linux/arch/x86/kvm/svm.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * AMD SVM support
   5 *
   6 * Copyright (C) 2006 Qumranet, Inc.
   7 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   8 *
   9 * Authors:
  10 *   Yaniv Kamay  <yaniv@qumranet.com>
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *
  13 * This work is licensed under the terms of the GNU GPL, version 2.  See
  14 * the COPYING file in the top-level directory.
  15 *
  16 */
  17#include <linux/kvm_host.h>
  18
  19#include "irq.h"
  20#include "mmu.h"
  21#include "kvm_cache_regs.h"
  22#include "x86.h"
  23#include "cpuid.h"
  24
  25#include <linux/module.h>
  26#include <linux/mod_devicetable.h>
  27#include <linux/kernel.h>
  28#include <linux/vmalloc.h>
  29#include <linux/highmem.h>
  30#include <linux/sched.h>
  31#include <linux/ftrace_event.h>
  32#include <linux/slab.h>
  33
  34#include <asm/perf_event.h>
  35#include <asm/tlbflush.h>
  36#include <asm/desc.h>
  37#include <asm/kvm_para.h>
  38
  39#include <asm/virtext.h>
  40#include "trace.h"
  41
  42#define __ex(x) __kvm_handle_fault_on_reboot(x)
  43
  44MODULE_AUTHOR("Qumranet");
  45MODULE_LICENSE("GPL");
  46
  47static const struct x86_cpu_id svm_cpu_id[] = {
  48        X86_FEATURE_MATCH(X86_FEATURE_SVM),
  49        {}
  50};
  51MODULE_DEVICE_TABLE(x86cpu, svm_cpu_id);
  52
  53#define IOPM_ALLOC_ORDER 2
  54#define MSRPM_ALLOC_ORDER 1
  55
  56#define SEG_TYPE_LDT 2
  57#define SEG_TYPE_BUSY_TSS16 3
  58
  59#define SVM_FEATURE_NPT            (1 <<  0)
  60#define SVM_FEATURE_LBRV           (1 <<  1)
  61#define SVM_FEATURE_SVML           (1 <<  2)
  62#define SVM_FEATURE_NRIP           (1 <<  3)
  63#define SVM_FEATURE_TSC_RATE       (1 <<  4)
  64#define SVM_FEATURE_VMCB_CLEAN     (1 <<  5)
  65#define SVM_FEATURE_FLUSH_ASID     (1 <<  6)
  66#define SVM_FEATURE_DECODE_ASSIST  (1 <<  7)
  67#define SVM_FEATURE_PAUSE_FILTER   (1 << 10)
  68
  69#define NESTED_EXIT_HOST        0       /* Exit handled on host level */
  70#define NESTED_EXIT_DONE        1       /* Exit caused nested vmexit  */
  71#define NESTED_EXIT_CONTINUE    2       /* Further checks needed      */
  72
  73#define DEBUGCTL_RESERVED_BITS (~(0x3fULL))
  74
  75#define TSC_RATIO_RSVD          0xffffff0000000000ULL
  76#define TSC_RATIO_MIN           0x0000000000000001ULL
  77#define TSC_RATIO_MAX           0x000000ffffffffffULL
  78
  79static bool erratum_383_found __read_mostly;
  80
  81static const u32 host_save_user_msrs[] = {
  82#ifdef CONFIG_X86_64
  83        MSR_STAR, MSR_LSTAR, MSR_CSTAR, MSR_SYSCALL_MASK, MSR_KERNEL_GS_BASE,
  84        MSR_FS_BASE,
  85#endif
  86        MSR_IA32_SYSENTER_CS, MSR_IA32_SYSENTER_ESP, MSR_IA32_SYSENTER_EIP,
  87};
  88
  89#define NR_HOST_SAVE_USER_MSRS ARRAY_SIZE(host_save_user_msrs)
  90
  91struct kvm_vcpu;
  92
  93struct nested_state {
  94        struct vmcb *hsave;
  95        u64 hsave_msr;
  96        u64 vm_cr_msr;
  97        u64 vmcb;
  98
  99        /* These are the merged vectors */
 100        u32 *msrpm;
 101
 102        /* gpa pointers to the real vectors */
 103        u64 vmcb_msrpm;
 104        u64 vmcb_iopm;
 105
 106        /* A VMEXIT is required but not yet emulated */
 107        bool exit_required;
 108
 109        /* cache for intercepts of the guest */
 110        u32 intercept_cr;
 111        u32 intercept_dr;
 112        u32 intercept_exceptions;
 113        u64 intercept;
 114
 115        /* Nested Paging related state */
 116        u64 nested_cr3;
 117};
 118
 119#define MSRPM_OFFSETS   16
 120static u32 msrpm_offsets[MSRPM_OFFSETS] __read_mostly;
 121
 122/*
 123 * Set osvw_len to higher value when updated Revision Guides
 124 * are published and we know what the new status bits are
 125 */
 126static uint64_t osvw_len = 4, osvw_status;
 127
 128struct vcpu_svm {
 129        struct kvm_vcpu vcpu;
 130        struct vmcb *vmcb;
 131        unsigned long vmcb_pa;
 132        struct svm_cpu_data *svm_data;
 133        uint64_t asid_generation;
 134        uint64_t sysenter_esp;
 135        uint64_t sysenter_eip;
 136
 137        u64 next_rip;
 138
 139        u64 host_user_msrs[NR_HOST_SAVE_USER_MSRS];
 140        struct {
 141                u16 fs;
 142                u16 gs;
 143                u16 ldt;
 144                u64 gs_base;
 145        } host;
 146
 147        u32 *msrpm;
 148
 149        ulong nmi_iret_rip;
 150
 151        struct nested_state nested;
 152
 153        bool nmi_singlestep;
 154
 155        unsigned int3_injected;
 156        unsigned long int3_rip;
 157        u32 apf_reason;
 158
 159        u64  tsc_ratio;
 160};
 161
 162static DEFINE_PER_CPU(u64, current_tsc_ratio);
 163#define TSC_RATIO_DEFAULT       0x0100000000ULL
 164
 165#define MSR_INVALID                     0xffffffffU
 166
 167static const struct svm_direct_access_msrs {
 168        u32 index;   /* Index of the MSR */
 169        bool always; /* True if intercept is always on */
 170} direct_access_msrs[] = {
 171        { .index = MSR_STAR,                            .always = true  },
 172        { .index = MSR_IA32_SYSENTER_CS,                .always = true  },
 173#ifdef CONFIG_X86_64
 174        { .index = MSR_GS_BASE,                         .always = true  },
 175        { .index = MSR_FS_BASE,                         .always = true  },
 176        { .index = MSR_KERNEL_GS_BASE,                  .always = true  },
 177        { .index = MSR_LSTAR,                           .always = true  },
 178        { .index = MSR_CSTAR,                           .always = true  },
 179        { .index = MSR_SYSCALL_MASK,                    .always = true  },
 180#endif
 181        { .index = MSR_IA32_LASTBRANCHFROMIP,           .always = false },
 182        { .index = MSR_IA32_LASTBRANCHTOIP,             .always = false },
 183        { .index = MSR_IA32_LASTINTFROMIP,              .always = false },
 184        { .index = MSR_IA32_LASTINTTOIP,                .always = false },
 185        { .index = MSR_INVALID,                         .always = false },
 186};
 187
 188/* enable NPT for AMD64 and X86 with PAE */
 189#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
 190static bool npt_enabled = true;
 191#else
 192static bool npt_enabled;
 193#endif
 194
 195/* allow nested paging (virtualized MMU) for all guests */
 196static int npt = true;
 197module_param(npt, int, S_IRUGO);
 198
 199/* allow nested virtualization in KVM/SVM */
 200static int nested = true;
 201module_param(nested, int, S_IRUGO);
 202
 203static void svm_flush_tlb(struct kvm_vcpu *vcpu);
 204static void svm_complete_interrupts(struct vcpu_svm *svm);
 205
 206static int nested_svm_exit_handled(struct vcpu_svm *svm);
 207static int nested_svm_intercept(struct vcpu_svm *svm);
 208static int nested_svm_vmexit(struct vcpu_svm *svm);
 209static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
 210                                      bool has_error_code, u32 error_code);
 211static u64 __scale_tsc(u64 ratio, u64 tsc);
 212
 213enum {
 214        VMCB_INTERCEPTS, /* Intercept vectors, TSC offset,
 215                            pause filter count */
 216        VMCB_PERM_MAP,   /* IOPM Base and MSRPM Base */
 217        VMCB_ASID,       /* ASID */
 218        VMCB_INTR,       /* int_ctl, int_vector */
 219        VMCB_NPT,        /* npt_en, nCR3, gPAT */
 220        VMCB_CR,         /* CR0, CR3, CR4, EFER */
 221        VMCB_DR,         /* DR6, DR7 */
 222        VMCB_DT,         /* GDT, IDT */
 223        VMCB_SEG,        /* CS, DS, SS, ES, CPL */
 224        VMCB_CR2,        /* CR2 only */
 225        VMCB_LBR,        /* DBGCTL, BR_FROM, BR_TO, LAST_EX_FROM, LAST_EX_TO */
 226        VMCB_DIRTY_MAX,
 227};
 228
 229/* TPR and CR2 are always written before VMRUN */
 230#define VMCB_ALWAYS_DIRTY_MASK  ((1U << VMCB_INTR) | (1U << VMCB_CR2))
 231
 232static inline void mark_all_dirty(struct vmcb *vmcb)
 233{
 234        vmcb->control.clean = 0;
 235}
 236
 237static inline void mark_all_clean(struct vmcb *vmcb)
 238{
 239        vmcb->control.clean = ((1 << VMCB_DIRTY_MAX) - 1)
 240                               & ~VMCB_ALWAYS_DIRTY_MASK;
 241}
 242
 243static inline void mark_dirty(struct vmcb *vmcb, int bit)
 244{
 245        vmcb->control.clean &= ~(1 << bit);
 246}
 247
 248static inline struct vcpu_svm *to_svm(struct kvm_vcpu *vcpu)
 249{
 250        return container_of(vcpu, struct vcpu_svm, vcpu);
 251}
 252
 253static void recalc_intercepts(struct vcpu_svm *svm)
 254{
 255        struct vmcb_control_area *c, *h;
 256        struct nested_state *g;
 257
 258        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
 259
 260        if (!is_guest_mode(&svm->vcpu))
 261                return;
 262
 263        c = &svm->vmcb->control;
 264        h = &svm->nested.hsave->control;
 265        g = &svm->nested;
 266
 267        c->intercept_cr = h->intercept_cr | g->intercept_cr;
 268        c->intercept_dr = h->intercept_dr | g->intercept_dr;
 269        c->intercept_exceptions = h->intercept_exceptions | g->intercept_exceptions;
 270        c->intercept = h->intercept | g->intercept;
 271}
 272
 273static inline struct vmcb *get_host_vmcb(struct vcpu_svm *svm)
 274{
 275        if (is_guest_mode(&svm->vcpu))
 276                return svm->nested.hsave;
 277        else
 278                return svm->vmcb;
 279}
 280
 281static inline void set_cr_intercept(struct vcpu_svm *svm, int bit)
 282{
 283        struct vmcb *vmcb = get_host_vmcb(svm);
 284
 285        vmcb->control.intercept_cr |= (1U << bit);
 286
 287        recalc_intercepts(svm);
 288}
 289
 290static inline void clr_cr_intercept(struct vcpu_svm *svm, int bit)
 291{
 292        struct vmcb *vmcb = get_host_vmcb(svm);
 293
 294        vmcb->control.intercept_cr &= ~(1U << bit);
 295
 296        recalc_intercepts(svm);
 297}
 298
 299static inline bool is_cr_intercept(struct vcpu_svm *svm, int bit)
 300{
 301        struct vmcb *vmcb = get_host_vmcb(svm);
 302
 303        return vmcb->control.intercept_cr & (1U << bit);
 304}
 305
 306static inline void set_dr_intercept(struct vcpu_svm *svm, int bit)
 307{
 308        struct vmcb *vmcb = get_host_vmcb(svm);
 309
 310        vmcb->control.intercept_dr |= (1U << bit);
 311
 312        recalc_intercepts(svm);
 313}
 314
 315static inline void clr_dr_intercept(struct vcpu_svm *svm, int bit)
 316{
 317        struct vmcb *vmcb = get_host_vmcb(svm);
 318
 319        vmcb->control.intercept_dr &= ~(1U << bit);
 320
 321        recalc_intercepts(svm);
 322}
 323
 324static inline void set_exception_intercept(struct vcpu_svm *svm, int bit)
 325{
 326        struct vmcb *vmcb = get_host_vmcb(svm);
 327
 328        vmcb->control.intercept_exceptions |= (1U << bit);
 329
 330        recalc_intercepts(svm);
 331}
 332
 333static inline void clr_exception_intercept(struct vcpu_svm *svm, int bit)
 334{
 335        struct vmcb *vmcb = get_host_vmcb(svm);
 336
 337        vmcb->control.intercept_exceptions &= ~(1U << bit);
 338
 339        recalc_intercepts(svm);
 340}
 341
 342static inline void set_intercept(struct vcpu_svm *svm, int bit)
 343{
 344        struct vmcb *vmcb = get_host_vmcb(svm);
 345
 346        vmcb->control.intercept |= (1ULL << bit);
 347
 348        recalc_intercepts(svm);
 349}
 350
 351static inline void clr_intercept(struct vcpu_svm *svm, int bit)
 352{
 353        struct vmcb *vmcb = get_host_vmcb(svm);
 354
 355        vmcb->control.intercept &= ~(1ULL << bit);
 356
 357        recalc_intercepts(svm);
 358}
 359
 360static inline void enable_gif(struct vcpu_svm *svm)
 361{
 362        svm->vcpu.arch.hflags |= HF_GIF_MASK;
 363}
 364
 365static inline void disable_gif(struct vcpu_svm *svm)
 366{
 367        svm->vcpu.arch.hflags &= ~HF_GIF_MASK;
 368}
 369
 370static inline bool gif_set(struct vcpu_svm *svm)
 371{
 372        return !!(svm->vcpu.arch.hflags & HF_GIF_MASK);
 373}
 374
 375static unsigned long iopm_base;
 376
 377struct kvm_ldttss_desc {
 378        u16 limit0;
 379        u16 base0;
 380        unsigned base1:8, type:5, dpl:2, p:1;
 381        unsigned limit1:4, zero0:3, g:1, base2:8;
 382        u32 base3;
 383        u32 zero1;
 384} __attribute__((packed));
 385
 386struct svm_cpu_data {
 387        int cpu;
 388
 389        u64 asid_generation;
 390        u32 max_asid;
 391        u32 next_asid;
 392        struct kvm_ldttss_desc *tss_desc;
 393
 394        struct page *save_area;
 395};
 396
 397static DEFINE_PER_CPU(struct svm_cpu_data *, svm_data);
 398
 399struct svm_init_data {
 400        int cpu;
 401        int r;
 402};
 403
 404static const u32 msrpm_ranges[] = {0, 0xc0000000, 0xc0010000};
 405
 406#define NUM_MSR_MAPS ARRAY_SIZE(msrpm_ranges)
 407#define MSRS_RANGE_SIZE 2048
 408#define MSRS_IN_RANGE (MSRS_RANGE_SIZE * 8 / 2)
 409
 410static u32 svm_msrpm_offset(u32 msr)
 411{
 412        u32 offset;
 413        int i;
 414
 415        for (i = 0; i < NUM_MSR_MAPS; i++) {
 416                if (msr < msrpm_ranges[i] ||
 417                    msr >= msrpm_ranges[i] + MSRS_IN_RANGE)
 418                        continue;
 419
 420                offset  = (msr - msrpm_ranges[i]) / 4; /* 4 msrs per u8 */
 421                offset += (i * MSRS_RANGE_SIZE);       /* add range offset */
 422
 423                /* Now we have the u8 offset - but need the u32 offset */
 424                return offset / 4;
 425        }
 426
 427        /* MSR not in any range */
 428        return MSR_INVALID;
 429}
 430
 431#define MAX_INST_SIZE 15
 432
 433static inline void clgi(void)
 434{
 435        asm volatile (__ex(SVM_CLGI));
 436}
 437
 438static inline void stgi(void)
 439{
 440        asm volatile (__ex(SVM_STGI));
 441}
 442
 443static inline void invlpga(unsigned long addr, u32 asid)
 444{
 445        asm volatile (__ex(SVM_INVLPGA) : : "a"(addr), "c"(asid));
 446}
 447
 448static int get_npt_level(void)
 449{
 450#ifdef CONFIG_X86_64
 451        return PT64_ROOT_LEVEL;
 452#else
 453        return PT32E_ROOT_LEVEL;
 454#endif
 455}
 456
 457static void svm_set_efer(struct kvm_vcpu *vcpu, u64 efer)
 458{
 459        vcpu->arch.efer = efer;
 460        if (!npt_enabled && !(efer & EFER_LMA))
 461                efer &= ~EFER_LME;
 462
 463        to_svm(vcpu)->vmcb->save.efer = efer | EFER_SVME;
 464        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
 465}
 466
 467static int is_external_interrupt(u32 info)
 468{
 469        info &= SVM_EVTINJ_TYPE_MASK | SVM_EVTINJ_VALID;
 470        return info == (SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR);
 471}
 472
 473static u32 svm_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 474{
 475        struct vcpu_svm *svm = to_svm(vcpu);
 476        u32 ret = 0;
 477
 478        if (svm->vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK)
 479                ret |= KVM_X86_SHADOW_INT_STI | KVM_X86_SHADOW_INT_MOV_SS;
 480        return ret & mask;
 481}
 482
 483static void svm_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
 484{
 485        struct vcpu_svm *svm = to_svm(vcpu);
 486
 487        if (mask == 0)
 488                svm->vmcb->control.int_state &= ~SVM_INTERRUPT_SHADOW_MASK;
 489        else
 490                svm->vmcb->control.int_state |= SVM_INTERRUPT_SHADOW_MASK;
 491
 492}
 493
 494static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
 495{
 496        struct vcpu_svm *svm = to_svm(vcpu);
 497
 498        if (svm->vmcb->control.next_rip != 0)
 499                svm->next_rip = svm->vmcb->control.next_rip;
 500
 501        if (!svm->next_rip) {
 502                if (emulate_instruction(vcpu, EMULTYPE_SKIP) !=
 503                                EMULATE_DONE)
 504                        printk(KERN_DEBUG "%s: NOP\n", __func__);
 505                return;
 506        }
 507        if (svm->next_rip - kvm_rip_read(vcpu) > MAX_INST_SIZE)
 508                printk(KERN_ERR "%s: ip 0x%lx next 0x%llx\n",
 509                       __func__, kvm_rip_read(vcpu), svm->next_rip);
 510
 511        kvm_rip_write(vcpu, svm->next_rip);
 512        svm_set_interrupt_shadow(vcpu, 0);
 513}
 514
 515static void svm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
 516                                bool has_error_code, u32 error_code,
 517                                bool reinject)
 518{
 519        struct vcpu_svm *svm = to_svm(vcpu);
 520
 521        /*
 522         * If we are within a nested VM we'd better #VMEXIT and let the guest
 523         * handle the exception
 524         */
 525        if (!reinject &&
 526            nested_svm_check_exception(svm, nr, has_error_code, error_code))
 527                return;
 528
 529        if (nr == BP_VECTOR && !static_cpu_has(X86_FEATURE_NRIPS)) {
 530                unsigned long rip, old_rip = kvm_rip_read(&svm->vcpu);
 531
 532                /*
 533                 * For guest debugging where we have to reinject #BP if some
 534                 * INT3 is guest-owned:
 535                 * Emulate nRIP by moving RIP forward. Will fail if injection
 536                 * raises a fault that is not intercepted. Still better than
 537                 * failing in all cases.
 538                 */
 539                skip_emulated_instruction(&svm->vcpu);
 540                rip = kvm_rip_read(&svm->vcpu);
 541                svm->int3_rip = rip + svm->vmcb->save.cs.base;
 542                svm->int3_injected = rip - old_rip;
 543        }
 544
 545        svm->vmcb->control.event_inj = nr
 546                | SVM_EVTINJ_VALID
 547                | (has_error_code ? SVM_EVTINJ_VALID_ERR : 0)
 548                | SVM_EVTINJ_TYPE_EXEPT;
 549        svm->vmcb->control.event_inj_err = error_code;
 550}
 551
 552static void svm_init_erratum_383(void)
 553{
 554        u32 low, high;
 555        int err;
 556        u64 val;
 557
 558        if (!static_cpu_has_bug(X86_BUG_AMD_TLB_MMATCH))
 559                return;
 560
 561        /* Use _safe variants to not break nested virtualization */
 562        val = native_read_msr_safe(MSR_AMD64_DC_CFG, &err);
 563        if (err)
 564                return;
 565
 566        val |= (1ULL << 47);
 567
 568        low  = lower_32_bits(val);
 569        high = upper_32_bits(val);
 570
 571        native_write_msr_safe(MSR_AMD64_DC_CFG, low, high);
 572
 573        erratum_383_found = true;
 574}
 575
 576static void svm_init_osvw(struct kvm_vcpu *vcpu)
 577{
 578        /*
 579         * Guests should see errata 400 and 415 as fixed (assuming that
 580         * HLT and IO instructions are intercepted).
 581         */
 582        vcpu->arch.osvw.length = (osvw_len >= 3) ? (osvw_len) : 3;
 583        vcpu->arch.osvw.status = osvw_status & ~(6ULL);
 584
 585        /*
 586         * By increasing VCPU's osvw.length to 3 we are telling the guest that
 587         * all osvw.status bits inside that length, including bit 0 (which is
 588         * reserved for erratum 298), are valid. However, if host processor's
 589         * osvw_len is 0 then osvw_status[0] carries no information. We need to
 590         * be conservative here and therefore we tell the guest that erratum 298
 591         * is present (because we really don't know).
 592         */
 593        if (osvw_len == 0 && boot_cpu_data.x86 == 0x10)
 594                vcpu->arch.osvw.status |= 1;
 595}
 596
 597static int has_svm(void)
 598{
 599        const char *msg;
 600
 601        if (!cpu_has_svm(&msg)) {
 602                printk(KERN_INFO "has_svm: %s\n", msg);
 603                return 0;
 604        }
 605
 606        return 1;
 607}
 608
 609static void svm_hardware_disable(void *garbage)
 610{
 611        /* Make sure we clean up behind us */
 612        if (static_cpu_has(X86_FEATURE_TSCRATEMSR))
 613                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 614
 615        cpu_svm_disable();
 616
 617        amd_pmu_disable_virt();
 618}
 619
 620static int svm_hardware_enable(void *garbage)
 621{
 622
 623        struct svm_cpu_data *sd;
 624        uint64_t efer;
 625        struct desc_ptr gdt_descr;
 626        struct desc_struct *gdt;
 627        int me = raw_smp_processor_id();
 628
 629        rdmsrl(MSR_EFER, efer);
 630        if (efer & EFER_SVME)
 631                return -EBUSY;
 632
 633        if (!has_svm()) {
 634                pr_err("%s: err EOPNOTSUPP on %d\n", __func__, me);
 635                return -EINVAL;
 636        }
 637        sd = per_cpu(svm_data, me);
 638        if (!sd) {
 639                pr_err("%s: svm_data is NULL on %d\n", __func__, me);
 640                return -EINVAL;
 641        }
 642
 643        sd->asid_generation = 1;
 644        sd->max_asid = cpuid_ebx(SVM_CPUID_FUNC) - 1;
 645        sd->next_asid = sd->max_asid + 1;
 646
 647        native_store_gdt(&gdt_descr);
 648        gdt = (struct desc_struct *)gdt_descr.address;
 649        sd->tss_desc = (struct kvm_ldttss_desc *)(gdt + GDT_ENTRY_TSS);
 650
 651        wrmsrl(MSR_EFER, efer | EFER_SVME);
 652
 653        wrmsrl(MSR_VM_HSAVE_PA, page_to_pfn(sd->save_area) << PAGE_SHIFT);
 654
 655        if (static_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 656                wrmsrl(MSR_AMD64_TSC_RATIO, TSC_RATIO_DEFAULT);
 657                __get_cpu_var(current_tsc_ratio) = TSC_RATIO_DEFAULT;
 658        }
 659
 660
 661        /*
 662         * Get OSVW bits.
 663         *
 664         * Note that it is possible to have a system with mixed processor
 665         * revisions and therefore different OSVW bits. If bits are not the same
 666         * on different processors then choose the worst case (i.e. if erratum
 667         * is present on one processor and not on another then assume that the
 668         * erratum is present everywhere).
 669         */
 670        if (cpu_has(&boot_cpu_data, X86_FEATURE_OSVW)) {
 671                uint64_t len, status = 0;
 672                int err;
 673
 674                len = native_read_msr_safe(MSR_AMD64_OSVW_ID_LENGTH, &err);
 675                if (!err)
 676                        status = native_read_msr_safe(MSR_AMD64_OSVW_STATUS,
 677                                                      &err);
 678
 679                if (err)
 680                        osvw_status = osvw_len = 0;
 681                else {
 682                        if (len < osvw_len)
 683                                osvw_len = len;
 684                        osvw_status |= status;
 685                        osvw_status &= (1ULL << osvw_len) - 1;
 686                }
 687        } else
 688                osvw_status = osvw_len = 0;
 689
 690        svm_init_erratum_383();
 691
 692        amd_pmu_enable_virt();
 693
 694        return 0;
 695}
 696
 697static void svm_cpu_uninit(int cpu)
 698{
 699        struct svm_cpu_data *sd = per_cpu(svm_data, raw_smp_processor_id());
 700
 701        if (!sd)
 702                return;
 703
 704        per_cpu(svm_data, raw_smp_processor_id()) = NULL;
 705        __free_page(sd->save_area);
 706        kfree(sd);
 707}
 708
 709static int svm_cpu_init(int cpu)
 710{
 711        struct svm_cpu_data *sd;
 712        int r;
 713
 714        sd = kzalloc(sizeof(struct svm_cpu_data), GFP_KERNEL);
 715        if (!sd)
 716                return -ENOMEM;
 717        sd->cpu = cpu;
 718        sd->save_area = alloc_page(GFP_KERNEL);
 719        r = -ENOMEM;
 720        if (!sd->save_area)
 721                goto err_1;
 722
 723        per_cpu(svm_data, cpu) = sd;
 724
 725        return 0;
 726
 727err_1:
 728        kfree(sd);
 729        return r;
 730
 731}
 732
 733static bool valid_msr_intercept(u32 index)
 734{
 735        int i;
 736
 737        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++)
 738                if (direct_access_msrs[i].index == index)
 739                        return true;
 740
 741        return false;
 742}
 743
 744static void set_msr_interception(u32 *msrpm, unsigned msr,
 745                                 int read, int write)
 746{
 747        u8 bit_read, bit_write;
 748        unsigned long tmp;
 749        u32 offset;
 750
 751        /*
 752         * If this warning triggers extend the direct_access_msrs list at the
 753         * beginning of the file
 754         */
 755        WARN_ON(!valid_msr_intercept(msr));
 756
 757        offset    = svm_msrpm_offset(msr);
 758        bit_read  = 2 * (msr & 0x0f);
 759        bit_write = 2 * (msr & 0x0f) + 1;
 760        tmp       = msrpm[offset];
 761
 762        BUG_ON(offset == MSR_INVALID);
 763
 764        read  ? clear_bit(bit_read,  &tmp) : set_bit(bit_read,  &tmp);
 765        write ? clear_bit(bit_write, &tmp) : set_bit(bit_write, &tmp);
 766
 767        msrpm[offset] = tmp;
 768}
 769
 770static void svm_vcpu_init_msrpm(u32 *msrpm)
 771{
 772        int i;
 773
 774        memset(msrpm, 0xff, PAGE_SIZE * (1 << MSRPM_ALLOC_ORDER));
 775
 776        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 777                if (!direct_access_msrs[i].always)
 778                        continue;
 779
 780                set_msr_interception(msrpm, direct_access_msrs[i].index, 1, 1);
 781        }
 782}
 783
 784static void add_msr_offset(u32 offset)
 785{
 786        int i;
 787
 788        for (i = 0; i < MSRPM_OFFSETS; ++i) {
 789
 790                /* Offset already in list? */
 791                if (msrpm_offsets[i] == offset)
 792                        return;
 793
 794                /* Slot used by another offset? */
 795                if (msrpm_offsets[i] != MSR_INVALID)
 796                        continue;
 797
 798                /* Add offset to list */
 799                msrpm_offsets[i] = offset;
 800
 801                return;
 802        }
 803
 804        /*
 805         * If this BUG triggers the msrpm_offsets table has an overflow. Just
 806         * increase MSRPM_OFFSETS in this case.
 807         */
 808        BUG();
 809}
 810
 811static void init_msrpm_offsets(void)
 812{
 813        int i;
 814
 815        memset(msrpm_offsets, 0xff, sizeof(msrpm_offsets));
 816
 817        for (i = 0; direct_access_msrs[i].index != MSR_INVALID; i++) {
 818                u32 offset;
 819
 820                offset = svm_msrpm_offset(direct_access_msrs[i].index);
 821                BUG_ON(offset == MSR_INVALID);
 822
 823                add_msr_offset(offset);
 824        }
 825}
 826
 827static void svm_enable_lbrv(struct vcpu_svm *svm)
 828{
 829        u32 *msrpm = svm->msrpm;
 830
 831        svm->vmcb->control.lbr_ctl = 1;
 832        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 1, 1);
 833        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 1, 1);
 834        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 1, 1);
 835        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 1, 1);
 836}
 837
 838static void svm_disable_lbrv(struct vcpu_svm *svm)
 839{
 840        u32 *msrpm = svm->msrpm;
 841
 842        svm->vmcb->control.lbr_ctl = 0;
 843        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHFROMIP, 0, 0);
 844        set_msr_interception(msrpm, MSR_IA32_LASTBRANCHTOIP, 0, 0);
 845        set_msr_interception(msrpm, MSR_IA32_LASTINTFROMIP, 0, 0);
 846        set_msr_interception(msrpm, MSR_IA32_LASTINTTOIP, 0, 0);
 847}
 848
 849static __init int svm_hardware_setup(void)
 850{
 851        int cpu;
 852        struct page *iopm_pages;
 853        void *iopm_va;
 854        int r;
 855
 856        iopm_pages = alloc_pages(GFP_KERNEL, IOPM_ALLOC_ORDER);
 857
 858        if (!iopm_pages)
 859                return -ENOMEM;
 860
 861        iopm_va = page_address(iopm_pages);
 862        memset(iopm_va, 0xff, PAGE_SIZE * (1 << IOPM_ALLOC_ORDER));
 863        iopm_base = page_to_pfn(iopm_pages) << PAGE_SHIFT;
 864
 865        init_msrpm_offsets();
 866
 867        if (boot_cpu_has(X86_FEATURE_NX))
 868                kvm_enable_efer_bits(EFER_NX);
 869
 870        if (boot_cpu_has(X86_FEATURE_FXSR_OPT))
 871                kvm_enable_efer_bits(EFER_FFXSR);
 872
 873        if (boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 874                u64 max;
 875
 876                kvm_has_tsc_control = true;
 877
 878                /*
 879                 * Make sure the user can only configure tsc_khz values that
 880                 * fit into a signed integer.
 881                 * A min value is not calculated needed because it will always
 882                 * be 1 on all machines and a value of 0 is used to disable
 883                 * tsc-scaling for the vcpu.
 884                 */
 885                max = min(0x7fffffffULL, __scale_tsc(tsc_khz, TSC_RATIO_MAX));
 886
 887                kvm_max_guest_tsc_khz = max;
 888        }
 889
 890        if (nested) {
 891                printk(KERN_INFO "kvm: Nested Virtualization enabled\n");
 892                kvm_enable_efer_bits(EFER_SVME | EFER_LMSLE);
 893        }
 894
 895        for_each_possible_cpu(cpu) {
 896                r = svm_cpu_init(cpu);
 897                if (r)
 898                        goto err;
 899        }
 900
 901        if (!boot_cpu_has(X86_FEATURE_NPT))
 902                npt_enabled = false;
 903
 904        if (npt_enabled && !npt) {
 905                printk(KERN_INFO "kvm: Nested Paging disabled\n");
 906                npt_enabled = false;
 907        }
 908
 909        if (npt_enabled) {
 910                printk(KERN_INFO "kvm: Nested Paging enabled\n");
 911                kvm_enable_tdp();
 912        } else
 913                kvm_disable_tdp();
 914
 915        return 0;
 916
 917err:
 918        __free_pages(iopm_pages, IOPM_ALLOC_ORDER);
 919        iopm_base = 0;
 920        return r;
 921}
 922
 923static __exit void svm_hardware_unsetup(void)
 924{
 925        int cpu;
 926
 927        for_each_possible_cpu(cpu)
 928                svm_cpu_uninit(cpu);
 929
 930        __free_pages(pfn_to_page(iopm_base >> PAGE_SHIFT), IOPM_ALLOC_ORDER);
 931        iopm_base = 0;
 932}
 933
 934static void init_seg(struct vmcb_seg *seg)
 935{
 936        seg->selector = 0;
 937        seg->attrib = SVM_SELECTOR_P_MASK | SVM_SELECTOR_S_MASK |
 938                      SVM_SELECTOR_WRITE_MASK; /* Read/Write Data Segment */
 939        seg->limit = 0xffff;
 940        seg->base = 0;
 941}
 942
 943static void init_sys_seg(struct vmcb_seg *seg, uint32_t type)
 944{
 945        seg->selector = 0;
 946        seg->attrib = SVM_SELECTOR_P_MASK | type;
 947        seg->limit = 0xffff;
 948        seg->base = 0;
 949}
 950
 951static u64 __scale_tsc(u64 ratio, u64 tsc)
 952{
 953        u64 mult, frac, _tsc;
 954
 955        mult  = ratio >> 32;
 956        frac  = ratio & ((1ULL << 32) - 1);
 957
 958        _tsc  = tsc;
 959        _tsc *= mult;
 960        _tsc += (tsc >> 32) * frac;
 961        _tsc += ((tsc & ((1ULL << 32) - 1)) * frac) >> 32;
 962
 963        return _tsc;
 964}
 965
 966static u64 svm_scale_tsc(struct kvm_vcpu *vcpu, u64 tsc)
 967{
 968        struct vcpu_svm *svm = to_svm(vcpu);
 969        u64 _tsc = tsc;
 970
 971        if (svm->tsc_ratio != TSC_RATIO_DEFAULT)
 972                _tsc = __scale_tsc(svm->tsc_ratio, tsc);
 973
 974        return _tsc;
 975}
 976
 977static void svm_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
 978{
 979        struct vcpu_svm *svm = to_svm(vcpu);
 980        u64 ratio;
 981        u64 khz;
 982
 983        /* Guest TSC same frequency as host TSC? */
 984        if (!scale) {
 985                svm->tsc_ratio = TSC_RATIO_DEFAULT;
 986                return;
 987        }
 988
 989        /* TSC scaling supported? */
 990        if (!boot_cpu_has(X86_FEATURE_TSCRATEMSR)) {
 991                if (user_tsc_khz > tsc_khz) {
 992                        vcpu->arch.tsc_catchup = 1;
 993                        vcpu->arch.tsc_always_catchup = 1;
 994                } else
 995                        WARN(1, "user requested TSC rate below hardware speed\n");
 996                return;
 997        }
 998
 999        khz = user_tsc_khz;
1000
1001        /* TSC scaling required  - calculate ratio */
1002        ratio = khz << 32;
1003        do_div(ratio, tsc_khz);
1004
1005        if (ratio == 0 || ratio & TSC_RATIO_RSVD) {
1006                WARN_ONCE(1, "Invalid TSC ratio - virtual-tsc-khz=%u\n",
1007                                user_tsc_khz);
1008                return;
1009        }
1010        svm->tsc_ratio             = ratio;
1011}
1012
1013static u64 svm_read_tsc_offset(struct kvm_vcpu *vcpu)
1014{
1015        struct vcpu_svm *svm = to_svm(vcpu);
1016
1017        return svm->vmcb->control.tsc_offset;
1018}
1019
1020static void svm_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
1021{
1022        struct vcpu_svm *svm = to_svm(vcpu);
1023        u64 g_tsc_offset = 0;
1024
1025        if (is_guest_mode(vcpu)) {
1026                g_tsc_offset = svm->vmcb->control.tsc_offset -
1027                               svm->nested.hsave->control.tsc_offset;
1028                svm->nested.hsave->control.tsc_offset = offset;
1029        }
1030
1031        svm->vmcb->control.tsc_offset = offset + g_tsc_offset;
1032
1033        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1034}
1035
1036static void svm_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
1037{
1038        struct vcpu_svm *svm = to_svm(vcpu);
1039
1040        WARN_ON(adjustment < 0);
1041        if (host)
1042                adjustment = svm_scale_tsc(vcpu, adjustment);
1043
1044        svm->vmcb->control.tsc_offset += adjustment;
1045        if (is_guest_mode(vcpu))
1046                svm->nested.hsave->control.tsc_offset += adjustment;
1047        mark_dirty(svm->vmcb, VMCB_INTERCEPTS);
1048}
1049
1050static u64 svm_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
1051{
1052        u64 tsc;
1053
1054        tsc = svm_scale_tsc(vcpu, native_read_tsc());
1055
1056        return target_tsc - tsc;
1057}
1058
1059static void init_vmcb(struct vcpu_svm *svm)
1060{
1061        struct vmcb_control_area *control = &svm->vmcb->control;
1062        struct vmcb_save_area *save = &svm->vmcb->save;
1063
1064        svm->vcpu.fpu_active = 1;
1065        svm->vcpu.arch.hflags = 0;
1066
1067        set_cr_intercept(svm, INTERCEPT_CR0_READ);
1068        set_cr_intercept(svm, INTERCEPT_CR3_READ);
1069        set_cr_intercept(svm, INTERCEPT_CR4_READ);
1070        set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1071        set_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1072        set_cr_intercept(svm, INTERCEPT_CR4_WRITE);
1073        set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
1074
1075        set_dr_intercept(svm, INTERCEPT_DR0_READ);
1076        set_dr_intercept(svm, INTERCEPT_DR1_READ);
1077        set_dr_intercept(svm, INTERCEPT_DR2_READ);
1078        set_dr_intercept(svm, INTERCEPT_DR3_READ);
1079        set_dr_intercept(svm, INTERCEPT_DR4_READ);
1080        set_dr_intercept(svm, INTERCEPT_DR5_READ);
1081        set_dr_intercept(svm, INTERCEPT_DR6_READ);
1082        set_dr_intercept(svm, INTERCEPT_DR7_READ);
1083
1084        set_dr_intercept(svm, INTERCEPT_DR0_WRITE);
1085        set_dr_intercept(svm, INTERCEPT_DR1_WRITE);
1086        set_dr_intercept(svm, INTERCEPT_DR2_WRITE);
1087        set_dr_intercept(svm, INTERCEPT_DR3_WRITE);
1088        set_dr_intercept(svm, INTERCEPT_DR4_WRITE);
1089        set_dr_intercept(svm, INTERCEPT_DR5_WRITE);
1090        set_dr_intercept(svm, INTERCEPT_DR6_WRITE);
1091        set_dr_intercept(svm, INTERCEPT_DR7_WRITE);
1092
1093        set_exception_intercept(svm, PF_VECTOR);
1094        set_exception_intercept(svm, UD_VECTOR);
1095        set_exception_intercept(svm, MC_VECTOR);
1096
1097        set_intercept(svm, INTERCEPT_INTR);
1098        set_intercept(svm, INTERCEPT_NMI);
1099        set_intercept(svm, INTERCEPT_SMI);
1100        set_intercept(svm, INTERCEPT_SELECTIVE_CR0);
1101        set_intercept(svm, INTERCEPT_RDPMC);
1102        set_intercept(svm, INTERCEPT_CPUID);
1103        set_intercept(svm, INTERCEPT_INVD);
1104        set_intercept(svm, INTERCEPT_HLT);
1105        set_intercept(svm, INTERCEPT_INVLPG);
1106        set_intercept(svm, INTERCEPT_INVLPGA);
1107        set_intercept(svm, INTERCEPT_IOIO_PROT);
1108        set_intercept(svm, INTERCEPT_MSR_PROT);
1109        set_intercept(svm, INTERCEPT_TASK_SWITCH);
1110        set_intercept(svm, INTERCEPT_SHUTDOWN);
1111        set_intercept(svm, INTERCEPT_VMRUN);
1112        set_intercept(svm, INTERCEPT_VMMCALL);
1113        set_intercept(svm, INTERCEPT_VMLOAD);
1114        set_intercept(svm, INTERCEPT_VMSAVE);
1115        set_intercept(svm, INTERCEPT_STGI);
1116        set_intercept(svm, INTERCEPT_CLGI);
1117        set_intercept(svm, INTERCEPT_SKINIT);
1118        set_intercept(svm, INTERCEPT_WBINVD);
1119        set_intercept(svm, INTERCEPT_MONITOR);
1120        set_intercept(svm, INTERCEPT_MWAIT);
1121        set_intercept(svm, INTERCEPT_XSETBV);
1122
1123        control->iopm_base_pa = iopm_base;
1124        control->msrpm_base_pa = __pa(svm->msrpm);
1125        control->int_ctl = V_INTR_MASKING_MASK;
1126
1127        init_seg(&save->es);
1128        init_seg(&save->ss);
1129        init_seg(&save->ds);
1130        init_seg(&save->fs);
1131        init_seg(&save->gs);
1132
1133        save->cs.selector = 0xf000;
1134        save->cs.base = 0xffff0000;
1135        /* Executable/Readable Code Segment */
1136        save->cs.attrib = SVM_SELECTOR_READ_MASK | SVM_SELECTOR_P_MASK |
1137                SVM_SELECTOR_S_MASK | SVM_SELECTOR_CODE_MASK;
1138        save->cs.limit = 0xffff;
1139
1140        save->gdtr.limit = 0xffff;
1141        save->idtr.limit = 0xffff;
1142
1143        init_sys_seg(&save->ldtr, SEG_TYPE_LDT);
1144        init_sys_seg(&save->tr, SEG_TYPE_BUSY_TSS16);
1145
1146        svm_set_efer(&svm->vcpu, 0);
1147        save->dr6 = 0xffff0ff0;
1148        kvm_set_rflags(&svm->vcpu, 2);
1149        save->rip = 0x0000fff0;
1150        svm->vcpu.arch.regs[VCPU_REGS_RIP] = save->rip;
1151
1152        /*
1153         * This is the guest-visible cr0 value.
1154         * svm_set_cr0() sets PG and WP and clears NW and CD on save->cr0.
1155         */
1156        svm->vcpu.arch.cr0 = 0;
1157        (void)kvm_set_cr0(&svm->vcpu, X86_CR0_NW | X86_CR0_CD | X86_CR0_ET);
1158
1159        save->cr4 = X86_CR4_PAE;
1160        /* rdx = ?? */
1161
1162        if (npt_enabled) {
1163                /* Setup VMCB for Nested Paging */
1164                control->nested_ctl = 1;
1165                clr_intercept(svm, INTERCEPT_INVLPG);
1166                clr_exception_intercept(svm, PF_VECTOR);
1167                clr_cr_intercept(svm, INTERCEPT_CR3_READ);
1168                clr_cr_intercept(svm, INTERCEPT_CR3_WRITE);
1169                save->g_pat = 0x0007040600070406ULL;
1170                save->cr3 = 0;
1171                save->cr4 = 0;
1172        }
1173        svm->asid_generation = 0;
1174
1175        svm->nested.vmcb = 0;
1176        svm->vcpu.arch.hflags = 0;
1177
1178        if (boot_cpu_has(X86_FEATURE_PAUSEFILTER)) {
1179                control->pause_filter_count = 3000;
1180                set_intercept(svm, INTERCEPT_PAUSE);
1181        }
1182
1183        mark_all_dirty(svm->vmcb);
1184
1185        enable_gif(svm);
1186}
1187
1188static void svm_vcpu_reset(struct kvm_vcpu *vcpu)
1189{
1190        struct vcpu_svm *svm = to_svm(vcpu);
1191        u32 dummy;
1192        u32 eax = 1;
1193
1194        init_vmcb(svm);
1195
1196        kvm_cpuid(vcpu, &eax, &dummy, &dummy, &dummy);
1197        kvm_register_write(vcpu, VCPU_REGS_RDX, eax);
1198}
1199
1200static struct kvm_vcpu *svm_create_vcpu(struct kvm *kvm, unsigned int id)
1201{
1202        struct vcpu_svm *svm;
1203        struct page *page;
1204        struct page *msrpm_pages;
1205        struct page *hsave_page;
1206        struct page *nested_msrpm_pages;
1207        int err;
1208
1209        svm = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1210        if (!svm) {
1211                err = -ENOMEM;
1212                goto out;
1213        }
1214
1215        svm->tsc_ratio = TSC_RATIO_DEFAULT;
1216
1217        err = kvm_vcpu_init(&svm->vcpu, kvm, id);
1218        if (err)
1219                goto free_svm;
1220
1221        err = -ENOMEM;
1222        page = alloc_page(GFP_KERNEL);
1223        if (!page)
1224                goto uninit;
1225
1226        msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1227        if (!msrpm_pages)
1228                goto free_page1;
1229
1230        nested_msrpm_pages = alloc_pages(GFP_KERNEL, MSRPM_ALLOC_ORDER);
1231        if (!nested_msrpm_pages)
1232                goto free_page2;
1233
1234        hsave_page = alloc_page(GFP_KERNEL);
1235        if (!hsave_page)
1236                goto free_page3;
1237
1238        svm->nested.hsave = page_address(hsave_page);
1239
1240        svm->msrpm = page_address(msrpm_pages);
1241        svm_vcpu_init_msrpm(svm->msrpm);
1242
1243        svm->nested.msrpm = page_address(nested_msrpm_pages);
1244        svm_vcpu_init_msrpm(svm->nested.msrpm);
1245
1246        svm->vmcb = page_address(page);
1247        clear_page(svm->vmcb);
1248        svm->vmcb_pa = page_to_pfn(page) << PAGE_SHIFT;
1249        svm->asid_generation = 0;
1250        init_vmcb(svm);
1251
1252        svm->vcpu.arch.apic_base = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
1253        if (kvm_vcpu_is_bsp(&svm->vcpu))
1254                svm->vcpu.arch.apic_base |= MSR_IA32_APICBASE_BSP;
1255
1256        svm_init_osvw(&svm->vcpu);
1257
1258        return &svm->vcpu;
1259
1260free_page3:
1261        __free_pages(nested_msrpm_pages, MSRPM_ALLOC_ORDER);
1262free_page2:
1263        __free_pages(msrpm_pages, MSRPM_ALLOC_ORDER);
1264free_page1:
1265        __free_page(page);
1266uninit:
1267        kvm_vcpu_uninit(&svm->vcpu);
1268free_svm:
1269        kmem_cache_free(kvm_vcpu_cache, svm);
1270out:
1271        return ERR_PTR(err);
1272}
1273
1274static void svm_free_vcpu(struct kvm_vcpu *vcpu)
1275{
1276        struct vcpu_svm *svm = to_svm(vcpu);
1277
1278        __free_page(pfn_to_page(svm->vmcb_pa >> PAGE_SHIFT));
1279        __free_pages(virt_to_page(svm->msrpm), MSRPM_ALLOC_ORDER);
1280        __free_page(virt_to_page(svm->nested.hsave));
1281        __free_pages(virt_to_page(svm->nested.msrpm), MSRPM_ALLOC_ORDER);
1282        kvm_vcpu_uninit(vcpu);
1283        kmem_cache_free(kvm_vcpu_cache, svm);
1284}
1285
1286static void svm_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1287{
1288        struct vcpu_svm *svm = to_svm(vcpu);
1289        int i;
1290
1291        if (unlikely(cpu != vcpu->cpu)) {
1292                svm->asid_generation = 0;
1293                mark_all_dirty(svm->vmcb);
1294        }
1295
1296#ifdef CONFIG_X86_64
1297        rdmsrl(MSR_GS_BASE, to_svm(vcpu)->host.gs_base);
1298#endif
1299        savesegment(fs, svm->host.fs);
1300        savesegment(gs, svm->host.gs);
1301        svm->host.ldt = kvm_read_ldt();
1302
1303        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1304                rdmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1305
1306        if (static_cpu_has(X86_FEATURE_TSCRATEMSR) &&
1307            svm->tsc_ratio != __get_cpu_var(current_tsc_ratio)) {
1308                __get_cpu_var(current_tsc_ratio) = svm->tsc_ratio;
1309                wrmsrl(MSR_AMD64_TSC_RATIO, svm->tsc_ratio);
1310        }
1311}
1312
1313static void svm_vcpu_put(struct kvm_vcpu *vcpu)
1314{
1315        struct vcpu_svm *svm = to_svm(vcpu);
1316        int i;
1317
1318        ++vcpu->stat.host_state_reload;
1319        kvm_load_ldt(svm->host.ldt);
1320#ifdef CONFIG_X86_64
1321        loadsegment(fs, svm->host.fs);
1322        wrmsrl(MSR_KERNEL_GS_BASE, current->thread.gs);
1323        load_gs_index(svm->host.gs);
1324#else
1325#ifdef CONFIG_X86_32_LAZY_GS
1326        loadsegment(gs, svm->host.gs);
1327#endif
1328#endif
1329        for (i = 0; i < NR_HOST_SAVE_USER_MSRS; i++)
1330                wrmsrl(host_save_user_msrs[i], svm->host_user_msrs[i]);
1331}
1332
1333static void svm_update_cpl(struct kvm_vcpu *vcpu)
1334{
1335        struct vcpu_svm *svm = to_svm(vcpu);
1336        int cpl;
1337
1338        if (!is_protmode(vcpu))
1339                cpl = 0;
1340        else if (svm->vmcb->save.rflags & X86_EFLAGS_VM)
1341                cpl = 3;
1342        else
1343                cpl = svm->vmcb->save.cs.selector & 0x3;
1344
1345        svm->vmcb->save.cpl = cpl;
1346}
1347
1348static unsigned long svm_get_rflags(struct kvm_vcpu *vcpu)
1349{
1350        return to_svm(vcpu)->vmcb->save.rflags;
1351}
1352
1353static void svm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1354{
1355        unsigned long old_rflags = to_svm(vcpu)->vmcb->save.rflags;
1356
1357        to_svm(vcpu)->vmcb->save.rflags = rflags;
1358        if ((old_rflags ^ rflags) & X86_EFLAGS_VM)
1359                svm_update_cpl(vcpu);
1360}
1361
1362static void svm_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
1363{
1364        switch (reg) {
1365        case VCPU_EXREG_PDPTR:
1366                BUG_ON(!npt_enabled);
1367                load_pdptrs(vcpu, vcpu->arch.walk_mmu, kvm_read_cr3(vcpu));
1368                break;
1369        default:
1370                BUG();
1371        }
1372}
1373
1374static void svm_set_vintr(struct vcpu_svm *svm)
1375{
1376        set_intercept(svm, INTERCEPT_VINTR);
1377}
1378
1379static void svm_clear_vintr(struct vcpu_svm *svm)
1380{
1381        clr_intercept(svm, INTERCEPT_VINTR);
1382}
1383
1384static struct vmcb_seg *svm_seg(struct kvm_vcpu *vcpu, int seg)
1385{
1386        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1387
1388        switch (seg) {
1389        case VCPU_SREG_CS: return &save->cs;
1390        case VCPU_SREG_DS: return &save->ds;
1391        case VCPU_SREG_ES: return &save->es;
1392        case VCPU_SREG_FS: return &save->fs;
1393        case VCPU_SREG_GS: return &save->gs;
1394        case VCPU_SREG_SS: return &save->ss;
1395        case VCPU_SREG_TR: return &save->tr;
1396        case VCPU_SREG_LDTR: return &save->ldtr;
1397        }
1398        BUG();
1399        return NULL;
1400}
1401
1402static u64 svm_get_segment_base(struct kvm_vcpu *vcpu, int seg)
1403{
1404        struct vmcb_seg *s = svm_seg(vcpu, seg);
1405
1406        return s->base;
1407}
1408
1409static void svm_get_segment(struct kvm_vcpu *vcpu,
1410                            struct kvm_segment *var, int seg)
1411{
1412        struct vmcb_seg *s = svm_seg(vcpu, seg);
1413
1414        var->base = s->base;
1415        var->limit = s->limit;
1416        var->selector = s->selector;
1417        var->type = s->attrib & SVM_SELECTOR_TYPE_MASK;
1418        var->s = (s->attrib >> SVM_SELECTOR_S_SHIFT) & 1;
1419        var->dpl = (s->attrib >> SVM_SELECTOR_DPL_SHIFT) & 3;
1420        var->present = (s->attrib >> SVM_SELECTOR_P_SHIFT) & 1;
1421        var->avl = (s->attrib >> SVM_SELECTOR_AVL_SHIFT) & 1;
1422        var->l = (s->attrib >> SVM_SELECTOR_L_SHIFT) & 1;
1423        var->db = (s->attrib >> SVM_SELECTOR_DB_SHIFT) & 1;
1424        var->g = (s->attrib >> SVM_SELECTOR_G_SHIFT) & 1;
1425
1426        /*
1427         * AMD's VMCB does not have an explicit unusable field, so emulate it
1428         * for cross vendor migration purposes by "not present"
1429         */
1430        var->unusable = !var->present || (var->type == 0);
1431
1432        switch (seg) {
1433        case VCPU_SREG_CS:
1434                /*
1435                 * SVM always stores 0 for the 'G' bit in the CS selector in
1436                 * the VMCB on a VMEXIT. This hurts cross-vendor migration:
1437                 * Intel's VMENTRY has a check on the 'G' bit.
1438                 */
1439                var->g = s->limit > 0xfffff;
1440                break;
1441        case VCPU_SREG_TR:
1442                /*
1443                 * Work around a bug where the busy flag in the tr selector
1444                 * isn't exposed
1445                 */
1446                var->type |= 0x2;
1447                break;
1448        case VCPU_SREG_DS:
1449        case VCPU_SREG_ES:
1450        case VCPU_SREG_FS:
1451        case VCPU_SREG_GS:
1452                /*
1453                 * The accessed bit must always be set in the segment
1454                 * descriptor cache, although it can be cleared in the
1455                 * descriptor, the cached bit always remains at 1. Since
1456                 * Intel has a check on this, set it here to support
1457                 * cross-vendor migration.
1458                 */
1459                if (!var->unusable)
1460                        var->type |= 0x1;
1461                break;
1462        case VCPU_SREG_SS:
1463                /*
1464                 * On AMD CPUs sometimes the DB bit in the segment
1465                 * descriptor is left as 1, although the whole segment has
1466                 * been made unusable. Clear it here to pass an Intel VMX
1467                 * entry check when cross vendor migrating.
1468                 */
1469                if (var->unusable)
1470                        var->db = 0;
1471                break;
1472        }
1473}
1474
1475static int svm_get_cpl(struct kvm_vcpu *vcpu)
1476{
1477        struct vmcb_save_area *save = &to_svm(vcpu)->vmcb->save;
1478
1479        return save->cpl;
1480}
1481
1482static void svm_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1483{
1484        struct vcpu_svm *svm = to_svm(vcpu);
1485
1486        dt->size = svm->vmcb->save.idtr.limit;
1487        dt->address = svm->vmcb->save.idtr.base;
1488}
1489
1490static void svm_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1491{
1492        struct vcpu_svm *svm = to_svm(vcpu);
1493
1494        svm->vmcb->save.idtr.limit = dt->size;
1495        svm->vmcb->save.idtr.base = dt->address ;
1496        mark_dirty(svm->vmcb, VMCB_DT);
1497}
1498
1499static void svm_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1500{
1501        struct vcpu_svm *svm = to_svm(vcpu);
1502
1503        dt->size = svm->vmcb->save.gdtr.limit;
1504        dt->address = svm->vmcb->save.gdtr.base;
1505}
1506
1507static void svm_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
1508{
1509        struct vcpu_svm *svm = to_svm(vcpu);
1510
1511        svm->vmcb->save.gdtr.limit = dt->size;
1512        svm->vmcb->save.gdtr.base = dt->address ;
1513        mark_dirty(svm->vmcb, VMCB_DT);
1514}
1515
1516static void svm_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
1517{
1518}
1519
1520static void svm_decache_cr3(struct kvm_vcpu *vcpu)
1521{
1522}
1523
1524static void svm_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
1525{
1526}
1527
1528static void update_cr0_intercept(struct vcpu_svm *svm)
1529{
1530        ulong gcr0 = svm->vcpu.arch.cr0;
1531        u64 *hcr0 = &svm->vmcb->save.cr0;
1532
1533        if (!svm->vcpu.fpu_active)
1534                *hcr0 |= SVM_CR0_SELECTIVE_MASK;
1535        else
1536                *hcr0 = (*hcr0 & ~SVM_CR0_SELECTIVE_MASK)
1537                        | (gcr0 & SVM_CR0_SELECTIVE_MASK);
1538
1539        mark_dirty(svm->vmcb, VMCB_CR);
1540
1541        if (gcr0 == *hcr0 && svm->vcpu.fpu_active) {
1542                clr_cr_intercept(svm, INTERCEPT_CR0_READ);
1543                clr_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1544        } else {
1545                set_cr_intercept(svm, INTERCEPT_CR0_READ);
1546                set_cr_intercept(svm, INTERCEPT_CR0_WRITE);
1547        }
1548}
1549
1550static void svm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
1551{
1552        struct vcpu_svm *svm = to_svm(vcpu);
1553
1554#ifdef CONFIG_X86_64
1555        if (vcpu->arch.efer & EFER_LME) {
1556                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG)) {
1557                        vcpu->arch.efer |= EFER_LMA;
1558                        svm->vmcb->save.efer |= EFER_LMA | EFER_LME;
1559                }
1560
1561                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG)) {
1562                        vcpu->arch.efer &= ~EFER_LMA;
1563                        svm->vmcb->save.efer &= ~(EFER_LMA | EFER_LME);
1564                }
1565        }
1566#endif
1567        vcpu->arch.cr0 = cr0;
1568
1569        if (!npt_enabled)
1570                cr0 |= X86_CR0_PG | X86_CR0_WP;
1571
1572        if (!vcpu->fpu_active)
1573                cr0 |= X86_CR0_TS;
1574        /*
1575         * re-enable caching here because the QEMU bios
1576         * does not do it - this results in some delay at
1577         * reboot
1578         */
1579        cr0 &= ~(X86_CR0_CD | X86_CR0_NW);
1580        svm->vmcb->save.cr0 = cr0;
1581        mark_dirty(svm->vmcb, VMCB_CR);
1582        update_cr0_intercept(svm);
1583}
1584
1585static int svm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
1586{
1587        unsigned long host_cr4_mce = read_cr4() & X86_CR4_MCE;
1588        unsigned long old_cr4 = to_svm(vcpu)->vmcb->save.cr4;
1589
1590        if (cr4 & X86_CR4_VMXE)
1591                return 1;
1592
1593        if (npt_enabled && ((old_cr4 ^ cr4) & X86_CR4_PGE))
1594                svm_flush_tlb(vcpu);
1595
1596        vcpu->arch.cr4 = cr4;
1597        if (!npt_enabled)
1598                cr4 |= X86_CR4_PAE;
1599        cr4 |= host_cr4_mce;
1600        to_svm(vcpu)->vmcb->save.cr4 = cr4;
1601        mark_dirty(to_svm(vcpu)->vmcb, VMCB_CR);
1602        return 0;
1603}
1604
1605static void svm_set_segment(struct kvm_vcpu *vcpu,
1606                            struct kvm_segment *var, int seg)
1607{
1608        struct vcpu_svm *svm = to_svm(vcpu);
1609        struct vmcb_seg *s = svm_seg(vcpu, seg);
1610
1611        s->base = var->base;
1612        s->limit = var->limit;
1613        s->selector = var->selector;
1614        if (var->unusable)
1615                s->attrib = 0;
1616        else {
1617                s->attrib = (var->type & SVM_SELECTOR_TYPE_MASK);
1618                s->attrib |= (var->s & 1) << SVM_SELECTOR_S_SHIFT;
1619                s->attrib |= (var->dpl & 3) << SVM_SELECTOR_DPL_SHIFT;
1620                s->attrib |= (var->present & 1) << SVM_SELECTOR_P_SHIFT;
1621                s->attrib |= (var->avl & 1) << SVM_SELECTOR_AVL_SHIFT;
1622                s->attrib |= (var->l & 1) << SVM_SELECTOR_L_SHIFT;
1623                s->attrib |= (var->db & 1) << SVM_SELECTOR_DB_SHIFT;
1624                s->attrib |= (var->g & 1) << SVM_SELECTOR_G_SHIFT;
1625        }
1626        if (seg == VCPU_SREG_CS)
1627                svm_update_cpl(vcpu);
1628
1629        mark_dirty(svm->vmcb, VMCB_SEG);
1630}
1631
1632static void update_db_bp_intercept(struct kvm_vcpu *vcpu)
1633{
1634        struct vcpu_svm *svm = to_svm(vcpu);
1635
1636        clr_exception_intercept(svm, DB_VECTOR);
1637        clr_exception_intercept(svm, BP_VECTOR);
1638
1639        if (svm->nmi_singlestep)
1640                set_exception_intercept(svm, DB_VECTOR);
1641
1642        if (vcpu->guest_debug & KVM_GUESTDBG_ENABLE) {
1643                if (vcpu->guest_debug &
1644                    (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
1645                        set_exception_intercept(svm, DB_VECTOR);
1646                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
1647                        set_exception_intercept(svm, BP_VECTOR);
1648        } else
1649                vcpu->guest_debug = 0;
1650}
1651
1652static void new_asid(struct vcpu_svm *svm, struct svm_cpu_data *sd)
1653{
1654        if (sd->next_asid > sd->max_asid) {
1655                ++sd->asid_generation;
1656                sd->next_asid = 1;
1657                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ALL_ASID;
1658        }
1659
1660        svm->asid_generation = sd->asid_generation;
1661        svm->vmcb->control.asid = sd->next_asid++;
1662
1663        mark_dirty(svm->vmcb, VMCB_ASID);
1664}
1665
1666static void svm_set_dr7(struct kvm_vcpu *vcpu, unsigned long value)
1667{
1668        struct vcpu_svm *svm = to_svm(vcpu);
1669
1670        svm->vmcb->save.dr7 = value;
1671        mark_dirty(svm->vmcb, VMCB_DR);
1672}
1673
1674static int pf_interception(struct vcpu_svm *svm)
1675{
1676        u64 fault_address = svm->vmcb->control.exit_info_2;
1677        u32 error_code;
1678        int r = 1;
1679
1680        switch (svm->apf_reason) {
1681        default:
1682                error_code = svm->vmcb->control.exit_info_1;
1683
1684                trace_kvm_page_fault(fault_address, error_code);
1685                if (!npt_enabled && kvm_event_needs_reinjection(&svm->vcpu))
1686                        kvm_mmu_unprotect_page_virt(&svm->vcpu, fault_address);
1687                r = kvm_mmu_page_fault(&svm->vcpu, fault_address, error_code,
1688                        svm->vmcb->control.insn_bytes,
1689                        svm->vmcb->control.insn_len);
1690                break;
1691        case KVM_PV_REASON_PAGE_NOT_PRESENT:
1692                svm->apf_reason = 0;
1693                local_irq_disable();
1694                kvm_async_pf_task_wait(fault_address);
1695                local_irq_enable();
1696                break;
1697        case KVM_PV_REASON_PAGE_READY:
1698                svm->apf_reason = 0;
1699                local_irq_disable();
1700                kvm_async_pf_task_wake(fault_address);
1701                local_irq_enable();
1702                break;
1703        }
1704        return r;
1705}
1706
1707static int db_interception(struct vcpu_svm *svm)
1708{
1709        struct kvm_run *kvm_run = svm->vcpu.run;
1710
1711        if (!(svm->vcpu.guest_debug &
1712              (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) &&
1713                !svm->nmi_singlestep) {
1714                kvm_queue_exception(&svm->vcpu, DB_VECTOR);
1715                return 1;
1716        }
1717
1718        if (svm->nmi_singlestep) {
1719                svm->nmi_singlestep = false;
1720                if (!(svm->vcpu.guest_debug & KVM_GUESTDBG_SINGLESTEP))
1721                        svm->vmcb->save.rflags &=
1722                                ~(X86_EFLAGS_TF | X86_EFLAGS_RF);
1723                update_db_bp_intercept(&svm->vcpu);
1724        }
1725
1726        if (svm->vcpu.guest_debug &
1727            (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP)) {
1728                kvm_run->exit_reason = KVM_EXIT_DEBUG;
1729                kvm_run->debug.arch.pc =
1730                        svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1731                kvm_run->debug.arch.exception = DB_VECTOR;
1732                return 0;
1733        }
1734
1735        return 1;
1736}
1737
1738static int bp_interception(struct vcpu_svm *svm)
1739{
1740        struct kvm_run *kvm_run = svm->vcpu.run;
1741
1742        kvm_run->exit_reason = KVM_EXIT_DEBUG;
1743        kvm_run->debug.arch.pc = svm->vmcb->save.cs.base + svm->vmcb->save.rip;
1744        kvm_run->debug.arch.exception = BP_VECTOR;
1745        return 0;
1746}
1747
1748static int ud_interception(struct vcpu_svm *svm)
1749{
1750        int er;
1751
1752        er = emulate_instruction(&svm->vcpu, EMULTYPE_TRAP_UD);
1753        if (er != EMULATE_DONE)
1754                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1755        return 1;
1756}
1757
1758static void svm_fpu_activate(struct kvm_vcpu *vcpu)
1759{
1760        struct vcpu_svm *svm = to_svm(vcpu);
1761
1762        clr_exception_intercept(svm, NM_VECTOR);
1763
1764        svm->vcpu.fpu_active = 1;
1765        update_cr0_intercept(svm);
1766}
1767
1768static int nm_interception(struct vcpu_svm *svm)
1769{
1770        svm_fpu_activate(&svm->vcpu);
1771        return 1;
1772}
1773
1774static bool is_erratum_383(void)
1775{
1776        int err, i;
1777        u64 value;
1778
1779        if (!erratum_383_found)
1780                return false;
1781
1782        value = native_read_msr_safe(MSR_IA32_MC0_STATUS, &err);
1783        if (err)
1784                return false;
1785
1786        /* Bit 62 may or may not be set for this mce */
1787        value &= ~(1ULL << 62);
1788
1789        if (value != 0xb600000000010015ULL)
1790                return false;
1791
1792        /* Clear MCi_STATUS registers */
1793        for (i = 0; i < 6; ++i)
1794                native_write_msr_safe(MSR_IA32_MCx_STATUS(i), 0, 0);
1795
1796        value = native_read_msr_safe(MSR_IA32_MCG_STATUS, &err);
1797        if (!err) {
1798                u32 low, high;
1799
1800                value &= ~(1ULL << 2);
1801                low    = lower_32_bits(value);
1802                high   = upper_32_bits(value);
1803
1804                native_write_msr_safe(MSR_IA32_MCG_STATUS, low, high);
1805        }
1806
1807        /* Flush tlb to evict multi-match entries */
1808        __flush_tlb_all();
1809
1810        return true;
1811}
1812
1813static void svm_handle_mce(struct vcpu_svm *svm)
1814{
1815        if (is_erratum_383()) {
1816                /*
1817                 * Erratum 383 triggered. Guest state is corrupt so kill the
1818                 * guest.
1819                 */
1820                pr_err("KVM: Guest triggered AMD Erratum 383\n");
1821
1822                kvm_make_request(KVM_REQ_TRIPLE_FAULT, &svm->vcpu);
1823
1824                return;
1825        }
1826
1827        /*
1828         * On an #MC intercept the MCE handler is not called automatically in
1829         * the host. So do it by hand here.
1830         */
1831        asm volatile (
1832                "int $0x12\n");
1833        /* not sure if we ever come back to this point */
1834
1835        return;
1836}
1837
1838static int mc_interception(struct vcpu_svm *svm)
1839{
1840        return 1;
1841}
1842
1843static int shutdown_interception(struct vcpu_svm *svm)
1844{
1845        struct kvm_run *kvm_run = svm->vcpu.run;
1846
1847        /*
1848         * VMCB is undefined after a SHUTDOWN intercept
1849         * so reinitialize it.
1850         */
1851        clear_page(svm->vmcb);
1852        init_vmcb(svm);
1853
1854        kvm_run->exit_reason = KVM_EXIT_SHUTDOWN;
1855        return 0;
1856}
1857
1858static int io_interception(struct vcpu_svm *svm)
1859{
1860        struct kvm_vcpu *vcpu = &svm->vcpu;
1861        u32 io_info = svm->vmcb->control.exit_info_1; /* address size bug? */
1862        int size, in, string;
1863        unsigned port;
1864
1865        ++svm->vcpu.stat.io_exits;
1866        string = (io_info & SVM_IOIO_STR_MASK) != 0;
1867        in = (io_info & SVM_IOIO_TYPE_MASK) != 0;
1868        if (string || in)
1869                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
1870
1871        port = io_info >> 16;
1872        size = (io_info & SVM_IOIO_SIZE_MASK) >> SVM_IOIO_SIZE_SHIFT;
1873        svm->next_rip = svm->vmcb->control.exit_info_2;
1874        skip_emulated_instruction(&svm->vcpu);
1875
1876        return kvm_fast_pio_out(vcpu, size, port);
1877}
1878
1879static int nmi_interception(struct vcpu_svm *svm)
1880{
1881        return 1;
1882}
1883
1884static int intr_interception(struct vcpu_svm *svm)
1885{
1886        ++svm->vcpu.stat.irq_exits;
1887        return 1;
1888}
1889
1890static int nop_on_interception(struct vcpu_svm *svm)
1891{
1892        return 1;
1893}
1894
1895static int halt_interception(struct vcpu_svm *svm)
1896{
1897        svm->next_rip = kvm_rip_read(&svm->vcpu) + 1;
1898        skip_emulated_instruction(&svm->vcpu);
1899        return kvm_emulate_halt(&svm->vcpu);
1900}
1901
1902static int vmmcall_interception(struct vcpu_svm *svm)
1903{
1904        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
1905        skip_emulated_instruction(&svm->vcpu);
1906        kvm_emulate_hypercall(&svm->vcpu);
1907        return 1;
1908}
1909
1910static unsigned long nested_svm_get_tdp_cr3(struct kvm_vcpu *vcpu)
1911{
1912        struct vcpu_svm *svm = to_svm(vcpu);
1913
1914        return svm->nested.nested_cr3;
1915}
1916
1917static u64 nested_svm_get_tdp_pdptr(struct kvm_vcpu *vcpu, int index)
1918{
1919        struct vcpu_svm *svm = to_svm(vcpu);
1920        u64 cr3 = svm->nested.nested_cr3;
1921        u64 pdpte;
1922        int ret;
1923
1924        ret = kvm_read_guest_page(vcpu->kvm, gpa_to_gfn(cr3), &pdpte,
1925                                  offset_in_page(cr3) + index * 8, 8);
1926        if (ret)
1927                return 0;
1928        return pdpte;
1929}
1930
1931static void nested_svm_set_tdp_cr3(struct kvm_vcpu *vcpu,
1932                                   unsigned long root)
1933{
1934        struct vcpu_svm *svm = to_svm(vcpu);
1935
1936        svm->vmcb->control.nested_cr3 = root;
1937        mark_dirty(svm->vmcb, VMCB_NPT);
1938        svm_flush_tlb(vcpu);
1939}
1940
1941static void nested_svm_inject_npf_exit(struct kvm_vcpu *vcpu,
1942                                       struct x86_exception *fault)
1943{
1944        struct vcpu_svm *svm = to_svm(vcpu);
1945
1946        svm->vmcb->control.exit_code = SVM_EXIT_NPF;
1947        svm->vmcb->control.exit_code_hi = 0;
1948        svm->vmcb->control.exit_info_1 = fault->error_code;
1949        svm->vmcb->control.exit_info_2 = fault->address;
1950
1951        nested_svm_vmexit(svm);
1952}
1953
1954static int nested_svm_init_mmu_context(struct kvm_vcpu *vcpu)
1955{
1956        int r;
1957
1958        r = kvm_init_shadow_mmu(vcpu, &vcpu->arch.mmu);
1959
1960        vcpu->arch.mmu.set_cr3           = nested_svm_set_tdp_cr3;
1961        vcpu->arch.mmu.get_cr3           = nested_svm_get_tdp_cr3;
1962        vcpu->arch.mmu.get_pdptr         = nested_svm_get_tdp_pdptr;
1963        vcpu->arch.mmu.inject_page_fault = nested_svm_inject_npf_exit;
1964        vcpu->arch.mmu.shadow_root_level = get_npt_level();
1965        vcpu->arch.walk_mmu              = &vcpu->arch.nested_mmu;
1966
1967        return r;
1968}
1969
1970static void nested_svm_uninit_mmu_context(struct kvm_vcpu *vcpu)
1971{
1972        vcpu->arch.walk_mmu = &vcpu->arch.mmu;
1973}
1974
1975static int nested_svm_check_permissions(struct vcpu_svm *svm)
1976{
1977        if (!(svm->vcpu.arch.efer & EFER_SVME)
1978            || !is_paging(&svm->vcpu)) {
1979                kvm_queue_exception(&svm->vcpu, UD_VECTOR);
1980                return 1;
1981        }
1982
1983        if (svm->vmcb->save.cpl) {
1984                kvm_inject_gp(&svm->vcpu, 0);
1985                return 1;
1986        }
1987
1988       return 0;
1989}
1990
1991static int nested_svm_check_exception(struct vcpu_svm *svm, unsigned nr,
1992                                      bool has_error_code, u32 error_code)
1993{
1994        int vmexit;
1995
1996        if (!is_guest_mode(&svm->vcpu))
1997                return 0;
1998
1999        svm->vmcb->control.exit_code = SVM_EXIT_EXCP_BASE + nr;
2000        svm->vmcb->control.exit_code_hi = 0;
2001        svm->vmcb->control.exit_info_1 = error_code;
2002        svm->vmcb->control.exit_info_2 = svm->vcpu.arch.cr2;
2003
2004        vmexit = nested_svm_intercept(svm);
2005        if (vmexit == NESTED_EXIT_DONE)
2006                svm->nested.exit_required = true;
2007
2008        return vmexit;
2009}
2010
2011/* This function returns true if it is save to enable the irq window */
2012static inline bool nested_svm_intr(struct vcpu_svm *svm)
2013{
2014        if (!is_guest_mode(&svm->vcpu))
2015                return true;
2016
2017        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2018                return true;
2019
2020        if (!(svm->vcpu.arch.hflags & HF_HIF_MASK))
2021                return false;
2022
2023        /*
2024         * if vmexit was already requested (by intercepted exception
2025         * for instance) do not overwrite it with "external interrupt"
2026         * vmexit.
2027         */
2028        if (svm->nested.exit_required)
2029                return false;
2030
2031        svm->vmcb->control.exit_code   = SVM_EXIT_INTR;
2032        svm->vmcb->control.exit_info_1 = 0;
2033        svm->vmcb->control.exit_info_2 = 0;
2034
2035        if (svm->nested.intercept & 1ULL) {
2036                /*
2037                 * The #vmexit can't be emulated here directly because this
2038                 * code path runs with irqs and preemption disabled. A
2039                 * #vmexit emulation might sleep. Only signal request for
2040                 * the #vmexit here.
2041                 */
2042                svm->nested.exit_required = true;
2043                trace_kvm_nested_intr_vmexit(svm->vmcb->save.rip);
2044                return false;
2045        }
2046
2047        return true;
2048}
2049
2050/* This function returns true if it is save to enable the nmi window */
2051static inline bool nested_svm_nmi(struct vcpu_svm *svm)
2052{
2053        if (!is_guest_mode(&svm->vcpu))
2054                return true;
2055
2056        if (!(svm->nested.intercept & (1ULL << INTERCEPT_NMI)))
2057                return true;
2058
2059        svm->vmcb->control.exit_code = SVM_EXIT_NMI;
2060        svm->nested.exit_required = true;
2061
2062        return false;
2063}
2064
2065static void *nested_svm_map(struct vcpu_svm *svm, u64 gpa, struct page **_page)
2066{
2067        struct page *page;
2068
2069        might_sleep();
2070
2071        page = gfn_to_page(svm->vcpu.kvm, gpa >> PAGE_SHIFT);
2072        if (is_error_page(page))
2073                goto error;
2074
2075        *_page = page;
2076
2077        return kmap(page);
2078
2079error:
2080        kvm_inject_gp(&svm->vcpu, 0);
2081
2082        return NULL;
2083}
2084
2085static void nested_svm_unmap(struct page *page)
2086{
2087        kunmap(page);
2088        kvm_release_page_dirty(page);
2089}
2090
2091static int nested_svm_intercept_ioio(struct vcpu_svm *svm)
2092{
2093        unsigned port;
2094        u8 val, bit;
2095        u64 gpa;
2096
2097        if (!(svm->nested.intercept & (1ULL << INTERCEPT_IOIO_PROT)))
2098                return NESTED_EXIT_HOST;
2099
2100        port = svm->vmcb->control.exit_info_1 >> 16;
2101        gpa  = svm->nested.vmcb_iopm + (port / 8);
2102        bit  = port % 8;
2103        val  = 0;
2104
2105        if (kvm_read_guest(svm->vcpu.kvm, gpa, &val, 1))
2106                val &= (1 << bit);
2107
2108        return val ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2109}
2110
2111static int nested_svm_exit_handled_msr(struct vcpu_svm *svm)
2112{
2113        u32 offset, msr, value;
2114        int write, mask;
2115
2116        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2117                return NESTED_EXIT_HOST;
2118
2119        msr    = svm->vcpu.arch.regs[VCPU_REGS_RCX];
2120        offset = svm_msrpm_offset(msr);
2121        write  = svm->vmcb->control.exit_info_1 & 1;
2122        mask   = 1 << ((2 * (msr & 0xf)) + write);
2123
2124        if (offset == MSR_INVALID)
2125                return NESTED_EXIT_DONE;
2126
2127        /* Offset is in 32 bit units but need in 8 bit units */
2128        offset *= 4;
2129
2130        if (kvm_read_guest(svm->vcpu.kvm, svm->nested.vmcb_msrpm + offset, &value, 4))
2131                return NESTED_EXIT_DONE;
2132
2133        return (value & mask) ? NESTED_EXIT_DONE : NESTED_EXIT_HOST;
2134}
2135
2136static int nested_svm_exit_special(struct vcpu_svm *svm)
2137{
2138        u32 exit_code = svm->vmcb->control.exit_code;
2139
2140        switch (exit_code) {
2141        case SVM_EXIT_INTR:
2142        case SVM_EXIT_NMI:
2143        case SVM_EXIT_EXCP_BASE + MC_VECTOR:
2144                return NESTED_EXIT_HOST;
2145        case SVM_EXIT_NPF:
2146                /* For now we are always handling NPFs when using them */
2147                if (npt_enabled)
2148                        return NESTED_EXIT_HOST;
2149                break;
2150        case SVM_EXIT_EXCP_BASE + PF_VECTOR:
2151                /* When we're shadowing, trap PFs, but not async PF */
2152                if (!npt_enabled && svm->apf_reason == 0)
2153                        return NESTED_EXIT_HOST;
2154                break;
2155        case SVM_EXIT_EXCP_BASE + NM_VECTOR:
2156                nm_interception(svm);
2157                break;
2158        default:
2159                break;
2160        }
2161
2162        return NESTED_EXIT_CONTINUE;
2163}
2164
2165/*
2166 * If this function returns true, this #vmexit was already handled
2167 */
2168static int nested_svm_intercept(struct vcpu_svm *svm)
2169{
2170        u32 exit_code = svm->vmcb->control.exit_code;
2171        int vmexit = NESTED_EXIT_HOST;
2172
2173        switch (exit_code) {
2174        case SVM_EXIT_MSR:
2175                vmexit = nested_svm_exit_handled_msr(svm);
2176                break;
2177        case SVM_EXIT_IOIO:
2178                vmexit = nested_svm_intercept_ioio(svm);
2179                break;
2180        case SVM_EXIT_READ_CR0 ... SVM_EXIT_WRITE_CR8: {
2181                u32 bit = 1U << (exit_code - SVM_EXIT_READ_CR0);
2182                if (svm->nested.intercept_cr & bit)
2183                        vmexit = NESTED_EXIT_DONE;
2184                break;
2185        }
2186        case SVM_EXIT_READ_DR0 ... SVM_EXIT_WRITE_DR7: {
2187                u32 bit = 1U << (exit_code - SVM_EXIT_READ_DR0);
2188                if (svm->nested.intercept_dr & bit)
2189                        vmexit = NESTED_EXIT_DONE;
2190                break;
2191        }
2192        case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 0x1f: {
2193                u32 excp_bits = 1 << (exit_code - SVM_EXIT_EXCP_BASE);
2194                if (svm->nested.intercept_exceptions & excp_bits)
2195                        vmexit = NESTED_EXIT_DONE;
2196                /* async page fault always cause vmexit */
2197                else if ((exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR) &&
2198                         svm->apf_reason != 0)
2199                        vmexit = NESTED_EXIT_DONE;
2200                break;
2201        }
2202        case SVM_EXIT_ERR: {
2203                vmexit = NESTED_EXIT_DONE;
2204                break;
2205        }
2206        default: {
2207                u64 exit_bits = 1ULL << (exit_code - SVM_EXIT_INTR);
2208                if (svm->nested.intercept & exit_bits)
2209                        vmexit = NESTED_EXIT_DONE;
2210        }
2211        }
2212
2213        return vmexit;
2214}
2215
2216static int nested_svm_exit_handled(struct vcpu_svm *svm)
2217{
2218        int vmexit;
2219
2220        vmexit = nested_svm_intercept(svm);
2221
2222        if (vmexit == NESTED_EXIT_DONE)
2223                nested_svm_vmexit(svm);
2224
2225        return vmexit;
2226}
2227
2228static inline void copy_vmcb_control_area(struct vmcb *dst_vmcb, struct vmcb *from_vmcb)
2229{
2230        struct vmcb_control_area *dst  = &dst_vmcb->control;
2231        struct vmcb_control_area *from = &from_vmcb->control;
2232
2233        dst->intercept_cr         = from->intercept_cr;
2234        dst->intercept_dr         = from->intercept_dr;
2235        dst->intercept_exceptions = from->intercept_exceptions;
2236        dst->intercept            = from->intercept;
2237        dst->iopm_base_pa         = from->iopm_base_pa;
2238        dst->msrpm_base_pa        = from->msrpm_base_pa;
2239        dst->tsc_offset           = from->tsc_offset;
2240        dst->asid                 = from->asid;
2241        dst->tlb_ctl              = from->tlb_ctl;
2242        dst->int_ctl              = from->int_ctl;
2243        dst->int_vector           = from->int_vector;
2244        dst->int_state            = from->int_state;
2245        dst->exit_code            = from->exit_code;
2246        dst->exit_code_hi         = from->exit_code_hi;
2247        dst->exit_info_1          = from->exit_info_1;
2248        dst->exit_info_2          = from->exit_info_2;
2249        dst->exit_int_info        = from->exit_int_info;
2250        dst->exit_int_info_err    = from->exit_int_info_err;
2251        dst->nested_ctl           = from->nested_ctl;
2252        dst->event_inj            = from->event_inj;
2253        dst->event_inj_err        = from->event_inj_err;
2254        dst->nested_cr3           = from->nested_cr3;
2255        dst->lbr_ctl              = from->lbr_ctl;
2256}
2257
2258static int nested_svm_vmexit(struct vcpu_svm *svm)
2259{
2260        struct vmcb *nested_vmcb;
2261        struct vmcb *hsave = svm->nested.hsave;
2262        struct vmcb *vmcb = svm->vmcb;
2263        struct page *page;
2264
2265        trace_kvm_nested_vmexit_inject(vmcb->control.exit_code,
2266                                       vmcb->control.exit_info_1,
2267                                       vmcb->control.exit_info_2,
2268                                       vmcb->control.exit_int_info,
2269                                       vmcb->control.exit_int_info_err,
2270                                       KVM_ISA_SVM);
2271
2272        nested_vmcb = nested_svm_map(svm, svm->nested.vmcb, &page);
2273        if (!nested_vmcb)
2274                return 1;
2275
2276        /* Exit Guest-Mode */
2277        leave_guest_mode(&svm->vcpu);
2278        svm->nested.vmcb = 0;
2279
2280        /* Give the current vmcb to the guest */
2281        disable_gif(svm);
2282
2283        nested_vmcb->save.es     = vmcb->save.es;
2284        nested_vmcb->save.cs     = vmcb->save.cs;
2285        nested_vmcb->save.ss     = vmcb->save.ss;
2286        nested_vmcb->save.ds     = vmcb->save.ds;
2287        nested_vmcb->save.gdtr   = vmcb->save.gdtr;
2288        nested_vmcb->save.idtr   = vmcb->save.idtr;
2289        nested_vmcb->save.efer   = svm->vcpu.arch.efer;
2290        nested_vmcb->save.cr0    = kvm_read_cr0(&svm->vcpu);
2291        nested_vmcb->save.cr3    = kvm_read_cr3(&svm->vcpu);
2292        nested_vmcb->save.cr2    = vmcb->save.cr2;
2293        nested_vmcb->save.cr4    = svm->vcpu.arch.cr4;
2294        nested_vmcb->save.rflags = kvm_get_rflags(&svm->vcpu);
2295        nested_vmcb->save.rip    = vmcb->save.rip;
2296        nested_vmcb->save.rsp    = vmcb->save.rsp;
2297        nested_vmcb->save.rax    = vmcb->save.rax;
2298        nested_vmcb->save.dr7    = vmcb->save.dr7;
2299        nested_vmcb->save.dr6    = vmcb->save.dr6;
2300        nested_vmcb->save.cpl    = vmcb->save.cpl;
2301
2302        nested_vmcb->control.int_ctl           = vmcb->control.int_ctl;
2303        nested_vmcb->control.int_vector        = vmcb->control.int_vector;
2304        nested_vmcb->control.int_state         = vmcb->control.int_state;
2305        nested_vmcb->control.exit_code         = vmcb->control.exit_code;
2306        nested_vmcb->control.exit_code_hi      = vmcb->control.exit_code_hi;
2307        nested_vmcb->control.exit_info_1       = vmcb->control.exit_info_1;
2308        nested_vmcb->control.exit_info_2       = vmcb->control.exit_info_2;
2309        nested_vmcb->control.exit_int_info     = vmcb->control.exit_int_info;
2310        nested_vmcb->control.exit_int_info_err = vmcb->control.exit_int_info_err;
2311        nested_vmcb->control.next_rip          = vmcb->control.next_rip;
2312
2313        /*
2314         * If we emulate a VMRUN/#VMEXIT in the same host #vmexit cycle we have
2315         * to make sure that we do not lose injected events. So check event_inj
2316         * here and copy it to exit_int_info if it is valid.
2317         * Exit_int_info and event_inj can't be both valid because the case
2318         * below only happens on a VMRUN instruction intercept which has
2319         * no valid exit_int_info set.
2320         */
2321        if (vmcb->control.event_inj & SVM_EVTINJ_VALID) {
2322                struct vmcb_control_area *nc = &nested_vmcb->control;
2323
2324                nc->exit_int_info     = vmcb->control.event_inj;
2325                nc->exit_int_info_err = vmcb->control.event_inj_err;
2326        }
2327
2328        nested_vmcb->control.tlb_ctl           = 0;
2329        nested_vmcb->control.event_inj         = 0;
2330        nested_vmcb->control.event_inj_err     = 0;
2331
2332        /* We always set V_INTR_MASKING and remember the old value in hflags */
2333        if (!(svm->vcpu.arch.hflags & HF_VINTR_MASK))
2334                nested_vmcb->control.int_ctl &= ~V_INTR_MASKING_MASK;
2335
2336        /* Restore the original control entries */
2337        copy_vmcb_control_area(vmcb, hsave);
2338
2339        kvm_clear_exception_queue(&svm->vcpu);
2340        kvm_clear_interrupt_queue(&svm->vcpu);
2341
2342        svm->nested.nested_cr3 = 0;
2343
2344        /* Restore selected save entries */
2345        svm->vmcb->save.es = hsave->save.es;
2346        svm->vmcb->save.cs = hsave->save.cs;
2347        svm->vmcb->save.ss = hsave->save.ss;
2348        svm->vmcb->save.ds = hsave->save.ds;
2349        svm->vmcb->save.gdtr = hsave->save.gdtr;
2350        svm->vmcb->save.idtr = hsave->save.idtr;
2351        kvm_set_rflags(&svm->vcpu, hsave->save.rflags);
2352        svm_set_efer(&svm->vcpu, hsave->save.efer);
2353        svm_set_cr0(&svm->vcpu, hsave->save.cr0 | X86_CR0_PE);
2354        svm_set_cr4(&svm->vcpu, hsave->save.cr4);
2355        if (npt_enabled) {
2356                svm->vmcb->save.cr3 = hsave->save.cr3;
2357                svm->vcpu.arch.cr3 = hsave->save.cr3;
2358        } else {
2359                (void)kvm_set_cr3(&svm->vcpu, hsave->save.cr3);
2360        }
2361        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, hsave->save.rax);
2362        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, hsave->save.rsp);
2363        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, hsave->save.rip);
2364        svm->vmcb->save.dr7 = 0;
2365        svm->vmcb->save.cpl = 0;
2366        svm->vmcb->control.exit_int_info = 0;
2367
2368        mark_all_dirty(svm->vmcb);
2369
2370        nested_svm_unmap(page);
2371
2372        nested_svm_uninit_mmu_context(&svm->vcpu);
2373        kvm_mmu_reset_context(&svm->vcpu);
2374        kvm_mmu_load(&svm->vcpu);
2375
2376        return 0;
2377}
2378
2379static bool nested_svm_vmrun_msrpm(struct vcpu_svm *svm)
2380{
2381        /*
2382         * This function merges the msr permission bitmaps of kvm and the
2383         * nested vmcb. It is optimized in that it only merges the parts where
2384         * the kvm msr permission bitmap may contain zero bits
2385         */
2386        int i;
2387
2388        if (!(svm->nested.intercept & (1ULL << INTERCEPT_MSR_PROT)))
2389                return true;
2390
2391        for (i = 0; i < MSRPM_OFFSETS; i++) {
2392                u32 value, p;
2393                u64 offset;
2394
2395                if (msrpm_offsets[i] == 0xffffffff)
2396                        break;
2397
2398                p      = msrpm_offsets[i];
2399                offset = svm->nested.vmcb_msrpm + (p * 4);
2400
2401                if (kvm_read_guest(svm->vcpu.kvm, offset, &value, 4))
2402                        return false;
2403
2404                svm->nested.msrpm[p] = svm->msrpm[p] | value;
2405        }
2406
2407        svm->vmcb->control.msrpm_base_pa = __pa(svm->nested.msrpm);
2408
2409        return true;
2410}
2411
2412static bool nested_vmcb_checks(struct vmcb *vmcb)
2413{
2414        if ((vmcb->control.intercept & (1ULL << INTERCEPT_VMRUN)) == 0)
2415                return false;
2416
2417        if (vmcb->control.asid == 0)
2418                return false;
2419
2420        if (vmcb->control.nested_ctl && !npt_enabled)
2421                return false;
2422
2423        return true;
2424}
2425
2426static bool nested_svm_vmrun(struct vcpu_svm *svm)
2427{
2428        struct vmcb *nested_vmcb;
2429        struct vmcb *hsave = svm->nested.hsave;
2430        struct vmcb *vmcb = svm->vmcb;
2431        struct page *page;
2432        u64 vmcb_gpa;
2433
2434        vmcb_gpa = svm->vmcb->save.rax;
2435
2436        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2437        if (!nested_vmcb)
2438                return false;
2439
2440        if (!nested_vmcb_checks(nested_vmcb)) {
2441                nested_vmcb->control.exit_code    = SVM_EXIT_ERR;
2442                nested_vmcb->control.exit_code_hi = 0;
2443                nested_vmcb->control.exit_info_1  = 0;
2444                nested_vmcb->control.exit_info_2  = 0;
2445
2446                nested_svm_unmap(page);
2447
2448                return false;
2449        }
2450
2451        trace_kvm_nested_vmrun(svm->vmcb->save.rip, vmcb_gpa,
2452                               nested_vmcb->save.rip,
2453                               nested_vmcb->control.int_ctl,
2454                               nested_vmcb->control.event_inj,
2455                               nested_vmcb->control.nested_ctl);
2456
2457        trace_kvm_nested_intercepts(nested_vmcb->control.intercept_cr & 0xffff,
2458                                    nested_vmcb->control.intercept_cr >> 16,
2459                                    nested_vmcb->control.intercept_exceptions,
2460                                    nested_vmcb->control.intercept);
2461
2462        /* Clear internal status */
2463        kvm_clear_exception_queue(&svm->vcpu);
2464        kvm_clear_interrupt_queue(&svm->vcpu);
2465
2466        /*
2467         * Save the old vmcb, so we don't need to pick what we save, but can
2468         * restore everything when a VMEXIT occurs
2469         */
2470        hsave->save.es     = vmcb->save.es;
2471        hsave->save.cs     = vmcb->save.cs;
2472        hsave->save.ss     = vmcb->save.ss;
2473        hsave->save.ds     = vmcb->save.ds;
2474        hsave->save.gdtr   = vmcb->save.gdtr;
2475        hsave->save.idtr   = vmcb->save.idtr;
2476        hsave->save.efer   = svm->vcpu.arch.efer;
2477        hsave->save.cr0    = kvm_read_cr0(&svm->vcpu);
2478        hsave->save.cr4    = svm->vcpu.arch.cr4;
2479        hsave->save.rflags = kvm_get_rflags(&svm->vcpu);
2480        hsave->save.rip    = kvm_rip_read(&svm->vcpu);
2481        hsave->save.rsp    = vmcb->save.rsp;
2482        hsave->save.rax    = vmcb->save.rax;
2483        if (npt_enabled)
2484                hsave->save.cr3    = vmcb->save.cr3;
2485        else
2486                hsave->save.cr3    = kvm_read_cr3(&svm->vcpu);
2487
2488        copy_vmcb_control_area(hsave, vmcb);
2489
2490        if (kvm_get_rflags(&svm->vcpu) & X86_EFLAGS_IF)
2491                svm->vcpu.arch.hflags |= HF_HIF_MASK;
2492        else
2493                svm->vcpu.arch.hflags &= ~HF_HIF_MASK;
2494
2495        if (nested_vmcb->control.nested_ctl) {
2496                kvm_mmu_unload(&svm->vcpu);
2497                svm->nested.nested_cr3 = nested_vmcb->control.nested_cr3;
2498                nested_svm_init_mmu_context(&svm->vcpu);
2499        }
2500
2501        /* Load the nested guest state */
2502        svm->vmcb->save.es = nested_vmcb->save.es;
2503        svm->vmcb->save.cs = nested_vmcb->save.cs;
2504        svm->vmcb->save.ss = nested_vmcb->save.ss;
2505        svm->vmcb->save.ds = nested_vmcb->save.ds;
2506        svm->vmcb->save.gdtr = nested_vmcb->save.gdtr;
2507        svm->vmcb->save.idtr = nested_vmcb->save.idtr;
2508        kvm_set_rflags(&svm->vcpu, nested_vmcb->save.rflags);
2509        svm_set_efer(&svm->vcpu, nested_vmcb->save.efer);
2510        svm_set_cr0(&svm->vcpu, nested_vmcb->save.cr0);
2511        svm_set_cr4(&svm->vcpu, nested_vmcb->save.cr4);
2512        if (npt_enabled) {
2513                svm->vmcb->save.cr3 = nested_vmcb->save.cr3;
2514                svm->vcpu.arch.cr3 = nested_vmcb->save.cr3;
2515        } else
2516                (void)kvm_set_cr3(&svm->vcpu, nested_vmcb->save.cr3);
2517
2518        /* Guest paging mode is active - reset mmu */
2519        kvm_mmu_reset_context(&svm->vcpu);
2520
2521        svm->vmcb->save.cr2 = svm->vcpu.arch.cr2 = nested_vmcb->save.cr2;
2522        kvm_register_write(&svm->vcpu, VCPU_REGS_RAX, nested_vmcb->save.rax);
2523        kvm_register_write(&svm->vcpu, VCPU_REGS_RSP, nested_vmcb->save.rsp);
2524        kvm_register_write(&svm->vcpu, VCPU_REGS_RIP, nested_vmcb->save.rip);
2525
2526        /* In case we don't even reach vcpu_run, the fields are not updated */
2527        svm->vmcb->save.rax = nested_vmcb->save.rax;
2528        svm->vmcb->save.rsp = nested_vmcb->save.rsp;
2529        svm->vmcb->save.rip = nested_vmcb->save.rip;
2530        svm->vmcb->save.dr7 = nested_vmcb->save.dr7;
2531        svm->vmcb->save.dr6 = nested_vmcb->save.dr6;
2532        svm->vmcb->save.cpl = nested_vmcb->save.cpl;
2533
2534        svm->nested.vmcb_msrpm = nested_vmcb->control.msrpm_base_pa & ~0x0fffULL;
2535        svm->nested.vmcb_iopm  = nested_vmcb->control.iopm_base_pa  & ~0x0fffULL;
2536
2537        /* cache intercepts */
2538        svm->nested.intercept_cr         = nested_vmcb->control.intercept_cr;
2539        svm->nested.intercept_dr         = nested_vmcb->control.intercept_dr;
2540        svm->nested.intercept_exceptions = nested_vmcb->control.intercept_exceptions;
2541        svm->nested.intercept            = nested_vmcb->control.intercept;
2542
2543        svm_flush_tlb(&svm->vcpu);
2544        svm->vmcb->control.int_ctl = nested_vmcb->control.int_ctl | V_INTR_MASKING_MASK;
2545        if (nested_vmcb->control.int_ctl & V_INTR_MASKING_MASK)
2546                svm->vcpu.arch.hflags |= HF_VINTR_MASK;
2547        else
2548                svm->vcpu.arch.hflags &= ~HF_VINTR_MASK;
2549
2550        if (svm->vcpu.arch.hflags & HF_VINTR_MASK) {
2551                /* We only want the cr8 intercept bits of the guest */
2552                clr_cr_intercept(svm, INTERCEPT_CR8_READ);
2553                clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2554        }
2555
2556        /* We don't want to see VMMCALLs from a nested guest */
2557        clr_intercept(svm, INTERCEPT_VMMCALL);
2558
2559        svm->vmcb->control.lbr_ctl = nested_vmcb->control.lbr_ctl;
2560        svm->vmcb->control.int_vector = nested_vmcb->control.int_vector;
2561        svm->vmcb->control.int_state = nested_vmcb->control.int_state;
2562        svm->vmcb->control.tsc_offset += nested_vmcb->control.tsc_offset;
2563        svm->vmcb->control.event_inj = nested_vmcb->control.event_inj;
2564        svm->vmcb->control.event_inj_err = nested_vmcb->control.event_inj_err;
2565
2566        nested_svm_unmap(page);
2567
2568        /* Enter Guest-Mode */
2569        enter_guest_mode(&svm->vcpu);
2570
2571        /*
2572         * Merge guest and host intercepts - must be called  with vcpu in
2573         * guest-mode to take affect here
2574         */
2575        recalc_intercepts(svm);
2576
2577        svm->nested.vmcb = vmcb_gpa;
2578
2579        enable_gif(svm);
2580
2581        mark_all_dirty(svm->vmcb);
2582
2583        return true;
2584}
2585
2586static void nested_svm_vmloadsave(struct vmcb *from_vmcb, struct vmcb *to_vmcb)
2587{
2588        to_vmcb->save.fs = from_vmcb->save.fs;
2589        to_vmcb->save.gs = from_vmcb->save.gs;
2590        to_vmcb->save.tr = from_vmcb->save.tr;
2591        to_vmcb->save.ldtr = from_vmcb->save.ldtr;
2592        to_vmcb->save.kernel_gs_base = from_vmcb->save.kernel_gs_base;
2593        to_vmcb->save.star = from_vmcb->save.star;
2594        to_vmcb->save.lstar = from_vmcb->save.lstar;
2595        to_vmcb->save.cstar = from_vmcb->save.cstar;
2596        to_vmcb->save.sfmask = from_vmcb->save.sfmask;
2597        to_vmcb->save.sysenter_cs = from_vmcb->save.sysenter_cs;
2598        to_vmcb->save.sysenter_esp = from_vmcb->save.sysenter_esp;
2599        to_vmcb->save.sysenter_eip = from_vmcb->save.sysenter_eip;
2600}
2601
2602static int vmload_interception(struct vcpu_svm *svm)
2603{
2604        struct vmcb *nested_vmcb;
2605        struct page *page;
2606
2607        if (nested_svm_check_permissions(svm))
2608                return 1;
2609
2610        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2611        if (!nested_vmcb)
2612                return 1;
2613
2614        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2615        skip_emulated_instruction(&svm->vcpu);
2616
2617        nested_svm_vmloadsave(nested_vmcb, svm->vmcb);
2618        nested_svm_unmap(page);
2619
2620        return 1;
2621}
2622
2623static int vmsave_interception(struct vcpu_svm *svm)
2624{
2625        struct vmcb *nested_vmcb;
2626        struct page *page;
2627
2628        if (nested_svm_check_permissions(svm))
2629                return 1;
2630
2631        nested_vmcb = nested_svm_map(svm, svm->vmcb->save.rax, &page);
2632        if (!nested_vmcb)
2633                return 1;
2634
2635        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2636        skip_emulated_instruction(&svm->vcpu);
2637
2638        nested_svm_vmloadsave(svm->vmcb, nested_vmcb);
2639        nested_svm_unmap(page);
2640
2641        return 1;
2642}
2643
2644static int vmrun_interception(struct vcpu_svm *svm)
2645{
2646        if (nested_svm_check_permissions(svm))
2647                return 1;
2648
2649        /* Save rip after vmrun instruction */
2650        kvm_rip_write(&svm->vcpu, kvm_rip_read(&svm->vcpu) + 3);
2651
2652        if (!nested_svm_vmrun(svm))
2653                return 1;
2654
2655        if (!nested_svm_vmrun_msrpm(svm))
2656                goto failed;
2657
2658        return 1;
2659
2660failed:
2661
2662        svm->vmcb->control.exit_code    = SVM_EXIT_ERR;
2663        svm->vmcb->control.exit_code_hi = 0;
2664        svm->vmcb->control.exit_info_1  = 0;
2665        svm->vmcb->control.exit_info_2  = 0;
2666
2667        nested_svm_vmexit(svm);
2668
2669        return 1;
2670}
2671
2672static int stgi_interception(struct vcpu_svm *svm)
2673{
2674        if (nested_svm_check_permissions(svm))
2675                return 1;
2676
2677        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2678        skip_emulated_instruction(&svm->vcpu);
2679        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
2680
2681        enable_gif(svm);
2682
2683        return 1;
2684}
2685
2686static int clgi_interception(struct vcpu_svm *svm)
2687{
2688        if (nested_svm_check_permissions(svm))
2689                return 1;
2690
2691        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2692        skip_emulated_instruction(&svm->vcpu);
2693
2694        disable_gif(svm);
2695
2696        /* After a CLGI no interrupts should come */
2697        svm_clear_vintr(svm);
2698        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
2699
2700        mark_dirty(svm->vmcb, VMCB_INTR);
2701
2702        return 1;
2703}
2704
2705static int invlpga_interception(struct vcpu_svm *svm)
2706{
2707        struct kvm_vcpu *vcpu = &svm->vcpu;
2708
2709        trace_kvm_invlpga(svm->vmcb->save.rip, vcpu->arch.regs[VCPU_REGS_RCX],
2710                          vcpu->arch.regs[VCPU_REGS_RAX]);
2711
2712        /* Let's treat INVLPGA the same as INVLPG (can be optimized!) */
2713        kvm_mmu_invlpg(vcpu, vcpu->arch.regs[VCPU_REGS_RAX]);
2714
2715        svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2716        skip_emulated_instruction(&svm->vcpu);
2717        return 1;
2718}
2719
2720static int skinit_interception(struct vcpu_svm *svm)
2721{
2722        trace_kvm_skinit(svm->vmcb->save.rip, svm->vcpu.arch.regs[VCPU_REGS_RAX]);
2723
2724        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2725        return 1;
2726}
2727
2728static int xsetbv_interception(struct vcpu_svm *svm)
2729{
2730        u64 new_bv = kvm_read_edx_eax(&svm->vcpu);
2731        u32 index = kvm_register_read(&svm->vcpu, VCPU_REGS_RCX);
2732
2733        if (kvm_set_xcr(&svm->vcpu, index, new_bv) == 0) {
2734                svm->next_rip = kvm_rip_read(&svm->vcpu) + 3;
2735                skip_emulated_instruction(&svm->vcpu);
2736        }
2737
2738        return 1;
2739}
2740
2741static int invalid_op_interception(struct vcpu_svm *svm)
2742{
2743        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2744        return 1;
2745}
2746
2747static int task_switch_interception(struct vcpu_svm *svm)
2748{
2749        u16 tss_selector;
2750        int reason;
2751        int int_type = svm->vmcb->control.exit_int_info &
2752                SVM_EXITINTINFO_TYPE_MASK;
2753        int int_vec = svm->vmcb->control.exit_int_info & SVM_EVTINJ_VEC_MASK;
2754        uint32_t type =
2755                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_TYPE_MASK;
2756        uint32_t idt_v =
2757                svm->vmcb->control.exit_int_info & SVM_EXITINTINFO_VALID;
2758        bool has_error_code = false;
2759        u32 error_code = 0;
2760
2761        tss_selector = (u16)svm->vmcb->control.exit_info_1;
2762
2763        if (svm->vmcb->control.exit_info_2 &
2764            (1ULL << SVM_EXITINFOSHIFT_TS_REASON_IRET))
2765                reason = TASK_SWITCH_IRET;
2766        else if (svm->vmcb->control.exit_info_2 &
2767                 (1ULL << SVM_EXITINFOSHIFT_TS_REASON_JMP))
2768                reason = TASK_SWITCH_JMP;
2769        else if (idt_v)
2770                reason = TASK_SWITCH_GATE;
2771        else
2772                reason = TASK_SWITCH_CALL;
2773
2774        if (reason == TASK_SWITCH_GATE) {
2775                switch (type) {
2776                case SVM_EXITINTINFO_TYPE_NMI:
2777                        svm->vcpu.arch.nmi_injected = false;
2778                        break;
2779                case SVM_EXITINTINFO_TYPE_EXEPT:
2780                        if (svm->vmcb->control.exit_info_2 &
2781                            (1ULL << SVM_EXITINFOSHIFT_TS_HAS_ERROR_CODE)) {
2782                                has_error_code = true;
2783                                error_code =
2784                                        (u32)svm->vmcb->control.exit_info_2;
2785                        }
2786                        kvm_clear_exception_queue(&svm->vcpu);
2787                        break;
2788                case SVM_EXITINTINFO_TYPE_INTR:
2789                        kvm_clear_interrupt_queue(&svm->vcpu);
2790                        break;
2791                default:
2792                        break;
2793                }
2794        }
2795
2796        if (reason != TASK_SWITCH_GATE ||
2797            int_type == SVM_EXITINTINFO_TYPE_SOFT ||
2798            (int_type == SVM_EXITINTINFO_TYPE_EXEPT &&
2799             (int_vec == OF_VECTOR || int_vec == BP_VECTOR)))
2800                skip_emulated_instruction(&svm->vcpu);
2801
2802        if (int_type != SVM_EXITINTINFO_TYPE_SOFT)
2803                int_vec = -1;
2804
2805        if (kvm_task_switch(&svm->vcpu, tss_selector, int_vec, reason,
2806                                has_error_code, error_code) == EMULATE_FAIL) {
2807                svm->vcpu.run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
2808                svm->vcpu.run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
2809                svm->vcpu.run->internal.ndata = 0;
2810                return 0;
2811        }
2812        return 1;
2813}
2814
2815static int cpuid_interception(struct vcpu_svm *svm)
2816{
2817        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
2818        kvm_emulate_cpuid(&svm->vcpu);
2819        return 1;
2820}
2821
2822static int iret_interception(struct vcpu_svm *svm)
2823{
2824        ++svm->vcpu.stat.nmi_window_exits;
2825        clr_intercept(svm, INTERCEPT_IRET);
2826        svm->vcpu.arch.hflags |= HF_IRET_MASK;
2827        svm->nmi_iret_rip = kvm_rip_read(&svm->vcpu);
2828        return 1;
2829}
2830
2831static int invlpg_interception(struct vcpu_svm *svm)
2832{
2833        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2834                return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2835
2836        kvm_mmu_invlpg(&svm->vcpu, svm->vmcb->control.exit_info_1);
2837        skip_emulated_instruction(&svm->vcpu);
2838        return 1;
2839}
2840
2841static int emulate_on_interception(struct vcpu_svm *svm)
2842{
2843        return emulate_instruction(&svm->vcpu, 0) == EMULATE_DONE;
2844}
2845
2846static int rdpmc_interception(struct vcpu_svm *svm)
2847{
2848        int err;
2849
2850        if (!static_cpu_has(X86_FEATURE_NRIPS))
2851                return emulate_on_interception(svm);
2852
2853        err = kvm_rdpmc(&svm->vcpu);
2854        kvm_complete_insn_gp(&svm->vcpu, err);
2855
2856        return 1;
2857}
2858
2859bool check_selective_cr0_intercepted(struct vcpu_svm *svm, unsigned long val)
2860{
2861        unsigned long cr0 = svm->vcpu.arch.cr0;
2862        bool ret = false;
2863        u64 intercept;
2864
2865        intercept = svm->nested.intercept;
2866
2867        if (!is_guest_mode(&svm->vcpu) ||
2868            (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0))))
2869                return false;
2870
2871        cr0 &= ~SVM_CR0_SELECTIVE_MASK;
2872        val &= ~SVM_CR0_SELECTIVE_MASK;
2873
2874        if (cr0 ^ val) {
2875                svm->vmcb->control.exit_code = SVM_EXIT_CR0_SEL_WRITE;
2876                ret = (nested_svm_exit_handled(svm) == NESTED_EXIT_DONE);
2877        }
2878
2879        return ret;
2880}
2881
2882#define CR_VALID (1ULL << 63)
2883
2884static int cr_interception(struct vcpu_svm *svm)
2885{
2886        int reg, cr;
2887        unsigned long val;
2888        int err;
2889
2890        if (!static_cpu_has(X86_FEATURE_DECODEASSISTS))
2891                return emulate_on_interception(svm);
2892
2893        if (unlikely((svm->vmcb->control.exit_info_1 & CR_VALID) == 0))
2894                return emulate_on_interception(svm);
2895
2896        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2897        cr = svm->vmcb->control.exit_code - SVM_EXIT_READ_CR0;
2898
2899        err = 0;
2900        if (cr >= 16) { /* mov to cr */
2901                cr -= 16;
2902                val = kvm_register_read(&svm->vcpu, reg);
2903                switch (cr) {
2904                case 0:
2905                        if (!check_selective_cr0_intercepted(svm, val))
2906                                err = kvm_set_cr0(&svm->vcpu, val);
2907                        else
2908                                return 1;
2909
2910                        break;
2911                case 3:
2912                        err = kvm_set_cr3(&svm->vcpu, val);
2913                        break;
2914                case 4:
2915                        err = kvm_set_cr4(&svm->vcpu, val);
2916                        break;
2917                case 8:
2918                        err = kvm_set_cr8(&svm->vcpu, val);
2919                        break;
2920                default:
2921                        WARN(1, "unhandled write to CR%d", cr);
2922                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2923                        return 1;
2924                }
2925        } else { /* mov from cr */
2926                switch (cr) {
2927                case 0:
2928                        val = kvm_read_cr0(&svm->vcpu);
2929                        break;
2930                case 2:
2931                        val = svm->vcpu.arch.cr2;
2932                        break;
2933                case 3:
2934                        val = kvm_read_cr3(&svm->vcpu);
2935                        break;
2936                case 4:
2937                        val = kvm_read_cr4(&svm->vcpu);
2938                        break;
2939                case 8:
2940                        val = kvm_get_cr8(&svm->vcpu);
2941                        break;
2942                default:
2943                        WARN(1, "unhandled read from CR%d", cr);
2944                        kvm_queue_exception(&svm->vcpu, UD_VECTOR);
2945                        return 1;
2946                }
2947                kvm_register_write(&svm->vcpu, reg, val);
2948        }
2949        kvm_complete_insn_gp(&svm->vcpu, err);
2950
2951        return 1;
2952}
2953
2954static int dr_interception(struct vcpu_svm *svm)
2955{
2956        int reg, dr;
2957        unsigned long val;
2958        int err;
2959
2960        if (!boot_cpu_has(X86_FEATURE_DECODEASSISTS))
2961                return emulate_on_interception(svm);
2962
2963        reg = svm->vmcb->control.exit_info_1 & SVM_EXITINFO_REG_MASK;
2964        dr = svm->vmcb->control.exit_code - SVM_EXIT_READ_DR0;
2965
2966        if (dr >= 16) { /* mov to DRn */
2967                val = kvm_register_read(&svm->vcpu, reg);
2968                kvm_set_dr(&svm->vcpu, dr - 16, val);
2969        } else {
2970                err = kvm_get_dr(&svm->vcpu, dr, &val);
2971                if (!err)
2972                        kvm_register_write(&svm->vcpu, reg, val);
2973        }
2974
2975        skip_emulated_instruction(&svm->vcpu);
2976
2977        return 1;
2978}
2979
2980static int cr8_write_interception(struct vcpu_svm *svm)
2981{
2982        struct kvm_run *kvm_run = svm->vcpu.run;
2983        int r;
2984
2985        u8 cr8_prev = kvm_get_cr8(&svm->vcpu);
2986        /* instruction emulation calls kvm_set_cr8() */
2987        r = cr_interception(svm);
2988        if (irqchip_in_kernel(svm->vcpu.kvm)) {
2989                clr_cr_intercept(svm, INTERCEPT_CR8_WRITE);
2990                return r;
2991        }
2992        if (cr8_prev <= kvm_get_cr8(&svm->vcpu))
2993                return r;
2994        kvm_run->exit_reason = KVM_EXIT_SET_TPR;
2995        return 0;
2996}
2997
2998u64 svm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2999{
3000        struct vmcb *vmcb = get_host_vmcb(to_svm(vcpu));
3001        return vmcb->control.tsc_offset +
3002                svm_scale_tsc(vcpu, host_tsc);
3003}
3004
3005static int svm_get_msr(struct kvm_vcpu *vcpu, unsigned ecx, u64 *data)
3006{
3007        struct vcpu_svm *svm = to_svm(vcpu);
3008
3009        switch (ecx) {
3010        case MSR_IA32_TSC: {
3011                *data = svm->vmcb->control.tsc_offset +
3012                        svm_scale_tsc(vcpu, native_read_tsc());
3013
3014                break;
3015        }
3016        case MSR_STAR:
3017                *data = svm->vmcb->save.star;
3018                break;
3019#ifdef CONFIG_X86_64
3020        case MSR_LSTAR:
3021                *data = svm->vmcb->save.lstar;
3022                break;
3023        case MSR_CSTAR:
3024                *data = svm->vmcb->save.cstar;
3025                break;
3026        case MSR_KERNEL_GS_BASE:
3027                *data = svm->vmcb->save.kernel_gs_base;
3028                break;
3029        case MSR_SYSCALL_MASK:
3030                *data = svm->vmcb->save.sfmask;
3031                break;
3032#endif
3033        case MSR_IA32_SYSENTER_CS:
3034                *data = svm->vmcb->save.sysenter_cs;
3035                break;
3036        case MSR_IA32_SYSENTER_EIP:
3037                *data = svm->sysenter_eip;
3038                break;
3039        case MSR_IA32_SYSENTER_ESP:
3040                *data = svm->sysenter_esp;
3041                break;
3042        /*
3043         * Nobody will change the following 5 values in the VMCB so we can
3044         * safely return them on rdmsr. They will always be 0 until LBRV is
3045         * implemented.
3046         */
3047        case MSR_IA32_DEBUGCTLMSR:
3048                *data = svm->vmcb->save.dbgctl;
3049                break;
3050        case MSR_IA32_LASTBRANCHFROMIP:
3051                *data = svm->vmcb->save.br_from;
3052                break;
3053        case MSR_IA32_LASTBRANCHTOIP:
3054                *data = svm->vmcb->save.br_to;
3055                break;
3056        case MSR_IA32_LASTINTFROMIP:
3057                *data = svm->vmcb->save.last_excp_from;
3058                break;
3059        case MSR_IA32_LASTINTTOIP:
3060                *data = svm->vmcb->save.last_excp_to;
3061                break;
3062        case MSR_VM_HSAVE_PA:
3063                *data = svm->nested.hsave_msr;
3064                break;
3065        case MSR_VM_CR:
3066                *data = svm->nested.vm_cr_msr;
3067                break;
3068        case MSR_IA32_UCODE_REV:
3069                *data = 0x01000065;
3070                break;
3071        default:
3072                return kvm_get_msr_common(vcpu, ecx, data);
3073        }
3074        return 0;
3075}
3076
3077static int rdmsr_interception(struct vcpu_svm *svm)
3078{
3079        u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3080        u64 data;
3081
3082        if (svm_get_msr(&svm->vcpu, ecx, &data)) {
3083                trace_kvm_msr_read_ex(ecx);
3084                kvm_inject_gp(&svm->vcpu, 0);
3085        } else {
3086                trace_kvm_msr_read(ecx, data);
3087
3088                svm->vcpu.arch.regs[VCPU_REGS_RAX] = data & 0xffffffff;
3089                svm->vcpu.arch.regs[VCPU_REGS_RDX] = data >> 32;
3090                svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3091                skip_emulated_instruction(&svm->vcpu);
3092        }
3093        return 1;
3094}
3095
3096static int svm_set_vm_cr(struct kvm_vcpu *vcpu, u64 data)
3097{
3098        struct vcpu_svm *svm = to_svm(vcpu);
3099        int svm_dis, chg_mask;
3100
3101        if (data & ~SVM_VM_CR_VALID_MASK)
3102                return 1;
3103
3104        chg_mask = SVM_VM_CR_VALID_MASK;
3105
3106        if (svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK)
3107                chg_mask &= ~(SVM_VM_CR_SVM_LOCK_MASK | SVM_VM_CR_SVM_DIS_MASK);
3108
3109        svm->nested.vm_cr_msr &= ~chg_mask;
3110        svm->nested.vm_cr_msr |= (data & chg_mask);
3111
3112        svm_dis = svm->nested.vm_cr_msr & SVM_VM_CR_SVM_DIS_MASK;
3113
3114        /* check for svm_disable while efer.svme is set */
3115        if (svm_dis && (vcpu->arch.efer & EFER_SVME))
3116                return 1;
3117
3118        return 0;
3119}
3120
3121static int svm_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr)
3122{
3123        struct vcpu_svm *svm = to_svm(vcpu);
3124
3125        u32 ecx = msr->index;
3126        u64 data = msr->data;
3127        switch (ecx) {
3128        case MSR_IA32_TSC:
3129                kvm_write_tsc(vcpu, msr);
3130                break;
3131        case MSR_STAR:
3132                svm->vmcb->save.star = data;
3133                break;
3134#ifdef CONFIG_X86_64
3135        case MSR_LSTAR:
3136                svm->vmcb->save.lstar = data;
3137                break;
3138        case MSR_CSTAR:
3139                svm->vmcb->save.cstar = data;
3140                break;
3141        case MSR_KERNEL_GS_BASE:
3142                svm->vmcb->save.kernel_gs_base = data;
3143                break;
3144        case MSR_SYSCALL_MASK:
3145                svm->vmcb->save.sfmask = data;
3146                break;
3147#endif
3148        case MSR_IA32_SYSENTER_CS:
3149                svm->vmcb->save.sysenter_cs = data;
3150                break;
3151        case MSR_IA32_SYSENTER_EIP:
3152                svm->sysenter_eip = data;
3153                svm->vmcb->save.sysenter_eip = data;
3154                break;
3155        case MSR_IA32_SYSENTER_ESP:
3156                svm->sysenter_esp = data;
3157                svm->vmcb->save.sysenter_esp = data;
3158                break;
3159        case MSR_IA32_DEBUGCTLMSR:
3160                if (!boot_cpu_has(X86_FEATURE_LBRV)) {
3161                        vcpu_unimpl(vcpu, "%s: MSR_IA32_DEBUGCTL 0x%llx, nop\n",
3162                                    __func__, data);
3163                        break;
3164                }
3165                if (data & DEBUGCTL_RESERVED_BITS)
3166                        return 1;
3167
3168                svm->vmcb->save.dbgctl = data;
3169                mark_dirty(svm->vmcb, VMCB_LBR);
3170                if (data & (1ULL<<0))
3171                        svm_enable_lbrv(svm);
3172                else
3173                        svm_disable_lbrv(svm);
3174                break;
3175        case MSR_VM_HSAVE_PA:
3176                svm->nested.hsave_msr = data;
3177                break;
3178        case MSR_VM_CR:
3179                return svm_set_vm_cr(vcpu, data);
3180        case MSR_VM_IGNNE:
3181                vcpu_unimpl(vcpu, "unimplemented wrmsr: 0x%x data 0x%llx\n", ecx, data);
3182                break;
3183        default:
3184                return kvm_set_msr_common(vcpu, msr);
3185        }
3186        return 0;
3187}
3188
3189static int wrmsr_interception(struct vcpu_svm *svm)
3190{
3191        struct msr_data msr;
3192        u32 ecx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
3193        u64 data = (svm->vcpu.arch.regs[VCPU_REGS_RAX] & -1u)
3194                | ((u64)(svm->vcpu.arch.regs[VCPU_REGS_RDX] & -1u) << 32);
3195
3196        msr.data = data;
3197        msr.index = ecx;
3198        msr.host_initiated = false;
3199
3200        svm->next_rip = kvm_rip_read(&svm->vcpu) + 2;
3201        if (svm_set_msr(&svm->vcpu, &msr)) {
3202                trace_kvm_msr_write_ex(ecx, data);
3203                kvm_inject_gp(&svm->vcpu, 0);
3204        } else {
3205                trace_kvm_msr_write(ecx, data);
3206                skip_emulated_instruction(&svm->vcpu);
3207        }
3208        return 1;
3209}
3210
3211static int msr_interception(struct vcpu_svm *svm)
3212{
3213        if (svm->vmcb->control.exit_info_1)
3214                return wrmsr_interception(svm);
3215        else
3216                return rdmsr_interception(svm);
3217}
3218
3219static int interrupt_window_interception(struct vcpu_svm *svm)
3220{
3221        struct kvm_run *kvm_run = svm->vcpu.run;
3222
3223        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3224        svm_clear_vintr(svm);
3225        svm->vmcb->control.int_ctl &= ~V_IRQ_MASK;
3226        mark_dirty(svm->vmcb, VMCB_INTR);
3227        ++svm->vcpu.stat.irq_window_exits;
3228        /*
3229         * If the user space waits to inject interrupts, exit as soon as
3230         * possible
3231         */
3232        if (!irqchip_in_kernel(svm->vcpu.kvm) &&
3233            kvm_run->request_interrupt_window &&
3234            !kvm_cpu_has_interrupt(&svm->vcpu)) {
3235                kvm_run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
3236                return 0;
3237        }
3238
3239        return 1;
3240}
3241
3242static int pause_interception(struct vcpu_svm *svm)
3243{
3244        kvm_vcpu_on_spin(&(svm->vcpu));
3245        return 1;
3246}
3247
3248static int (*const svm_exit_handlers[])(struct vcpu_svm *svm) = {
3249        [SVM_EXIT_READ_CR0]                     = cr_interception,
3250        [SVM_EXIT_READ_CR3]                     = cr_interception,
3251        [SVM_EXIT_READ_CR4]                     = cr_interception,
3252        [SVM_EXIT_READ_CR8]                     = cr_interception,
3253        [SVM_EXIT_CR0_SEL_WRITE]                = emulate_on_interception,
3254        [SVM_EXIT_WRITE_CR0]                    = cr_interception,
3255        [SVM_EXIT_WRITE_CR3]                    = cr_interception,
3256        [SVM_EXIT_WRITE_CR4]                    = cr_interception,
3257        [SVM_EXIT_WRITE_CR8]                    = cr8_write_interception,
3258        [SVM_EXIT_READ_DR0]                     = dr_interception,
3259        [SVM_EXIT_READ_DR1]                     = dr_interception,
3260        [SVM_EXIT_READ_DR2]                     = dr_interception,
3261        [SVM_EXIT_READ_DR3]                     = dr_interception,
3262        [SVM_EXIT_READ_DR4]                     = dr_interception,
3263        [SVM_EXIT_READ_DR5]                     = dr_interception,
3264        [SVM_EXIT_READ_DR6]                     = dr_interception,
3265        [SVM_EXIT_READ_DR7]                     = dr_interception,
3266        [SVM_EXIT_WRITE_DR0]                    = dr_interception,
3267        [SVM_EXIT_WRITE_DR1]                    = dr_interception,
3268        [SVM_EXIT_WRITE_DR2]                    = dr_interception,
3269        [SVM_EXIT_WRITE_DR3]                    = dr_interception,
3270        [SVM_EXIT_WRITE_DR4]                    = dr_interception,
3271        [SVM_EXIT_WRITE_DR5]                    = dr_interception,
3272        [SVM_EXIT_WRITE_DR6]                    = dr_interception,
3273        [SVM_EXIT_WRITE_DR7]                    = dr_interception,
3274        [SVM_EXIT_EXCP_BASE + DB_VECTOR]        = db_interception,
3275        [SVM_EXIT_EXCP_BASE + BP_VECTOR]        = bp_interception,
3276        [SVM_EXIT_EXCP_BASE + UD_VECTOR]        = ud_interception,
3277        [SVM_EXIT_EXCP_BASE + PF_VECTOR]        = pf_interception,
3278        [SVM_EXIT_EXCP_BASE + NM_VECTOR]        = nm_interception,
3279        [SVM_EXIT_EXCP_BASE + MC_VECTOR]        = mc_interception,
3280        [SVM_EXIT_INTR]                         = intr_interception,
3281        [SVM_EXIT_NMI]                          = nmi_interception,
3282        [SVM_EXIT_SMI]                          = nop_on_interception,
3283        [SVM_EXIT_INIT]                         = nop_on_interception,
3284        [SVM_EXIT_VINTR]                        = interrupt_window_interception,
3285        [SVM_EXIT_RDPMC]                        = rdpmc_interception,
3286        [SVM_EXIT_CPUID]                        = cpuid_interception,
3287        [SVM_EXIT_IRET]                         = iret_interception,
3288        [SVM_EXIT_INVD]                         = emulate_on_interception,
3289        [SVM_EXIT_PAUSE]                        = pause_interception,
3290        [SVM_EXIT_HLT]                          = halt_interception,
3291        [SVM_EXIT_INVLPG]                       = invlpg_interception,
3292        [SVM_EXIT_INVLPGA]                      = invlpga_interception,
3293        [SVM_EXIT_IOIO]                         = io_interception,
3294        [SVM_EXIT_MSR]                          = msr_interception,
3295        [SVM_EXIT_TASK_SWITCH]                  = task_switch_interception,
3296        [SVM_EXIT_SHUTDOWN]                     = shutdown_interception,
3297        [SVM_EXIT_VMRUN]                        = vmrun_interception,
3298        [SVM_EXIT_VMMCALL]                      = vmmcall_interception,
3299        [SVM_EXIT_VMLOAD]                       = vmload_interception,
3300        [SVM_EXIT_VMSAVE]                       = vmsave_interception,
3301        [SVM_EXIT_STGI]                         = stgi_interception,
3302        [SVM_EXIT_CLGI]                         = clgi_interception,
3303        [SVM_EXIT_SKINIT]                       = skinit_interception,
3304        [SVM_EXIT_WBINVD]                       = emulate_on_interception,
3305        [SVM_EXIT_MONITOR]                      = invalid_op_interception,
3306        [SVM_EXIT_MWAIT]                        = invalid_op_interception,
3307        [SVM_EXIT_XSETBV]                       = xsetbv_interception,
3308        [SVM_EXIT_NPF]                          = pf_interception,
3309};
3310
3311static void dump_vmcb(struct kvm_vcpu *vcpu)
3312{
3313        struct vcpu_svm *svm = to_svm(vcpu);
3314        struct vmcb_control_area *control = &svm->vmcb->control;
3315        struct vmcb_save_area *save = &svm->vmcb->save;
3316
3317        pr_err("VMCB Control Area:\n");
3318        pr_err("%-20s%04x\n", "cr_read:", control->intercept_cr & 0xffff);
3319        pr_err("%-20s%04x\n", "cr_write:", control->intercept_cr >> 16);
3320        pr_err("%-20s%04x\n", "dr_read:", control->intercept_dr & 0xffff);
3321        pr_err("%-20s%04x\n", "dr_write:", control->intercept_dr >> 16);
3322        pr_err("%-20s%08x\n", "exceptions:", control->intercept_exceptions);
3323        pr_err("%-20s%016llx\n", "intercepts:", control->intercept);
3324        pr_err("%-20s%d\n", "pause filter count:", control->pause_filter_count);
3325        pr_err("%-20s%016llx\n", "iopm_base_pa:", control->iopm_base_pa);
3326        pr_err("%-20s%016llx\n", "msrpm_base_pa:", control->msrpm_base_pa);
3327        pr_err("%-20s%016llx\n", "tsc_offset:", control->tsc_offset);
3328        pr_err("%-20s%d\n", "asid:", control->asid);
3329        pr_err("%-20s%d\n", "tlb_ctl:", control->tlb_ctl);
3330        pr_err("%-20s%08x\n", "int_ctl:", control->int_ctl);
3331        pr_err("%-20s%08x\n", "int_vector:", control->int_vector);
3332        pr_err("%-20s%08x\n", "int_state:", control->int_state);
3333        pr_err("%-20s%08x\n", "exit_code:", control->exit_code);
3334        pr_err("%-20s%016llx\n", "exit_info1:", control->exit_info_1);
3335        pr_err("%-20s%016llx\n", "exit_info2:", control->exit_info_2);
3336        pr_err("%-20s%08x\n", "exit_int_info:", control->exit_int_info);
3337        pr_err("%-20s%08x\n", "exit_int_info_err:", control->exit_int_info_err);
3338        pr_err("%-20s%lld\n", "nested_ctl:", control->nested_ctl);
3339        pr_err("%-20s%016llx\n", "nested_cr3:", control->nested_cr3);
3340        pr_err("%-20s%08x\n", "event_inj:", control->event_inj);
3341        pr_err("%-20s%08x\n", "event_inj_err:", control->event_inj_err);
3342        pr_err("%-20s%lld\n", "lbr_ctl:", control->lbr_ctl);
3343        pr_err("%-20s%016llx\n", "next_rip:", control->next_rip);
3344        pr_err("VMCB State Save Area:\n");
3345        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3346               "es:",
3347               save->es.selector, save->es.attrib,
3348               save->es.limit, save->es.base);
3349        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3350               "cs:",
3351               save->cs.selector, save->cs.attrib,
3352               save->cs.limit, save->cs.base);
3353        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3354               "ss:",
3355               save->ss.selector, save->ss.attrib,
3356               save->ss.limit, save->ss.base);
3357        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3358               "ds:",
3359               save->ds.selector, save->ds.attrib,
3360               save->ds.limit, save->ds.base);
3361        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3362               "fs:",
3363               save->fs.selector, save->fs.attrib,
3364               save->fs.limit, save->fs.base);
3365        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3366               "gs:",
3367               save->gs.selector, save->gs.attrib,
3368               save->gs.limit, save->gs.base);
3369        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3370               "gdtr:",
3371               save->gdtr.selector, save->gdtr.attrib,
3372               save->gdtr.limit, save->gdtr.base);
3373        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3374               "ldtr:",
3375               save->ldtr.selector, save->ldtr.attrib,
3376               save->ldtr.limit, save->ldtr.base);
3377        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3378               "idtr:",
3379               save->idtr.selector, save->idtr.attrib,
3380               save->idtr.limit, save->idtr.base);
3381        pr_err("%-5s s: %04x a: %04x l: %08x b: %016llx\n",
3382               "tr:",
3383               save->tr.selector, save->tr.attrib,
3384               save->tr.limit, save->tr.base);
3385        pr_err("cpl:            %d                efer:         %016llx\n",
3386                save->cpl, save->efer);
3387        pr_err("%-15s %016llx %-13s %016llx\n",
3388               "cr0:", save->cr0, "cr2:", save->cr2);
3389        pr_err("%-15s %016llx %-13s %016llx\n",
3390               "cr3:", save->cr3, "cr4:", save->cr4);
3391        pr_err("%-15s %016llx %-13s %016llx\n",
3392               "dr6:", save->dr6, "dr7:", save->dr7);
3393        pr_err("%-15s %016llx %-13s %016llx\n",
3394               "rip:", save->rip, "rflags:", save->rflags);
3395        pr_err("%-15s %016llx %-13s %016llx\n",
3396               "rsp:", save->rsp, "rax:", save->rax);
3397        pr_err("%-15s %016llx %-13s %016llx\n",
3398               "star:", save->star, "lstar:", save->lstar);
3399        pr_err("%-15s %016llx %-13s %016llx\n",
3400               "cstar:", save->cstar, "sfmask:", save->sfmask);
3401        pr_err("%-15s %016llx %-13s %016llx\n",
3402               "kernel_gs_base:", save->kernel_gs_base,
3403               "sysenter_cs:", save->sysenter_cs);
3404        pr_err("%-15s %016llx %-13s %016llx\n",
3405               "sysenter_esp:", save->sysenter_esp,
3406               "sysenter_eip:", save->sysenter_eip);
3407        pr_err("%-15s %016llx %-13s %016llx\n",
3408               "gpat:", save->g_pat, "dbgctl:", save->dbgctl);
3409        pr_err("%-15s %016llx %-13s %016llx\n",
3410               "br_from:", save->br_from, "br_to:", save->br_to);
3411        pr_err("%-15s %016llx %-13s %016llx\n",
3412               "excp_from:", save->last_excp_from,
3413               "excp_to:", save->last_excp_to);
3414}
3415
3416static void svm_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
3417{
3418        struct vmcb_control_area *control = &to_svm(vcpu)->vmcb->control;
3419
3420        *info1 = control->exit_info_1;
3421        *info2 = control->exit_info_2;
3422}
3423
3424static int handle_exit(struct kvm_vcpu *vcpu)
3425{
3426        struct vcpu_svm *svm = to_svm(vcpu);
3427        struct kvm_run *kvm_run = vcpu->run;
3428        u32 exit_code = svm->vmcb->control.exit_code;
3429
3430        if (!is_cr_intercept(svm, INTERCEPT_CR0_WRITE))
3431                vcpu->arch.cr0 = svm->vmcb->save.cr0;
3432        if (npt_enabled)
3433                vcpu->arch.cr3 = svm->vmcb->save.cr3;
3434
3435        if (unlikely(svm->nested.exit_required)) {
3436                nested_svm_vmexit(svm);
3437                svm->nested.exit_required = false;
3438
3439                return 1;
3440        }
3441
3442        if (is_guest_mode(vcpu)) {
3443                int vmexit;
3444
3445                trace_kvm_nested_vmexit(svm->vmcb->save.rip, exit_code,
3446                                        svm->vmcb->control.exit_info_1,
3447                                        svm->vmcb->control.exit_info_2,
3448                                        svm->vmcb->control.exit_int_info,
3449                                        svm->vmcb->control.exit_int_info_err,
3450                                        KVM_ISA_SVM);
3451
3452                vmexit = nested_svm_exit_special(svm);
3453
3454                if (vmexit == NESTED_EXIT_CONTINUE)
3455                        vmexit = nested_svm_exit_handled(svm);
3456
3457                if (vmexit == NESTED_EXIT_DONE)
3458                        return 1;
3459        }
3460
3461        svm_complete_interrupts(svm);
3462
3463        if (svm->vmcb->control.exit_code == SVM_EXIT_ERR) {
3464                kvm_run->exit_reason = KVM_EXIT_FAIL_ENTRY;
3465                kvm_run->fail_entry.hardware_entry_failure_reason
3466                        = svm->vmcb->control.exit_code;
3467                pr_err("KVM: FAILED VMRUN WITH VMCB:\n");
3468                dump_vmcb(vcpu);
3469                return 0;
3470        }
3471
3472        if (is_external_interrupt(svm->vmcb->control.exit_int_info) &&
3473            exit_code != SVM_EXIT_EXCP_BASE + PF_VECTOR &&
3474            exit_code != SVM_EXIT_NPF && exit_code != SVM_EXIT_TASK_SWITCH &&
3475            exit_code != SVM_EXIT_INTR && exit_code != SVM_EXIT_NMI)
3476                printk(KERN_ERR "%s: unexpected exit_int_info 0x%x "
3477                       "exit_code 0x%x\n",
3478                       __func__, svm->vmcb->control.exit_int_info,
3479                       exit_code);
3480
3481        if (exit_code >= ARRAY_SIZE(svm_exit_handlers)
3482            || !svm_exit_handlers[exit_code]) {
3483                kvm_run->exit_reason = KVM_EXIT_UNKNOWN;
3484                kvm_run->hw.hardware_exit_reason = exit_code;
3485                return 0;
3486        }
3487
3488        return svm_exit_handlers[exit_code](svm);
3489}
3490
3491static void reload_tss(struct kvm_vcpu *vcpu)
3492{
3493        int cpu = raw_smp_processor_id();
3494
3495        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3496        sd->tss_desc->type = 9; /* available 32/64-bit TSS */
3497        load_TR_desc();
3498}
3499
3500static void pre_svm_run(struct vcpu_svm *svm)
3501{
3502        int cpu = raw_smp_processor_id();
3503
3504        struct svm_cpu_data *sd = per_cpu(svm_data, cpu);
3505
3506        /* FIXME: handle wraparound of asid_generation */
3507        if (svm->asid_generation != sd->asid_generation)
3508                new_asid(svm, sd);
3509}
3510
3511static void svm_inject_nmi(struct kvm_vcpu *vcpu)
3512{
3513        struct vcpu_svm *svm = to_svm(vcpu);
3514
3515        svm->vmcb->control.event_inj = SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_NMI;
3516        vcpu->arch.hflags |= HF_NMI_MASK;
3517        set_intercept(svm, INTERCEPT_IRET);
3518        ++vcpu->stat.nmi_injections;
3519}
3520
3521static inline void svm_inject_irq(struct vcpu_svm *svm, int irq)
3522{
3523        struct vmcb_control_area *control;
3524
3525        control = &svm->vmcb->control;
3526        control->int_vector = irq;
3527        control->int_ctl &= ~V_INTR_PRIO_MASK;
3528        control->int_ctl |= V_IRQ_MASK |
3529                ((/*control->int_vector >> 4*/ 0xf) << V_INTR_PRIO_SHIFT);
3530        mark_dirty(svm->vmcb, VMCB_INTR);
3531}
3532
3533static void svm_set_irq(struct kvm_vcpu *vcpu)
3534{
3535        struct vcpu_svm *svm = to_svm(vcpu);
3536
3537        BUG_ON(!(gif_set(svm)));
3538
3539        trace_kvm_inj_virq(vcpu->arch.interrupt.nr);
3540        ++vcpu->stat.irq_injections;
3541
3542        svm->vmcb->control.event_inj = vcpu->arch.interrupt.nr |
3543                SVM_EVTINJ_VALID | SVM_EVTINJ_TYPE_INTR;
3544}
3545
3546static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
3547{
3548        struct vcpu_svm *svm = to_svm(vcpu);
3549
3550        if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3551                return;
3552
3553        if (irr == -1)
3554                return;
3555
3556        if (tpr >= irr)
3557                set_cr_intercept(svm, INTERCEPT_CR8_WRITE);
3558}
3559
3560static void svm_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
3561{
3562        return;
3563}
3564
3565static int svm_vm_has_apicv(struct kvm *kvm)
3566{
3567        return 0;
3568}
3569
3570static void svm_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
3571{
3572        return;
3573}
3574
3575static void svm_hwapic_isr_update(struct kvm *kvm, int isr)
3576{
3577        return;
3578}
3579
3580static void svm_sync_pir_to_irr(struct kvm_vcpu *vcpu)
3581{
3582        return;
3583}
3584
3585static int svm_nmi_allowed(struct kvm_vcpu *vcpu)
3586{
3587        struct vcpu_svm *svm = to_svm(vcpu);
3588        struct vmcb *vmcb = svm->vmcb;
3589        int ret;
3590        ret = !(vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK) &&
3591              !(svm->vcpu.arch.hflags & HF_NMI_MASK);
3592        ret = ret && gif_set(svm) && nested_svm_nmi(svm);
3593
3594        return ret;
3595}
3596
3597static bool svm_get_nmi_mask(struct kvm_vcpu *vcpu)
3598{
3599        struct vcpu_svm *svm = to_svm(vcpu);
3600
3601        return !!(svm->vcpu.arch.hflags & HF_NMI_MASK);
3602}
3603
3604static void svm_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
3605{
3606        struct vcpu_svm *svm = to_svm(vcpu);
3607
3608        if (masked) {
3609                svm->vcpu.arch.hflags |= HF_NMI_MASK;
3610                set_intercept(svm, INTERCEPT_IRET);
3611        } else {
3612                svm->vcpu.arch.hflags &= ~HF_NMI_MASK;
3613                clr_intercept(svm, INTERCEPT_IRET);
3614        }
3615}
3616
3617static int svm_interrupt_allowed(struct kvm_vcpu *vcpu)
3618{
3619        struct vcpu_svm *svm = to_svm(vcpu);
3620        struct vmcb *vmcb = svm->vmcb;
3621        int ret;
3622
3623        if (!gif_set(svm) ||
3624             (vmcb->control.int_state & SVM_INTERRUPT_SHADOW_MASK))
3625                return 0;
3626
3627        ret = !!(kvm_get_rflags(vcpu) & X86_EFLAGS_IF);
3628
3629        if (is_guest_mode(vcpu))
3630                return ret && !(svm->vcpu.arch.hflags & HF_VINTR_MASK);
3631
3632        return ret;
3633}
3634
3635static int enable_irq_window(struct kvm_vcpu *vcpu)
3636{
3637        struct vcpu_svm *svm = to_svm(vcpu);
3638
3639        /*
3640         * In case GIF=0 we can't rely on the CPU to tell us when GIF becomes
3641         * 1, because that's a separate STGI/VMRUN intercept.  The next time we
3642         * get that intercept, this function will be called again though and
3643         * we'll get the vintr intercept.
3644         */
3645        if (gif_set(svm) && nested_svm_intr(svm)) {
3646                svm_set_vintr(svm);
3647                svm_inject_irq(svm, 0x0);
3648        }
3649        return 0;
3650}
3651
3652static int enable_nmi_window(struct kvm_vcpu *vcpu)
3653{
3654        struct vcpu_svm *svm = to_svm(vcpu);
3655
3656        if ((svm->vcpu.arch.hflags & (HF_NMI_MASK | HF_IRET_MASK))
3657            == HF_NMI_MASK)
3658                return 0; /* IRET will cause a vm exit */
3659
3660        /*
3661         * Something prevents NMI from been injected. Single step over possible
3662         * problem (IRET or exception injection or interrupt shadow)
3663         */
3664        svm->nmi_singlestep = true;
3665        svm->vmcb->save.rflags |= (X86_EFLAGS_TF | X86_EFLAGS_RF);
3666        update_db_bp_intercept(vcpu);
3667        return 0;
3668}
3669
3670static int svm_set_tss_addr(struct kvm *kvm, unsigned int addr)
3671{
3672        return 0;
3673}
3674
3675static void svm_flush_tlb(struct kvm_vcpu *vcpu)
3676{
3677        struct vcpu_svm *svm = to_svm(vcpu);
3678
3679        if (static_cpu_has(X86_FEATURE_FLUSHBYASID))
3680                svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
3681        else
3682                svm->asid_generation--;
3683}
3684
3685static void svm_prepare_guest_switch(struct kvm_vcpu *vcpu)
3686{
3687}
3688
3689static inline void sync_cr8_to_lapic(struct kvm_vcpu *vcpu)
3690{
3691        struct vcpu_svm *svm = to_svm(vcpu);
3692
3693        if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3694                return;
3695
3696        if (!is_cr_intercept(svm, INTERCEPT_CR8_WRITE)) {
3697                int cr8 = svm->vmcb->control.int_ctl & V_TPR_MASK;
3698                kvm_set_cr8(vcpu, cr8);
3699        }
3700}
3701
3702static inline void sync_lapic_to_cr8(struct kvm_vcpu *vcpu)
3703{
3704        struct vcpu_svm *svm = to_svm(vcpu);
3705        u64 cr8;
3706
3707        if (is_guest_mode(vcpu) && (vcpu->arch.hflags & HF_VINTR_MASK))
3708                return;
3709
3710        cr8 = kvm_get_cr8(vcpu);
3711        svm->vmcb->control.int_ctl &= ~V_TPR_MASK;
3712        svm->vmcb->control.int_ctl |= cr8 & V_TPR_MASK;
3713}
3714
3715static void svm_complete_interrupts(struct vcpu_svm *svm)
3716{
3717        u8 vector;
3718        int type;
3719        u32 exitintinfo = svm->vmcb->control.exit_int_info;
3720        unsigned int3_injected = svm->int3_injected;
3721
3722        svm->int3_injected = 0;
3723
3724        /*
3725         * If we've made progress since setting HF_IRET_MASK, we've
3726         * executed an IRET and can allow NMI injection.
3727         */
3728        if ((svm->vcpu.arch.hflags & HF_IRET_MASK)
3729            && kvm_rip_read(&svm->vcpu) != svm->nmi_iret_rip) {
3730                svm->vcpu.arch.hflags &= ~(HF_NMI_MASK | HF_IRET_MASK);
3731                kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3732        }
3733
3734        svm->vcpu.arch.nmi_injected = false;
3735        kvm_clear_exception_queue(&svm->vcpu);
3736        kvm_clear_interrupt_queue(&svm->vcpu);
3737
3738        if (!(exitintinfo & SVM_EXITINTINFO_VALID))
3739                return;
3740
3741        kvm_make_request(KVM_REQ_EVENT, &svm->vcpu);
3742
3743        vector = exitintinfo & SVM_EXITINTINFO_VEC_MASK;
3744        type = exitintinfo & SVM_EXITINTINFO_TYPE_MASK;
3745
3746        switch (type) {
3747        case SVM_EXITINTINFO_TYPE_NMI:
3748                svm->vcpu.arch.nmi_injected = true;
3749                break;
3750        case SVM_EXITINTINFO_TYPE_EXEPT:
3751                /*
3752                 * In case of software exceptions, do not reinject the vector,
3753                 * but re-execute the instruction instead. Rewind RIP first
3754                 * if we emulated INT3 before.
3755                 */
3756                if (kvm_exception_is_soft(vector)) {
3757                        if (vector == BP_VECTOR && int3_injected &&
3758                            kvm_is_linear_rip(&svm->vcpu, svm->int3_rip))
3759                                kvm_rip_write(&svm->vcpu,
3760                                              kvm_rip_read(&svm->vcpu) -
3761                                              int3_injected);
3762                        break;
3763                }
3764                if (exitintinfo & SVM_EXITINTINFO_VALID_ERR) {
3765                        u32 err = svm->vmcb->control.exit_int_info_err;
3766                        kvm_requeue_exception_e(&svm->vcpu, vector, err);
3767
3768                } else
3769                        kvm_requeue_exception(&svm->vcpu, vector);
3770                break;
3771        case SVM_EXITINTINFO_TYPE_INTR:
3772                kvm_queue_interrupt(&svm->vcpu, vector, false);
3773                break;
3774        default:
3775                break;
3776        }
3777}
3778
3779static void svm_cancel_injection(struct kvm_vcpu *vcpu)
3780{
3781        struct vcpu_svm *svm = to_svm(vcpu);
3782        struct vmcb_control_area *control = &svm->vmcb->control;
3783
3784        control->exit_int_info = control->event_inj;
3785        control->exit_int_info_err = control->event_inj_err;
3786        control->event_inj = 0;
3787        svm_complete_interrupts(svm);
3788}
3789
3790static void svm_vcpu_run(struct kvm_vcpu *vcpu)
3791{
3792        struct vcpu_svm *svm = to_svm(vcpu);
3793
3794        svm->vmcb->save.rax = vcpu->arch.regs[VCPU_REGS_RAX];
3795        svm->vmcb->save.rsp = vcpu->arch.regs[VCPU_REGS_RSP];
3796        svm->vmcb->save.rip = vcpu->arch.regs[VCPU_REGS_RIP];
3797
3798        /*
3799         * A vmexit emulation is required before the vcpu can be executed
3800         * again.
3801         */
3802        if (unlikely(svm->nested.exit_required))
3803                return;
3804
3805        pre_svm_run(svm);
3806
3807        sync_lapic_to_cr8(vcpu);
3808
3809        svm->vmcb->save.cr2 = vcpu->arch.cr2;
3810
3811        clgi();
3812
3813        local_irq_enable();
3814
3815        asm volatile (
3816                "push %%" _ASM_BP "; \n\t"
3817                "mov %c[rbx](%[svm]), %%" _ASM_BX " \n\t"
3818                "mov %c[rcx](%[svm]), %%" _ASM_CX " \n\t"
3819                "mov %c[rdx](%[svm]), %%" _ASM_DX " \n\t"
3820                "mov %c[rsi](%[svm]), %%" _ASM_SI " \n\t"
3821                "mov %c[rdi](%[svm]), %%" _ASM_DI " \n\t"
3822                "mov %c[rbp](%[svm]), %%" _ASM_BP " \n\t"
3823#ifdef CONFIG_X86_64
3824                "mov %c[r8](%[svm]),  %%r8  \n\t"
3825                "mov %c[r9](%[svm]),  %%r9  \n\t"
3826                "mov %c[r10](%[svm]), %%r10 \n\t"
3827                "mov %c[r11](%[svm]), %%r11 \n\t"
3828                "mov %c[r12](%[svm]), %%r12 \n\t"
3829                "mov %c[r13](%[svm]), %%r13 \n\t"
3830                "mov %c[r14](%[svm]), %%r14 \n\t"
3831                "mov %c[r15](%[svm]), %%r15 \n\t"
3832#endif
3833
3834                /* Enter guest mode */
3835                "push %%" _ASM_AX " \n\t"
3836                "mov %c[vmcb](%[svm]), %%" _ASM_AX " \n\t"
3837                __ex(SVM_VMLOAD) "\n\t"
3838                __ex(SVM_VMRUN) "\n\t"
3839                __ex(SVM_VMSAVE) "\n\t"
3840                "pop %%" _ASM_AX " \n\t"
3841
3842                /* Save guest registers, load host registers */
3843                "mov %%" _ASM_BX ", %c[rbx](%[svm]) \n\t"
3844                "mov %%" _ASM_CX ", %c[rcx](%[svm]) \n\t"
3845                "mov %%" _ASM_DX ", %c[rdx](%[svm]) \n\t"
3846                "mov %%" _ASM_SI ", %c[rsi](%[svm]) \n\t"
3847                "mov %%" _ASM_DI ", %c[rdi](%[svm]) \n\t"
3848                "mov %%" _ASM_BP ", %c[rbp](%[svm]) \n\t"
3849#ifdef CONFIG_X86_64
3850                "mov %%r8,  %c[r8](%[svm]) \n\t"
3851                "mov %%r9,  %c[r9](%[svm]) \n\t"
3852                "mov %%r10, %c[r10](%[svm]) \n\t"
3853                "mov %%r11, %c[r11](%[svm]) \n\t"
3854                "mov %%r12, %c[r12](%[svm]) \n\t"
3855                "mov %%r13, %c[r13](%[svm]) \n\t"
3856                "mov %%r14, %c[r14](%[svm]) \n\t"
3857                "mov %%r15, %c[r15](%[svm]) \n\t"
3858#endif
3859                "pop %%" _ASM_BP
3860                :
3861                : [svm]"a"(svm),
3862                  [vmcb]"i"(offsetof(struct vcpu_svm, vmcb_pa)),
3863                  [rbx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBX])),
3864                  [rcx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RCX])),
3865                  [rdx]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDX])),
3866                  [rsi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RSI])),
3867                  [rdi]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RDI])),
3868                  [rbp]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_RBP]))
3869#ifdef CONFIG_X86_64
3870                  , [r8]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R8])),
3871                  [r9]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R9])),
3872                  [r10]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R10])),
3873                  [r11]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R11])),
3874                  [r12]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R12])),
3875                  [r13]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R13])),
3876                  [r14]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R14])),
3877                  [r15]"i"(offsetof(struct vcpu_svm, vcpu.arch.regs[VCPU_REGS_R15]))
3878#endif
3879                : "cc", "memory"
3880#ifdef CONFIG_X86_64
3881                , "rbx", "rcx", "rdx", "rsi", "rdi"
3882                , "r8", "r9", "r10", "r11" , "r12", "r13", "r14", "r15"
3883#else
3884                , "ebx", "ecx", "edx", "esi", "edi"
3885#endif
3886                );
3887
3888#ifdef CONFIG_X86_64
3889        wrmsrl(MSR_GS_BASE, svm->host.gs_base);
3890#else
3891        loadsegment(fs, svm->host.fs);
3892#ifndef CONFIG_X86_32_LAZY_GS
3893        loadsegment(gs, svm->host.gs);
3894#endif
3895#endif
3896
3897        reload_tss(vcpu);
3898
3899        local_irq_disable();
3900
3901        vcpu->arch.cr2 = svm->vmcb->save.cr2;
3902        vcpu->arch.regs[VCPU_REGS_RAX] = svm->vmcb->save.rax;
3903        vcpu->arch.regs[VCPU_REGS_RSP] = svm->vmcb->save.rsp;
3904        vcpu->arch.regs[VCPU_REGS_RIP] = svm->vmcb->save.rip;
3905
3906        trace_kvm_exit(svm->vmcb->control.exit_code, vcpu, KVM_ISA_SVM);
3907
3908        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3909                kvm_before_handle_nmi(&svm->vcpu);
3910
3911        stgi();
3912
3913        /* Any pending NMI will happen here */
3914
3915        if (unlikely(svm->vmcb->control.exit_code == SVM_EXIT_NMI))
3916                kvm_after_handle_nmi(&svm->vcpu);
3917
3918        sync_cr8_to_lapic(vcpu);
3919
3920        svm->next_rip = 0;
3921
3922        svm->vmcb->control.tlb_ctl = TLB_CONTROL_DO_NOTHING;
3923
3924        /* if exit due to PF check for async PF */
3925        if (svm->vmcb->control.exit_code == SVM_EXIT_EXCP_BASE + PF_VECTOR)
3926                svm->apf_reason = kvm_read_and_reset_pf_reason();
3927
3928        if (npt_enabled) {
3929                vcpu->arch.regs_avail &= ~(1 << VCPU_EXREG_PDPTR);
3930                vcpu->arch.regs_dirty &= ~(1 << VCPU_EXREG_PDPTR);
3931        }
3932
3933        /*
3934         * We need to handle MC intercepts here before the vcpu has a chance to
3935         * change the physical cpu
3936         */
3937        if (unlikely(svm->vmcb->control.exit_code ==
3938                     SVM_EXIT_EXCP_BASE + MC_VECTOR))
3939                svm_handle_mce(svm);
3940
3941        mark_all_clean(svm->vmcb);
3942}
3943
3944static void svm_set_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3945{
3946        struct vcpu_svm *svm = to_svm(vcpu);
3947
3948        svm->vmcb->save.cr3 = root;
3949        mark_dirty(svm->vmcb, VMCB_CR);
3950        svm_flush_tlb(vcpu);
3951}
3952
3953static void set_tdp_cr3(struct kvm_vcpu *vcpu, unsigned long root)
3954{
3955        struct vcpu_svm *svm = to_svm(vcpu);
3956
3957        svm->vmcb->control.nested_cr3 = root;
3958        mark_dirty(svm->vmcb, VMCB_NPT);
3959
3960        /* Also sync guest cr3 here in case we live migrate */
3961        svm->vmcb->save.cr3 = kvm_read_cr3(vcpu);
3962        mark_dirty(svm->vmcb, VMCB_CR);
3963
3964        svm_flush_tlb(vcpu);
3965}
3966
3967static int is_disabled(void)
3968{
3969        u64 vm_cr;
3970
3971        rdmsrl(MSR_VM_CR, vm_cr);
3972        if (vm_cr & (1 << SVM_VM_CR_SVM_DISABLE))
3973                return 1;
3974
3975        return 0;
3976}
3977
3978static void
3979svm_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
3980{
3981        /*
3982         * Patch in the VMMCALL instruction:
3983         */
3984        hypercall[0] = 0x0f;
3985        hypercall[1] = 0x01;
3986        hypercall[2] = 0xd9;
3987}
3988
3989static void svm_check_processor_compat(void *rtn)
3990{
3991        *(int *)rtn = 0;
3992}
3993
3994static bool svm_cpu_has_accelerated_tpr(void)
3995{
3996        return false;
3997}
3998
3999static u64 svm_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
4000{
4001        return 0;
4002}
4003
4004static void svm_cpuid_update(struct kvm_vcpu *vcpu)
4005{
4006}
4007
4008static void svm_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
4009{
4010        switch (func) {
4011        case 0x80000001:
4012                if (nested)
4013                        entry->ecx |= (1 << 2); /* Set SVM bit */
4014                break;
4015        case 0x8000000A:
4016                entry->eax = 1; /* SVM revision 1 */
4017                entry->ebx = 8; /* Lets support 8 ASIDs in case we add proper
4018                                   ASID emulation to nested SVM */
4019                entry->ecx = 0; /* Reserved */
4020                entry->edx = 0; /* Per default do not support any
4021                                   additional features */
4022
4023                /* Support next_rip if host supports it */
4024                if (boot_cpu_has(X86_FEATURE_NRIPS))
4025                        entry->edx |= SVM_FEATURE_NRIP;
4026
4027                /* Support NPT for the guest if enabled */
4028                if (npt_enabled)
4029                        entry->edx |= SVM_FEATURE_NPT;
4030
4031                break;
4032        }
4033}
4034
4035static int svm_get_lpage_level(void)
4036{
4037        return PT_PDPE_LEVEL;
4038}
4039
4040static bool svm_rdtscp_supported(void)
4041{
4042        return false;
4043}
4044
4045static bool svm_invpcid_supported(void)
4046{
4047        return false;
4048}
4049
4050static bool svm_has_wbinvd_exit(void)
4051{
4052        return true;
4053}
4054
4055static void svm_fpu_deactivate(struct kvm_vcpu *vcpu)
4056{
4057        struct vcpu_svm *svm = to_svm(vcpu);
4058
4059        set_exception_intercept(svm, NM_VECTOR);
4060        update_cr0_intercept(svm);
4061}
4062
4063#define PRE_EX(exit)  { .exit_code = (exit), \
4064                        .stage = X86_ICPT_PRE_EXCEPT, }
4065#define POST_EX(exit) { .exit_code = (exit), \
4066                        .stage = X86_ICPT_POST_EXCEPT, }
4067#define POST_MEM(exit) { .exit_code = (exit), \
4068                        .stage = X86_ICPT_POST_MEMACCESS, }
4069
4070static const struct __x86_intercept {
4071        u32 exit_code;
4072        enum x86_intercept_stage stage;
4073} x86_intercept_map[] = {
4074        [x86_intercept_cr_read]         = POST_EX(SVM_EXIT_READ_CR0),
4075        [x86_intercept_cr_write]        = POST_EX(SVM_EXIT_WRITE_CR0),
4076        [x86_intercept_clts]            = POST_EX(SVM_EXIT_WRITE_CR0),
4077        [x86_intercept_lmsw]            = POST_EX(SVM_EXIT_WRITE_CR0),
4078        [x86_intercept_smsw]            = POST_EX(SVM_EXIT_READ_CR0),
4079        [x86_intercept_dr_read]         = POST_EX(SVM_EXIT_READ_DR0),
4080        [x86_intercept_dr_write]        = POST_EX(SVM_EXIT_WRITE_DR0),
4081        [x86_intercept_sldt]            = POST_EX(SVM_EXIT_LDTR_READ),
4082        [x86_intercept_str]             = POST_EX(SVM_EXIT_TR_READ),
4083        [x86_intercept_lldt]            = POST_EX(SVM_EXIT_LDTR_WRITE),
4084        [x86_intercept_ltr]             = POST_EX(SVM_EXIT_TR_WRITE),
4085        [x86_intercept_sgdt]            = POST_EX(SVM_EXIT_GDTR_READ),
4086        [x86_intercept_sidt]            = POST_EX(SVM_EXIT_IDTR_READ),
4087        [x86_intercept_lgdt]            = POST_EX(SVM_EXIT_GDTR_WRITE),
4088        [x86_intercept_lidt]            = POST_EX(SVM_EXIT_IDTR_WRITE),
4089        [x86_intercept_vmrun]           = POST_EX(SVM_EXIT_VMRUN),
4090        [x86_intercept_vmmcall]         = POST_EX(SVM_EXIT_VMMCALL),
4091        [x86_intercept_vmload]          = POST_EX(SVM_EXIT_VMLOAD),
4092        [x86_intercept_vmsave]          = POST_EX(SVM_EXIT_VMSAVE),
4093        [x86_intercept_stgi]            = POST_EX(SVM_EXIT_STGI),
4094        [x86_intercept_clgi]            = POST_EX(SVM_EXIT_CLGI),
4095        [x86_intercept_skinit]          = POST_EX(SVM_EXIT_SKINIT),
4096        [x86_intercept_invlpga]         = POST_EX(SVM_EXIT_INVLPGA),
4097        [x86_intercept_rdtscp]          = POST_EX(SVM_EXIT_RDTSCP),
4098        [x86_intercept_monitor]         = POST_MEM(SVM_EXIT_MONITOR),
4099        [x86_intercept_mwait]           = POST_EX(SVM_EXIT_MWAIT),
4100        [x86_intercept_invlpg]          = POST_EX(SVM_EXIT_INVLPG),
4101        [x86_intercept_invd]            = POST_EX(SVM_EXIT_INVD),
4102        [x86_intercept_wbinvd]          = POST_EX(SVM_EXIT_WBINVD),
4103        [x86_intercept_wrmsr]           = POST_EX(SVM_EXIT_MSR),
4104        [x86_intercept_rdtsc]           = POST_EX(SVM_EXIT_RDTSC),
4105        [x86_intercept_rdmsr]           = POST_EX(SVM_EXIT_MSR),
4106        [x86_intercept_rdpmc]           = POST_EX(SVM_EXIT_RDPMC),
4107        [x86_intercept_cpuid]           = PRE_EX(SVM_EXIT_CPUID),
4108        [x86_intercept_rsm]             = PRE_EX(SVM_EXIT_RSM),
4109        [x86_intercept_pause]           = PRE_EX(SVM_EXIT_PAUSE),
4110        [x86_intercept_pushf]           = PRE_EX(SVM_EXIT_PUSHF),
4111        [x86_intercept_popf]            = PRE_EX(SVM_EXIT_POPF),
4112        [x86_intercept_intn]            = PRE_EX(SVM_EXIT_SWINT),
4113        [x86_intercept_iret]            = PRE_EX(SVM_EXIT_IRET),
4114        [x86_intercept_icebp]           = PRE_EX(SVM_EXIT_ICEBP),
4115        [x86_intercept_hlt]             = POST_EX(SVM_EXIT_HLT),
4116        [x86_intercept_in]              = POST_EX(SVM_EXIT_IOIO),
4117        [x86_intercept_ins]             = POST_EX(SVM_EXIT_IOIO),
4118        [x86_intercept_out]             = POST_EX(SVM_EXIT_IOIO),
4119        [x86_intercept_outs]            = POST_EX(SVM_EXIT_IOIO),
4120};
4121
4122#undef PRE_EX
4123#undef POST_EX
4124#undef POST_MEM
4125
4126static int svm_check_intercept(struct kvm_vcpu *vcpu,
4127                               struct x86_instruction_info *info,
4128                               enum x86_intercept_stage stage)
4129{
4130        struct vcpu_svm *svm = to_svm(vcpu);
4131        int vmexit, ret = X86EMUL_CONTINUE;
4132        struct __x86_intercept icpt_info;
4133        struct vmcb *vmcb = svm->vmcb;
4134
4135        if (info->intercept >= ARRAY_SIZE(x86_intercept_map))
4136                goto out;
4137
4138        icpt_info = x86_intercept_map[info->intercept];
4139
4140        if (stage != icpt_info.stage)
4141                goto out;
4142
4143        switch (icpt_info.exit_code) {
4144        case SVM_EXIT_READ_CR0:
4145                if (info->intercept == x86_intercept_cr_read)
4146                        icpt_info.exit_code += info->modrm_reg;
4147                break;
4148        case SVM_EXIT_WRITE_CR0: {
4149                unsigned long cr0, val;
4150                u64 intercept;
4151
4152                if (info->intercept == x86_intercept_cr_write)
4153                        icpt_info.exit_code += info->modrm_reg;
4154
4155                if (icpt_info.exit_code != SVM_EXIT_WRITE_CR0)
4156                        break;
4157
4158                intercept = svm->nested.intercept;
4159
4160                if (!(intercept & (1ULL << INTERCEPT_SELECTIVE_CR0)))
4161                        break;
4162
4163                cr0 = vcpu->arch.cr0 & ~SVM_CR0_SELECTIVE_MASK;
4164                val = info->src_val  & ~SVM_CR0_SELECTIVE_MASK;
4165
4166                if (info->intercept == x86_intercept_lmsw) {
4167                        cr0 &= 0xfUL;
4168                        val &= 0xfUL;
4169                        /* lmsw can't clear PE - catch this here */
4170                        if (cr0 & X86_CR0_PE)
4171                                val |= X86_CR0_PE;
4172                }
4173
4174                if (cr0 ^ val)
4175                        icpt_info.exit_code = SVM_EXIT_CR0_SEL_WRITE;
4176
4177                break;
4178        }
4179        case SVM_EXIT_READ_DR0:
4180        case SVM_EXIT_WRITE_DR0:
4181                icpt_info.exit_code += info->modrm_reg;
4182                break;
4183        case SVM_EXIT_MSR:
4184                if (info->intercept == x86_intercept_wrmsr)
4185                        vmcb->control.exit_info_1 = 1;
4186                else
4187                        vmcb->control.exit_info_1 = 0;
4188                break;
4189        case SVM_EXIT_PAUSE:
4190                /*
4191                 * We get this for NOP only, but pause
4192                 * is rep not, check this here
4193                 */
4194                if (info->rep_prefix != REPE_PREFIX)
4195                        goto out;
4196        case SVM_EXIT_IOIO: {
4197                u64 exit_info;
4198                u32 bytes;
4199
4200                exit_info = (vcpu->arch.regs[VCPU_REGS_RDX] & 0xffff) << 16;
4201
4202                if (info->intercept == x86_intercept_in ||
4203                    info->intercept == x86_intercept_ins) {
4204                        exit_info |= SVM_IOIO_TYPE_MASK;
4205                        bytes = info->src_bytes;
4206                } else {
4207                        bytes = info->dst_bytes;
4208                }
4209
4210                if (info->intercept == x86_intercept_outs ||
4211                    info->intercept == x86_intercept_ins)
4212                        exit_info |= SVM_IOIO_STR_MASK;
4213
4214                if (info->rep_prefix)
4215                        exit_info |= SVM_IOIO_REP_MASK;
4216
4217                bytes = min(bytes, 4u);
4218
4219                exit_info |= bytes << SVM_IOIO_SIZE_SHIFT;
4220
4221                exit_info |= (u32)info->ad_bytes << (SVM_IOIO_ASIZE_SHIFT - 1);
4222
4223                vmcb->control.exit_info_1 = exit_info;
4224                vmcb->control.exit_info_2 = info->next_rip;
4225
4226                break;
4227        }
4228        default:
4229                break;
4230        }
4231
4232        vmcb->control.next_rip  = info->next_rip;
4233        vmcb->control.exit_code = icpt_info.exit_code;
4234        vmexit = nested_svm_exit_handled(svm);
4235
4236        ret = (vmexit == NESTED_EXIT_DONE) ? X86EMUL_INTERCEPTED
4237                                           : X86EMUL_CONTINUE;
4238
4239out:
4240        return ret;
4241}
4242
4243static void svm_handle_external_intr(struct kvm_vcpu *vcpu)
4244{
4245        local_irq_enable();
4246}
4247
4248static struct kvm_x86_ops svm_x86_ops = {
4249        .cpu_has_kvm_support = has_svm,
4250        .disabled_by_bios = is_disabled,
4251        .hardware_setup = svm_hardware_setup,
4252        .hardware_unsetup = svm_hardware_unsetup,
4253        .check_processor_compatibility = svm_check_processor_compat,
4254        .hardware_enable = svm_hardware_enable,
4255        .hardware_disable = svm_hardware_disable,
4256        .cpu_has_accelerated_tpr = svm_cpu_has_accelerated_tpr,
4257
4258        .vcpu_create = svm_create_vcpu,
4259        .vcpu_free = svm_free_vcpu,
4260        .vcpu_reset = svm_vcpu_reset,
4261
4262        .prepare_guest_switch = svm_prepare_guest_switch,
4263        .vcpu_load = svm_vcpu_load,
4264        .vcpu_put = svm_vcpu_put,
4265
4266        .update_db_bp_intercept = update_db_bp_intercept,
4267        .get_msr = svm_get_msr,
4268        .set_msr = svm_set_msr,
4269        .get_segment_base = svm_get_segment_base,
4270        .get_segment = svm_get_segment,
4271        .set_segment = svm_set_segment,
4272        .get_cpl = svm_get_cpl,
4273        .get_cs_db_l_bits = kvm_get_cs_db_l_bits,
4274        .decache_cr0_guest_bits = svm_decache_cr0_guest_bits,
4275        .decache_cr3 = svm_decache_cr3,
4276        .decache_cr4_guest_bits = svm_decache_cr4_guest_bits,
4277        .set_cr0 = svm_set_cr0,
4278        .set_cr3 = svm_set_cr3,
4279        .set_cr4 = svm_set_cr4,
4280        .set_efer = svm_set_efer,
4281        .get_idt = svm_get_idt,
4282        .set_idt = svm_set_idt,
4283        .get_gdt = svm_get_gdt,
4284        .set_gdt = svm_set_gdt,
4285        .set_dr7 = svm_set_dr7,
4286        .cache_reg = svm_cache_reg,
4287        .get_rflags = svm_get_rflags,
4288        .set_rflags = svm_set_rflags,
4289        .fpu_activate = svm_fpu_activate,
4290        .fpu_deactivate = svm_fpu_deactivate,
4291
4292        .tlb_flush = svm_flush_tlb,
4293
4294        .run = svm_vcpu_run,
4295        .handle_exit = handle_exit,
4296        .skip_emulated_instruction = skip_emulated_instruction,
4297        .set_interrupt_shadow = svm_set_interrupt_shadow,
4298        .get_interrupt_shadow = svm_get_interrupt_shadow,
4299        .patch_hypercall = svm_patch_hypercall,
4300        .set_irq = svm_set_irq,
4301        .set_nmi = svm_inject_nmi,
4302        .queue_exception = svm_queue_exception,
4303        .cancel_injection = svm_cancel_injection,
4304        .interrupt_allowed = svm_interrupt_allowed,
4305        .nmi_allowed = svm_nmi_allowed,
4306        .get_nmi_mask = svm_get_nmi_mask,
4307        .set_nmi_mask = svm_set_nmi_mask,
4308        .enable_nmi_window = enable_nmi_window,
4309        .enable_irq_window = enable_irq_window,
4310        .update_cr8_intercept = update_cr8_intercept,
4311        .set_virtual_x2apic_mode = svm_set_virtual_x2apic_mode,
4312        .vm_has_apicv = svm_vm_has_apicv,
4313        .load_eoi_exitmap = svm_load_eoi_exitmap,
4314        .hwapic_isr_update = svm_hwapic_isr_update,
4315        .sync_pir_to_irr = svm_sync_pir_to_irr,
4316
4317        .set_tss_addr = svm_set_tss_addr,
4318        .get_tdp_level = get_npt_level,
4319        .get_mt_mask = svm_get_mt_mask,
4320
4321        .get_exit_info = svm_get_exit_info,
4322
4323        .get_lpage_level = svm_get_lpage_level,
4324
4325        .cpuid_update = svm_cpuid_update,
4326
4327        .rdtscp_supported = svm_rdtscp_supported,
4328        .invpcid_supported = svm_invpcid_supported,
4329
4330        .set_supported_cpuid = svm_set_supported_cpuid,
4331
4332        .has_wbinvd_exit = svm_has_wbinvd_exit,
4333
4334        .set_tsc_khz = svm_set_tsc_khz,
4335        .read_tsc_offset = svm_read_tsc_offset,
4336        .write_tsc_offset = svm_write_tsc_offset,
4337        .adjust_tsc_offset = svm_adjust_tsc_offset,
4338        .compute_tsc_offset = svm_compute_tsc_offset,
4339        .read_l1_tsc = svm_read_l1_tsc,
4340
4341        .set_tdp_cr3 = set_tdp_cr3,
4342
4343        .check_intercept = svm_check_intercept,
4344        .handle_external_intr = svm_handle_external_intr,
4345};
4346
4347static int __init svm_init(void)
4348{
4349        return kvm_init(&svm_x86_ops, sizeof(struct vcpu_svm),
4350                        __alignof__(struct vcpu_svm), THIS_MODULE);
4351}
4352
4353static void __exit svm_exit(void)
4354{
4355        kvm_exit();
4356}
4357
4358module_init(svm_init)
4359module_exit(svm_exit)
4360