linux/arch/sh/kernel/smp.c
<<
>>
Prefs
   1/*
   2 * arch/sh/kernel/smp.c
   3 *
   4 * SMP support for the SuperH processors.
   5 *
   6 * Copyright (C) 2002 - 2010 Paul Mundt
   7 * Copyright (C) 2006 - 2007 Akio Idehara
   8 *
   9 * This file is subject to the terms and conditions of the GNU General Public
  10 * License.  See the file "COPYING" in the main directory of this archive
  11 * for more details.
  12 */
  13#include <linux/err.h>
  14#include <linux/cache.h>
  15#include <linux/cpumask.h>
  16#include <linux/delay.h>
  17#include <linux/init.h>
  18#include <linux/spinlock.h>
  19#include <linux/mm.h>
  20#include <linux/module.h>
  21#include <linux/cpu.h>
  22#include <linux/interrupt.h>
  23#include <linux/sched.h>
  24#include <linux/atomic.h>
  25#include <asm/processor.h>
  26#include <asm/mmu_context.h>
  27#include <asm/smp.h>
  28#include <asm/cacheflush.h>
  29#include <asm/sections.h>
  30#include <asm/setup.h>
  31
  32int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
  33int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
  34
  35struct plat_smp_ops *mp_ops = NULL;
  36
  37/* State of each CPU */
  38DEFINE_PER_CPU(int, cpu_state) = { 0 };
  39
  40void __cpuinit register_smp_ops(struct plat_smp_ops *ops)
  41{
  42        if (mp_ops)
  43                printk(KERN_WARNING "Overriding previously set SMP ops\n");
  44
  45        mp_ops = ops;
  46}
  47
  48static inline void __cpuinit smp_store_cpu_info(unsigned int cpu)
  49{
  50        struct sh_cpuinfo *c = cpu_data + cpu;
  51
  52        memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
  53
  54        c->loops_per_jiffy = loops_per_jiffy;
  55}
  56
  57void __init smp_prepare_cpus(unsigned int max_cpus)
  58{
  59        unsigned int cpu = smp_processor_id();
  60
  61        init_new_context(current, &init_mm);
  62        current_thread_info()->cpu = cpu;
  63        mp_ops->prepare_cpus(max_cpus);
  64
  65#ifndef CONFIG_HOTPLUG_CPU
  66        init_cpu_present(cpu_possible_mask);
  67#endif
  68}
  69
  70void __init smp_prepare_boot_cpu(void)
  71{
  72        unsigned int cpu = smp_processor_id();
  73
  74        __cpu_number_map[0] = cpu;
  75        __cpu_logical_map[0] = cpu;
  76
  77        set_cpu_online(cpu, true);
  78        set_cpu_possible(cpu, true);
  79
  80        per_cpu(cpu_state, cpu) = CPU_ONLINE;
  81}
  82
  83#ifdef CONFIG_HOTPLUG_CPU
  84void native_cpu_die(unsigned int cpu)
  85{
  86        unsigned int i;
  87
  88        for (i = 0; i < 10; i++) {
  89                smp_rmb();
  90                if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
  91                        if (system_state == SYSTEM_RUNNING)
  92                                pr_info("CPU %u is now offline\n", cpu);
  93
  94                        return;
  95                }
  96
  97                msleep(100);
  98        }
  99
 100        pr_err("CPU %u didn't die...\n", cpu);
 101}
 102
 103int native_cpu_disable(unsigned int cpu)
 104{
 105        return cpu == 0 ? -EPERM : 0;
 106}
 107
 108void play_dead_common(void)
 109{
 110        idle_task_exit();
 111        irq_ctx_exit(raw_smp_processor_id());
 112        mb();
 113
 114        __get_cpu_var(cpu_state) = CPU_DEAD;
 115        local_irq_disable();
 116}
 117
 118void native_play_dead(void)
 119{
 120        play_dead_common();
 121}
 122
 123int __cpu_disable(void)
 124{
 125        unsigned int cpu = smp_processor_id();
 126        int ret;
 127
 128        ret = mp_ops->cpu_disable(cpu);
 129        if (ret)
 130                return ret;
 131
 132        /*
 133         * Take this CPU offline.  Once we clear this, we can't return,
 134         * and we must not schedule until we're ready to give up the cpu.
 135         */
 136        set_cpu_online(cpu, false);
 137
 138        /*
 139         * OK - migrate IRQs away from this CPU
 140         */
 141        migrate_irqs();
 142
 143        /*
 144         * Stop the local timer for this CPU.
 145         */
 146        local_timer_stop(cpu);
 147
 148        /*
 149         * Flush user cache and TLB mappings, and then remove this CPU
 150         * from the vm mask set of all processes.
 151         */
 152        flush_cache_all();
 153        local_flush_tlb_all();
 154
 155        clear_tasks_mm_cpumask(cpu);
 156
 157        return 0;
 158}
 159#else /* ... !CONFIG_HOTPLUG_CPU */
 160int native_cpu_disable(unsigned int cpu)
 161{
 162        return -ENOSYS;
 163}
 164
 165void native_cpu_die(unsigned int cpu)
 166{
 167        /* We said "no" in __cpu_disable */
 168        BUG();
 169}
 170
 171void native_play_dead(void)
 172{
 173        BUG();
 174}
 175#endif
 176
 177asmlinkage void __cpuinit start_secondary(void)
 178{
 179        unsigned int cpu = smp_processor_id();
 180        struct mm_struct *mm = &init_mm;
 181
 182        enable_mmu();
 183        atomic_inc(&mm->mm_count);
 184        atomic_inc(&mm->mm_users);
 185        current->active_mm = mm;
 186        enter_lazy_tlb(mm, current);
 187        local_flush_tlb_all();
 188
 189        per_cpu_trap_init();
 190
 191        preempt_disable();
 192
 193        notify_cpu_starting(cpu);
 194
 195        local_irq_enable();
 196
 197        /* Enable local timers */
 198        local_timer_setup(cpu);
 199        calibrate_delay();
 200
 201        smp_store_cpu_info(cpu);
 202
 203        set_cpu_online(cpu, true);
 204        per_cpu(cpu_state, cpu) = CPU_ONLINE;
 205
 206        cpu_startup_entry(CPUHP_ONLINE);
 207}
 208
 209extern struct {
 210        unsigned long sp;
 211        unsigned long bss_start;
 212        unsigned long bss_end;
 213        void *start_kernel_fn;
 214        void *cpu_init_fn;
 215        void *thread_info;
 216} stack_start;
 217
 218int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tsk)
 219{
 220        unsigned long timeout;
 221
 222        per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
 223
 224        /* Fill in data in head.S for secondary cpus */
 225        stack_start.sp = tsk->thread.sp;
 226        stack_start.thread_info = tsk->stack;
 227        stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
 228        stack_start.start_kernel_fn = start_secondary;
 229
 230        flush_icache_range((unsigned long)&stack_start,
 231                           (unsigned long)&stack_start + sizeof(stack_start));
 232        wmb();
 233
 234        mp_ops->start_cpu(cpu, (unsigned long)_stext);
 235
 236        timeout = jiffies + HZ;
 237        while (time_before(jiffies, timeout)) {
 238                if (cpu_online(cpu))
 239                        break;
 240
 241                udelay(10);
 242                barrier();
 243        }
 244
 245        if (cpu_online(cpu))
 246                return 0;
 247
 248        return -ENOENT;
 249}
 250
 251void __init smp_cpus_done(unsigned int max_cpus)
 252{
 253        unsigned long bogosum = 0;
 254        int cpu;
 255
 256        for_each_online_cpu(cpu)
 257                bogosum += cpu_data[cpu].loops_per_jiffy;
 258
 259        printk(KERN_INFO "SMP: Total of %d processors activated "
 260               "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
 261               bogosum / (500000/HZ),
 262               (bogosum / (5000/HZ)) % 100);
 263}
 264
 265void smp_send_reschedule(int cpu)
 266{
 267        mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
 268}
 269
 270void smp_send_stop(void)
 271{
 272        smp_call_function(stop_this_cpu, 0, 0);
 273}
 274
 275void arch_send_call_function_ipi_mask(const struct cpumask *mask)
 276{
 277        int cpu;
 278
 279        for_each_cpu(cpu, mask)
 280                mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
 281}
 282
 283void arch_send_call_function_single_ipi(int cpu)
 284{
 285        mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
 286}
 287
 288void smp_timer_broadcast(const struct cpumask *mask)
 289{
 290        int cpu;
 291
 292        for_each_cpu(cpu, mask)
 293                mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
 294}
 295
 296static void ipi_timer(void)
 297{
 298        irq_enter();
 299        local_timer_interrupt();
 300        irq_exit();
 301}
 302
 303void smp_message_recv(unsigned int msg)
 304{
 305        switch (msg) {
 306        case SMP_MSG_FUNCTION:
 307                generic_smp_call_function_interrupt();
 308                break;
 309        case SMP_MSG_RESCHEDULE:
 310                scheduler_ipi();
 311                break;
 312        case SMP_MSG_FUNCTION_SINGLE:
 313                generic_smp_call_function_single_interrupt();
 314                break;
 315        case SMP_MSG_TIMER:
 316                ipi_timer();
 317                break;
 318        default:
 319                printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
 320                       smp_processor_id(), __func__, msg);
 321                break;
 322        }
 323}
 324
 325/* Not really SMP stuff ... */
 326int setup_profiling_timer(unsigned int multiplier)
 327{
 328        return 0;
 329}
 330
 331static void flush_tlb_all_ipi(void *info)
 332{
 333        local_flush_tlb_all();
 334}
 335
 336void flush_tlb_all(void)
 337{
 338        on_each_cpu(flush_tlb_all_ipi, 0, 1);
 339}
 340
 341static void flush_tlb_mm_ipi(void *mm)
 342{
 343        local_flush_tlb_mm((struct mm_struct *)mm);
 344}
 345
 346/*
 347 * The following tlb flush calls are invoked when old translations are
 348 * being torn down, or pte attributes are changing. For single threaded
 349 * address spaces, a new context is obtained on the current cpu, and tlb
 350 * context on other cpus are invalidated to force a new context allocation
 351 * at switch_mm time, should the mm ever be used on other cpus. For
 352 * multithreaded address spaces, intercpu interrupts have to be sent.
 353 * Another case where intercpu interrupts are required is when the target
 354 * mm might be active on another cpu (eg debuggers doing the flushes on
 355 * behalf of debugees, kswapd stealing pages from another process etc).
 356 * Kanoj 07/00.
 357 */
 358void flush_tlb_mm(struct mm_struct *mm)
 359{
 360        preempt_disable();
 361
 362        if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 363                smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
 364        } else {
 365                int i;
 366                for (i = 0; i < num_online_cpus(); i++)
 367                        if (smp_processor_id() != i)
 368                                cpu_context(i, mm) = 0;
 369        }
 370        local_flush_tlb_mm(mm);
 371
 372        preempt_enable();
 373}
 374
 375struct flush_tlb_data {
 376        struct vm_area_struct *vma;
 377        unsigned long addr1;
 378        unsigned long addr2;
 379};
 380
 381static void flush_tlb_range_ipi(void *info)
 382{
 383        struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
 384
 385        local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
 386}
 387
 388void flush_tlb_range(struct vm_area_struct *vma,
 389                     unsigned long start, unsigned long end)
 390{
 391        struct mm_struct *mm = vma->vm_mm;
 392
 393        preempt_disable();
 394        if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
 395                struct flush_tlb_data fd;
 396
 397                fd.vma = vma;
 398                fd.addr1 = start;
 399                fd.addr2 = end;
 400                smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
 401        } else {
 402                int i;
 403                for (i = 0; i < num_online_cpus(); i++)
 404                        if (smp_processor_id() != i)
 405                                cpu_context(i, mm) = 0;
 406        }
 407        local_flush_tlb_range(vma, start, end);
 408        preempt_enable();
 409}
 410
 411static void flush_tlb_kernel_range_ipi(void *info)
 412{
 413        struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
 414
 415        local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
 416}
 417
 418void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 419{
 420        struct flush_tlb_data fd;
 421
 422        fd.addr1 = start;
 423        fd.addr2 = end;
 424        on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
 425}
 426
 427static void flush_tlb_page_ipi(void *info)
 428{
 429        struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
 430
 431        local_flush_tlb_page(fd->vma, fd->addr1);
 432}
 433
 434void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 435{
 436        preempt_disable();
 437        if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
 438            (current->mm != vma->vm_mm)) {
 439                struct flush_tlb_data fd;
 440
 441                fd.vma = vma;
 442                fd.addr1 = page;
 443                smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
 444        } else {
 445                int i;
 446                for (i = 0; i < num_online_cpus(); i++)
 447                        if (smp_processor_id() != i)
 448                                cpu_context(i, vma->vm_mm) = 0;
 449        }
 450        local_flush_tlb_page(vma, page);
 451        preempt_enable();
 452}
 453
 454static void flush_tlb_one_ipi(void *info)
 455{
 456        struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
 457        local_flush_tlb_one(fd->addr1, fd->addr2);
 458}
 459
 460void flush_tlb_one(unsigned long asid, unsigned long vaddr)
 461{
 462        struct flush_tlb_data fd;
 463
 464        fd.addr1 = asid;
 465        fd.addr2 = vaddr;
 466
 467        smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
 468        local_flush_tlb_one(asid, vaddr);
 469}
 470