |
 141 * 0                   0IP0
 142 * 00000000001111111111222222222233
 143 * 01234567890123456789012345678901
 144 *
 145 * I Page-Invalid Bit:    Page is not available for address-translation
 146 * P Page-Protection Bit: Store access not possible for page
 147 *
 148 * A 31 bit segmenttable entry of S390 has following format:
 149 *  |   P-table origin      |  |PTL
 150 * 0                         IC
 151 * 00000000001111111111222222222233
 152 * 01234567890123456789012345678901
 153 *
 154 * I Segment-Invalid Bit:    Segment is not available for address-translation
 155 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 156 * PTL Page-Table-Length:    Page-table length (PTL+1*16 entries -> up to 256)
 157 *
 158 * The 31 bit segmenttable origin of S390 has following format:
 159 *
 160 *  |S-table origin   |     | STL |
 161 * X                   **GPS
 162 * 00000000001111111111222222222233
 163 * 01234567890123456789012345678901
 164 *
 165 * X Space-Switch event:
 166 * G Segment-Invalid Bit:     *
 167 * P Private-Space Bit:       Segment is not private (PoP 3-30)
 168 * S Storage-Alteration:
 169 * STL Segment-Table-Length:  Segment-table length (STL+1*16 entries -> up to 2048)
 170 *
 171 * A 64 bit pagetable entry of S390 has following format:
 172 * |                     PFRA                         |0IPC|  OS  |
 173 * 0000000000111111111122222222223333333333444444444455555555556666
 174 * 0123456789012345678901234567890123456789012345678901234567890123
 175 *
 176 * I Page-Invalid Bit:    Page is not available for address-translation
 177 * P Page-Protection Bit: Store access not possible for page
 178 * C Change-bit override: HW is not required to set change bit
 179 *
 180 * A 64 bit segmenttable entry of S390 has following format:
 181 * |        P-table origin                              |      TT
 182 * 0000000000111111111122222222223333333333444444444455555555556666
 183 * 0123456789012345678901234567890123456789012345678901234567890123
 184 *
 185 * I Segment-Invalid Bit:    Segment is not available for address-translation
 186 * C Common-Segment Bit:     Segment is not private (PoP 3-30)
 187 * P Page-Protection Bit: Store access not possible for page
 188 * TT Type 00
 189 *
 190 * A 64 bit region table entry of S390 has following format:
 191 * |        S-table origin                             |   TF  TTTL
 192 * 0000000000111111111122222222223333333333444444444455555555556666
 193 * 0123456789012345678901234567890123456789012345678901234567890123
 194 *
 195 * I Segment-Invalid Bit:    Segment is not available for address-translation
 196 * TT Type 01
 197 * TF
 198 * TL Table length
 199 *
 200 * The 64 bit regiontable origin of S390 has following format:
 201 * |      region table origon                          |       DTTL
 202 * 0000000000111111111122222222223333333333444444444455555555556666
 203 * 0123456789012345678901234567890123456789012345678901234567890123
 204 *
 205 * X Space-Switch event:
 206 * G Segment-Invalid Bit:  
 207 * P Private-Space Bit:    
 208 * S Storage-Alteration:
 209 * R Real space
 210 * TL Table-Length:
 211 *
 212 * A storage key has the following format:
 213 * | ACC |F|R|C|0|
 214 *  0   3 4 5 6 7
 215 * ACC: access key
 216 * F  : fetch protection bit
 217 * R  : referenced bit
 218 * C  : changed bit
 219 */
 220
 221/* Hardware bits in the page table entry */
 222#define _PAGE_CO        0x100           /* HW Change-bit override */
 223#define _PAGE_RO        0x200           /* HW read-only bit  */
 224#define _PAGE_INVALID   0x400           /* HW invalid bit    */
 225
 226/* Software bits in the page table entry */
 227#define _PAGE_SWT       0x001           /* SW pte type bit t */
 228#define _PAGE_SWX       0x002           /* SW pte type bit x */
 229#define _PAGE_SWC       0x004           /* SW pte changed bit */
 230#define _PAGE_SWR       0x008           /* SW pte referenced bit */
 231#define _PAGE_SWW       0x010           /* SW pte write bit */
 232#define _PAGE_SPECIAL   0x020           /* SW associated with special page */
 233#define __HAVE_ARCH_PTE_SPECIAL
 234
 235/* Set of bits not changed in pte_modify */
 236#define _PAGE_CHG_MASK          (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
 237                                 _PAGE_SWC | _PAGE_SWR)
 238
 239/* Six different types of pages. */
 240#define _PAGE_TYPE_EMPTY        0x400
 241#define _PAGE_TYPE_NONE         0x401
 242#define _PAGE_TYPE_SWAP         0x403
 243#define _PAGE_TYPE_FILE         0x601   /* bit 0x002 is used for offset !! */
 244#define _PAGE_TYPE_RO           0x200
 245#define _PAGE_TYPE_RW           0x000
 246
 247/*
 248 * Only four types for huge pages, using the invalid bit and protection bit
 249 * of a segment table entry.
 250 */
 251#define _HPAGE_TYPE_EMPTY       0x020   /* _SEGMENT_ENTRY_INV */
 252#define _HPAGE_TYPE_NONE        0x220
 253#define _HPAGE_TYPE_RO          0x200   /* _SEGMENT_ENTRY_RO  */
 254#define _HPAGE_TYPE_RW          0x000
 255
 256/*
 257 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
 258 * pte_none and pte_file to find out the pte type WITHOUT holding the page
 259 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
 260 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
 261 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
 262 * This change is done while holding the lock, but the intermediate step
 263 * of a previously valid pte with the hw invalid bit set can be observed by
 264 * handle_pte_fault. That makes it necessary that all valid pte types with
 265 * the hw invalid bit set must be distinguishable from the four pte types
 266 * empty, none, swap and file.
 267 *
 268 *                      irxt  ipte  irxt
 269 * _PAGE_TYPE_EMPTY     1000   ->   1000
 270 * _PAGE_TYPE_NONE      1001   ->   1001
 271 * _PAGE_TYPE_SWAP      1011   ->   1011
 272 * _PAGE_TYPE_FILE      11?1   ->   11?1
 273 * _PAGE_TYPE_RO        0100   ->   1100
 274 * _PAGE_TYPE_RW        0000   ->   1000
 275 *
 276 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
 277 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
 278 * pte_file is true for bits combinations 1101, 1111
 279 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
 280 */
 281
 282#ifndef CONFIG_64BIT
 283
 284/* Bits in the segment table address-space-control-element */
 285#define _ASCE_SPACE_SWITCH      0x80000000UL    /* space switch event       */
 286#define _ASCE_ORIGIN_MASK       0x7ffff000UL    /* segment table origin     */
 287#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 288#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 289#define _ASCE_TABLE_LENGTH      0x7f    /* 128 x 64 entries = 8k            */
 290
 291/* Bits in the segment table entry */
 292#define _SEGMENT_ENTRY_ORIGIN   0x7fffffc0UL    /* page table origin        */
 293#define _SEGMENT_ENTRY_RO       0x200   /* page protection bit              */
 294#define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
 295#define _SEGMENT_ENTRY_COMMON   0x10    /* common segment bit               */
 296#define _SEGMENT_ENTRY_PTL      0x0f    /* page table length                */
 297
 298#define _SEGMENT_ENTRY          (_SEGMENT_ENTRY_PTL)
 299#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
 300
 301/* Page status table bits for virtualization */
 302#define RCP_ACC_BITS    0xf0000000UL
 303#define RCP_FP_BIT      0x08000000UL
 304#define RCP_PCL_BIT     0x00800000UL
 305#define RCP_HR_BIT      0x00400000UL
 306#define RCP_HC_BIT      0x00200000UL
 307#define RCP_GR_BIT      0x00040000UL
 308#define RCP_GC_BIT      0x00020000UL
 309#define RCP_IN_BIT      0x00002000UL    /* IPTE notify bit */
 310
 311/* User dirty / referenced bit for KVM's migration feature */
 312#define KVM_UR_BIT      0x00008000UL
 313#define KVM_UC_BIT      0x00004000UL
 314
 315#else /* CONFIG_64BIT */
 316
 317/* Bits in the segment/region table address-space-control-element */
 318#define _ASCE_ORIGIN            ~0xfffUL/* segment table origin             */
 319#define _ASCE_PRIVATE_SPACE     0x100   /* private space control            */
 320#define _ASCE_ALT_EVENT         0x80    /* storage alteration event control */
 321#define _ASCE_SPACE_SWITCH      0x40    /* space switch event               */
 322#define _ASCE_REAL_SPACE        0x20    /* real space control               */
 323#define _ASCE_TYPE_MASK         0x0c    /* asce table type mask             */
 324#define _ASCE_TYPE_REGION1      0x0c    /* region first table type          */
 325#define _ASCE_TYPE_REGION2      0x08    /* region second table type         */
 326#define _ASCE_TYPE_REGION3      0x04    /* region third table type          */
 327#define _ASCE_TYPE_SEGMENT      0x00    /* segment table type               */
 328#define _ASCE_TABLE_LENGTH      0x03    /* region table length              */
 329
 330/* Bits in the region table entry */
 331#define _REGION_ENTRY_ORIGIN    ~0xfffUL/* region/segment table origin      */
 332#define _REGION_ENTRY_RO        0x200   /* region protection bit            */
 333#define _REGION_ENTRY_INV       0x20    /* invalid region table entry       */
 334#define _REGION_ENTRY_TYPE_MASK 0x0c    /* region/segment table type mask   */
 335#define _REGION_ENTRY_TYPE_R1   0x0c    /* region first table type          */
 336#define _REGION_ENTRY_TYPE_R2   0x08    /* region second table type         */
 337#define _REGION_ENTRY_TYPE_R3   0x04    /* region third table type          */
 338#define _REGION_ENTRY_LENGTH    0x03    /* region third length              */
 339
 340#define _REGION1_ENTRY          (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
 341#define _REGION1_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
 342#define _REGION2_ENTRY          (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
 343#define _REGION2_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
 344#define _REGION3_ENTRY          (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
 345#define _REGION3_ENTRY_EMPTY    (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
 346
 347#define _REGION3_ENTRY_LARGE    0x400   /* RTTE-format control, large page  */
 348#define _REGION3_ENTRY_RO       0x200   /* page protection bit              */
 349#define _REGION3_ENTRY_CO       0x100   /* change-recording override        */
 350
 351/* Bits in the segment table entry */
 352#define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address        */
 353#define _SEGMENT_ENTRY_ORIGIN   ~0x7ffUL/* segment table origin             */
 354#define _SEGMENT_ENTRY_RO       0x200   /* page protection bit              */
 355#define _SEGMENT_ENTRY_INV      0x20    /* invalid segment table entry      */
 356
 357#define _SEGMENT_ENTRY          (0)
 358#define _SEGMENT_ENTRY_EMPTY    (_SEGMENT_ENTRY_INV)
 359
 360#define _SEGMENT_ENTRY_LARGE    0x400   /* STE-format control, large page   */
 361#define _SEGMENT_ENTRY_CO       0x100   /* change-recording override   */
 362#define _SEGMENT_ENTRY_SPLIT_BIT 0      /* THP splitting bit number */
 363#define _SEGMENT_ENTRY_SPLIT    (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
 364
 365/* Set of bits not changed in pmd_modify */
 366#define _SEGMENT_CHG_MASK       (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
 367                                 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
 368
 369/* Page status table bits for virtualization */
 370#define RCP_ACC_BITS    0xf000000000000000UL
 371#define RCP_FP_BIT      0x0800000000000000UL
 372#define RCP_PCL_BIT     0x0080000000000000UL
 373#define RCP_HR_BIT      0x0040000000000000UL
 374#define RCP_HC_BIT      0x0020000000000000UL
 375#define RCP_GR_BIT      0x0004000000000000UL
 376#define RCP_GC_BIT      0x0002000000000000UL
 377#define RCP_IN_BIT      0x0000200000000000UL    /* IPTE notify bit */
 378
 379/* User dirty / referenced bit for KVM's migration feature */
 380#define KVM_UR_BIT      0x0000800000000000UL
 381#define KVM_UC_BIT      0x0000400000000000UL
 382
 383#endif /* CONFIG_64BIT */
 384
 385/*
 386 * A user page table pointer has the space-switch-event bit, the
 387 * private-space-control bit and the storage-alteration-event-control
 388 * bit set. A kernel page table pointer doesn't need them.
 389 */
 390#define _ASCE_USER_BITS         (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
 391                                 _ASCE_ALT_EVENT)
 392
 393/*
 394 * Page protection definitions.
 395 */
 396#define PAGE_NONE       __pgprot(_PAGE_TYPE_NONE)
 397#define PAGE_RO         __pgprot(_PAGE_TYPE_RO)
 398#define PAGE_RW         __pgprot(_PAGE_TYPE_RO | _PAGE_SWW)
 399#define PAGE_RWC        __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC)
 400
 401#define PAGE_KERNEL     PAGE_RWC
 402#define PAGE_SHARED     PAGE_KERNEL
 403#define PAGE_COPY       PAGE_RO
 404
 405/*
 406 * On s390 the page table entry has an invalid bit and a read-only bit.
 407 * Read permission implies execute permission and write permission
 408 * implies read permission.
 409 */
 410         /*xwr*/
 411#define __P000  PAGE_NONE
 412#define __P001  PAGE_RO
 413#define __P010  PAGE_RO
 414#define __P011  PAGE_RO
 415#define __P100  PAGE_RO
 416#define __P101  PAGE_RO
 417#define __P110  PAGE_RO
 418#define __P111  PAGE_RO
 419
 420#define __S000  PAGE_NONE
 421#define __S001  PAGE_RO
 422#define __S010  PAGE_RW
 423#define __S011  PAGE_RW
 424#define __S100  PAGE_RO
 425#define __S101  PAGE_RO
 426#define __S110  PAGE_RW
 427#define __S111  PAGE_RW
 428
 429/*
 430 * Segment entry (large page) protection definitions.
 431 */
 432#define SEGMENT_NONE    __pgprot(_HPAGE_TYPE_NONE)
 433#define SEGMENT_RO      __pgprot(_HPAGE_TYPE_RO)
 434#define SEGMENT_RW      __pgprot(_HPAGE_TYPE_RW)
 435
 436static inline int mm_exclusive(struct mm_struct *mm)
 437{
 438        return likely(mm == current->active_mm &&
 439                      atomic_read(&mm->context.attach_count) <= 1);
 440}
 441
 442static inline int mm_has_pgste(struct mm_struct *mm)
 443{
 444#ifdef CONFIG_PGSTE
 445        if (unlikely(mm->context.has_pgste))
 446                return 1;
 447#endif
 448        return 0;
 449}
 450/*
 451 * pgd/pmd/pte query functions
 452 */
 453#ifndef CONFIG_64BIT
 454
 455static inline int pgd_present(pgd_t pgd) { return 1; }
 456static inline int pgd_none(pgd_t pgd)    { return 0; }
 457static inline int pgd_bad(pgd_t pgd)     { return 0; }
 458
 459static inline int pud_present(pud_t pud) { return 1; }
 460static inline int pud_none(pud_t pud)    { return 0; }
 461static inline int pud_large(pud_t pud)   { return 0; }
 462static inline int pud_bad(pud_t pud)     { return 0; }
 463
 464#else /* CONFIG_64BIT */
 465
 466static inline int pgd_present(pgd_t pgd)
 467{
 468        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 469                return 1;
 470        return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
 471}
 472
 473static inline int pgd_none(pgd_t pgd)
 474{
 475        if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
 476                return 0;
 477        return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
 478}
 479
 480static inline int pgd_bad(pgd_t pgd)
 481{
 482        /*
 483         * With dynamic page table levels the pgd can be a region table
 484         * entry or a segment table entry. Check for the bit that are
 485         * invalid for either table entry.
 486         */
 487        unsigned long mask =
 488                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 489                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 490        return (pgd_val(pgd) & mask) != 0;
 491}
 492
 493static inline int pud_present(pud_t pud)
 494{
 495        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 496                return 1;
 497        return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
 498}
 499
 500static inline int pud_none(pud_t pud)
 501{
 502        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
 503                return 0;
 504        return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
 505}
 506
 507static inline int pud_large(pud_t pud)
 508{
 509        if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
 510                return 0;
 511        return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
 512}
 513
 514static inline int pud_bad(pud_t pud)
 515{
 516        /*
 517         * With dynamic page table levels the pud can be a region table
 518         * entry or a segment table entry. Check for the bit that are
 519         * invalid for either table entry.
 520         */
 521        unsigned long mask =
 522                ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
 523                ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
 524        return (pud_val(pud) & mask) != 0;
 525}
 526
 527#endif /* CONFIG_64BIT */
 528
 529static inline int pmd_present(pmd_t pmd)
 530{
 531        unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO;
 532        return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE ||
 533               !(pmd_val(pmd) & _SEGMENT_ENTRY_INV);
 534}
 535
 536static inline int pmd_none(pmd_t pmd)
 537{
 538        return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) &&
 539               !(pmd_val(pmd) & _SEGMENT_ENTRY_RO);
 540}
 541
 542static inline int pmd_large(pmd_t pmd)
 543{
 544#ifdef CONFIG_64BIT
 545        return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
 546#else
 547        return 0;
 548#endif
 549}
 550
 551static inline int pmd_bad(pmd_t pmd)
 552{
 553        unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
 554        return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
 555}
 556
 557#define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
 558extern void pmdp_splitting_flush(struct vm_area_struct *vma,
 559                                 unsigned long addr, pmd_t *pmdp);
 560
 561#define  __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
 562extern int pmdp_set_access_flags(struct vm_area_struct *vma,
 563                                 unsigned long address, pmd_t *pmdp,
 564                                 pmd_t entry, int dirty);
 565
 566#define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
 567extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
 568                                  unsigned long address, pmd_t *pmdp);
 569
 570#define __HAVE_ARCH_PMD_WRITE
 571static inline int pmd_write(pmd_t pmd)
 572{
 573        return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
 574}
 575
 576static inline int pmd_young(pmd_t pmd)
 577{
 578        return 0;
 579}
 580
 581static inline int pte_none(pte_t pte)
 582{
 583        return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
 584}
 585
 586static inline int pte_present(pte_t pte)
 587{
 588        unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
 589        return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
 590                (!(pte_val(pte) & _PAGE_INVALID) &&
 591                 !(pte_val(pte) & _PAGE_SWT));
 592}
 593
 594static inline int pte_file(pte_t pte)
 595{
 596        unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
 597        return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
 598}
 599
 600static inline int pte_special(pte_t pte)
 601{
 602        return (pte_val(pte) & _PAGE_SPECIAL);
 603}
 604
 605#define __HAVE_ARCH_PTE_SAME
 606static inline int pte_same(pte_t a, pte_t b)
 607{
 608        return pte_val(a) == pte_val(b);
 609}
 610
 611static inline pgste_t pgste_get_lock(pte_t *ptep)
 612{
 613        unsigned long new = 0;
 614#ifdef CONFIG_PGSTE
 615        unsigned long old;
 616
 617        preempt_disable();
 618        asm(
 619                "       lg      %0,%2\n"
 620                "0:     lgr     %1,%0\n"
 621                "       nihh    %0,0xff7f\n"    /* clear RCP_PCL_BIT in old */
 622                "       oihh    %1,0x0080\n"    /* set RCP_PCL_BIT in new */
 623                "       csg     %0,%1,%2\n"
 624                "       jl      0b\n"
 625                : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
 626                : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
 627#endif
 628        return __pgste(new);
 629}
 630
 631static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
 632{
 633#ifdef CONFIG_PGSTE
 634        asm(
 635                "       nihh    %1,0xff7f\n"    /* clear RCP_PCL_BIT */
 636                "       stg     %1,%0\n"
 637                : "=Q" (ptep[PTRS_PER_PTE])
 638                : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
 639                : "cc", "memory");
 640        preempt_enable();
 641#endif
 642}
 643
 644static inline void pgste_set(pte_t *ptep, pgste_t pgste)
 645{
 646#ifdef CONFIG_PGSTE
 647        *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
 648#endif
 649}
 650
 651static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
 652{
 653#ifdef CONFIG_PGSTE
 654        unsigned long address, bits;
 655        unsigned char skey;
 656
 657        if (pte_val(*ptep) & _PAGE_INVALID)
 658                return pgste;
 659        address = pte_val(*ptep) & PAGE_MASK;
 660        skey = page_get_storage_key(address);
 661        bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
 662        /* Clear page changed & referenced bit in the storage key */
 663        if (bits & _PAGE_CHANGED)
 664                page_set_storage_key(address, skey ^ bits, 0);
 665        else if (bits)
 666                page_reset_referenced(address);
 667        /* Transfer page changed & referenced bit to guest bits in pgste */
 668        pgste_val(pgste) |= bits << 48;         /* RCP_GR_BIT & RCP_GC_BIT */
 669        /* Get host changed & referenced bits from pgste */
 670        bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
 671        /* Transfer page changed & referenced bit to kvm user bits */
 672        pgste_val(pgste) |= bits << 45;         /* KVM_UR_BIT & KVM_UC_BIT */
 673        /* Clear relevant host bits in pgste. */
 674        pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
 675        pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
 676        /* Copy page access key and fetch protection bit to pgste */
 677        pgste_val(pgste) |=
 678                (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
 679        /* Transfer referenced bit to pte */
 680        pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1;
 681#endif
 682        return pgste;
 683
 684}
 685
 686static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
 687{
 688#ifdef CONFIG_PGSTE
 689        int young;
 690
 691        if (pte_val(*ptep) & _PAGE_INVALID)
 692                return pgste;
 693        /* Get referenced bit from storage key */
 694        young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
 695        if (young)
 696                pgste_val(pgste) |= RCP_GR_BIT;
 697        /* Get host referenced bit from pgste */
 698        if (pgste_val(pgste) & RCP_HR_BIT) {
 699                pgste_val(pgste) &= ~RCP_HR_BIT;
 700                young = 1;
 701        }
 702        /* Transfer referenced bit to kvm user bits and pte */
 703        if (young) {
 704                pgste_val(pgste) |= KVM_UR_BIT;
 705                pte_val(*ptep) |= _PAGE_SWR;
 706        }
 707#endif
 708        return pgste;
 709}
 710
 711static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
 712{
 713#ifdef CONFIG_PGSTE
 714        unsigned long address;
 715        unsigned long nkey;
 716
 717        if (pte_val(entry) & _PAGE_INVALID)
 718                return;
 719        VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
 720        address = pte_val(entry) & PAGE_MASK;
 721        /*
 722         * Set page access key and fetch protection bit from pgste.
 723         * The guest C/R information is still in the PGSTE, set real
 724         * key C/R to 0.
 725         */
 726        nkey = (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
 727        page_set_storage_key(address, nkey, 0);
 728#endif
 729}
 730
 731static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
 732{
 733        if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) {
 734                /*
 735                 * Without enhanced suppression-on-protection force
 736                 * the dirty bit on for all writable ptes.
 737                 */
 738                pte_val(entry) |= _PAGE_SWC;
 739                pte_val(entry) &= ~_PAGE_RO;
 740        }
 741        *ptep = entry;
 742}
 743
 744/**
 745 * struct gmap_struct - guest address space
 746 * @mm: pointer to the parent mm_struct
 747 * @table: pointer to the page directory
 748 * @asce: address space control element for gmap page table
 749 * @crst_list: list of all crst tables used in the guest address space
 750 */
 751struct gmap {
 752        struct list_head list;
 753        struct mm_struct *mm;
 754        unsigned long *table;
 755        unsigned long asce;
 756        struct list_head crst_list;
 757};
 758
 759/**
 760 * struct gmap_rmap - reverse mapping for segment table entries
 761 * @gmap: pointer to the gmap_struct
 762 * @entry: pointer to a segment table entry
 763 * @vmaddr: virtual address in the guest address space
 764 */
 765struct gmap_rmap {
 766        struct list_head list;
 767        struct gmap *gmap;
 768        unsigned long *entry;
 769        unsigned long vmaddr;
 770};
 771
 772/**
 773 * struct gmap_pgtable - gmap information attached to a page table
 774 * @vmaddr: address of the 1MB segment in the process virtual memory
 775 * @mapper: list of segment table entries mapping a page table
 776 */
 777struct gmap_pgtable {
 778        unsigned long vmaddr;
 779        struct list_head mapper;
 780};
 781
 782/**
 783 * struct gmap_notifier - notify function block for page invalidation
 784 * @notifier_call: address of callback function
 785 */
 786struct gmap_notifier {
 787        struct list_head list;
 788        void (*notifier_call)(struct gmap *gmap, unsigned long address);
 789};
 790
 791struct gmap *gmap_alloc(struct mm_struct *mm);
 792void gmap_free(struct gmap *gmap);
 793void gmap_enable(struct gmap *gmap);
 794void gmap_disable(struct gmap *gmap);
 795int gmap_map_segment(struct gmap *gmap, unsigned long from,
 796                     unsigned long to, unsigned long len);
 797int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
 798unsigned long __gmap_translate(unsigned long address, struct gmap *);
 799unsigned long gmap_translate(unsigned long address, struct gmap *);
 800unsigned long __gmap_fault(unsigned long address, struct gmap *);
 801unsigned long gmap_fault(unsigned long address, struct gmap *);
 802void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
 803
 804void gmap_register_ipte_notifier(struct gmap_notifier *);
 805void gmap_unregister_ipte_notifier(struct gmap_notifier *);
 806int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
 807void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
 808
 809static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
 810                                        unsigned long addr,
 811                                        pte_t *ptep, pgste_t pgste)
 812{
 813#ifdef CONFIG_PGSTE
 814        if (pgste_val(pgste) & RCP_IN_BIT) {
 815                pgste_val(pgste) &= ~RCP_IN_BIT;
 816                gmap_do_ipte_notify(mm, addr, ptep);
 817        }
 818#endif
 819        return pgste;
 820}
 821
 822/*
 823 * Certain architectures need to do special things when PTEs
 824 * within a page table are directly modified.  Thus, the following
 825 * hook is made available.
 826 */
 827static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
 828                              pte_t *ptep, pte_t entry)
 829{
 830        pgste_t pgste;
 831
 832        if (mm_has_pgste(mm)) {
 833                pgste = pgste_get_lock(ptep);
 834                pgste_set_key(ptep, pgste, entry);
 835                pgste_set_pte(ptep, entry);
 836                pgste_set_unlock(ptep, pgste);
 837        } else {
 838                if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
 839                        pte_val(entry) |= _PAGE_CO;
 840                *ptep = entry;
 841        }
 842}
 843
 844/*
 845 * query functions pte_write/pte_dirty/pte_young only work if
 846 * pte_present() is true. Undefined behaviour if not..
 847 */
 848static inline int pte_write(pte_t pte)
 849{
 850        return (pte_val(pte) & _PAGE_SWW) != 0;
 851}
 852
 853static inline int pte_dirty(pte_t pte)
 854{
 855        return (pte_val(pte) & _PAGE_SWC) != 0;
 856}
 857
 858static inline int pte_young(pte_t pte)
 859{
 860#ifdef CONFIG_PGSTE
 861        if (pte_val(pte) & _PAGE_SWR)
 862                return 1;
 863#endif
 864        return 0;
 865}
 866
 867/*
 868 * pgd/pmd/pte modification functions
 869 */
 870
 871static inline void pgd_clear(pgd_t *pgd)
 872{
 873#ifdef CONFIG_64BIT
 874        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
 875                pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
 876#endif
 877}
 878
 879static inline void pud_clear(pud_t *pud)
 880{
 881#ifdef CONFIG_64BIT
 882        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
 883                pud_val(*pud) = _REGION3_ENTRY_EMPTY;
 884#endif
 885}
 886
 887static inline void pmd_clear(pmd_t *pmdp)
 888{
 889        pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
 890}
 891
 892static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
 893{
 894        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
 895}
 896
 897/*
 898 * The following pte modification functions only work if
 899 * pte_present() is true. Undefined behaviour if not..
 900 */
 901static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
 902{
 903        pte_val(pte) &= _PAGE_CHG_MASK;
 904        pte_val(pte) |= pgprot_val(newprot);
 905        if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW))
 906                pte_val(pte) &= ~_PAGE_RO;
 907        return pte;
 908}
 909
 910static inline pte_t pte_wrprotect(pte_t pte)
 911{
 912        pte_val(pte) &= ~_PAGE_SWW;
 913        /* Do not clobber _PAGE_TYPE_NONE pages!  */
 914        if (!(pte_val(pte) & _PAGE_INVALID))
 915                pte_val(pte) |= _PAGE_RO;
 916        return pte;
 917}
 918
 919static inline pte_t pte_mkwrite(pte_t pte)
 920{
 921        pte_val(pte) |= _PAGE_SWW;
 922        if (pte_val(pte) & _PAGE_SWC)
 923                pte_val(pte) &= ~_PAGE_RO;
 924        return pte;
 925}
 926
 927static inline pte_t pte_mkclean(pte_t pte)
 928{
 929        pte_val(pte) &= ~_PAGE_SWC;
 930        /* Do not clobber _PAGE_TYPE_NONE pages!  */
 931        if (!(pte_val(pte) & _PAGE_INVALID))
 932                pte_val(pte) |= _PAGE_RO;
 933        return pte;
 934}
 935
 936static inline pte_t pte_mkdirty(pte_t pte)
 937{
 938        pte_val(pte) |= _PAGE_SWC;
 939        if (pte_val(pte) & _PAGE_SWW)
 940                pte_val(pte) &= ~_PAGE_RO;
 941        return pte;
 942}
 943
 944static inline pte_t pte_mkold(pte_t pte)
 945{
 946#ifdef CONFIG_PGSTE
 947        pte_val(pte) &= ~_PAGE_SWR;
 948#endif
 949        return pte;
 950}
 951
 952static inline pte_t pte_mkyoung(pte_t pte)
 953{
 954        return pte;
 955}
 956
 957static inline pte_t pte_mkspecial(pte_t pte)
 958{
 959        pte_val(pte) |= _PAGE_SPECIAL;
 960        return pte;
 961}
 962
 963#ifdef CONFIG_HUGETLB_PAGE
 964static inline pte_t pte_mkhuge(pte_t pte)
 965{
 966        pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
 967        return pte;
 968}
 969#endif
 970
 971/*
 972 * Get (and clear) the user dirty bit for a pte.
 973 */
 974static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
 975                                                 pte_t *ptep)
 976{
 977        pgste_t pgste;
 978        int dirty = 0;
 979
 980        if (mm_has_pgste(mm)) {
 981                pgste = pgste_get_lock(ptep);
 982                pgste = pgste_update_all(ptep, pgste);
 983                dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
 984                pgste_val(pgste) &= ~KVM_UC_BIT;
 985                pgste_set_unlock(ptep, pgste);
 986                return dirty;
 987        }
 988        return dirty;
 989}
 990
 991/*
 992 * Get (and clear) the user referenced bit for a pte.
 993 */
 994static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
 995                                                 pte_t *ptep)
 996{
 997        pgste_t pgste;
 998        int young = 0;
 999
1000        if (mm_has_pgste(mm)) {
1001                pgste = pgste_get_lock(ptep);
1002                pgste = pgste_update_young(ptep, pgste);
1003                young = !!(pgste_val(pgste) & KVM_UR_BIT);
1004                pgste_val(pgste) &= ~KVM_UR_BIT;
1005                pgste_set_unlock(ptep, pgste);
1006        }
1007        return young;
1008}
1009
1010#define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1011static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1012                                            unsigned long addr, pte_t *ptep)
1013{
1014        pgste_t pgste;
1015        pte_t pte;
1016
1017        if (mm_has_pgste(vma->vm_mm)) {
1018                pgste = pgste_get_lock(ptep);
1019                pgste = pgste_update_young(ptep, pgste);
1020                pte = *ptep;
1021                *ptep = pte_mkold(pte);
1022                pgste_set_unlock(ptep, pgste);
1023                return pte_young(pte);
1024        }
1025        return 0;
1026}
1027
1028#define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1029static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1030                                         unsigned long address, pte_t *ptep)
1031{
1032        /* No need to flush TLB
1033         * On s390 reference bits are in storage key and never in TLB
1034         * With virtualization we handle the reference bit, without we
1035         * we can simply return */
1036        return ptep_test_and_clear_young(vma, address, ptep);
1037}
1038
1039static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1040{
1041        if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1042#ifndef CONFIG_64BIT
1043                /* pto must point to the start of the segment table */
1044                pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
1045#else
1046                /* ipte in zarch mode can do the math */
1047                pte_t *pto = ptep;
1048#endif
1049                asm volatile(
1050                        "       ipte    %2,%3"
1051                        : "=m" (*ptep) : "m" (*ptep),
1052                          "a" (pto), "a" (address));
1053        }
1054}
1055
1056/*
1057 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1058 * both clear the TLB for the unmapped pte. The reason is that
1059 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1060 * to modify an active pte. The sequence is
1061 *   1) ptep_get_and_clear
1062 *   2) set_pte_at
1063 *   3) flush_tlb_range
1064 * On s390 the tlb needs to get flushed with the modification of the pte
1065 * if the pte is active. The only way how this can be implemented is to
1066 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1067 * is a nop.
1068 */
1069#define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1070static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1071                                       unsigned long address, pte_t *ptep)
1072{
1073        pgste_t pgste;
1074        pte_t pte;
1075
1076        mm->context.flush_mm = 1;
1077        if (mm_has_pgste(mm)) {
1078                pgste = pgste_get_lock(ptep);
1079                pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1080        }
1081
1082        pte = *ptep;
1083        if (!mm_exclusive(mm))
1084                __ptep_ipte(address, ptep);
1085        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1086
1087        if (mm_has_pgste(mm)) {
1088                pgste = pgste_update_all(&pte, pgste);
1089                pgste_set_unlock(ptep, pgste);
1090        }
1091        return pte;
1092}
1093
1094#define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1095static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1096                                           unsigned long address,
1097                                           pte_t *ptep)
1098{
1099        pgste_t pgste;
1100        pte_t pte;
1101
1102        mm->context.flush_mm = 1;
1103        if (mm_has_pgste(mm)) {
1104                pgste = pgste_get_lock(ptep);
1105                pgste_ipte_notify(mm, address, ptep, pgste);
1106        }
1107
1108        pte = *ptep;
1109        if (!mm_exclusive(mm))
1110                __ptep_ipte(address, ptep);
1111
1112        if (mm_has_pgste(mm)) {
1113                pgste = pgste_update_all(&pte, pgste);
1114                pgste_set(ptep, pgste);
1115        }
1116        return pte;
1117}
1118
1119static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1120                                           unsigned long address,
1121                                           pte_t *ptep, pte_t pte)
1122{
1123        pgste_t pgste;
1124
1125        if (mm_has_pgste(mm)) {
1126                pgste = *(pgste_t *)(ptep + PTRS_PER_PTE);
1127                pgste_set_key(ptep, pgste, pte);
1128                pgste_set_pte(ptep, pte);
1129                pgste_set_unlock(ptep, pgste);
1130        } else
1131                *ptep = pte;
1132}
1133
1134#define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1135static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1136                                     unsigned long address, pte_t *ptep)
1137{
1138        pgste_t pgste;
1139        pte_t pte;
1140
1141        if (mm_has_pgste(vma->vm_mm)) {
1142                pgste = pgste_get_lock(ptep);
1143                pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1144        }
1145
1146        pte = *ptep;
1147        __ptep_ipte(address, ptep);
1148        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1149
1150        if (mm_has_pgste(vma->vm_mm)) {
1151                pgste = pgste_update_all(&pte, pgste);
1152                pgste_set_unlock(ptep, pgste);
1153        }
1154        return pte;
1155}
1156
1157/*
1158 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1159 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1160 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1161 * cannot be accessed while the batched unmap is running. In this case
1162 * full==1 and a simple pte_clear is enough. See tlb.h.
1163 */
1164#define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1165static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1166                                            unsigned long address,
1167                                            pte_t *ptep, int full)
1168{
1169        pgste_t pgste;
1170        pte_t pte;
1171
1172        if (mm_has_pgste(mm)) {
1173                pgste = pgste_get_lock(ptep);
1174                if (!full)
1175                        pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1176        }
1177
1178        pte = *ptep;
1179        if (!full)
1180                __ptep_ipte(address, ptep);
1181        pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1182
1183        if (mm_has_pgste(mm)) {
1184                pgste = pgste_update_all(&pte, pgste);
1185                pgste_set_unlock(ptep, pgste);
1186        }
1187        return pte;
1188}
1189
1190#define __HAVE_ARCH_PTEP_SET_WRPROTECT
1191static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1192                                       unsigned long address, pte_t *ptep)
1193{
1194        pgste_t pgste;
1195        pte_t pte = *ptep;
1196
1197        if (pte_write(pte)) {
1198                mm->context.flush_mm = 1;
1199                if (mm_has_pgste(mm)) {
1200                        pgste = pgste_get_lock(ptep);
1201                        pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1202                }
1203
1204                if (!mm_exclusive(mm))
1205                        __ptep_ipte(address, ptep);
1206                pte = pte_wrprotect(pte);
1207
1208                if (mm_has_pgste(mm)) {
1209                        pgste_set_pte(ptep, pte);
1210                        pgste_set_unlock(ptep, pgste);
1211                } else
1212                        *ptep = pte;
1213        }
1214        return pte;
1215}
1216
1217#define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1218static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1219                                        unsigned long address, pte_t *ptep,
1220                                        pte_t entry, int dirty)
1221{
1222        pgste_t pgste;
1223
1224        if (pte_same(*ptep, entry))
1225                return 0;
1226        if (mm_has_pgste(vma->vm_mm)) {
1227                pgste = pgste_get_lock(ptep);
1228                pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1229        }
1230
1231        __ptep_ipte(address, ptep);
1232
1233        if (mm_has_pgste(vma->vm_mm)) {
1234                pgste_set_pte(ptep, entry);
1235                pgste_set_unlock(ptep, pgste);
1236        } else
1237                *ptep = entry;
1238        return 1;
1239}
1240
1241/*
1242 * Conversion functions: convert a page and protection to a page entry,
1243 * and a page entry and page directory to the page they refer to.
1244 */
1245static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1246{
1247        pte_t __pte;
1248        pte_val(__pte) = physpage + pgprot_val(pgprot);
1249        return __pte;
1250}
1251
1252static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1253{
1254        unsigned long physpage = page_to_phys(page);
1255        pte_t __pte = mk_pte_phys(physpage, pgprot);
1256
1257        if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) {
1258                pte_val(__pte) |= _PAGE_SWC;
1259                pte_val(__pte) &= ~_PAGE_RO;
1260        }
1261        return __pte;
1262}
1263
1264#define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1265#define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1266#define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1267#define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1268
1269#define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1270#define pgd_offset_k(address) pgd_offset(&init_mm, address)
1271
1272#ifndef CONFIG_64BIT
1273
1274#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1275#define pud_deref(pmd) ({ BUG(); 0UL; })
1276#define pgd_deref(pmd) ({ BUG(); 0UL; })
1277
1278#define pud_offset(pgd, address) ((pud_t *) pgd)
1279#define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1280
1281#else /* CONFIG_64BIT */
1282
1283#define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1284#define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1285#define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1286
1287static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1288{
1289        pud_t *pud = (pud_t *) pgd;
1290        if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1291                pud = (pud_t *) pgd_deref(*pgd);
1292        return pud  + pud_index(address);
1293}
1294
1295static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1296{
1297        pmd_t *pmd = (pmd_t *) pud;
1298        if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1299                pmd = (pmd_t *) pud_deref(*pud);
1300        return pmd + pmd_index(address);
1301}
1302
1303#endif /* CONFIG_64BIT */
1304
1305#define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1306#define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1307#define pte_page(x) pfn_to_page(pte_pfn(x))
1308
1309#define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1310
1311/* Find an entry in the lowest level page table.. */
1312#define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1313#define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1314#define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1315#define pte_unmap(pte) do { } while (0)
1316
1317static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
1318{
1319        unsigned long sto = (unsigned long) pmdp -
1320                            pmd_index(address) * sizeof(pmd_t);
1321
1322        if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
1323                asm volatile(
1324                        "       .insn   rrf,0xb98e0000,%2,%3,0,0"
1325                        : "=m" (*pmdp)
1326                        : "m" (*pmdp), "a" (sto),
1327                          "a" ((address & HPAGE_MASK))
1328                        : "cc"
1329                );
1330        }
1331}
1332
1333#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1334static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1335{
1336        /*
1337         * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx)
1338         * Convert to segment table entry format.
1339         */
1340        if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1341                return pgprot_val(SEGMENT_NONE);
1342        if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1343                return pgprot_val(SEGMENT_RO);
1344        return pgprot_val(SEGMENT_RW);
1345}
1346
1347static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1348{
1349        pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1350        pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1351        return pmd;
1352}
1353
1354static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1355{
1356        pmd_t __pmd;
1357        pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1358        return __pmd;
1359}
1360
1361static inline pmd_t pmd_mkwrite(pmd_t pmd)
1362{
1363        /* Do not clobber _HPAGE_TYPE_NONE pages! */
1364        if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV))
1365                pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
1366        return pmd;
1367}
1368#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1369
1370#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1371
1372#define __HAVE_ARCH_PGTABLE_DEPOSIT
1373extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
1374
1375#define __HAVE_ARCH_PGTABLE_WITHDRAW
1376extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
1377
1378static inline int pmd_trans_splitting(pmd_t pmd)
1379{
1380        return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1381}
1382
1383static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1384                              pmd_t *pmdp, pmd_t entry)
1385{
1386        if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1)
1387                pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1388        *pmdp = entry;
1389}
1390
1391static inline pmd_t pmd_mkhuge(pmd_t pmd)
1392{
1393        pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1394        return pmd;
1395}
1396
1397static inline pmd_t pmd_wrprotect(pmd_t pmd)
1398{
1399        pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
1400        return pmd;
1401}
1402
1403static inline pmd_t pmd_mkdirty(pmd_t pmd)
1404{
1405        /* No dirty bit in the segment table entry. */
1406        return pmd;
1407}
1408
1409static inline pmd_t pmd_mkold(pmd_t pmd)
1410{
1411        /* No referenced bit in the segment table entry. */
1412        return pmd;
1413}
1414
1415static inline pmd_t pmd_mkyoung(pmd_t pmd)
1416{
1417        /* No referenced bit in the segment table entry. */
1418        return pmd;
1419}
1420
1421#define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1422static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1423                                            unsigned long address, pmd_t *pmdp)
1424{
1425        unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
1426        long tmp, rc;
1427        int counter;
1428
1429        rc = 0;
1430        if (MACHINE_HAS_RRBM) {
1431                counter = PTRS_PER_PTE >> 6;
1432                asm volatile(
1433                        "0:     .insn   rre,0xb9ae0000,%0,%3\n" /* rrbm */
1434                        "       ogr     %1,%0\n"
1435                        "       la      %3,0(%4,%3)\n"
1436                        "       brct    %2,0b\n"
1437                        : "=&d" (tmp), "+&d" (rc), "+d" (counter),
1438                          "+a" (pmd_addr)
1439                        : "a" (64 * 4096UL) : "cc");
1440                rc = !!rc;
1441        } else {
1442                counter = PTRS_PER_PTE;
1443                asm volatile(
1444                        "0:     rrbe    0,%2\n"
1445                        "       la      %2,0(%3,%2)\n"
1446                        "       brc     12,1f\n"
1447                        "       lhi     %0,1\n"
1448                        "1:     brct    %1,0b\n"
1449                        : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
1450                        : "a" (4096UL) : "cc");
1451        }
1452        return rc;
1453}
1454
1455#define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1456static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1457                                       unsigned long address, pmd_t *pmdp)
1458{
1459        pmd_t pmd = *pmdp;
1460
1461        __pmd_idte(address, pmdp);
1462        pmd_clear(pmdp);
1463        return pmd;
1464}
1465
1466#define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1467static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1468                                     unsigned long address, pmd_t *pmdp)
1469{
1470        return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1471}
1472
1473#define __HAVE_ARCH_PMDP_INVALIDATE
1474static inline void pmdp_invalidate(struct vm_area_struct *vma,
1475                                   unsigned long address, pmd_t *pmdp)
1476{
1477        __pmd_idte(address, pmdp);
1478}
1479
1480#define __HAVE_ARCH_PMDP_SET_WRPROTECT
1481static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1482                                      unsigned long address, pmd_t *pmdp)
1483{
1484        pmd_t pmd = *pmdp;
1485
1486        if (pmd_write(pmd)) {
1487                __pmd_idte(address, pmdp);
1488                set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1489        }
1490}
1491
1492#define pfn_pmd(pfn, pgprot)    mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1493#define mk_pmd(page, pgprot)    pfn_pmd(page_to_pfn(page), (pgprot))
1494
1495static inline int pmd_trans_huge(pmd_t pmd)
1496{
1497        return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1498}
1499
1500static inline int has_transparent_hugepage(void)
1501{
1502        return MACHINE_HAS_HPAGE ? 1 : 0;
1503}
1504
1505static inline unsigned long pmd_pfn(pmd_t pmd)
1506{
1507        return pmd_val(pmd) >> PAGE_SHIFT;
1508}
1509#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1510
1511/*
1512 * 31 bit swap entry format:
1513 * A page-table entry has some bits we have to treat in a special way.
1514 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1515 * exception will occur instead of a page translation exception. The
1516 * specifiation exception has the bad habit not to store necessary
1517 * information in the lowcore.
1518 * Bit 21 and bit 22 are the page invalid bit and the page protection
1519 * bit. We set both to indicate a swapped page.
1520 * Bit 30 and 31 are used to distinguish the different page types. For
1521 * a swapped page these bits need to be zero.
1522 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1523 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1524 * plus 24 for the offset.
1525 * 0|     offset        |0110|o|type |00|
1526 * 0 0000000001111111111 2222 2 22222 33
1527 * 0 1234567890123456789 0123 4 56789 01
1528 *
1529 * 64 bit swap entry format:
1530 * A page-table entry has some bits we have to treat in a special way.
1531 * Bits 52 and bit 55 have to be zero, otherwise an specification
1532 * exception will occur instead of a page translation exception. The
1533 * specifiation exception has the bad habit not to store necessary
1534 * information in the lowcore.
1535 * Bit 53 and bit 54 are the page invalid bit and the page protection
1536 * bit. We set both to indicate a swapped page.
1537 * Bit 62 and 63 are used to distinguish the different page types. For
1538 * a swapped page these bits need to be zero.
1539 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1540 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1541 * plus 56 for the offset.
1542 * |                      offset                        |0110|o|type |00|
1543 *  0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1544 *  0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1545 */
1546#ifndef CONFIG_64BIT
1547#define __SWP_OFFSET_MASK (~0UL >> 12)
1548#else
1549#define __SWP_OFFSET_MASK (~0UL >> 11)
1550#endif
1551static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1552{
1553        pte_t pte;
1554        offset &= __SWP_OFFSET_MASK;
1555        pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1556                ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1557        return pte;
1558}
1559
1560#define __swp_type(entry)       (((entry).val >> 2) & 0x1f)
1561#define __swp_offset(entry)     (((entry).val >> 11) | (((entry).val >> 7) & 1))
1562#define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1563
1564#define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1565#define __swp_entry_to_pte(x)   ((pte_t) { (x).val })
1566
1567#ifndef CONFIG_64BIT
1568# define PTE_FILE_MAX_BITS      26
1569#else /* CONFIG_64BIT */
1570# define PTE_FILE_MAX_BITS      59
1571#endif /* CONFIG_64BIT */
1572
1573#define pte_to_pgoff(__pte) \
1574        ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1575
1576#define pgoff_to_pte(__off) \
1577        ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1578                   | _PAGE_TYPE_FILE })
1579
1580#endif /* !__ASSEMBLY__ */
1581
1582#define kern_addr_valid(addr)   (1)
1583
1584extern int vmem_add_mapping(unsigned long start, unsigned long size);
1585extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1586extern int s390_enable_sie(void);
1587
1588/*
1589 * No page table caches to initialise
1590 */
1591static inline void pgtable_cache_init(void) { }
1592static inline void check_pgt_cache(void) { }
1593
1594#include <asm-generic/pgtable.h>
1595
1596#endif /* _S390_PAGE_H */
1597