linux/arch/x86/kernel/i387.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1994 Linus Torvalds
   3 *
   4 *  Pentium III FXSR, SSE support
   5 *  General FPU state handling cleanups
   6 *      Gareth Hughes <gareth@valinux.com>, May 2000
   7 */
   8#include <linux/module.h>
   9#include <linux/regset.h>
  10#include <linux/sched.h>
  11#include <linux/slab.h>
  12
  13#include <asm/sigcontext.h>
  14#include <asm/processor.h>
  15#include <asm/math_emu.h>
  16#include <asm/uaccess.h>
  17#include <asm/ptrace.h>
  18#include <asm/i387.h>
  19#include <asm/fpu-internal.h>
  20#include <asm/user.h>
  21
  22/*
  23 * Were we in an interrupt that interrupted kernel mode?
  24 *
  25 * On others, we can do a kernel_fpu_begin/end() pair *ONLY* if that
  26 * pair does nothing at all: the thread must not have fpu (so
  27 * that we don't try to save the FPU state), and TS must
  28 * be set (so that the clts/stts pair does nothing that is
  29 * visible in the interrupted kernel thread).
  30 *
  31 * Except for the eagerfpu case when we return 1 unless we've already
  32 * been eager and saved the state in kernel_fpu_begin().
  33 */
  34static inline bool interrupted_kernel_fpu_idle(void)
  35{
  36        if (use_eager_fpu())
  37                return __thread_has_fpu(current);
  38
  39        return !__thread_has_fpu(current) &&
  40                (read_cr0() & X86_CR0_TS);
  41}
  42
  43/*
  44 * Were we in user mode (or vm86 mode) when we were
  45 * interrupted?
  46 *
  47 * Doing kernel_fpu_begin/end() is ok if we are running
  48 * in an interrupt context from user mode - we'll just
  49 * save the FPU state as required.
  50 */
  51static inline bool interrupted_user_mode(void)
  52{
  53        struct pt_regs *regs = get_irq_regs();
  54        return regs && user_mode_vm(regs);
  55}
  56
  57/*
  58 * Can we use the FPU in kernel mode with the
  59 * whole "kernel_fpu_begin/end()" sequence?
  60 *
  61 * It's always ok in process context (ie "not interrupt")
  62 * but it is sometimes ok even from an irq.
  63 */
  64bool irq_fpu_usable(void)
  65{
  66        return !in_interrupt() ||
  67                interrupted_user_mode() ||
  68                interrupted_kernel_fpu_idle();
  69}
  70EXPORT_SYMBOL(irq_fpu_usable);
  71
  72void __kernel_fpu_begin(void)
  73{
  74        struct task_struct *me = current;
  75
  76        if (__thread_has_fpu(me)) {
  77                __thread_clear_has_fpu(me);
  78                __save_init_fpu(me);
  79                /* We do 'stts()' in __kernel_fpu_end() */
  80        } else if (!use_eager_fpu()) {
  81                this_cpu_write(fpu_owner_task, NULL);
  82                clts();
  83        }
  84}
  85EXPORT_SYMBOL(__kernel_fpu_begin);
  86
  87void __kernel_fpu_end(void)
  88{
  89        if (use_eager_fpu())
  90                math_state_restore();
  91        else
  92                stts();
  93}
  94EXPORT_SYMBOL(__kernel_fpu_end);
  95
  96void unlazy_fpu(struct task_struct *tsk)
  97{
  98        preempt_disable();
  99        if (__thread_has_fpu(tsk)) {
 100                __save_init_fpu(tsk);
 101                __thread_fpu_end(tsk);
 102        } else
 103                tsk->fpu_counter = 0;
 104        preempt_enable();
 105}
 106EXPORT_SYMBOL(unlazy_fpu);
 107
 108unsigned int mxcsr_feature_mask __read_mostly = 0xffffffffu;
 109unsigned int xstate_size;
 110EXPORT_SYMBOL_GPL(xstate_size);
 111static struct i387_fxsave_struct fx_scratch __cpuinitdata;
 112
 113static void __cpuinit mxcsr_feature_mask_init(void)
 114{
 115        unsigned long mask = 0;
 116
 117        if (cpu_has_fxsr) {
 118                memset(&fx_scratch, 0, sizeof(struct i387_fxsave_struct));
 119                asm volatile("fxsave %0" : : "m" (fx_scratch));
 120                mask = fx_scratch.mxcsr_mask;
 121                if (mask == 0)
 122                        mask = 0x0000ffbf;
 123        }
 124        mxcsr_feature_mask &= mask;
 125}
 126
 127static void __cpuinit init_thread_xstate(void)
 128{
 129        /*
 130         * Note that xstate_size might be overwriten later during
 131         * xsave_init().
 132         */
 133
 134        if (!HAVE_HWFP) {
 135                /*
 136                 * Disable xsave as we do not support it if i387
 137                 * emulation is enabled.
 138                 */
 139                setup_clear_cpu_cap(X86_FEATURE_XSAVE);
 140                setup_clear_cpu_cap(X86_FEATURE_XSAVEOPT);
 141                xstate_size = sizeof(struct i387_soft_struct);
 142                return;
 143        }
 144
 145        if (cpu_has_fxsr)
 146                xstate_size = sizeof(struct i387_fxsave_struct);
 147        else
 148                xstate_size = sizeof(struct i387_fsave_struct);
 149}
 150
 151/*
 152 * Called at bootup to set up the initial FPU state that is later cloned
 153 * into all processes.
 154 */
 155
 156void __cpuinit fpu_init(void)
 157{
 158        unsigned long cr0;
 159        unsigned long cr4_mask = 0;
 160
 161        if (cpu_has_fxsr)
 162                cr4_mask |= X86_CR4_OSFXSR;
 163        if (cpu_has_xmm)
 164                cr4_mask |= X86_CR4_OSXMMEXCPT;
 165        if (cr4_mask)
 166                set_in_cr4(cr4_mask);
 167
 168        cr0 = read_cr0();
 169        cr0 &= ~(X86_CR0_TS|X86_CR0_EM); /* clear TS and EM */
 170        if (!HAVE_HWFP)
 171                cr0 |= X86_CR0_EM;
 172        write_cr0(cr0);
 173
 174        /*
 175         * init_thread_xstate is only called once to avoid overriding
 176         * xstate_size during boot time or during CPU hotplug.
 177         */
 178        if (xstate_size == 0)
 179                init_thread_xstate();
 180
 181        mxcsr_feature_mask_init();
 182        xsave_init();
 183        eager_fpu_init();
 184}
 185
 186void fpu_finit(struct fpu *fpu)
 187{
 188        if (!HAVE_HWFP) {
 189                finit_soft_fpu(&fpu->state->soft);
 190                return;
 191        }
 192
 193        if (cpu_has_fxsr) {
 194                fx_finit(&fpu->state->fxsave);
 195        } else {
 196                struct i387_fsave_struct *fp = &fpu->state->fsave;
 197                memset(fp, 0, xstate_size);
 198                fp->cwd = 0xffff037fu;
 199                fp->swd = 0xffff0000u;
 200                fp->twd = 0xffffffffu;
 201                fp->fos = 0xffff0000u;
 202        }
 203}
 204EXPORT_SYMBOL_GPL(fpu_finit);
 205
 206/*
 207 * The _current_ task is using the FPU for the first time
 208 * so initialize it and set the mxcsr to its default
 209 * value at reset if we support XMM instructions and then
 210 * remember the current task has used the FPU.
 211 */
 212int init_fpu(struct task_struct *tsk)
 213{
 214        int ret;
 215
 216        if (tsk_used_math(tsk)) {
 217                if (HAVE_HWFP && tsk == current)
 218                        unlazy_fpu(tsk);
 219                tsk->thread.fpu.last_cpu = ~0;
 220                return 0;
 221        }
 222
 223        /*
 224         * Memory allocation at the first usage of the FPU and other state.
 225         */
 226        ret = fpu_alloc(&tsk->thread.fpu);
 227        if (ret)
 228                return ret;
 229
 230        fpu_finit(&tsk->thread.fpu);
 231
 232        set_stopped_child_used_math(tsk);
 233        return 0;
 234}
 235EXPORT_SYMBOL_GPL(init_fpu);
 236
 237/*
 238 * The xstateregs_active() routine is the same as the fpregs_active() routine,
 239 * as the "regset->n" for the xstate regset will be updated based on the feature
 240 * capabilites supported by the xsave.
 241 */
 242int fpregs_active(struct task_struct *target, const struct user_regset *regset)
 243{
 244        return tsk_used_math(target) ? regset->n : 0;
 245}
 246
 247int xfpregs_active(struct task_struct *target, const struct user_regset *regset)
 248{
 249        return (cpu_has_fxsr && tsk_used_math(target)) ? regset->n : 0;
 250}
 251
 252int xfpregs_get(struct task_struct *target, const struct user_regset *regset,
 253                unsigned int pos, unsigned int count,
 254                void *kbuf, void __user *ubuf)
 255{
 256        int ret;
 257
 258        if (!cpu_has_fxsr)
 259                return -ENODEV;
 260
 261        ret = init_fpu(target);
 262        if (ret)
 263                return ret;
 264
 265        sanitize_i387_state(target);
 266
 267        return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 268                                   &target->thread.fpu.state->fxsave, 0, -1);
 269}
 270
 271int xfpregs_set(struct task_struct *target, const struct user_regset *regset,
 272                unsigned int pos, unsigned int count,
 273                const void *kbuf, const void __user *ubuf)
 274{
 275        int ret;
 276
 277        if (!cpu_has_fxsr)
 278                return -ENODEV;
 279
 280        ret = init_fpu(target);
 281        if (ret)
 282                return ret;
 283
 284        sanitize_i387_state(target);
 285
 286        ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 287                                 &target->thread.fpu.state->fxsave, 0, -1);
 288
 289        /*
 290         * mxcsr reserved bits must be masked to zero for security reasons.
 291         */
 292        target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
 293
 294        /*
 295         * update the header bits in the xsave header, indicating the
 296         * presence of FP and SSE state.
 297         */
 298        if (cpu_has_xsave)
 299                target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FPSSE;
 300
 301        return ret;
 302}
 303
 304int xstateregs_get(struct task_struct *target, const struct user_regset *regset,
 305                unsigned int pos, unsigned int count,
 306                void *kbuf, void __user *ubuf)
 307{
 308        int ret;
 309
 310        if (!cpu_has_xsave)
 311                return -ENODEV;
 312
 313        ret = init_fpu(target);
 314        if (ret)
 315                return ret;
 316
 317        /*
 318         * Copy the 48bytes defined by the software first into the xstate
 319         * memory layout in the thread struct, so that we can copy the entire
 320         * xstateregs to the user using one user_regset_copyout().
 321         */
 322        memcpy(&target->thread.fpu.state->fxsave.sw_reserved,
 323               xstate_fx_sw_bytes, sizeof(xstate_fx_sw_bytes));
 324
 325        /*
 326         * Copy the xstate memory layout.
 327         */
 328        ret = user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 329                                  &target->thread.fpu.state->xsave, 0, -1);
 330        return ret;
 331}
 332
 333int xstateregs_set(struct task_struct *target, const struct user_regset *regset,
 334                  unsigned int pos, unsigned int count,
 335                  const void *kbuf, const void __user *ubuf)
 336{
 337        int ret;
 338        struct xsave_hdr_struct *xsave_hdr;
 339
 340        if (!cpu_has_xsave)
 341                return -ENODEV;
 342
 343        ret = init_fpu(target);
 344        if (ret)
 345                return ret;
 346
 347        ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 348                                 &target->thread.fpu.state->xsave, 0, -1);
 349
 350        /*
 351         * mxcsr reserved bits must be masked to zero for security reasons.
 352         */
 353        target->thread.fpu.state->fxsave.mxcsr &= mxcsr_feature_mask;
 354
 355        xsave_hdr = &target->thread.fpu.state->xsave.xsave_hdr;
 356
 357        xsave_hdr->xstate_bv &= pcntxt_mask;
 358        /*
 359         * These bits must be zero.
 360         */
 361        xsave_hdr->reserved1[0] = xsave_hdr->reserved1[1] = 0;
 362
 363        return ret;
 364}
 365
 366#if defined CONFIG_X86_32 || defined CONFIG_IA32_EMULATION
 367
 368/*
 369 * FPU tag word conversions.
 370 */
 371
 372static inline unsigned short twd_i387_to_fxsr(unsigned short twd)
 373{
 374        unsigned int tmp; /* to avoid 16 bit prefixes in the code */
 375
 376        /* Transform each pair of bits into 01 (valid) or 00 (empty) */
 377        tmp = ~twd;
 378        tmp = (tmp | (tmp>>1)) & 0x5555; /* 0V0V0V0V0V0V0V0V */
 379        /* and move the valid bits to the lower byte. */
 380        tmp = (tmp | (tmp >> 1)) & 0x3333; /* 00VV00VV00VV00VV */
 381        tmp = (tmp | (tmp >> 2)) & 0x0f0f; /* 0000VVVV0000VVVV */
 382        tmp = (tmp | (tmp >> 4)) & 0x00ff; /* 00000000VVVVVVVV */
 383
 384        return tmp;
 385}
 386
 387#define FPREG_ADDR(f, n)        ((void *)&(f)->st_space + (n) * 16)
 388#define FP_EXP_TAG_VALID        0
 389#define FP_EXP_TAG_ZERO         1
 390#define FP_EXP_TAG_SPECIAL      2
 391#define FP_EXP_TAG_EMPTY        3
 392
 393static inline u32 twd_fxsr_to_i387(struct i387_fxsave_struct *fxsave)
 394{
 395        struct _fpxreg *st;
 396        u32 tos = (fxsave->swd >> 11) & 7;
 397        u32 twd = (unsigned long) fxsave->twd;
 398        u32 tag;
 399        u32 ret = 0xffff0000u;
 400        int i;
 401
 402        for (i = 0; i < 8; i++, twd >>= 1) {
 403                if (twd & 0x1) {
 404                        st = FPREG_ADDR(fxsave, (i - tos) & 7);
 405
 406                        switch (st->exponent & 0x7fff) {
 407                        case 0x7fff:
 408                                tag = FP_EXP_TAG_SPECIAL;
 409                                break;
 410                        case 0x0000:
 411                                if (!st->significand[0] &&
 412                                    !st->significand[1] &&
 413                                    !st->significand[2] &&
 414                                    !st->significand[3])
 415                                        tag = FP_EXP_TAG_ZERO;
 416                                else
 417                                        tag = FP_EXP_TAG_SPECIAL;
 418                                break;
 419                        default:
 420                                if (st->significand[3] & 0x8000)
 421                                        tag = FP_EXP_TAG_VALID;
 422                                else
 423                                        tag = FP_EXP_TAG_SPECIAL;
 424                                break;
 425                        }
 426                } else {
 427                        tag = FP_EXP_TAG_EMPTY;
 428                }
 429                ret |= tag << (2 * i);
 430        }
 431        return ret;
 432}
 433
 434/*
 435 * FXSR floating point environment conversions.
 436 */
 437
 438void
 439convert_from_fxsr(struct user_i387_ia32_struct *env, struct task_struct *tsk)
 440{
 441        struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
 442        struct _fpreg *to = (struct _fpreg *) &env->st_space[0];
 443        struct _fpxreg *from = (struct _fpxreg *) &fxsave->st_space[0];
 444        int i;
 445
 446        env->cwd = fxsave->cwd | 0xffff0000u;
 447        env->swd = fxsave->swd | 0xffff0000u;
 448        env->twd = twd_fxsr_to_i387(fxsave);
 449
 450#ifdef CONFIG_X86_64
 451        env->fip = fxsave->rip;
 452        env->foo = fxsave->rdp;
 453        /*
 454         * should be actually ds/cs at fpu exception time, but
 455         * that information is not available in 64bit mode.
 456         */
 457        env->fcs = task_pt_regs(tsk)->cs;
 458        if (tsk == current) {
 459                savesegment(ds, env->fos);
 460        } else {
 461                env->fos = tsk->thread.ds;
 462        }
 463        env->fos |= 0xffff0000;
 464#else
 465        env->fip = fxsave->fip;
 466        env->fcs = (u16) fxsave->fcs | ((u32) fxsave->fop << 16);
 467        env->foo = fxsave->foo;
 468        env->fos = fxsave->fos;
 469#endif
 470
 471        for (i = 0; i < 8; ++i)
 472                memcpy(&to[i], &from[i], sizeof(to[0]));
 473}
 474
 475void convert_to_fxsr(struct task_struct *tsk,
 476                     const struct user_i387_ia32_struct *env)
 477
 478{
 479        struct i387_fxsave_struct *fxsave = &tsk->thread.fpu.state->fxsave;
 480        struct _fpreg *from = (struct _fpreg *) &env->st_space[0];
 481        struct _fpxreg *to = (struct _fpxreg *) &fxsave->st_space[0];
 482        int i;
 483
 484        fxsave->cwd = env->cwd;
 485        fxsave->swd = env->swd;
 486        fxsave->twd = twd_i387_to_fxsr(env->twd);
 487        fxsave->fop = (u16) ((u32) env->fcs >> 16);
 488#ifdef CONFIG_X86_64
 489        fxsave->rip = env->fip;
 490        fxsave->rdp = env->foo;
 491        /* cs and ds ignored */
 492#else
 493        fxsave->fip = env->fip;
 494        fxsave->fcs = (env->fcs & 0xffff);
 495        fxsave->foo = env->foo;
 496        fxsave->fos = env->fos;
 497#endif
 498
 499        for (i = 0; i < 8; ++i)
 500                memcpy(&to[i], &from[i], sizeof(from[0]));
 501}
 502
 503int fpregs_get(struct task_struct *target, const struct user_regset *regset,
 504               unsigned int pos, unsigned int count,
 505               void *kbuf, void __user *ubuf)
 506{
 507        struct user_i387_ia32_struct env;
 508        int ret;
 509
 510        ret = init_fpu(target);
 511        if (ret)
 512                return ret;
 513
 514        if (!HAVE_HWFP)
 515                return fpregs_soft_get(target, regset, pos, count, kbuf, ubuf);
 516
 517        if (!cpu_has_fxsr) {
 518                return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
 519                                           &target->thread.fpu.state->fsave, 0,
 520                                           -1);
 521        }
 522
 523        sanitize_i387_state(target);
 524
 525        if (kbuf && pos == 0 && count == sizeof(env)) {
 526                convert_from_fxsr(kbuf, target);
 527                return 0;
 528        }
 529
 530        convert_from_fxsr(&env, target);
 531
 532        return user_regset_copyout(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
 533}
 534
 535int fpregs_set(struct task_struct *target, const struct user_regset *regset,
 536               unsigned int pos, unsigned int count,
 537               const void *kbuf, const void __user *ubuf)
 538{
 539        struct user_i387_ia32_struct env;
 540        int ret;
 541
 542        ret = init_fpu(target);
 543        if (ret)
 544                return ret;
 545
 546        sanitize_i387_state(target);
 547
 548        if (!HAVE_HWFP)
 549                return fpregs_soft_set(target, regset, pos, count, kbuf, ubuf);
 550
 551        if (!cpu_has_fxsr) {
 552                return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
 553                                          &target->thread.fpu.state->fsave, 0, -1);
 554        }
 555
 556        if (pos > 0 || count < sizeof(env))
 557                convert_from_fxsr(&env, target);
 558
 559        ret = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &env, 0, -1);
 560        if (!ret)
 561                convert_to_fxsr(target, &env);
 562
 563        /*
 564         * update the header bit in the xsave header, indicating the
 565         * presence of FP.
 566         */
 567        if (cpu_has_xsave)
 568                target->thread.fpu.state->xsave.xsave_hdr.xstate_bv |= XSTATE_FP;
 569        return ret;
 570}
 571
 572/*
 573 * FPU state for core dumps.
 574 * This is only used for a.out dumps now.
 575 * It is declared generically using elf_fpregset_t (which is
 576 * struct user_i387_struct) but is in fact only used for 32-bit
 577 * dumps, so on 64-bit it is really struct user_i387_ia32_struct.
 578 */
 579int dump_fpu(struct pt_regs *regs, struct user_i387_struct *fpu)
 580{
 581        struct task_struct *tsk = current;
 582        int fpvalid;
 583
 584        fpvalid = !!used_math();
 585        if (fpvalid)
 586                fpvalid = !fpregs_get(tsk, NULL,
 587                                      0, sizeof(struct user_i387_ia32_struct),
 588                                      fpu, NULL);
 589
 590        return fpvalid;
 591}
 592EXPORT_SYMBOL(dump_fpu);
 593
 594#endif  /* CONFIG_X86_32 || CONFIG_IA32_EMULATION */
 595