linux/arch/x86/kvm/vmx.c
<<
>>
Prefs
   1/*
   2 * Kernel-based Virtual Machine driver for Linux
   3 *
   4 * This module enables machines with Intel VT-x extensions to run virtual
   5 * machines without emulation or binary translation.
   6 *
   7 * Copyright (C) 2006 Qumranet, Inc.
   8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
   9 *
  10 * Authors:
  11 *   Avi Kivity   <avi@qumranet.com>
  12 *   Yaniv Kamay  <yaniv@qumranet.com>
  13 *
  14 * This work is licensed under the terms of the GNU GPL, version 2.  See
  15 * the COPYING file in the top-level directory.
  16 *
  17 */
  18
  19#include "irq.h"
  20#include "mmu.h"
  21#include "cpuid.h"
  22
  23#include <linux/kvm_host.h>
  24#include <linux/module.h>
  25#include <linux/kernel.h>
  26#include <linux/mm.h>
  27#include <linux/highmem.h>
  28#include <linux/sched.h>
  29#include <linux/moduleparam.h>
  30#include <linux/mod_devicetable.h>
  31#include <linux/ftrace_event.h>
  32#include <linux/slab.h>
  33#include <linux/tboot.h>
  34#include "kvm_cache_regs.h"
  35#include "x86.h"
  36
  37#include <asm/io.h>
  38#include <asm/desc.h>
  39#include <asm/vmx.h>
  40#include <asm/virtext.h>
  41#include <asm/mce.h>
  42#include <asm/i387.h>
  43#include <asm/xcr.h>
  44#include <asm/perf_event.h>
  45#include <asm/kexec.h>
  46
  47#include "trace.h"
  48
  49#define __ex(x) __kvm_handle_fault_on_reboot(x)
  50#define __ex_clear(x, reg) \
  51        ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
  52
  53MODULE_AUTHOR("Qumranet");
  54MODULE_LICENSE("GPL");
  55
  56static const struct x86_cpu_id vmx_cpu_id[] = {
  57        X86_FEATURE_MATCH(X86_FEATURE_VMX),
  58        {}
  59};
  60MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
  61
  62static bool __read_mostly enable_vpid = 1;
  63module_param_named(vpid, enable_vpid, bool, 0444);
  64
  65static bool __read_mostly flexpriority_enabled = 1;
  66module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
  67
  68static bool __read_mostly enable_ept = 1;
  69module_param_named(ept, enable_ept, bool, S_IRUGO);
  70
  71static bool __read_mostly enable_unrestricted_guest = 1;
  72module_param_named(unrestricted_guest,
  73                        enable_unrestricted_guest, bool, S_IRUGO);
  74
  75static bool __read_mostly enable_ept_ad_bits = 1;
  76module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
  77
  78static bool __read_mostly emulate_invalid_guest_state = true;
  79module_param(emulate_invalid_guest_state, bool, S_IRUGO);
  80
  81static bool __read_mostly vmm_exclusive = 1;
  82module_param(vmm_exclusive, bool, S_IRUGO);
  83
  84static bool __read_mostly fasteoi = 1;
  85module_param(fasteoi, bool, S_IRUGO);
  86
  87static bool __read_mostly enable_apicv = 1;
  88module_param(enable_apicv, bool, S_IRUGO);
  89
  90static bool __read_mostly enable_shadow_vmcs = 1;
  91module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
  92/*
  93 * If nested=1, nested virtualization is supported, i.e., guests may use
  94 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
  95 * use VMX instructions.
  96 */
  97static bool __read_mostly nested = 0;
  98module_param(nested, bool, S_IRUGO);
  99
 100#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
 101#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
 102#define KVM_VM_CR0_ALWAYS_ON                                            \
 103        (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
 104#define KVM_CR4_GUEST_OWNED_BITS                                      \
 105        (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR      \
 106         | X86_CR4_OSXMMEXCPT)
 107
 108#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
 109#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
 110
 111#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
 112
 113/*
 114 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
 115 * ple_gap:    upper bound on the amount of time between two successive
 116 *             executions of PAUSE in a loop. Also indicate if ple enabled.
 117 *             According to test, this time is usually smaller than 128 cycles.
 118 * ple_window: upper bound on the amount of time a guest is allowed to execute
 119 *             in a PAUSE loop. Tests indicate that most spinlocks are held for
 120 *             less than 2^12 cycles
 121 * Time is measured based on a counter that runs at the same rate as the TSC,
 122 * refer SDM volume 3b section 21.6.13 & 22.1.3.
 123 */
 124#define KVM_VMX_DEFAULT_PLE_GAP    128
 125#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
 126static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
 127module_param(ple_gap, int, S_IRUGO);
 128
 129static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
 130module_param(ple_window, int, S_IRUGO);
 131
 132extern const ulong vmx_return;
 133
 134#define NR_AUTOLOAD_MSRS 8
 135#define VMCS02_POOL_SIZE 1
 136
 137struct vmcs {
 138        u32 revision_id;
 139        u32 abort;
 140        char data[0];
 141};
 142
 143/*
 144 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
 145 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
 146 * loaded on this CPU (so we can clear them if the CPU goes down).
 147 */
 148struct loaded_vmcs {
 149        struct vmcs *vmcs;
 150        int cpu;
 151        int launched;
 152        struct list_head loaded_vmcss_on_cpu_link;
 153};
 154
 155struct shared_msr_entry {
 156        unsigned index;
 157        u64 data;
 158        u64 mask;
 159};
 160
 161/*
 162 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
 163 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
 164 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
 165 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
 166 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
 167 * More than one of these structures may exist, if L1 runs multiple L2 guests.
 168 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
 169 * underlying hardware which will be used to run L2.
 170 * This structure is packed to ensure that its layout is identical across
 171 * machines (necessary for live migration).
 172 * If there are changes in this struct, VMCS12_REVISION must be changed.
 173 */
 174typedef u64 natural_width;
 175struct __packed vmcs12 {
 176        /* According to the Intel spec, a VMCS region must start with the
 177         * following two fields. Then follow implementation-specific data.
 178         */
 179        u32 revision_id;
 180        u32 abort;
 181
 182        u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
 183        u32 padding[7]; /* room for future expansion */
 184
 185        u64 io_bitmap_a;
 186        u64 io_bitmap_b;
 187        u64 msr_bitmap;
 188        u64 vm_exit_msr_store_addr;
 189        u64 vm_exit_msr_load_addr;
 190        u64 vm_entry_msr_load_addr;
 191        u64 tsc_offset;
 192        u64 virtual_apic_page_addr;
 193        u64 apic_access_addr;
 194        u64 ept_pointer;
 195        u64 guest_physical_address;
 196        u64 vmcs_link_pointer;
 197        u64 guest_ia32_debugctl;
 198        u64 guest_ia32_pat;
 199        u64 guest_ia32_efer;
 200        u64 guest_ia32_perf_global_ctrl;
 201        u64 guest_pdptr0;
 202        u64 guest_pdptr1;
 203        u64 guest_pdptr2;
 204        u64 guest_pdptr3;
 205        u64 host_ia32_pat;
 206        u64 host_ia32_efer;
 207        u64 host_ia32_perf_global_ctrl;
 208        u64 padding64[8]; /* room for future expansion */
 209        /*
 210         * To allow migration of L1 (complete with its L2 guests) between
 211         * machines of different natural widths (32 or 64 bit), we cannot have
 212         * unsigned long fields with no explict size. We use u64 (aliased
 213         * natural_width) instead. Luckily, x86 is little-endian.
 214         */
 215        natural_width cr0_guest_host_mask;
 216        natural_width cr4_guest_host_mask;
 217        natural_width cr0_read_shadow;
 218        natural_width cr4_read_shadow;
 219        natural_width cr3_target_value0;
 220        natural_width cr3_target_value1;
 221        natural_width cr3_target_value2;
 222        natural_width cr3_target_value3;
 223        natural_width exit_qualification;
 224        natural_width guest_linear_address;
 225        natural_width guest_cr0;
 226        natural_width guest_cr3;
 227        natural_width guest_cr4;
 228        natural_width guest_es_base;
 229        natural_width guest_cs_base;
 230        natural_width guest_ss_base;
 231        natural_width guest_ds_base;
 232        natural_width guest_fs_base;
 233        natural_width guest_gs_base;
 234        natural_width guest_ldtr_base;
 235        natural_width guest_tr_base;
 236        natural_width guest_gdtr_base;
 237        natural_width guest_idtr_base;
 238        natural_width guest_dr7;
 239        natural_width guest_rsp;
 240        natural_width guest_rip;
 241        natural_width guest_rflags;
 242        natural_width guest_pending_dbg_exceptions;
 243        natural_width guest_sysenter_esp;
 244        natural_width guest_sysenter_eip;
 245        natural_width host_cr0;
 246        natural_width host_cr3;
 247        natural_width host_cr4;
 248        natural_width host_fs_base;
 249        natural_width host_gs_base;
 250        natural_width host_tr_base;
 251        natural_width host_gdtr_base;
 252        natural_width host_idtr_base;
 253        natural_width host_ia32_sysenter_esp;
 254        natural_width host_ia32_sysenter_eip;
 255        natural_width host_rsp;
 256        natural_width host_rip;
 257        natural_width paddingl[8]; /* room for future expansion */
 258        u32 pin_based_vm_exec_control;
 259        u32 cpu_based_vm_exec_control;
 260        u32 exception_bitmap;
 261        u32 page_fault_error_code_mask;
 262        u32 page_fault_error_code_match;
 263        u32 cr3_target_count;
 264        u32 vm_exit_controls;
 265        u32 vm_exit_msr_store_count;
 266        u32 vm_exit_msr_load_count;
 267        u32 vm_entry_controls;
 268        u32 vm_entry_msr_load_count;
 269        u32 vm_entry_intr_info_field;
 270        u32 vm_entry_exception_error_code;
 271        u32 vm_entry_instruction_len;
 272        u32 tpr_threshold;
 273        u32 secondary_vm_exec_control;
 274        u32 vm_instruction_error;
 275        u32 vm_exit_reason;
 276        u32 vm_exit_intr_info;
 277        u32 vm_exit_intr_error_code;
 278        u32 idt_vectoring_info_field;
 279        u32 idt_vectoring_error_code;
 280        u32 vm_exit_instruction_len;
 281        u32 vmx_instruction_info;
 282        u32 guest_es_limit;
 283        u32 guest_cs_limit;
 284        u32 guest_ss_limit;
 285        u32 guest_ds_limit;
 286        u32 guest_fs_limit;
 287        u32 guest_gs_limit;
 288        u32 guest_ldtr_limit;
 289        u32 guest_tr_limit;
 290        u32 guest_gdtr_limit;
 291        u32 guest_idtr_limit;
 292        u32 guest_es_ar_bytes;
 293        u32 guest_cs_ar_bytes;
 294        u32 guest_ss_ar_bytes;
 295        u32 guest_ds_ar_bytes;
 296        u32 guest_fs_ar_bytes;
 297        u32 guest_gs_ar_bytes;
 298        u32 guest_ldtr_ar_bytes;
 299        u32 guest_tr_ar_bytes;
 300        u32 guest_interruptibility_info;
 301        u32 guest_activity_state;
 302        u32 guest_sysenter_cs;
 303        u32 host_ia32_sysenter_cs;
 304        u32 vmx_preemption_timer_value;
 305        u32 padding32[7]; /* room for future expansion */
 306        u16 virtual_processor_id;
 307        u16 guest_es_selector;
 308        u16 guest_cs_selector;
 309        u16 guest_ss_selector;
 310        u16 guest_ds_selector;
 311        u16 guest_fs_selector;
 312        u16 guest_gs_selector;
 313        u16 guest_ldtr_selector;
 314        u16 guest_tr_selector;
 315        u16 host_es_selector;
 316        u16 host_cs_selector;
 317        u16 host_ss_selector;
 318        u16 host_ds_selector;
 319        u16 host_fs_selector;
 320        u16 host_gs_selector;
 321        u16 host_tr_selector;
 322};
 323
 324/*
 325 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
 326 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
 327 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
 328 */
 329#define VMCS12_REVISION 0x11e57ed0
 330
 331/*
 332 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
 333 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
 334 * current implementation, 4K are reserved to avoid future complications.
 335 */
 336#define VMCS12_SIZE 0x1000
 337
 338/* Used to remember the last vmcs02 used for some recently used vmcs12s */
 339struct vmcs02_list {
 340        struct list_head list;
 341        gpa_t vmptr;
 342        struct loaded_vmcs vmcs02;
 343};
 344
 345/*
 346 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
 347 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
 348 */
 349struct nested_vmx {
 350        /* Has the level1 guest done vmxon? */
 351        bool vmxon;
 352
 353        /* The guest-physical address of the current VMCS L1 keeps for L2 */
 354        gpa_t current_vmptr;
 355        /* The host-usable pointer to the above */
 356        struct page *current_vmcs12_page;
 357        struct vmcs12 *current_vmcs12;
 358        struct vmcs *current_shadow_vmcs;
 359        /*
 360         * Indicates if the shadow vmcs must be updated with the
 361         * data hold by vmcs12
 362         */
 363        bool sync_shadow_vmcs;
 364
 365        /* vmcs02_list cache of VMCSs recently used to run L2 guests */
 366        struct list_head vmcs02_pool;
 367        int vmcs02_num;
 368        u64 vmcs01_tsc_offset;
 369        /* L2 must run next, and mustn't decide to exit to L1. */
 370        bool nested_run_pending;
 371        /*
 372         * Guest pages referred to in vmcs02 with host-physical pointers, so
 373         * we must keep them pinned while L2 runs.
 374         */
 375        struct page *apic_access_page;
 376};
 377
 378#define POSTED_INTR_ON  0
 379/* Posted-Interrupt Descriptor */
 380struct pi_desc {
 381        u32 pir[8];     /* Posted interrupt requested */
 382        u32 control;    /* bit 0 of control is outstanding notification bit */
 383        u32 rsvd[7];
 384} __aligned(64);
 385
 386static bool pi_test_and_set_on(struct pi_desc *pi_desc)
 387{
 388        return test_and_set_bit(POSTED_INTR_ON,
 389                        (unsigned long *)&pi_desc->control);
 390}
 391
 392static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
 393{
 394        return test_and_clear_bit(POSTED_INTR_ON,
 395                        (unsigned long *)&pi_desc->control);
 396}
 397
 398static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
 399{
 400        return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
 401}
 402
 403struct vcpu_vmx {
 404        struct kvm_vcpu       vcpu;
 405        unsigned long         host_rsp;
 406        u8                    fail;
 407        u8                    cpl;
 408        bool                  nmi_known_unmasked;
 409        u32                   exit_intr_info;
 410        u32                   idt_vectoring_info;
 411        ulong                 rflags;
 412        struct shared_msr_entry *guest_msrs;
 413        int                   nmsrs;
 414        int                   save_nmsrs;
 415        unsigned long         host_idt_base;
 416#ifdef CONFIG_X86_64
 417        u64                   msr_host_kernel_gs_base;
 418        u64                   msr_guest_kernel_gs_base;
 419#endif
 420        /*
 421         * loaded_vmcs points to the VMCS currently used in this vcpu. For a
 422         * non-nested (L1) guest, it always points to vmcs01. For a nested
 423         * guest (L2), it points to a different VMCS.
 424         */
 425        struct loaded_vmcs    vmcs01;
 426        struct loaded_vmcs   *loaded_vmcs;
 427        bool                  __launched; /* temporary, used in vmx_vcpu_run */
 428        struct msr_autoload {
 429                unsigned nr;
 430                struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
 431                struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
 432        } msr_autoload;
 433        struct {
 434                int           loaded;
 435                u16           fs_sel, gs_sel, ldt_sel;
 436#ifdef CONFIG_X86_64
 437                u16           ds_sel, es_sel;
 438#endif
 439                int           gs_ldt_reload_needed;
 440                int           fs_reload_needed;
 441        } host_state;
 442        struct {
 443                int vm86_active;
 444                ulong save_rflags;
 445                struct kvm_segment segs[8];
 446        } rmode;
 447        struct {
 448                u32 bitmask; /* 4 bits per segment (1 bit per field) */
 449                struct kvm_save_segment {
 450                        u16 selector;
 451                        unsigned long base;
 452                        u32 limit;
 453                        u32 ar;
 454                } seg[8];
 455        } segment_cache;
 456        int vpid;
 457        bool emulation_required;
 458
 459        /* Support for vnmi-less CPUs */
 460        int soft_vnmi_blocked;
 461        ktime_t entry_time;
 462        s64 vnmi_blocked_time;
 463        u32 exit_reason;
 464
 465        bool rdtscp_enabled;
 466
 467        /* Posted interrupt descriptor */
 468        struct pi_desc pi_desc;
 469
 470        /* Support for a guest hypervisor (nested VMX) */
 471        struct nested_vmx nested;
 472};
 473
 474enum segment_cache_field {
 475        SEG_FIELD_SEL = 0,
 476        SEG_FIELD_BASE = 1,
 477        SEG_FIELD_LIMIT = 2,
 478        SEG_FIELD_AR = 3,
 479
 480        SEG_FIELD_NR = 4
 481};
 482
 483static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
 484{
 485        return container_of(vcpu, struct vcpu_vmx, vcpu);
 486}
 487
 488#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
 489#define FIELD(number, name)     [number] = VMCS12_OFFSET(name)
 490#define FIELD64(number, name)   [number] = VMCS12_OFFSET(name), \
 491                                [number##_HIGH] = VMCS12_OFFSET(name)+4
 492
 493
 494static const unsigned long shadow_read_only_fields[] = {
 495        /*
 496         * We do NOT shadow fields that are modified when L0
 497         * traps and emulates any vmx instruction (e.g. VMPTRLD,
 498         * VMXON...) executed by L1.
 499         * For example, VM_INSTRUCTION_ERROR is read
 500         * by L1 if a vmx instruction fails (part of the error path).
 501         * Note the code assumes this logic. If for some reason
 502         * we start shadowing these fields then we need to
 503         * force a shadow sync when L0 emulates vmx instructions
 504         * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
 505         * by nested_vmx_failValid)
 506         */
 507        VM_EXIT_REASON,
 508        VM_EXIT_INTR_INFO,
 509        VM_EXIT_INSTRUCTION_LEN,
 510        IDT_VECTORING_INFO_FIELD,
 511        IDT_VECTORING_ERROR_CODE,
 512        VM_EXIT_INTR_ERROR_CODE,
 513        EXIT_QUALIFICATION,
 514        GUEST_LINEAR_ADDRESS,
 515        GUEST_PHYSICAL_ADDRESS
 516};
 517static const int max_shadow_read_only_fields =
 518        ARRAY_SIZE(shadow_read_only_fields);
 519
 520static const unsigned long shadow_read_write_fields[] = {
 521        GUEST_RIP,
 522        GUEST_RSP,
 523        GUEST_CR0,
 524        GUEST_CR3,
 525        GUEST_CR4,
 526        GUEST_INTERRUPTIBILITY_INFO,
 527        GUEST_RFLAGS,
 528        GUEST_CS_SELECTOR,
 529        GUEST_CS_AR_BYTES,
 530        GUEST_CS_LIMIT,
 531        GUEST_CS_BASE,
 532        GUEST_ES_BASE,
 533        CR0_GUEST_HOST_MASK,
 534        CR0_READ_SHADOW,
 535        CR4_READ_SHADOW,
 536        TSC_OFFSET,
 537        EXCEPTION_BITMAP,
 538        CPU_BASED_VM_EXEC_CONTROL,
 539        VM_ENTRY_EXCEPTION_ERROR_CODE,
 540        VM_ENTRY_INTR_INFO_FIELD,
 541        VM_ENTRY_INSTRUCTION_LEN,
 542        VM_ENTRY_EXCEPTION_ERROR_CODE,
 543        HOST_FS_BASE,
 544        HOST_GS_BASE,
 545        HOST_FS_SELECTOR,
 546        HOST_GS_SELECTOR
 547};
 548static const int max_shadow_read_write_fields =
 549        ARRAY_SIZE(shadow_read_write_fields);
 550
 551static const unsigned short vmcs_field_to_offset_table[] = {
 552        FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
 553        FIELD(GUEST_ES_SELECTOR, guest_es_selector),
 554        FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
 555        FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
 556        FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
 557        FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
 558        FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
 559        FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
 560        FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
 561        FIELD(HOST_ES_SELECTOR, host_es_selector),
 562        FIELD(HOST_CS_SELECTOR, host_cs_selector),
 563        FIELD(HOST_SS_SELECTOR, host_ss_selector),
 564        FIELD(HOST_DS_SELECTOR, host_ds_selector),
 565        FIELD(HOST_FS_SELECTOR, host_fs_selector),
 566        FIELD(HOST_GS_SELECTOR, host_gs_selector),
 567        FIELD(HOST_TR_SELECTOR, host_tr_selector),
 568        FIELD64(IO_BITMAP_A, io_bitmap_a),
 569        FIELD64(IO_BITMAP_B, io_bitmap_b),
 570        FIELD64(MSR_BITMAP, msr_bitmap),
 571        FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
 572        FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
 573        FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
 574        FIELD64(TSC_OFFSET, tsc_offset),
 575        FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
 576        FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
 577        FIELD64(EPT_POINTER, ept_pointer),
 578        FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
 579        FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
 580        FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
 581        FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
 582        FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
 583        FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
 584        FIELD64(GUEST_PDPTR0, guest_pdptr0),
 585        FIELD64(GUEST_PDPTR1, guest_pdptr1),
 586        FIELD64(GUEST_PDPTR2, guest_pdptr2),
 587        FIELD64(GUEST_PDPTR3, guest_pdptr3),
 588        FIELD64(HOST_IA32_PAT, host_ia32_pat),
 589        FIELD64(HOST_IA32_EFER, host_ia32_efer),
 590        FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
 591        FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
 592        FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
 593        FIELD(EXCEPTION_BITMAP, exception_bitmap),
 594        FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
 595        FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
 596        FIELD(CR3_TARGET_COUNT, cr3_target_count),
 597        FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
 598        FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
 599        FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
 600        FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
 601        FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
 602        FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
 603        FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
 604        FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
 605        FIELD(TPR_THRESHOLD, tpr_threshold),
 606        FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
 607        FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
 608        FIELD(VM_EXIT_REASON, vm_exit_reason),
 609        FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
 610        FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
 611        FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
 612        FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
 613        FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
 614        FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
 615        FIELD(GUEST_ES_LIMIT, guest_es_limit),
 616        FIELD(GUEST_CS_LIMIT, guest_cs_limit),
 617        FIELD(GUEST_SS_LIMIT, guest_ss_limit),
 618        FIELD(GUEST_DS_LIMIT, guest_ds_limit),
 619        FIELD(GUEST_FS_LIMIT, guest_fs_limit),
 620        FIELD(GUEST_GS_LIMIT, guest_gs_limit),
 621        FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
 622        FIELD(GUEST_TR_LIMIT, guest_tr_limit),
 623        FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
 624        FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
 625        FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
 626        FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
 627        FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
 628        FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
 629        FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
 630        FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
 631        FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
 632        FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
 633        FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
 634        FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
 635        FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
 636        FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
 637        FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
 638        FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
 639        FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
 640        FIELD(CR0_READ_SHADOW, cr0_read_shadow),
 641        FIELD(CR4_READ_SHADOW, cr4_read_shadow),
 642        FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
 643        FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
 644        FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
 645        FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
 646        FIELD(EXIT_QUALIFICATION, exit_qualification),
 647        FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
 648        FIELD(GUEST_CR0, guest_cr0),
 649        FIELD(GUEST_CR3, guest_cr3),
 650        FIELD(GUEST_CR4, guest_cr4),
 651        FIELD(GUEST_ES_BASE, guest_es_base),
 652        FIELD(GUEST_CS_BASE, guest_cs_base),
 653        FIELD(GUEST_SS_BASE, guest_ss_base),
 654        FIELD(GUEST_DS_BASE, guest_ds_base),
 655        FIELD(GUEST_FS_BASE, guest_fs_base),
 656        FIELD(GUEST_GS_BASE, guest_gs_base),
 657        FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
 658        FIELD(GUEST_TR_BASE, guest_tr_base),
 659        FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
 660        FIELD(GUEST_IDTR_BASE, guest_idtr_base),
 661        FIELD(GUEST_DR7, guest_dr7),
 662        FIELD(GUEST_RSP, guest_rsp),
 663        FIELD(GUEST_RIP, guest_rip),
 664        FIELD(GUEST_RFLAGS, guest_rflags),
 665        FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
 666        FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
 667        FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
 668        FIELD(HOST_CR0, host_cr0),
 669        FIELD(HOST_CR3, host_cr3),
 670        FIELD(HOST_CR4, host_cr4),
 671        FIELD(HOST_FS_BASE, host_fs_base),
 672        FIELD(HOST_GS_BASE, host_gs_base),
 673        FIELD(HOST_TR_BASE, host_tr_base),
 674        FIELD(HOST_GDTR_BASE, host_gdtr_base),
 675        FIELD(HOST_IDTR_BASE, host_idtr_base),
 676        FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
 677        FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
 678        FIELD(HOST_RSP, host_rsp),
 679        FIELD(HOST_RIP, host_rip),
 680};
 681static const int max_vmcs_field = ARRAY_SIZE(vmcs_field_to_offset_table);
 682
 683static inline short vmcs_field_to_offset(unsigned long field)
 684{
 685        if (field >= max_vmcs_field || vmcs_field_to_offset_table[field] == 0)
 686                return -1;
 687        return vmcs_field_to_offset_table[field];
 688}
 689
 690static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
 691{
 692        return to_vmx(vcpu)->nested.current_vmcs12;
 693}
 694
 695static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
 696{
 697        struct page *page = gfn_to_page(vcpu->kvm, addr >> PAGE_SHIFT);
 698        if (is_error_page(page))
 699                return NULL;
 700
 701        return page;
 702}
 703
 704static void nested_release_page(struct page *page)
 705{
 706        kvm_release_page_dirty(page);
 707}
 708
 709static void nested_release_page_clean(struct page *page)
 710{
 711        kvm_release_page_clean(page);
 712}
 713
 714static u64 construct_eptp(unsigned long root_hpa);
 715static void kvm_cpu_vmxon(u64 addr);
 716static void kvm_cpu_vmxoff(void);
 717static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
 718static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
 719static void vmx_set_segment(struct kvm_vcpu *vcpu,
 720                            struct kvm_segment *var, int seg);
 721static void vmx_get_segment(struct kvm_vcpu *vcpu,
 722                            struct kvm_segment *var, int seg);
 723static bool guest_state_valid(struct kvm_vcpu *vcpu);
 724static u32 vmx_segment_access_rights(struct kvm_segment *var);
 725static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu);
 726static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
 727static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
 728
 729static DEFINE_PER_CPU(struct vmcs *, vmxarea);
 730static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
 731/*
 732 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
 733 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
 734 */
 735static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
 736static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
 737
 738static unsigned long *vmx_io_bitmap_a;
 739static unsigned long *vmx_io_bitmap_b;
 740static unsigned long *vmx_msr_bitmap_legacy;
 741static unsigned long *vmx_msr_bitmap_longmode;
 742static unsigned long *vmx_msr_bitmap_legacy_x2apic;
 743static unsigned long *vmx_msr_bitmap_longmode_x2apic;
 744static unsigned long *vmx_vmread_bitmap;
 745static unsigned long *vmx_vmwrite_bitmap;
 746
 747static bool cpu_has_load_ia32_efer;
 748static bool cpu_has_load_perf_global_ctrl;
 749
 750static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
 751static DEFINE_SPINLOCK(vmx_vpid_lock);
 752
 753static struct vmcs_config {
 754        int size;
 755        int order;
 756        u32 revision_id;
 757        u32 pin_based_exec_ctrl;
 758        u32 cpu_based_exec_ctrl;
 759        u32 cpu_based_2nd_exec_ctrl;
 760        u32 vmexit_ctrl;
 761        u32 vmentry_ctrl;
 762} vmcs_config;
 763
 764static struct vmx_capability {
 765        u32 ept;
 766        u32 vpid;
 767} vmx_capability;
 768
 769#define VMX_SEGMENT_FIELD(seg)                                  \
 770        [VCPU_SREG_##seg] = {                                   \
 771                .selector = GUEST_##seg##_SELECTOR,             \
 772                .base = GUEST_##seg##_BASE,                     \
 773                .limit = GUEST_##seg##_LIMIT,                   \
 774                .ar_bytes = GUEST_##seg##_AR_BYTES,             \
 775        }
 776
 777static const struct kvm_vmx_segment_field {
 778        unsigned selector;
 779        unsigned base;
 780        unsigned limit;
 781        unsigned ar_bytes;
 782} kvm_vmx_segment_fields[] = {
 783        VMX_SEGMENT_FIELD(CS),
 784        VMX_SEGMENT_FIELD(DS),
 785        VMX_SEGMENT_FIELD(ES),
 786        VMX_SEGMENT_FIELD(FS),
 787        VMX_SEGMENT_FIELD(GS),
 788        VMX_SEGMENT_FIELD(SS),
 789        VMX_SEGMENT_FIELD(TR),
 790        VMX_SEGMENT_FIELD(LDTR),
 791};
 792
 793static u64 host_efer;
 794
 795static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
 796
 797/*
 798 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
 799 * away by decrementing the array size.
 800 */
 801static const u32 vmx_msr_index[] = {
 802#ifdef CONFIG_X86_64
 803        MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
 804#endif
 805        MSR_EFER, MSR_TSC_AUX, MSR_STAR,
 806};
 807#define NR_VMX_MSR ARRAY_SIZE(vmx_msr_index)
 808
 809static inline bool is_page_fault(u32 intr_info)
 810{
 811        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 812                             INTR_INFO_VALID_MASK)) ==
 813                (INTR_TYPE_HARD_EXCEPTION | PF_VECTOR | INTR_INFO_VALID_MASK);
 814}
 815
 816static inline bool is_no_device(u32 intr_info)
 817{
 818        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 819                             INTR_INFO_VALID_MASK)) ==
 820                (INTR_TYPE_HARD_EXCEPTION | NM_VECTOR | INTR_INFO_VALID_MASK);
 821}
 822
 823static inline bool is_invalid_opcode(u32 intr_info)
 824{
 825        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 826                             INTR_INFO_VALID_MASK)) ==
 827                (INTR_TYPE_HARD_EXCEPTION | UD_VECTOR | INTR_INFO_VALID_MASK);
 828}
 829
 830static inline bool is_external_interrupt(u32 intr_info)
 831{
 832        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
 833                == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
 834}
 835
 836static inline bool is_machine_check(u32 intr_info)
 837{
 838        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
 839                             INTR_INFO_VALID_MASK)) ==
 840                (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
 841}
 842
 843static inline bool cpu_has_vmx_msr_bitmap(void)
 844{
 845        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
 846}
 847
 848static inline bool cpu_has_vmx_tpr_shadow(void)
 849{
 850        return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
 851}
 852
 853static inline bool vm_need_tpr_shadow(struct kvm *kvm)
 854{
 855        return (cpu_has_vmx_tpr_shadow()) && (irqchip_in_kernel(kvm));
 856}
 857
 858static inline bool cpu_has_secondary_exec_ctrls(void)
 859{
 860        return vmcs_config.cpu_based_exec_ctrl &
 861                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
 862}
 863
 864static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
 865{
 866        return vmcs_config.cpu_based_2nd_exec_ctrl &
 867                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
 868}
 869
 870static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
 871{
 872        return vmcs_config.cpu_based_2nd_exec_ctrl &
 873                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
 874}
 875
 876static inline bool cpu_has_vmx_apic_register_virt(void)
 877{
 878        return vmcs_config.cpu_based_2nd_exec_ctrl &
 879                SECONDARY_EXEC_APIC_REGISTER_VIRT;
 880}
 881
 882static inline bool cpu_has_vmx_virtual_intr_delivery(void)
 883{
 884        return vmcs_config.cpu_based_2nd_exec_ctrl &
 885                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
 886}
 887
 888static inline bool cpu_has_vmx_posted_intr(void)
 889{
 890        return vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
 891}
 892
 893static inline bool cpu_has_vmx_apicv(void)
 894{
 895        return cpu_has_vmx_apic_register_virt() &&
 896                cpu_has_vmx_virtual_intr_delivery() &&
 897                cpu_has_vmx_posted_intr();
 898}
 899
 900static inline bool cpu_has_vmx_flexpriority(void)
 901{
 902        return cpu_has_vmx_tpr_shadow() &&
 903                cpu_has_vmx_virtualize_apic_accesses();
 904}
 905
 906static inline bool cpu_has_vmx_ept_execute_only(void)
 907{
 908        return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
 909}
 910
 911static inline bool cpu_has_vmx_eptp_uncacheable(void)
 912{
 913        return vmx_capability.ept & VMX_EPTP_UC_BIT;
 914}
 915
 916static inline bool cpu_has_vmx_eptp_writeback(void)
 917{
 918        return vmx_capability.ept & VMX_EPTP_WB_BIT;
 919}
 920
 921static inline bool cpu_has_vmx_ept_2m_page(void)
 922{
 923        return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
 924}
 925
 926static inline bool cpu_has_vmx_ept_1g_page(void)
 927{
 928        return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
 929}
 930
 931static inline bool cpu_has_vmx_ept_4levels(void)
 932{
 933        return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
 934}
 935
 936static inline bool cpu_has_vmx_ept_ad_bits(void)
 937{
 938        return vmx_capability.ept & VMX_EPT_AD_BIT;
 939}
 940
 941static inline bool cpu_has_vmx_invept_context(void)
 942{
 943        return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
 944}
 945
 946static inline bool cpu_has_vmx_invept_global(void)
 947{
 948        return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
 949}
 950
 951static inline bool cpu_has_vmx_invvpid_single(void)
 952{
 953        return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
 954}
 955
 956static inline bool cpu_has_vmx_invvpid_global(void)
 957{
 958        return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
 959}
 960
 961static inline bool cpu_has_vmx_ept(void)
 962{
 963        return vmcs_config.cpu_based_2nd_exec_ctrl &
 964                SECONDARY_EXEC_ENABLE_EPT;
 965}
 966
 967static inline bool cpu_has_vmx_unrestricted_guest(void)
 968{
 969        return vmcs_config.cpu_based_2nd_exec_ctrl &
 970                SECONDARY_EXEC_UNRESTRICTED_GUEST;
 971}
 972
 973static inline bool cpu_has_vmx_ple(void)
 974{
 975        return vmcs_config.cpu_based_2nd_exec_ctrl &
 976                SECONDARY_EXEC_PAUSE_LOOP_EXITING;
 977}
 978
 979static inline bool vm_need_virtualize_apic_accesses(struct kvm *kvm)
 980{
 981        return flexpriority_enabled && irqchip_in_kernel(kvm);
 982}
 983
 984static inline bool cpu_has_vmx_vpid(void)
 985{
 986        return vmcs_config.cpu_based_2nd_exec_ctrl &
 987                SECONDARY_EXEC_ENABLE_VPID;
 988}
 989
 990static inline bool cpu_has_vmx_rdtscp(void)
 991{
 992        return vmcs_config.cpu_based_2nd_exec_ctrl &
 993                SECONDARY_EXEC_RDTSCP;
 994}
 995
 996static inline bool cpu_has_vmx_invpcid(void)
 997{
 998        return vmcs_config.cpu_based_2nd_exec_ctrl &
 999                SECONDARY_EXEC_ENABLE_INVPCID;
1000}
1001
1002static inline bool cpu_has_virtual_nmis(void)
1003{
1004        return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1005}
1006
1007static inline bool cpu_has_vmx_wbinvd_exit(void)
1008{
1009        return vmcs_config.cpu_based_2nd_exec_ctrl &
1010                SECONDARY_EXEC_WBINVD_EXITING;
1011}
1012
1013static inline bool cpu_has_vmx_shadow_vmcs(void)
1014{
1015        u64 vmx_msr;
1016        rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1017        /* check if the cpu supports writing r/o exit information fields */
1018        if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1019                return false;
1020
1021        return vmcs_config.cpu_based_2nd_exec_ctrl &
1022                SECONDARY_EXEC_SHADOW_VMCS;
1023}
1024
1025static inline bool report_flexpriority(void)
1026{
1027        return flexpriority_enabled;
1028}
1029
1030static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1031{
1032        return vmcs12->cpu_based_vm_exec_control & bit;
1033}
1034
1035static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1036{
1037        return (vmcs12->cpu_based_vm_exec_control &
1038                        CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1039                (vmcs12->secondary_vm_exec_control & bit);
1040}
1041
1042static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12,
1043        struct kvm_vcpu *vcpu)
1044{
1045        return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1046}
1047
1048static inline bool is_exception(u32 intr_info)
1049{
1050        return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1051                == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1052}
1053
1054static void nested_vmx_vmexit(struct kvm_vcpu *vcpu);
1055static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1056                        struct vmcs12 *vmcs12,
1057                        u32 reason, unsigned long qualification);
1058
1059static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
1060{
1061        int i;
1062
1063        for (i = 0; i < vmx->nmsrs; ++i)
1064                if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
1065                        return i;
1066        return -1;
1067}
1068
1069static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1070{
1071    struct {
1072        u64 vpid : 16;
1073        u64 rsvd : 48;
1074        u64 gva;
1075    } operand = { vpid, 0, gva };
1076
1077    asm volatile (__ex(ASM_VMX_INVVPID)
1078                  /* CF==1 or ZF==1 --> rc = -1 */
1079                  "; ja 1f ; ud2 ; 1:"
1080                  : : "a"(&operand), "c"(ext) : "cc", "memory");
1081}
1082
1083static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1084{
1085        struct {
1086                u64 eptp, gpa;
1087        } operand = {eptp, gpa};
1088
1089        asm volatile (__ex(ASM_VMX_INVEPT)
1090                        /* CF==1 or ZF==1 --> rc = -1 */
1091                        "; ja 1f ; ud2 ; 1:\n"
1092                        : : "a" (&operand), "c" (ext) : "cc", "memory");
1093}
1094
1095static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
1096{
1097        int i;
1098
1099        i = __find_msr_index(vmx, msr);
1100        if (i >= 0)
1101                return &vmx->guest_msrs[i];
1102        return NULL;
1103}
1104
1105static void vmcs_clear(struct vmcs *vmcs)
1106{
1107        u64 phys_addr = __pa(vmcs);
1108        u8 error;
1109
1110        asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
1111                      : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1112                      : "cc", "memory");
1113        if (error)
1114                printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1115                       vmcs, phys_addr);
1116}
1117
1118static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1119{
1120        vmcs_clear(loaded_vmcs->vmcs);
1121        loaded_vmcs->cpu = -1;
1122        loaded_vmcs->launched = 0;
1123}
1124
1125static void vmcs_load(struct vmcs *vmcs)
1126{
1127        u64 phys_addr = __pa(vmcs);
1128        u8 error;
1129
1130        asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
1131                        : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
1132                        : "cc", "memory");
1133        if (error)
1134                printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
1135                       vmcs, phys_addr);
1136}
1137
1138#ifdef CONFIG_KEXEC
1139/*
1140 * This bitmap is used to indicate whether the vmclear
1141 * operation is enabled on all cpus. All disabled by
1142 * default.
1143 */
1144static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1145
1146static inline void crash_enable_local_vmclear(int cpu)
1147{
1148        cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1149}
1150
1151static inline void crash_disable_local_vmclear(int cpu)
1152{
1153        cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1154}
1155
1156static inline int crash_local_vmclear_enabled(int cpu)
1157{
1158        return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1159}
1160
1161static void crash_vmclear_local_loaded_vmcss(void)
1162{
1163        int cpu = raw_smp_processor_id();
1164        struct loaded_vmcs *v;
1165
1166        if (!crash_local_vmclear_enabled(cpu))
1167                return;
1168
1169        list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1170                            loaded_vmcss_on_cpu_link)
1171                vmcs_clear(v->vmcs);
1172}
1173#else
1174static inline void crash_enable_local_vmclear(int cpu) { }
1175static inline void crash_disable_local_vmclear(int cpu) { }
1176#endif /* CONFIG_KEXEC */
1177
1178static void __loaded_vmcs_clear(void *arg)
1179{
1180        struct loaded_vmcs *loaded_vmcs = arg;
1181        int cpu = raw_smp_processor_id();
1182
1183        if (loaded_vmcs->cpu != cpu)
1184                return; /* vcpu migration can race with cpu offline */
1185        if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
1186                per_cpu(current_vmcs, cpu) = NULL;
1187        crash_disable_local_vmclear(cpu);
1188        list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
1189
1190        /*
1191         * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1192         * is before setting loaded_vmcs->vcpu to -1 which is done in
1193         * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1194         * then adds the vmcs into percpu list before it is deleted.
1195         */
1196        smp_wmb();
1197
1198        loaded_vmcs_init(loaded_vmcs);
1199        crash_enable_local_vmclear(cpu);
1200}
1201
1202static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
1203{
1204        int cpu = loaded_vmcs->cpu;
1205
1206        if (cpu != -1)
1207                smp_call_function_single(cpu,
1208                         __loaded_vmcs_clear, loaded_vmcs, 1);
1209}
1210
1211static inline void vpid_sync_vcpu_single(struct vcpu_vmx *vmx)
1212{
1213        if (vmx->vpid == 0)
1214                return;
1215
1216        if (cpu_has_vmx_invvpid_single())
1217                __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vmx->vpid, 0);
1218}
1219
1220static inline void vpid_sync_vcpu_global(void)
1221{
1222        if (cpu_has_vmx_invvpid_global())
1223                __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1224}
1225
1226static inline void vpid_sync_context(struct vcpu_vmx *vmx)
1227{
1228        if (cpu_has_vmx_invvpid_single())
1229                vpid_sync_vcpu_single(vmx);
1230        else
1231                vpid_sync_vcpu_global();
1232}
1233
1234static inline void ept_sync_global(void)
1235{
1236        if (cpu_has_vmx_invept_global())
1237                __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1238}
1239
1240static inline void ept_sync_context(u64 eptp)
1241{
1242        if (enable_ept) {
1243                if (cpu_has_vmx_invept_context())
1244                        __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1245                else
1246                        ept_sync_global();
1247        }
1248}
1249
1250static __always_inline unsigned long vmcs_readl(unsigned long field)
1251{
1252        unsigned long value;
1253
1254        asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1255                      : "=a"(value) : "d"(field) : "cc");
1256        return value;
1257}
1258
1259static __always_inline u16 vmcs_read16(unsigned long field)
1260{
1261        return vmcs_readl(field);
1262}
1263
1264static __always_inline u32 vmcs_read32(unsigned long field)
1265{
1266        return vmcs_readl(field);
1267}
1268
1269static __always_inline u64 vmcs_read64(unsigned long field)
1270{
1271#ifdef CONFIG_X86_64
1272        return vmcs_readl(field);
1273#else
1274        return vmcs_readl(field) | ((u64)vmcs_readl(field+1) << 32);
1275#endif
1276}
1277
1278static noinline void vmwrite_error(unsigned long field, unsigned long value)
1279{
1280        printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1281               field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1282        dump_stack();
1283}
1284
1285static void vmcs_writel(unsigned long field, unsigned long value)
1286{
1287        u8 error;
1288
1289        asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
1290                       : "=q"(error) : "a"(value), "d"(field) : "cc");
1291        if (unlikely(error))
1292                vmwrite_error(field, value);
1293}
1294
1295static void vmcs_write16(unsigned long field, u16 value)
1296{
1297        vmcs_writel(field, value);
1298}
1299
1300static void vmcs_write32(unsigned long field, u32 value)
1301{
1302        vmcs_writel(field, value);
1303}
1304
1305static void vmcs_write64(unsigned long field, u64 value)
1306{
1307        vmcs_writel(field, value);
1308#ifndef CONFIG_X86_64
1309        asm volatile ("");
1310        vmcs_writel(field+1, value >> 32);
1311#endif
1312}
1313
1314static void vmcs_clear_bits(unsigned long field, u32 mask)
1315{
1316        vmcs_writel(field, vmcs_readl(field) & ~mask);
1317}
1318
1319static void vmcs_set_bits(unsigned long field, u32 mask)
1320{
1321        vmcs_writel(field, vmcs_readl(field) | mask);
1322}
1323
1324static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1325{
1326        vmx->segment_cache.bitmask = 0;
1327}
1328
1329static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1330                                       unsigned field)
1331{
1332        bool ret;
1333        u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1334
1335        if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1336                vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1337                vmx->segment_cache.bitmask = 0;
1338        }
1339        ret = vmx->segment_cache.bitmask & mask;
1340        vmx->segment_cache.bitmask |= mask;
1341        return ret;
1342}
1343
1344static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1345{
1346        u16 *p = &vmx->segment_cache.seg[seg].selector;
1347
1348        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1349                *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1350        return *p;
1351}
1352
1353static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1354{
1355        ulong *p = &vmx->segment_cache.seg[seg].base;
1356
1357        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1358                *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1359        return *p;
1360}
1361
1362static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1363{
1364        u32 *p = &vmx->segment_cache.seg[seg].limit;
1365
1366        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1367                *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1368        return *p;
1369}
1370
1371static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1372{
1373        u32 *p = &vmx->segment_cache.seg[seg].ar;
1374
1375        if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1376                *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1377        return *p;
1378}
1379
1380static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1381{
1382        u32 eb;
1383
1384        eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
1385             (1u << NM_VECTOR) | (1u << DB_VECTOR);
1386        if ((vcpu->guest_debug &
1387             (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1388            (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1389                eb |= 1u << BP_VECTOR;
1390        if (to_vmx(vcpu)->rmode.vm86_active)
1391                eb = ~0;
1392        if (enable_ept)
1393                eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
1394        if (vcpu->fpu_active)
1395                eb &= ~(1u << NM_VECTOR);
1396
1397        /* When we are running a nested L2 guest and L1 specified for it a
1398         * certain exception bitmap, we must trap the same exceptions and pass
1399         * them to L1. When running L2, we will only handle the exceptions
1400         * specified above if L1 did not want them.
1401         */
1402        if (is_guest_mode(vcpu))
1403                eb |= get_vmcs12(vcpu)->exception_bitmap;
1404
1405        vmcs_write32(EXCEPTION_BITMAP, eb);
1406}
1407
1408static void clear_atomic_switch_msr_special(unsigned long entry,
1409                unsigned long exit)
1410{
1411        vmcs_clear_bits(VM_ENTRY_CONTROLS, entry);
1412        vmcs_clear_bits(VM_EXIT_CONTROLS, exit);
1413}
1414
1415static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1416{
1417        unsigned i;
1418        struct msr_autoload *m = &vmx->msr_autoload;
1419
1420        switch (msr) {
1421        case MSR_EFER:
1422                if (cpu_has_load_ia32_efer) {
1423                        clear_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1424                                        VM_EXIT_LOAD_IA32_EFER);
1425                        return;
1426                }
1427                break;
1428        case MSR_CORE_PERF_GLOBAL_CTRL:
1429                if (cpu_has_load_perf_global_ctrl) {
1430                        clear_atomic_switch_msr_special(
1431                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1432                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1433                        return;
1434                }
1435                break;
1436        }
1437
1438        for (i = 0; i < m->nr; ++i)
1439                if (m->guest[i].index == msr)
1440                        break;
1441
1442        if (i == m->nr)
1443                return;
1444        --m->nr;
1445        m->guest[i] = m->guest[m->nr];
1446        m->host[i] = m->host[m->nr];
1447        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1448        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1449}
1450
1451static void add_atomic_switch_msr_special(unsigned long entry,
1452                unsigned long exit, unsigned long guest_val_vmcs,
1453                unsigned long host_val_vmcs, u64 guest_val, u64 host_val)
1454{
1455        vmcs_write64(guest_val_vmcs, guest_val);
1456        vmcs_write64(host_val_vmcs, host_val);
1457        vmcs_set_bits(VM_ENTRY_CONTROLS, entry);
1458        vmcs_set_bits(VM_EXIT_CONTROLS, exit);
1459}
1460
1461static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1462                                  u64 guest_val, u64 host_val)
1463{
1464        unsigned i;
1465        struct msr_autoload *m = &vmx->msr_autoload;
1466
1467        switch (msr) {
1468        case MSR_EFER:
1469                if (cpu_has_load_ia32_efer) {
1470                        add_atomic_switch_msr_special(VM_ENTRY_LOAD_IA32_EFER,
1471                                        VM_EXIT_LOAD_IA32_EFER,
1472                                        GUEST_IA32_EFER,
1473                                        HOST_IA32_EFER,
1474                                        guest_val, host_val);
1475                        return;
1476                }
1477                break;
1478        case MSR_CORE_PERF_GLOBAL_CTRL:
1479                if (cpu_has_load_perf_global_ctrl) {
1480                        add_atomic_switch_msr_special(
1481                                        VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1482                                        VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1483                                        GUEST_IA32_PERF_GLOBAL_CTRL,
1484                                        HOST_IA32_PERF_GLOBAL_CTRL,
1485                                        guest_val, host_val);
1486                        return;
1487                }
1488                break;
1489        }
1490
1491        for (i = 0; i < m->nr; ++i)
1492                if (m->guest[i].index == msr)
1493                        break;
1494
1495        if (i == NR_AUTOLOAD_MSRS) {
1496                printk_once(KERN_WARNING"Not enough mst switch entries. "
1497                                "Can't add msr %x\n", msr);
1498                return;
1499        } else if (i == m->nr) {
1500                ++m->nr;
1501                vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1502                vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1503        }
1504
1505        m->guest[i].index = msr;
1506        m->guest[i].value = guest_val;
1507        m->host[i].index = msr;
1508        m->host[i].value = host_val;
1509}
1510
1511static void reload_tss(void)
1512{
1513        /*
1514         * VT restores TR but not its size.  Useless.
1515         */
1516        struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1517        struct desc_struct *descs;
1518
1519        descs = (void *)gdt->address;
1520        descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1521        load_TR_desc();
1522}
1523
1524static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
1525{
1526        u64 guest_efer;
1527        u64 ignore_bits;
1528
1529        guest_efer = vmx->vcpu.arch.efer;
1530
1531        /*
1532         * NX is emulated; LMA and LME handled by hardware; SCE meaningless
1533         * outside long mode
1534         */
1535        ignore_bits = EFER_NX | EFER_SCE;
1536#ifdef CONFIG_X86_64
1537        ignore_bits |= EFER_LMA | EFER_LME;
1538        /* SCE is meaningful only in long mode on Intel */
1539        if (guest_efer & EFER_LMA)
1540                ignore_bits &= ~(u64)EFER_SCE;
1541#endif
1542        guest_efer &= ~ignore_bits;
1543        guest_efer |= host_efer & ignore_bits;
1544        vmx->guest_msrs[efer_offset].data = guest_efer;
1545        vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
1546
1547        clear_atomic_switch_msr(vmx, MSR_EFER);
1548        /* On ept, can't emulate nx, and must switch nx atomically */
1549        if (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX)) {
1550                guest_efer = vmx->vcpu.arch.efer;
1551                if (!(guest_efer & EFER_LMA))
1552                        guest_efer &= ~EFER_LME;
1553                add_atomic_switch_msr(vmx, MSR_EFER, guest_efer, host_efer);
1554                return false;
1555        }
1556
1557        return true;
1558}
1559
1560static unsigned long segment_base(u16 selector)
1561{
1562        struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1563        struct desc_struct *d;
1564        unsigned long table_base;
1565        unsigned long v;
1566
1567        if (!(selector & ~3))
1568                return 0;
1569
1570        table_base = gdt->address;
1571
1572        if (selector & 4) {           /* from ldt */
1573                u16 ldt_selector = kvm_read_ldt();
1574
1575                if (!(ldt_selector & ~3))
1576                        return 0;
1577
1578                table_base = segment_base(ldt_selector);
1579        }
1580        d = (struct desc_struct *)(table_base + (selector & ~7));
1581        v = get_desc_base(d);
1582#ifdef CONFIG_X86_64
1583       if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1584               v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1585#endif
1586        return v;
1587}
1588
1589static inline unsigned long kvm_read_tr_base(void)
1590{
1591        u16 tr;
1592        asm("str %0" : "=g"(tr));
1593        return segment_base(tr);
1594}
1595
1596static void vmx_save_host_state(struct kvm_vcpu *vcpu)
1597{
1598        struct vcpu_vmx *vmx = to_vmx(vcpu);
1599        int i;
1600
1601        if (vmx->host_state.loaded)
1602                return;
1603
1604        vmx->host_state.loaded = 1;
1605        /*
1606         * Set host fs and gs selectors.  Unfortunately, 22.2.3 does not
1607         * allow segment selectors with cpl > 0 or ti == 1.
1608         */
1609        vmx->host_state.ldt_sel = kvm_read_ldt();
1610        vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
1611        savesegment(fs, vmx->host_state.fs_sel);
1612        if (!(vmx->host_state.fs_sel & 7)) {
1613                vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
1614                vmx->host_state.fs_reload_needed = 0;
1615        } else {
1616                vmcs_write16(HOST_FS_SELECTOR, 0);
1617                vmx->host_state.fs_reload_needed = 1;
1618        }
1619        savesegment(gs, vmx->host_state.gs_sel);
1620        if (!(vmx->host_state.gs_sel & 7))
1621                vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
1622        else {
1623                vmcs_write16(HOST_GS_SELECTOR, 0);
1624                vmx->host_state.gs_ldt_reload_needed = 1;
1625        }
1626
1627#ifdef CONFIG_X86_64
1628        savesegment(ds, vmx->host_state.ds_sel);
1629        savesegment(es, vmx->host_state.es_sel);
1630#endif
1631
1632#ifdef CONFIG_X86_64
1633        vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
1634        vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
1635#else
1636        vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
1637        vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
1638#endif
1639
1640#ifdef CONFIG_X86_64
1641        rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1642        if (is_long_mode(&vmx->vcpu))
1643                wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1644#endif
1645        for (i = 0; i < vmx->save_nmsrs; ++i)
1646                kvm_set_shared_msr(vmx->guest_msrs[i].index,
1647                                   vmx->guest_msrs[i].data,
1648                                   vmx->guest_msrs[i].mask);
1649}
1650
1651static void __vmx_load_host_state(struct vcpu_vmx *vmx)
1652{
1653        if (!vmx->host_state.loaded)
1654                return;
1655
1656        ++vmx->vcpu.stat.host_state_reload;
1657        vmx->host_state.loaded = 0;
1658#ifdef CONFIG_X86_64
1659        if (is_long_mode(&vmx->vcpu))
1660                rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
1661#endif
1662        if (vmx->host_state.gs_ldt_reload_needed) {
1663                kvm_load_ldt(vmx->host_state.ldt_sel);
1664#ifdef CONFIG_X86_64
1665                load_gs_index(vmx->host_state.gs_sel);
1666#else
1667                loadsegment(gs, vmx->host_state.gs_sel);
1668#endif
1669        }
1670        if (vmx->host_state.fs_reload_needed)
1671                loadsegment(fs, vmx->host_state.fs_sel);
1672#ifdef CONFIG_X86_64
1673        if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
1674                loadsegment(ds, vmx->host_state.ds_sel);
1675                loadsegment(es, vmx->host_state.es_sel);
1676        }
1677#endif
1678        reload_tss();
1679#ifdef CONFIG_X86_64
1680        wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
1681#endif
1682        /*
1683         * If the FPU is not active (through the host task or
1684         * the guest vcpu), then restore the cr0.TS bit.
1685         */
1686        if (!user_has_fpu() && !vmx->vcpu.guest_fpu_loaded)
1687                stts();
1688        load_gdt(&__get_cpu_var(host_gdt));
1689}
1690
1691static void vmx_load_host_state(struct vcpu_vmx *vmx)
1692{
1693        preempt_disable();
1694        __vmx_load_host_state(vmx);
1695        preempt_enable();
1696}
1697
1698/*
1699 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
1700 * vcpu mutex is already taken.
1701 */
1702static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1703{
1704        struct vcpu_vmx *vmx = to_vmx(vcpu);
1705        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
1706
1707        if (!vmm_exclusive)
1708                kvm_cpu_vmxon(phys_addr);
1709        else if (vmx->loaded_vmcs->cpu != cpu)
1710                loaded_vmcs_clear(vmx->loaded_vmcs);
1711
1712        if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
1713                per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
1714                vmcs_load(vmx->loaded_vmcs->vmcs);
1715        }
1716
1717        if (vmx->loaded_vmcs->cpu != cpu) {
1718                struct desc_ptr *gdt = &__get_cpu_var(host_gdt);
1719                unsigned long sysenter_esp;
1720
1721                kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
1722                local_irq_disable();
1723                crash_disable_local_vmclear(cpu);
1724
1725                /*
1726                 * Read loaded_vmcs->cpu should be before fetching
1727                 * loaded_vmcs->loaded_vmcss_on_cpu_link.
1728                 * See the comments in __loaded_vmcs_clear().
1729                 */
1730                smp_rmb();
1731
1732                list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
1733                         &per_cpu(loaded_vmcss_on_cpu, cpu));
1734                crash_enable_local_vmclear(cpu);
1735                local_irq_enable();
1736
1737                /*
1738                 * Linux uses per-cpu TSS and GDT, so set these when switching
1739                 * processors.
1740                 */
1741                vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
1742                vmcs_writel(HOST_GDTR_BASE, gdt->address);   /* 22.2.4 */
1743
1744                rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
1745                vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
1746                vmx->loaded_vmcs->cpu = cpu;
1747        }
1748}
1749
1750static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
1751{
1752        __vmx_load_host_state(to_vmx(vcpu));
1753        if (!vmm_exclusive) {
1754                __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
1755                vcpu->cpu = -1;
1756                kvm_cpu_vmxoff();
1757        }
1758}
1759
1760static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
1761{
1762        ulong cr0;
1763
1764        if (vcpu->fpu_active)
1765                return;
1766        vcpu->fpu_active = 1;
1767        cr0 = vmcs_readl(GUEST_CR0);
1768        cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
1769        cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
1770        vmcs_writel(GUEST_CR0, cr0);
1771        update_exception_bitmap(vcpu);
1772        vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
1773        if (is_guest_mode(vcpu))
1774                vcpu->arch.cr0_guest_owned_bits &=
1775                        ~get_vmcs12(vcpu)->cr0_guest_host_mask;
1776        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1777}
1778
1779static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
1780
1781/*
1782 * Return the cr0 value that a nested guest would read. This is a combination
1783 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
1784 * its hypervisor (cr0_read_shadow).
1785 */
1786static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
1787{
1788        return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
1789                (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
1790}
1791static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
1792{
1793        return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
1794                (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
1795}
1796
1797static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
1798{
1799        /* Note that there is no vcpu->fpu_active = 0 here. The caller must
1800         * set this *before* calling this function.
1801         */
1802        vmx_decache_cr0_guest_bits(vcpu);
1803        vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
1804        update_exception_bitmap(vcpu);
1805        vcpu->arch.cr0_guest_owned_bits = 0;
1806        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
1807        if (is_guest_mode(vcpu)) {
1808                /*
1809                 * L1's specified read shadow might not contain the TS bit,
1810                 * so now that we turned on shadowing of this bit, we need to
1811                 * set this bit of the shadow. Like in nested_vmx_run we need
1812                 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
1813                 * up-to-date here because we just decached cr0.TS (and we'll
1814                 * only update vmcs12->guest_cr0 on nested exit).
1815                 */
1816                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1817                vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
1818                        (vcpu->arch.cr0 & X86_CR0_TS);
1819                vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
1820        } else
1821                vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
1822}
1823
1824static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
1825{
1826        unsigned long rflags, save_rflags;
1827
1828        if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
1829                __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1830                rflags = vmcs_readl(GUEST_RFLAGS);
1831                if (to_vmx(vcpu)->rmode.vm86_active) {
1832                        rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
1833                        save_rflags = to_vmx(vcpu)->rmode.save_rflags;
1834                        rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
1835                }
1836                to_vmx(vcpu)->rflags = rflags;
1837        }
1838        return to_vmx(vcpu)->rflags;
1839}
1840
1841static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
1842{
1843        __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
1844        to_vmx(vcpu)->rflags = rflags;
1845        if (to_vmx(vcpu)->rmode.vm86_active) {
1846                to_vmx(vcpu)->rmode.save_rflags = rflags;
1847                rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
1848        }
1849        vmcs_writel(GUEST_RFLAGS, rflags);
1850}
1851
1852static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1853{
1854        u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1855        int ret = 0;
1856
1857        if (interruptibility & GUEST_INTR_STATE_STI)
1858                ret |= KVM_X86_SHADOW_INT_STI;
1859        if (interruptibility & GUEST_INTR_STATE_MOV_SS)
1860                ret |= KVM_X86_SHADOW_INT_MOV_SS;
1861
1862        return ret & mask;
1863}
1864
1865static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
1866{
1867        u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
1868        u32 interruptibility = interruptibility_old;
1869
1870        interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
1871
1872        if (mask & KVM_X86_SHADOW_INT_MOV_SS)
1873                interruptibility |= GUEST_INTR_STATE_MOV_SS;
1874        else if (mask & KVM_X86_SHADOW_INT_STI)
1875                interruptibility |= GUEST_INTR_STATE_STI;
1876
1877        if ((interruptibility != interruptibility_old))
1878                vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
1879}
1880
1881static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
1882{
1883        unsigned long rip;
1884
1885        rip = kvm_rip_read(vcpu);
1886        rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
1887        kvm_rip_write(vcpu, rip);
1888
1889        /* skipping an emulated instruction also counts */
1890        vmx_set_interrupt_shadow(vcpu, 0);
1891}
1892
1893/*
1894 * KVM wants to inject page-faults which it got to the guest. This function
1895 * checks whether in a nested guest, we need to inject them to L1 or L2.
1896 * This function assumes it is called with the exit reason in vmcs02 being
1897 * a #PF exception (this is the only case in which KVM injects a #PF when L2
1898 * is running).
1899 */
1900static int nested_pf_handled(struct kvm_vcpu *vcpu)
1901{
1902        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
1903
1904        /* TODO: also check PFEC_MATCH/MASK, not just EB.PF. */
1905        if (!(vmcs12->exception_bitmap & (1u << PF_VECTOR)))
1906                return 0;
1907
1908        nested_vmx_vmexit(vcpu);
1909        return 1;
1910}
1911
1912static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
1913                                bool has_error_code, u32 error_code,
1914                                bool reinject)
1915{
1916        struct vcpu_vmx *vmx = to_vmx(vcpu);
1917        u32 intr_info = nr | INTR_INFO_VALID_MASK;
1918
1919        if (nr == PF_VECTOR && is_guest_mode(vcpu) &&
1920            !vmx->nested.nested_run_pending && nested_pf_handled(vcpu))
1921                return;
1922
1923        if (has_error_code) {
1924                vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
1925                intr_info |= INTR_INFO_DELIVER_CODE_MASK;
1926        }
1927
1928        if (vmx->rmode.vm86_active) {
1929                int inc_eip = 0;
1930                if (kvm_exception_is_soft(nr))
1931                        inc_eip = vcpu->arch.event_exit_inst_len;
1932                if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
1933                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
1934                return;
1935        }
1936
1937        if (kvm_exception_is_soft(nr)) {
1938                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
1939                             vmx->vcpu.arch.event_exit_inst_len);
1940                intr_info |= INTR_TYPE_SOFT_EXCEPTION;
1941        } else
1942                intr_info |= INTR_TYPE_HARD_EXCEPTION;
1943
1944        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
1945}
1946
1947static bool vmx_rdtscp_supported(void)
1948{
1949        return cpu_has_vmx_rdtscp();
1950}
1951
1952static bool vmx_invpcid_supported(void)
1953{
1954        return cpu_has_vmx_invpcid() && enable_ept;
1955}
1956
1957/*
1958 * Swap MSR entry in host/guest MSR entry array.
1959 */
1960static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
1961{
1962        struct shared_msr_entry tmp;
1963
1964        tmp = vmx->guest_msrs[to];
1965        vmx->guest_msrs[to] = vmx->guest_msrs[from];
1966        vmx->guest_msrs[from] = tmp;
1967}
1968
1969static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
1970{
1971        unsigned long *msr_bitmap;
1972
1973        if (irqchip_in_kernel(vcpu->kvm) && apic_x2apic_mode(vcpu->arch.apic)) {
1974                if (is_long_mode(vcpu))
1975                        msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
1976                else
1977                        msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
1978        } else {
1979                if (is_long_mode(vcpu))
1980                        msr_bitmap = vmx_msr_bitmap_longmode;
1981                else
1982                        msr_bitmap = vmx_msr_bitmap_legacy;
1983        }
1984
1985        vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
1986}
1987
1988/*
1989 * Set up the vmcs to automatically save and restore system
1990 * msrs.  Don't touch the 64-bit msrs if the guest is in legacy
1991 * mode, as fiddling with msrs is very expensive.
1992 */
1993static void setup_msrs(struct vcpu_vmx *vmx)
1994{
1995        int save_nmsrs, index;
1996
1997        save_nmsrs = 0;
1998#ifdef CONFIG_X86_64
1999        if (is_long_mode(&vmx->vcpu)) {
2000                index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
2001                if (index >= 0)
2002                        move_msr_up(vmx, index, save_nmsrs++);
2003                index = __find_msr_index(vmx, MSR_LSTAR);
2004                if (index >= 0)
2005                        move_msr_up(vmx, index, save_nmsrs++);
2006                index = __find_msr_index(vmx, MSR_CSTAR);
2007                if (index >= 0)
2008                        move_msr_up(vmx, index, save_nmsrs++);
2009                index = __find_msr_index(vmx, MSR_TSC_AUX);
2010                if (index >= 0 && vmx->rdtscp_enabled)
2011                        move_msr_up(vmx, index, save_nmsrs++);
2012                /*
2013                 * MSR_STAR is only needed on long mode guests, and only
2014                 * if efer.sce is enabled.
2015                 */
2016                index = __find_msr_index(vmx, MSR_STAR);
2017                if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
2018                        move_msr_up(vmx, index, save_nmsrs++);
2019        }
2020#endif
2021        index = __find_msr_index(vmx, MSR_EFER);
2022        if (index >= 0 && update_transition_efer(vmx, index))
2023                move_msr_up(vmx, index, save_nmsrs++);
2024
2025        vmx->save_nmsrs = save_nmsrs;
2026
2027        if (cpu_has_vmx_msr_bitmap())
2028                vmx_set_msr_bitmap(&vmx->vcpu);
2029}
2030
2031/*
2032 * reads and returns guest's timestamp counter "register"
2033 * guest_tsc = host_tsc + tsc_offset    -- 21.3
2034 */
2035static u64 guest_read_tsc(void)
2036{
2037        u64 host_tsc, tsc_offset;
2038
2039        rdtscll(host_tsc);
2040        tsc_offset = vmcs_read64(TSC_OFFSET);
2041        return host_tsc + tsc_offset;
2042}
2043
2044/*
2045 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2046 * counter, even if a nested guest (L2) is currently running.
2047 */
2048u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
2049{
2050        u64 tsc_offset;
2051
2052        tsc_offset = is_guest_mode(vcpu) ?
2053                to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2054                vmcs_read64(TSC_OFFSET);
2055        return host_tsc + tsc_offset;
2056}
2057
2058/*
2059 * Engage any workarounds for mis-matched TSC rates.  Currently limited to
2060 * software catchup for faster rates on slower CPUs.
2061 */
2062static void vmx_set_tsc_khz(struct kvm_vcpu *vcpu, u32 user_tsc_khz, bool scale)
2063{
2064        if (!scale)
2065                return;
2066
2067        if (user_tsc_khz > tsc_khz) {
2068                vcpu->arch.tsc_catchup = 1;
2069                vcpu->arch.tsc_always_catchup = 1;
2070        } else
2071                WARN(1, "user requested TSC rate below hardware speed\n");
2072}
2073
2074static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2075{
2076        return vmcs_read64(TSC_OFFSET);
2077}
2078
2079/*
2080 * writes 'offset' into guest's timestamp counter offset register
2081 */
2082static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
2083{
2084        if (is_guest_mode(vcpu)) {
2085                /*
2086                 * We're here if L1 chose not to trap WRMSR to TSC. According
2087                 * to the spec, this should set L1's TSC; The offset that L1
2088                 * set for L2 remains unchanged, and still needs to be added
2089                 * to the newly set TSC to get L2's TSC.
2090                 */
2091                struct vmcs12 *vmcs12;
2092                to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2093                /* recalculate vmcs02.TSC_OFFSET: */
2094                vmcs12 = get_vmcs12(vcpu);
2095                vmcs_write64(TSC_OFFSET, offset +
2096                        (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2097                         vmcs12->tsc_offset : 0));
2098        } else {
2099                vmcs_write64(TSC_OFFSET, offset);
2100        }
2101}
2102
2103static void vmx_adjust_tsc_offset(struct kvm_vcpu *vcpu, s64 adjustment, bool host)
2104{
2105        u64 offset = vmcs_read64(TSC_OFFSET);
2106        vmcs_write64(TSC_OFFSET, offset + adjustment);
2107        if (is_guest_mode(vcpu)) {
2108                /* Even when running L2, the adjustment needs to apply to L1 */
2109                to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
2110        }
2111}
2112
2113static u64 vmx_compute_tsc_offset(struct kvm_vcpu *vcpu, u64 target_tsc)
2114{
2115        return target_tsc - native_read_tsc();
2116}
2117
2118static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2119{
2120        struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2121        return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2122}
2123
2124/*
2125 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2126 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2127 * all guests if the "nested" module option is off, and can also be disabled
2128 * for a single guest by disabling its VMX cpuid bit.
2129 */
2130static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2131{
2132        return nested && guest_cpuid_has_vmx(vcpu);
2133}
2134
2135/*
2136 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2137 * returned for the various VMX controls MSRs when nested VMX is enabled.
2138 * The same values should also be used to verify that vmcs12 control fields are
2139 * valid during nested entry from L1 to L2.
2140 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2141 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2142 * bit in the high half is on if the corresponding bit in the control field
2143 * may be on. See also vmx_control_verify().
2144 * TODO: allow these variables to be modified (downgraded) by module options
2145 * or other means.
2146 */
2147static u32 nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high;
2148static u32 nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high;
2149static u32 nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high;
2150static u32 nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high;
2151static u32 nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high;
2152static u32 nested_vmx_misc_low, nested_vmx_misc_high;
2153static __init void nested_vmx_setup_ctls_msrs(void)
2154{
2155        /*
2156         * Note that as a general rule, the high half of the MSRs (bits in
2157         * the control fields which may be 1) should be initialized by the
2158         * intersection of the underlying hardware's MSR (i.e., features which
2159         * can be supported) and the list of features we want to expose -
2160         * because they are known to be properly supported in our code.
2161         * Also, usually, the low half of the MSRs (bits which must be 1) can
2162         * be set to 0, meaning that L1 may turn off any of these bits. The
2163         * reason is that if one of these bits is necessary, it will appear
2164         * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2165         * fields of vmcs01 and vmcs02, will turn these bits off - and
2166         * nested_vmx_exit_handled() will not pass related exits to L1.
2167         * These rules have exceptions below.
2168         */
2169
2170        /* pin-based controls */
2171        rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
2172              nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high);
2173        /*
2174         * According to the Intel spec, if bit 55 of VMX_BASIC is off (as it is
2175         * in our case), bits 1, 2 and 4 (i.e., 0x16) must be 1 in this MSR.
2176         */
2177        nested_vmx_pinbased_ctls_low |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2178        nested_vmx_pinbased_ctls_high &= PIN_BASED_EXT_INTR_MASK |
2179                PIN_BASED_NMI_EXITING | PIN_BASED_VIRTUAL_NMIS |
2180                PIN_BASED_VMX_PREEMPTION_TIMER;
2181        nested_vmx_pinbased_ctls_high |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2182
2183        /*
2184         * Exit controls
2185         * If bit 55 of VMX_BASIC is off, bits 0-8 and 10, 11, 13, 14, 16 and
2186         * 17 must be 1.
2187         */
2188        nested_vmx_exit_ctls_low = VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2189        /* Note that guest use of VM_EXIT_ACK_INTR_ON_EXIT is not supported. */
2190#ifdef CONFIG_X86_64
2191        nested_vmx_exit_ctls_high = VM_EXIT_HOST_ADDR_SPACE_SIZE;
2192#else
2193        nested_vmx_exit_ctls_high = 0;
2194#endif
2195        nested_vmx_exit_ctls_high |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
2196
2197        /* entry controls */
2198        rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
2199                nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high);
2200        /* If bit 55 of VMX_BASIC is off, bits 0-8 and 12 must be 1. */
2201        nested_vmx_entry_ctls_low = VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2202        nested_vmx_entry_ctls_high &=
2203                VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_IA32E_MODE;
2204        nested_vmx_entry_ctls_high |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2205
2206        /* cpu-based controls */
2207        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
2208                nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high);
2209        nested_vmx_procbased_ctls_low = 0;
2210        nested_vmx_procbased_ctls_high &=
2211                CPU_BASED_VIRTUAL_INTR_PENDING | CPU_BASED_USE_TSC_OFFSETING |
2212                CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2213                CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2214                CPU_BASED_CR3_STORE_EXITING |
2215#ifdef CONFIG_X86_64
2216                CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2217#endif
2218                CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
2219                CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_EXITING |
2220                CPU_BASED_RDPMC_EXITING | CPU_BASED_RDTSC_EXITING |
2221                CPU_BASED_PAUSE_EXITING |
2222                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2223        /*
2224         * We can allow some features even when not supported by the
2225         * hardware. For example, L1 can specify an MSR bitmap - and we
2226         * can use it to avoid exits to L1 - even when L0 runs L2
2227         * without MSR bitmaps.
2228         */
2229        nested_vmx_procbased_ctls_high |= CPU_BASED_USE_MSR_BITMAPS;
2230
2231        /* secondary cpu-based controls */
2232        rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
2233                nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high);
2234        nested_vmx_secondary_ctls_low = 0;
2235        nested_vmx_secondary_ctls_high &=
2236                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2237                SECONDARY_EXEC_WBINVD_EXITING;
2238
2239        /* miscellaneous data */
2240        rdmsr(MSR_IA32_VMX_MISC, nested_vmx_misc_low, nested_vmx_misc_high);
2241        nested_vmx_misc_low &= VMX_MISC_PREEMPTION_TIMER_RATE_MASK |
2242                VMX_MISC_SAVE_EFER_LMA;
2243        nested_vmx_misc_high = 0;
2244}
2245
2246static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2247{
2248        /*
2249         * Bits 0 in high must be 0, and bits 1 in low must be 1.
2250         */
2251        return ((control & high) | low) == control;
2252}
2253
2254static inline u64 vmx_control_msr(u32 low, u32 high)
2255{
2256        return low | ((u64)high << 32);
2257}
2258
2259/*
2260 * If we allow our guest to use VMX instructions (i.e., nested VMX), we should
2261 * also let it use VMX-specific MSRs.
2262 * vmx_get_vmx_msr() and vmx_set_vmx_msr() return 1 when we handled a
2263 * VMX-specific MSR, or 0 when we haven't (and the caller should handle it
2264 * like all other MSRs).
2265 */
2266static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2267{
2268        if (!nested_vmx_allowed(vcpu) && msr_index >= MSR_IA32_VMX_BASIC &&
2269                     msr_index <= MSR_IA32_VMX_TRUE_ENTRY_CTLS) {
2270                /*
2271                 * According to the spec, processors which do not support VMX
2272                 * should throw a #GP(0) when VMX capability MSRs are read.
2273                 */
2274                kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
2275                return 1;
2276        }
2277
2278        switch (msr_index) {
2279        case MSR_IA32_FEATURE_CONTROL:
2280                *pdata = 0;
2281                break;
2282        case MSR_IA32_VMX_BASIC:
2283                /*
2284                 * This MSR reports some information about VMX support. We
2285                 * should return information about the VMX we emulate for the
2286                 * guest, and the VMCS structure we give it - not about the
2287                 * VMX support of the underlying hardware.
2288                 */
2289                *pdata = VMCS12_REVISION |
2290                           ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2291                           (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2292                break;
2293        case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2294        case MSR_IA32_VMX_PINBASED_CTLS:
2295                *pdata = vmx_control_msr(nested_vmx_pinbased_ctls_low,
2296                                        nested_vmx_pinbased_ctls_high);
2297                break;
2298        case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
2299        case MSR_IA32_VMX_PROCBASED_CTLS:
2300                *pdata = vmx_control_msr(nested_vmx_procbased_ctls_low,
2301                                        nested_vmx_procbased_ctls_high);
2302                break;
2303        case MSR_IA32_VMX_TRUE_EXIT_CTLS:
2304        case MSR_IA32_VMX_EXIT_CTLS:
2305                *pdata = vmx_control_msr(nested_vmx_exit_ctls_low,
2306                                        nested_vmx_exit_ctls_high);
2307                break;
2308        case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
2309        case MSR_IA32_VMX_ENTRY_CTLS:
2310                *pdata = vmx_control_msr(nested_vmx_entry_ctls_low,
2311                                        nested_vmx_entry_ctls_high);
2312                break;
2313        case MSR_IA32_VMX_MISC:
2314                *pdata = vmx_control_msr(nested_vmx_misc_low,
2315                                         nested_vmx_misc_high);
2316                break;
2317        /*
2318         * These MSRs specify bits which the guest must keep fixed (on or off)
2319         * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2320         * We picked the standard core2 setting.
2321         */
2322#define VMXON_CR0_ALWAYSON      (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2323#define VMXON_CR4_ALWAYSON      X86_CR4_VMXE
2324        case MSR_IA32_VMX_CR0_FIXED0:
2325                *pdata = VMXON_CR0_ALWAYSON;
2326                break;
2327        case MSR_IA32_VMX_CR0_FIXED1:
2328                *pdata = -1ULL;
2329                break;
2330        case MSR_IA32_VMX_CR4_FIXED0:
2331                *pdata = VMXON_CR4_ALWAYSON;
2332                break;
2333        case MSR_IA32_VMX_CR4_FIXED1:
2334                *pdata = -1ULL;
2335                break;
2336        case MSR_IA32_VMX_VMCS_ENUM:
2337                *pdata = 0x1f;
2338                break;
2339        case MSR_IA32_VMX_PROCBASED_CTLS2:
2340                *pdata = vmx_control_msr(nested_vmx_secondary_ctls_low,
2341                                        nested_vmx_secondary_ctls_high);
2342                break;
2343        case MSR_IA32_VMX_EPT_VPID_CAP:
2344                /* Currently, no nested ept or nested vpid */
2345                *pdata = 0;
2346                break;
2347        default:
2348                return 0;
2349        }
2350
2351        return 1;
2352}
2353
2354static int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
2355{
2356        if (!nested_vmx_allowed(vcpu))
2357                return 0;
2358
2359        if (msr_index == MSR_IA32_FEATURE_CONTROL)
2360                /* TODO: the right thing. */
2361                return 1;
2362        /*
2363         * No need to treat VMX capability MSRs specially: If we don't handle
2364         * them, handle_wrmsr will #GP(0), which is correct (they are readonly)
2365         */
2366        return 0;
2367}
2368
2369/*
2370 * Reads an msr value (of 'msr_index') into 'pdata'.
2371 * Returns 0 on success, non-0 otherwise.
2372 * Assumes vcpu_load() was already called.
2373 */
2374static int vmx_get_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2375{
2376        u64 data;
2377        struct shared_msr_entry *msr;
2378
2379        if (!pdata) {
2380                printk(KERN_ERR "BUG: get_msr called with NULL pdata\n");
2381                return -EINVAL;
2382        }
2383
2384        switch (msr_index) {
2385#ifdef CONFIG_X86_64
2386        case MSR_FS_BASE:
2387                data = vmcs_readl(GUEST_FS_BASE);
2388                break;
2389        case MSR_GS_BASE:
2390                data = vmcs_readl(GUEST_GS_BASE);
2391                break;
2392        case MSR_KERNEL_GS_BASE:
2393                vmx_load_host_state(to_vmx(vcpu));
2394                data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
2395                break;
2396#endif
2397        case MSR_EFER:
2398                return kvm_get_msr_common(vcpu, msr_index, pdata);
2399        case MSR_IA32_TSC:
2400                data = guest_read_tsc();
2401                break;
2402        case MSR_IA32_SYSENTER_CS:
2403                data = vmcs_read32(GUEST_SYSENTER_CS);
2404                break;
2405        case MSR_IA32_SYSENTER_EIP:
2406                data = vmcs_readl(GUEST_SYSENTER_EIP);
2407                break;
2408        case MSR_IA32_SYSENTER_ESP:
2409                data = vmcs_readl(GUEST_SYSENTER_ESP);
2410                break;
2411        case MSR_TSC_AUX:
2412                if (!to_vmx(vcpu)->rdtscp_enabled)
2413                        return 1;
2414                /* Otherwise falls through */
2415        default:
2416                if (vmx_get_vmx_msr(vcpu, msr_index, pdata))
2417                        return 0;
2418                msr = find_msr_entry(to_vmx(vcpu), msr_index);
2419                if (msr) {
2420                        data = msr->data;
2421                        break;
2422                }
2423                return kvm_get_msr_common(vcpu, msr_index, pdata);
2424        }
2425
2426        *pdata = data;
2427        return 0;
2428}
2429
2430/*
2431 * Writes msr value into into the appropriate "register".
2432 * Returns 0 on success, non-0 otherwise.
2433 * Assumes vcpu_load() was already called.
2434 */
2435static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
2436{
2437        struct vcpu_vmx *vmx = to_vmx(vcpu);
2438        struct shared_msr_entry *msr;
2439        int ret = 0;
2440        u32 msr_index = msr_info->index;
2441        u64 data = msr_info->data;
2442
2443        switch (msr_index) {
2444        case MSR_EFER:
2445                ret = kvm_set_msr_common(vcpu, msr_info);
2446                break;
2447#ifdef CONFIG_X86_64
2448        case MSR_FS_BASE:
2449                vmx_segment_cache_clear(vmx);
2450                vmcs_writel(GUEST_FS_BASE, data);
2451                break;
2452        case MSR_GS_BASE:
2453                vmx_segment_cache_clear(vmx);
2454                vmcs_writel(GUEST_GS_BASE, data);
2455                break;
2456        case MSR_KERNEL_GS_BASE:
2457                vmx_load_host_state(vmx);
2458                vmx->msr_guest_kernel_gs_base = data;
2459                break;
2460#endif
2461        case MSR_IA32_SYSENTER_CS:
2462                vmcs_write32(GUEST_SYSENTER_CS, data);
2463                break;
2464        case MSR_IA32_SYSENTER_EIP:
2465                vmcs_writel(GUEST_SYSENTER_EIP, data);
2466                break;
2467        case MSR_IA32_SYSENTER_ESP:
2468                vmcs_writel(GUEST_SYSENTER_ESP, data);
2469                break;
2470        case MSR_IA32_TSC:
2471                kvm_write_tsc(vcpu, msr_info);
2472                break;
2473        case MSR_IA32_CR_PAT:
2474                if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
2475                        vmcs_write64(GUEST_IA32_PAT, data);
2476                        vcpu->arch.pat = data;
2477                        break;
2478                }
2479                ret = kvm_set_msr_common(vcpu, msr_info);
2480                break;
2481        case MSR_IA32_TSC_ADJUST:
2482                ret = kvm_set_msr_common(vcpu, msr_info);
2483                break;
2484        case MSR_TSC_AUX:
2485                if (!vmx->rdtscp_enabled)
2486                        return 1;
2487                /* Check reserved bit, higher 32 bits should be zero */
2488                if ((data >> 32) != 0)
2489                        return 1;
2490                /* Otherwise falls through */
2491        default:
2492                if (vmx_set_vmx_msr(vcpu, msr_index, data))
2493                        break;
2494                msr = find_msr_entry(vmx, msr_index);
2495                if (msr) {
2496                        msr->data = data;
2497                        if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
2498                                preempt_disable();
2499                                kvm_set_shared_msr(msr->index, msr->data,
2500                                                   msr->mask);
2501                                preempt_enable();
2502                        }
2503                        break;
2504                }
2505                ret = kvm_set_msr_common(vcpu, msr_info);
2506        }
2507
2508        return ret;
2509}
2510
2511static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
2512{
2513        __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
2514        switch (reg) {
2515        case VCPU_REGS_RSP:
2516                vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
2517                break;
2518        case VCPU_REGS_RIP:
2519                vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
2520                break;
2521        case VCPU_EXREG_PDPTR:
2522                if (enable_ept)
2523                        ept_save_pdptrs(vcpu);
2524                break;
2525        default:
2526                break;
2527        }
2528}
2529
2530static __init int cpu_has_kvm_support(void)
2531{
2532        return cpu_has_vmx();
2533}
2534
2535static __init int vmx_disabled_by_bios(void)
2536{
2537        u64 msr;
2538
2539        rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
2540        if (msr & FEATURE_CONTROL_LOCKED) {
2541                /* launched w/ TXT and VMX disabled */
2542                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2543                        && tboot_enabled())
2544                        return 1;
2545                /* launched w/o TXT and VMX only enabled w/ TXT */
2546                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2547                        && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
2548                        && !tboot_enabled()) {
2549                        printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
2550                                "activate TXT before enabling KVM\n");
2551                        return 1;
2552                }
2553                /* launched w/o TXT and VMX disabled */
2554                if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
2555                        && !tboot_enabled())
2556                        return 1;
2557        }
2558
2559        return 0;
2560}
2561
2562static void kvm_cpu_vmxon(u64 addr)
2563{
2564        asm volatile (ASM_VMX_VMXON_RAX
2565                        : : "a"(&addr), "m"(addr)
2566                        : "memory", "cc");
2567}
2568
2569static int hardware_enable(void *garbage)
2570{
2571        int cpu = raw_smp_processor_id();
2572        u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
2573        u64 old, test_bits;
2574
2575        if (read_cr4() & X86_CR4_VMXE)
2576                return -EBUSY;
2577
2578        INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
2579
2580        /*
2581         * Now we can enable the vmclear operation in kdump
2582         * since the loaded_vmcss_on_cpu list on this cpu
2583         * has been initialized.
2584         *
2585         * Though the cpu is not in VMX operation now, there
2586         * is no problem to enable the vmclear operation
2587         * for the loaded_vmcss_on_cpu list is empty!
2588         */
2589        crash_enable_local_vmclear(cpu);
2590
2591        rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
2592
2593        test_bits = FEATURE_CONTROL_LOCKED;
2594        test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
2595        if (tboot_enabled())
2596                test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
2597
2598        if ((old & test_bits) != test_bits) {
2599                /* enable and lock */
2600                wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
2601        }
2602        write_cr4(read_cr4() | X86_CR4_VMXE); /* FIXME: not cpu hotplug safe */
2603
2604        if (vmm_exclusive) {
2605                kvm_cpu_vmxon(phys_addr);
2606                ept_sync_global();
2607        }
2608
2609        native_store_gdt(&__get_cpu_var(host_gdt));
2610
2611        return 0;
2612}
2613
2614static void vmclear_local_loaded_vmcss(void)
2615{
2616        int cpu = raw_smp_processor_id();
2617        struct loaded_vmcs *v, *n;
2618
2619        list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
2620                                 loaded_vmcss_on_cpu_link)
2621                __loaded_vmcs_clear(v);
2622}
2623
2624
2625/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
2626 * tricks.
2627 */
2628static void kvm_cpu_vmxoff(void)
2629{
2630        asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
2631}
2632
2633static void hardware_disable(void *garbage)
2634{
2635        if (vmm_exclusive) {
2636                vmclear_local_loaded_vmcss();
2637                kvm_cpu_vmxoff();
2638        }
2639        write_cr4(read_cr4() & ~X86_CR4_VMXE);
2640}
2641
2642static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
2643                                      u32 msr, u32 *result)
2644{
2645        u32 vmx_msr_low, vmx_msr_high;
2646        u32 ctl = ctl_min | ctl_opt;
2647
2648        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2649
2650        ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
2651        ctl |= vmx_msr_low;  /* bit == 1 in low word  ==> must be one  */
2652
2653        /* Ensure minimum (required) set of control bits are supported. */
2654        if (ctl_min & ~ctl)
2655                return -EIO;
2656
2657        *result = ctl;
2658        return 0;
2659}
2660
2661static __init bool allow_1_setting(u32 msr, u32 ctl)
2662{
2663        u32 vmx_msr_low, vmx_msr_high;
2664
2665        rdmsr(msr, vmx_msr_low, vmx_msr_high);
2666        return vmx_msr_high & ctl;
2667}
2668
2669static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
2670{
2671        u32 vmx_msr_low, vmx_msr_high;
2672        u32 min, opt, min2, opt2;
2673        u32 _pin_based_exec_control = 0;
2674        u32 _cpu_based_exec_control = 0;
2675        u32 _cpu_based_2nd_exec_control = 0;
2676        u32 _vmexit_control = 0;
2677        u32 _vmentry_control = 0;
2678
2679        min = CPU_BASED_HLT_EXITING |
2680#ifdef CONFIG_X86_64
2681              CPU_BASED_CR8_LOAD_EXITING |
2682              CPU_BASED_CR8_STORE_EXITING |
2683#endif
2684              CPU_BASED_CR3_LOAD_EXITING |
2685              CPU_BASED_CR3_STORE_EXITING |
2686              CPU_BASED_USE_IO_BITMAPS |
2687              CPU_BASED_MOV_DR_EXITING |
2688              CPU_BASED_USE_TSC_OFFSETING |
2689              CPU_BASED_MWAIT_EXITING |
2690              CPU_BASED_MONITOR_EXITING |
2691              CPU_BASED_INVLPG_EXITING |
2692              CPU_BASED_RDPMC_EXITING;
2693
2694        opt = CPU_BASED_TPR_SHADOW |
2695              CPU_BASED_USE_MSR_BITMAPS |
2696              CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
2697        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
2698                                &_cpu_based_exec_control) < 0)
2699                return -EIO;
2700#ifdef CONFIG_X86_64
2701        if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2702                _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
2703                                           ~CPU_BASED_CR8_STORE_EXITING;
2704#endif
2705        if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
2706                min2 = 0;
2707                opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
2708                        SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2709                        SECONDARY_EXEC_WBINVD_EXITING |
2710                        SECONDARY_EXEC_ENABLE_VPID |
2711                        SECONDARY_EXEC_ENABLE_EPT |
2712                        SECONDARY_EXEC_UNRESTRICTED_GUEST |
2713                        SECONDARY_EXEC_PAUSE_LOOP_EXITING |
2714                        SECONDARY_EXEC_RDTSCP |
2715                        SECONDARY_EXEC_ENABLE_INVPCID |
2716                        SECONDARY_EXEC_APIC_REGISTER_VIRT |
2717                        SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
2718                        SECONDARY_EXEC_SHADOW_VMCS;
2719                if (adjust_vmx_controls(min2, opt2,
2720                                        MSR_IA32_VMX_PROCBASED_CTLS2,
2721                                        &_cpu_based_2nd_exec_control) < 0)
2722                        return -EIO;
2723        }
2724#ifndef CONFIG_X86_64
2725        if (!(_cpu_based_2nd_exec_control &
2726                                SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
2727                _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
2728#endif
2729
2730        if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
2731                _cpu_based_2nd_exec_control &= ~(
2732                                SECONDARY_EXEC_APIC_REGISTER_VIRT |
2733                                SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2734                                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
2735
2736        if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
2737                /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
2738                   enabled */
2739                _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
2740                                             CPU_BASED_CR3_STORE_EXITING |
2741                                             CPU_BASED_INVLPG_EXITING);
2742                rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
2743                      vmx_capability.ept, vmx_capability.vpid);
2744        }
2745
2746        min = 0;
2747#ifdef CONFIG_X86_64
2748        min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
2749#endif
2750        opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
2751                VM_EXIT_ACK_INTR_ON_EXIT;
2752        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
2753                                &_vmexit_control) < 0)
2754                return -EIO;
2755
2756        min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
2757        opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
2758        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
2759                                &_pin_based_exec_control) < 0)
2760                return -EIO;
2761
2762        if (!(_cpu_based_2nd_exec_control &
2763                SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
2764                !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
2765                _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
2766
2767        min = 0;
2768        opt = VM_ENTRY_LOAD_IA32_PAT;
2769        if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
2770                                &_vmentry_control) < 0)
2771                return -EIO;
2772
2773        rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
2774
2775        /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
2776        if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
2777                return -EIO;
2778
2779#ifdef CONFIG_X86_64
2780        /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
2781        if (vmx_msr_high & (1u<<16))
2782                return -EIO;
2783#endif
2784
2785        /* Require Write-Back (WB) memory type for VMCS accesses. */
2786        if (((vmx_msr_high >> 18) & 15) != 6)
2787                return -EIO;
2788
2789        vmcs_conf->size = vmx_msr_high & 0x1fff;
2790        vmcs_conf->order = get_order(vmcs_config.size);
2791        vmcs_conf->revision_id = vmx_msr_low;
2792
2793        vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
2794        vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
2795        vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
2796        vmcs_conf->vmexit_ctrl         = _vmexit_control;
2797        vmcs_conf->vmentry_ctrl        = _vmentry_control;
2798
2799        cpu_has_load_ia32_efer =
2800                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2801                                VM_ENTRY_LOAD_IA32_EFER)
2802                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2803                                   VM_EXIT_LOAD_IA32_EFER);
2804
2805        cpu_has_load_perf_global_ctrl =
2806                allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
2807                                VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
2808                && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
2809                                   VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
2810
2811        /*
2812         * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
2813         * but due to arrata below it can't be used. Workaround is to use
2814         * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
2815         *
2816         * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
2817         *
2818         * AAK155             (model 26)
2819         * AAP115             (model 30)
2820         * AAT100             (model 37)
2821         * BC86,AAY89,BD102   (model 44)
2822         * BA97               (model 46)
2823         *
2824         */
2825        if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
2826                switch (boot_cpu_data.x86_model) {
2827                case 26:
2828                case 30:
2829                case 37:
2830                case 44:
2831                case 46:
2832                        cpu_has_load_perf_global_ctrl = false;
2833                        printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
2834                                        "does not work properly. Using workaround\n");
2835                        break;
2836                default:
2837                        break;
2838                }
2839        }
2840
2841        return 0;
2842}
2843
2844static struct vmcs *alloc_vmcs_cpu(int cpu)
2845{
2846        int node = cpu_to_node(cpu);
2847        struct page *pages;
2848        struct vmcs *vmcs;
2849
2850        pages = alloc_pages_exact_node(node, GFP_KERNEL, vmcs_config.order);
2851        if (!pages)
2852                return NULL;
2853        vmcs = page_address(pages);
2854        memset(vmcs, 0, vmcs_config.size);
2855        vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
2856        return vmcs;
2857}
2858
2859static struct vmcs *alloc_vmcs(void)
2860{
2861        return alloc_vmcs_cpu(raw_smp_processor_id());
2862}
2863
2864static void free_vmcs(struct vmcs *vmcs)
2865{
2866        free_pages((unsigned long)vmcs, vmcs_config.order);
2867}
2868
2869/*
2870 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
2871 */
2872static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
2873{
2874        if (!loaded_vmcs->vmcs)
2875                return;
2876        loaded_vmcs_clear(loaded_vmcs);
2877        free_vmcs(loaded_vmcs->vmcs);
2878        loaded_vmcs->vmcs = NULL;
2879}
2880
2881static void free_kvm_area(void)
2882{
2883        int cpu;
2884
2885        for_each_possible_cpu(cpu) {
2886                free_vmcs(per_cpu(vmxarea, cpu));
2887                per_cpu(vmxarea, cpu) = NULL;
2888        }
2889}
2890
2891static __init int alloc_kvm_area(void)
2892{
2893        int cpu;
2894
2895        for_each_possible_cpu(cpu) {
2896                struct vmcs *vmcs;
2897
2898                vmcs = alloc_vmcs_cpu(cpu);
2899                if (!vmcs) {
2900                        free_kvm_area();
2901                        return -ENOMEM;
2902                }
2903
2904                per_cpu(vmxarea, cpu) = vmcs;
2905        }
2906        return 0;
2907}
2908
2909static __init int hardware_setup(void)
2910{
2911        if (setup_vmcs_config(&vmcs_config) < 0)
2912                return -EIO;
2913
2914        if (boot_cpu_has(X86_FEATURE_NX))
2915                kvm_enable_efer_bits(EFER_NX);
2916
2917        if (!cpu_has_vmx_vpid())
2918                enable_vpid = 0;
2919        if (!cpu_has_vmx_shadow_vmcs())
2920                enable_shadow_vmcs = 0;
2921
2922        if (!cpu_has_vmx_ept() ||
2923            !cpu_has_vmx_ept_4levels()) {
2924                enable_ept = 0;
2925                enable_unrestricted_guest = 0;
2926                enable_ept_ad_bits = 0;
2927        }
2928
2929        if (!cpu_has_vmx_ept_ad_bits())
2930                enable_ept_ad_bits = 0;
2931
2932        if (!cpu_has_vmx_unrestricted_guest())
2933                enable_unrestricted_guest = 0;
2934
2935        if (!cpu_has_vmx_flexpriority())
2936                flexpriority_enabled = 0;
2937
2938        if (!cpu_has_vmx_tpr_shadow())
2939                kvm_x86_ops->update_cr8_intercept = NULL;
2940
2941        if (enable_ept && !cpu_has_vmx_ept_2m_page())
2942                kvm_disable_largepages();
2943
2944        if (!cpu_has_vmx_ple())
2945                ple_gap = 0;
2946
2947        if (!cpu_has_vmx_apicv())
2948                enable_apicv = 0;
2949
2950        if (enable_apicv)
2951                kvm_x86_ops->update_cr8_intercept = NULL;
2952        else {
2953                kvm_x86_ops->hwapic_irr_update = NULL;
2954                kvm_x86_ops->deliver_posted_interrupt = NULL;
2955                kvm_x86_ops->sync_pir_to_irr = vmx_sync_pir_to_irr_dummy;
2956        }
2957
2958        if (nested)
2959                nested_vmx_setup_ctls_msrs();
2960
2961        return alloc_kvm_area();
2962}
2963
2964static __exit void hardware_unsetup(void)
2965{
2966        free_kvm_area();
2967}
2968
2969static bool emulation_required(struct kvm_vcpu *vcpu)
2970{
2971        return emulate_invalid_guest_state && !guest_state_valid(vcpu);
2972}
2973
2974static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
2975                struct kvm_segment *save)
2976{
2977        if (!emulate_invalid_guest_state) {
2978                /*
2979                 * CS and SS RPL should be equal during guest entry according
2980                 * to VMX spec, but in reality it is not always so. Since vcpu
2981                 * is in the middle of the transition from real mode to
2982                 * protected mode it is safe to assume that RPL 0 is a good
2983                 * default value.
2984                 */
2985                if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
2986                        save->selector &= ~SELECTOR_RPL_MASK;
2987                save->dpl = save->selector & SELECTOR_RPL_MASK;
2988                save->s = 1;
2989        }
2990        vmx_set_segment(vcpu, save, seg);
2991}
2992
2993static void enter_pmode(struct kvm_vcpu *vcpu)
2994{
2995        unsigned long flags;
2996        struct vcpu_vmx *vmx = to_vmx(vcpu);
2997
2998        /*
2999         * Update real mode segment cache. It may be not up-to-date if sement
3000         * register was written while vcpu was in a guest mode.
3001         */
3002        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3003        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3004        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3005        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3006        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3007        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3008
3009        vmx->rmode.vm86_active = 0;
3010
3011        vmx_segment_cache_clear(vmx);
3012
3013        vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3014
3015        flags = vmcs_readl(GUEST_RFLAGS);
3016        flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3017        flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
3018        vmcs_writel(GUEST_RFLAGS, flags);
3019
3020        vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3021                        (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
3022
3023        update_exception_bitmap(vcpu);
3024
3025        fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3026        fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3027        fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3028        fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3029        fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3030        fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3031
3032        /* CPL is always 0 when CPU enters protected mode */
3033        __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3034        vmx->cpl = 0;
3035}
3036
3037static void fix_rmode_seg(int seg, struct kvm_segment *save)
3038{
3039        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3040        struct kvm_segment var = *save;
3041
3042        var.dpl = 0x3;
3043        if (seg == VCPU_SREG_CS)
3044                var.type = 0x3;
3045
3046        if (!emulate_invalid_guest_state) {
3047                var.selector = var.base >> 4;
3048                var.base = var.base & 0xffff0;
3049                var.limit = 0xffff;
3050                var.g = 0;
3051                var.db = 0;
3052                var.present = 1;
3053                var.s = 1;
3054                var.l = 0;
3055                var.unusable = 0;
3056                var.type = 0x3;
3057                var.avl = 0;
3058                if (save->base & 0xf)
3059                        printk_once(KERN_WARNING "kvm: segment base is not "
3060                                        "paragraph aligned when entering "
3061                                        "protected mode (seg=%d)", seg);
3062        }
3063
3064        vmcs_write16(sf->selector, var.selector);
3065        vmcs_write32(sf->base, var.base);
3066        vmcs_write32(sf->limit, var.limit);
3067        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
3068}
3069
3070static void enter_rmode(struct kvm_vcpu *vcpu)
3071{
3072        unsigned long flags;
3073        struct vcpu_vmx *vmx = to_vmx(vcpu);
3074
3075        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3076        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3077        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3078        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3079        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3080        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3081        vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3082
3083        vmx->rmode.vm86_active = 1;
3084
3085        /*
3086         * Very old userspace does not call KVM_SET_TSS_ADDR before entering
3087         * vcpu. Warn the user that an update is overdue.
3088         */
3089        if (!vcpu->kvm->arch.tss_addr)
3090                printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3091                             "called before entering vcpu\n");
3092
3093        vmx_segment_cache_clear(vmx);
3094
3095        vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
3096        vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
3097        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3098
3099        flags = vmcs_readl(GUEST_RFLAGS);
3100        vmx->rmode.save_rflags = flags;
3101
3102        flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
3103
3104        vmcs_writel(GUEST_RFLAGS, flags);
3105        vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
3106        update_exception_bitmap(vcpu);
3107
3108        fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3109        fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3110        fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3111        fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3112        fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3113        fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3114
3115        kvm_mmu_reset_context(vcpu);
3116}
3117
3118static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3119{
3120        struct vcpu_vmx *vmx = to_vmx(vcpu);
3121        struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3122
3123        if (!msr)
3124                return;
3125
3126        /*
3127         * Force kernel_gs_base reloading before EFER changes, as control
3128         * of this msr depends on is_long_mode().
3129         */
3130        vmx_load_host_state(to_vmx(vcpu));
3131        vcpu->arch.efer = efer;
3132        if (efer & EFER_LMA) {
3133                vmcs_write32(VM_ENTRY_CONTROLS,
3134                             vmcs_read32(VM_ENTRY_CONTROLS) |
3135                             VM_ENTRY_IA32E_MODE);
3136                msr->data = efer;
3137        } else {
3138                vmcs_write32(VM_ENTRY_CONTROLS,
3139                             vmcs_read32(VM_ENTRY_CONTROLS) &
3140                             ~VM_ENTRY_IA32E_MODE);
3141
3142                msr->data = efer & ~EFER_LME;
3143        }
3144        setup_msrs(vmx);
3145}
3146
3147#ifdef CONFIG_X86_64
3148
3149static void enter_lmode(struct kvm_vcpu *vcpu)
3150{
3151        u32 guest_tr_ar;
3152
3153        vmx_segment_cache_clear(to_vmx(vcpu));
3154
3155        guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
3156        if ((guest_tr_ar & AR_TYPE_MASK) != AR_TYPE_BUSY_64_TSS) {
3157                pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3158                                     __func__);
3159                vmcs_write32(GUEST_TR_AR_BYTES,
3160                             (guest_tr_ar & ~AR_TYPE_MASK)
3161                             | AR_TYPE_BUSY_64_TSS);
3162        }
3163        vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
3164}
3165
3166static void exit_lmode(struct kvm_vcpu *vcpu)
3167{
3168        vmcs_write32(VM_ENTRY_CONTROLS,
3169                     vmcs_read32(VM_ENTRY_CONTROLS)
3170                     & ~VM_ENTRY_IA32E_MODE);
3171        vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
3172}
3173
3174#endif
3175
3176static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3177{
3178        vpid_sync_context(to_vmx(vcpu));
3179        if (enable_ept) {
3180                if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3181                        return;
3182                ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
3183        }
3184}
3185
3186static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3187{
3188        ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3189
3190        vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3191        vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3192}
3193
3194static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3195{
3196        if (enable_ept && is_paging(vcpu))
3197                vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3198        __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3199}
3200
3201static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
3202{
3203        ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3204
3205        vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3206        vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
3207}
3208
3209static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3210{
3211        if (!test_bit(VCPU_EXREG_PDPTR,
3212                      (unsigned long *)&vcpu->arch.regs_dirty))
3213                return;
3214
3215        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3216                vmcs_write64(GUEST_PDPTR0, vcpu->arch.mmu.pdptrs[0]);
3217                vmcs_write64(GUEST_PDPTR1, vcpu->arch.mmu.pdptrs[1]);
3218                vmcs_write64(GUEST_PDPTR2, vcpu->arch.mmu.pdptrs[2]);
3219                vmcs_write64(GUEST_PDPTR3, vcpu->arch.mmu.pdptrs[3]);
3220        }
3221}
3222
3223static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3224{
3225        if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
3226                vcpu->arch.mmu.pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3227                vcpu->arch.mmu.pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3228                vcpu->arch.mmu.pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3229                vcpu->arch.mmu.pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
3230        }
3231
3232        __set_bit(VCPU_EXREG_PDPTR,
3233                  (unsigned long *)&vcpu->arch.regs_avail);
3234        __set_bit(VCPU_EXREG_PDPTR,
3235                  (unsigned long *)&vcpu->arch.regs_dirty);
3236}
3237
3238static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
3239
3240static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3241                                        unsigned long cr0,
3242                                        struct kvm_vcpu *vcpu)
3243{
3244        if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3245                vmx_decache_cr3(vcpu);
3246        if (!(cr0 & X86_CR0_PG)) {
3247                /* From paging/starting to nonpaging */
3248                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3249                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
3250                             (CPU_BASED_CR3_LOAD_EXITING |
3251                              CPU_BASED_CR3_STORE_EXITING));
3252                vcpu->arch.cr0 = cr0;
3253                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3254        } else if (!is_paging(vcpu)) {
3255                /* From nonpaging to paging */
3256                vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
3257                             vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
3258                             ~(CPU_BASED_CR3_LOAD_EXITING |
3259                               CPU_BASED_CR3_STORE_EXITING));
3260                vcpu->arch.cr0 = cr0;
3261                vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
3262        }
3263
3264        if (!(cr0 & X86_CR0_WP))
3265                *hw_cr0 &= ~X86_CR0_WP;
3266}
3267
3268static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3269{
3270        struct vcpu_vmx *vmx = to_vmx(vcpu);
3271        unsigned long hw_cr0;
3272
3273        hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3274        if (enable_unrestricted_guest)
3275                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
3276        else {
3277                hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
3278
3279                if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3280                        enter_pmode(vcpu);
3281
3282                if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3283                        enter_rmode(vcpu);
3284        }
3285
3286#ifdef CONFIG_X86_64
3287        if (vcpu->arch.efer & EFER_LME) {
3288                if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
3289                        enter_lmode(vcpu);
3290                if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
3291                        exit_lmode(vcpu);
3292        }
3293#endif
3294
3295        if (enable_ept)
3296                ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3297
3298        if (!vcpu->fpu_active)
3299                hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
3300
3301        vmcs_writel(CR0_READ_SHADOW, cr0);
3302        vmcs_writel(GUEST_CR0, hw_cr0);
3303        vcpu->arch.cr0 = cr0;
3304
3305        /* depends on vcpu->arch.cr0 to be set to a new value */
3306        vmx->emulation_required = emulation_required(vcpu);
3307}
3308
3309static u64 construct_eptp(unsigned long root_hpa)
3310{
3311        u64 eptp;
3312
3313        /* TODO write the value reading from MSR */
3314        eptp = VMX_EPT_DEFAULT_MT |
3315                VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
3316        if (enable_ept_ad_bits)
3317                eptp |= VMX_EPT_AD_ENABLE_BIT;
3318        eptp |= (root_hpa & PAGE_MASK);
3319
3320        return eptp;
3321}
3322
3323static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3324{
3325        unsigned long guest_cr3;
3326        u64 eptp;
3327
3328        guest_cr3 = cr3;
3329        if (enable_ept) {
3330                eptp = construct_eptp(cr3);
3331                vmcs_write64(EPT_POINTER, eptp);
3332                guest_cr3 = is_paging(vcpu) ? kvm_read_cr3(vcpu) :
3333                        vcpu->kvm->arch.ept_identity_map_addr;
3334                ept_load_pdptrs(vcpu);
3335        }
3336
3337        vmx_flush_tlb(vcpu);
3338        vmcs_writel(GUEST_CR3, guest_cr3);
3339}
3340
3341static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
3342{
3343        unsigned long hw_cr4 = cr4 | (to_vmx(vcpu)->rmode.vm86_active ?
3344                    KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
3345
3346        if (cr4 & X86_CR4_VMXE) {
3347                /*
3348                 * To use VMXON (and later other VMX instructions), a guest
3349                 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3350                 * So basically the check on whether to allow nested VMX
3351                 * is here.
3352                 */
3353                if (!nested_vmx_allowed(vcpu))
3354                        return 1;
3355        }
3356        if (to_vmx(vcpu)->nested.vmxon &&
3357            ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
3358                return 1;
3359
3360        vcpu->arch.cr4 = cr4;
3361        if (enable_ept) {
3362                if (!is_paging(vcpu)) {
3363                        hw_cr4 &= ~X86_CR4_PAE;
3364                        hw_cr4 |= X86_CR4_PSE;
3365                        /*
3366                         * SMEP is disabled if CPU is in non-paging mode in
3367                         * hardware. However KVM always uses paging mode to
3368                         * emulate guest non-paging mode with TDP.
3369                         * To emulate this behavior, SMEP needs to be manually
3370                         * disabled when guest switches to non-paging mode.
3371                         */
3372                        hw_cr4 &= ~X86_CR4_SMEP;
3373                } else if (!(cr4 & X86_CR4_PAE)) {
3374                        hw_cr4 &= ~X86_CR4_PAE;
3375                }
3376        }
3377
3378        vmcs_writel(CR4_READ_SHADOW, cr4);
3379        vmcs_writel(GUEST_CR4, hw_cr4);
3380        return 0;
3381}
3382
3383static void vmx_get_segment(struct kvm_vcpu *vcpu,
3384                            struct kvm_segment *var, int seg)
3385{
3386        struct vcpu_vmx *vmx = to_vmx(vcpu);
3387        u32 ar;
3388
3389        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3390                *var = vmx->rmode.segs[seg];
3391                if (seg == VCPU_SREG_TR
3392                    || var->selector == vmx_read_guest_seg_selector(vmx, seg))
3393                        return;
3394                var->base = vmx_read_guest_seg_base(vmx, seg);
3395                var->selector = vmx_read_guest_seg_selector(vmx, seg);
3396                return;
3397        }
3398        var->base = vmx_read_guest_seg_base(vmx, seg);
3399        var->limit = vmx_read_guest_seg_limit(vmx, seg);
3400        var->selector = vmx_read_guest_seg_selector(vmx, seg);
3401        ar = vmx_read_guest_seg_ar(vmx, seg);
3402        var->type = ar & 15;
3403        var->s = (ar >> 4) & 1;
3404        var->dpl = (ar >> 5) & 3;
3405        var->present = (ar >> 7) & 1;
3406        var->avl = (ar >> 12) & 1;
3407        var->l = (ar >> 13) & 1;
3408        var->db = (ar >> 14) & 1;
3409        var->g = (ar >> 15) & 1;
3410        var->unusable = (ar >> 16) & 1;
3411}
3412
3413static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3414{
3415        struct kvm_segment s;
3416
3417        if (to_vmx(vcpu)->rmode.vm86_active) {
3418                vmx_get_segment(vcpu, &s, seg);
3419                return s.base;
3420        }
3421        return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
3422}
3423
3424static int vmx_get_cpl(struct kvm_vcpu *vcpu)
3425{
3426        struct vcpu_vmx *vmx = to_vmx(vcpu);
3427
3428        if (!is_protmode(vcpu))
3429                return 0;
3430
3431        if (!is_long_mode(vcpu)
3432            && (kvm_get_rflags(vcpu) & X86_EFLAGS_VM)) /* if virtual 8086 */
3433                return 3;
3434
3435        if (!test_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail)) {
3436                __set_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3437                vmx->cpl = vmx_read_guest_seg_selector(vmx, VCPU_SREG_CS) & 3;
3438        }
3439
3440        return vmx->cpl;
3441}
3442
3443
3444static u32 vmx_segment_access_rights(struct kvm_segment *var)
3445{
3446        u32 ar;
3447
3448        if (var->unusable || !var->present)
3449                ar = 1 << 16;
3450        else {
3451                ar = var->type & 15;
3452                ar |= (var->s & 1) << 4;
3453                ar |= (var->dpl & 3) << 5;
3454                ar |= (var->present & 1) << 7;
3455                ar |= (var->avl & 1) << 12;
3456                ar |= (var->l & 1) << 13;
3457                ar |= (var->db & 1) << 14;
3458                ar |= (var->g & 1) << 15;
3459        }
3460
3461        return ar;
3462}
3463
3464static void vmx_set_segment(struct kvm_vcpu *vcpu,
3465                            struct kvm_segment *var, int seg)
3466{
3467        struct vcpu_vmx *vmx = to_vmx(vcpu);
3468        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3469
3470        vmx_segment_cache_clear(vmx);
3471        if (seg == VCPU_SREG_CS)
3472                __clear_bit(VCPU_EXREG_CPL, (ulong *)&vcpu->arch.regs_avail);
3473
3474        if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
3475                vmx->rmode.segs[seg] = *var;
3476                if (seg == VCPU_SREG_TR)
3477                        vmcs_write16(sf->selector, var->selector);
3478                else if (var->s)
3479                        fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
3480                goto out;
3481        }
3482
3483        vmcs_writel(sf->base, var->base);
3484        vmcs_write32(sf->limit, var->limit);
3485        vmcs_write16(sf->selector, var->selector);
3486
3487        /*
3488         *   Fix the "Accessed" bit in AR field of segment registers for older
3489         * qemu binaries.
3490         *   IA32 arch specifies that at the time of processor reset the
3491         * "Accessed" bit in the AR field of segment registers is 1. And qemu
3492         * is setting it to 0 in the userland code. This causes invalid guest
3493         * state vmexit when "unrestricted guest" mode is turned on.
3494         *    Fix for this setup issue in cpu_reset is being pushed in the qemu
3495         * tree. Newer qemu binaries with that qemu fix would not need this
3496         * kvm hack.
3497         */
3498        if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
3499                var->type |= 0x1; /* Accessed */
3500
3501        vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
3502
3503out:
3504        vmx->emulation_required |= emulation_required(vcpu);
3505}
3506
3507static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
3508{
3509        u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
3510
3511        *db = (ar >> 14) & 1;
3512        *l = (ar >> 13) & 1;
3513}
3514
3515static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3516{
3517        dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
3518        dt->address = vmcs_readl(GUEST_IDTR_BASE);
3519}
3520
3521static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3522{
3523        vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
3524        vmcs_writel(GUEST_IDTR_BASE, dt->address);
3525}
3526
3527static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3528{
3529        dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
3530        dt->address = vmcs_readl(GUEST_GDTR_BASE);
3531}
3532
3533static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
3534{
3535        vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
3536        vmcs_writel(GUEST_GDTR_BASE, dt->address);
3537}
3538
3539static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
3540{
3541        struct kvm_segment var;
3542        u32 ar;
3543
3544        vmx_get_segment(vcpu, &var, seg);
3545        var.dpl = 0x3;
3546        if (seg == VCPU_SREG_CS)
3547                var.type = 0x3;
3548        ar = vmx_segment_access_rights(&var);
3549
3550        if (var.base != (var.selector << 4))
3551                return false;
3552        if (var.limit != 0xffff)
3553                return false;
3554        if (ar != 0xf3)
3555                return false;
3556
3557        return true;
3558}
3559
3560static bool code_segment_valid(struct kvm_vcpu *vcpu)
3561{
3562        struct kvm_segment cs;
3563        unsigned int cs_rpl;
3564
3565        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3566        cs_rpl = cs.selector & SELECTOR_RPL_MASK;
3567
3568        if (cs.unusable)
3569                return false;
3570        if (~cs.type & (AR_TYPE_CODE_MASK|AR_TYPE_ACCESSES_MASK))
3571                return false;
3572        if (!cs.s)
3573                return false;
3574        if (cs.type & AR_TYPE_WRITEABLE_MASK) {
3575                if (cs.dpl > cs_rpl)
3576                        return false;
3577        } else {
3578                if (cs.dpl != cs_rpl)
3579                        return false;
3580        }
3581        if (!cs.present)
3582                return false;
3583
3584        /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
3585        return true;
3586}
3587
3588static bool stack_segment_valid(struct kvm_vcpu *vcpu)
3589{
3590        struct kvm_segment ss;
3591        unsigned int ss_rpl;
3592
3593        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3594        ss_rpl = ss.selector & SELECTOR_RPL_MASK;
3595
3596        if (ss.unusable)
3597                return true;
3598        if (ss.type != 3 && ss.type != 7)
3599                return false;
3600        if (!ss.s)
3601                return false;
3602        if (ss.dpl != ss_rpl) /* DPL != RPL */
3603                return false;
3604        if (!ss.present)
3605                return false;
3606
3607        return true;
3608}
3609
3610static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
3611{
3612        struct kvm_segment var;
3613        unsigned int rpl;
3614
3615        vmx_get_segment(vcpu, &var, seg);
3616        rpl = var.selector & SELECTOR_RPL_MASK;
3617
3618        if (var.unusable)
3619                return true;
3620        if (!var.s)
3621                return false;
3622        if (!var.present)
3623                return false;
3624        if (~var.type & (AR_TYPE_CODE_MASK|AR_TYPE_WRITEABLE_MASK)) {
3625                if (var.dpl < rpl) /* DPL < RPL */
3626                        return false;
3627        }
3628
3629        /* TODO: Add other members to kvm_segment_field to allow checking for other access
3630         * rights flags
3631         */
3632        return true;
3633}
3634
3635static bool tr_valid(struct kvm_vcpu *vcpu)
3636{
3637        struct kvm_segment tr;
3638
3639        vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
3640
3641        if (tr.unusable)
3642                return false;
3643        if (tr.selector & SELECTOR_TI_MASK)     /* TI = 1 */
3644                return false;
3645        if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
3646                return false;
3647        if (!tr.present)
3648                return false;
3649
3650        return true;
3651}
3652
3653static bool ldtr_valid(struct kvm_vcpu *vcpu)
3654{
3655        struct kvm_segment ldtr;
3656
3657        vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
3658
3659        if (ldtr.unusable)
3660                return true;
3661        if (ldtr.selector & SELECTOR_TI_MASK)   /* TI = 1 */
3662                return false;
3663        if (ldtr.type != 2)
3664                return false;
3665        if (!ldtr.present)
3666                return false;
3667
3668        return true;
3669}
3670
3671static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
3672{
3673        struct kvm_segment cs, ss;
3674
3675        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
3676        vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
3677
3678        return ((cs.selector & SELECTOR_RPL_MASK) ==
3679                 (ss.selector & SELECTOR_RPL_MASK));
3680}
3681
3682/*
3683 * Check if guest state is valid. Returns true if valid, false if
3684 * not.
3685 * We assume that registers are always usable
3686 */
3687static bool guest_state_valid(struct kvm_vcpu *vcpu)
3688{
3689        if (enable_unrestricted_guest)
3690                return true;
3691
3692        /* real mode guest state checks */
3693        if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
3694                if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
3695                        return false;
3696                if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
3697                        return false;
3698                if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
3699                        return false;
3700                if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
3701                        return false;
3702                if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
3703                        return false;
3704                if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
3705                        return false;
3706        } else {
3707        /* protected mode guest state checks */
3708                if (!cs_ss_rpl_check(vcpu))
3709                        return false;
3710                if (!code_segment_valid(vcpu))
3711                        return false;
3712                if (!stack_segment_valid(vcpu))
3713                        return false;
3714                if (!data_segment_valid(vcpu, VCPU_SREG_DS))
3715                        return false;
3716                if (!data_segment_valid(vcpu, VCPU_SREG_ES))
3717                        return false;
3718                if (!data_segment_valid(vcpu, VCPU_SREG_FS))
3719                        return false;
3720                if (!data_segment_valid(vcpu, VCPU_SREG_GS))
3721                        return false;
3722                if (!tr_valid(vcpu))
3723                        return false;
3724                if (!ldtr_valid(vcpu))
3725                        return false;
3726        }
3727        /* TODO:
3728         * - Add checks on RIP
3729         * - Add checks on RFLAGS
3730         */
3731
3732        return true;
3733}
3734
3735static int init_rmode_tss(struct kvm *kvm)
3736{
3737        gfn_t fn;
3738        u16 data = 0;
3739        int r, idx, ret = 0;
3740
3741        idx = srcu_read_lock(&kvm->srcu);
3742        fn = kvm->arch.tss_addr >> PAGE_SHIFT;
3743        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3744        if (r < 0)
3745                goto out;
3746        data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
3747        r = kvm_write_guest_page(kvm, fn++, &data,
3748                        TSS_IOPB_BASE_OFFSET, sizeof(u16));
3749        if (r < 0)
3750                goto out;
3751        r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
3752        if (r < 0)
3753                goto out;
3754        r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
3755        if (r < 0)
3756                goto out;
3757        data = ~0;
3758        r = kvm_write_guest_page(kvm, fn, &data,
3759                                 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
3760                                 sizeof(u8));
3761        if (r < 0)
3762                goto out;
3763
3764        ret = 1;
3765out:
3766        srcu_read_unlock(&kvm->srcu, idx);
3767        return ret;
3768}
3769
3770static int init_rmode_identity_map(struct kvm *kvm)
3771{
3772        int i, idx, r, ret;
3773        pfn_t identity_map_pfn;
3774        u32 tmp;
3775
3776        if (!enable_ept)
3777                return 1;
3778        if (unlikely(!kvm->arch.ept_identity_pagetable)) {
3779                printk(KERN_ERR "EPT: identity-mapping pagetable "
3780                        "haven't been allocated!\n");
3781                return 0;
3782        }
3783        if (likely(kvm->arch.ept_identity_pagetable_done))
3784                return 1;
3785        ret = 0;
3786        identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
3787        idx = srcu_read_lock(&kvm->srcu);
3788        r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
3789        if (r < 0)
3790                goto out;
3791        /* Set up identity-mapping pagetable for EPT in real mode */
3792        for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
3793                tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
3794                        _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
3795                r = kvm_write_guest_page(kvm, identity_map_pfn,
3796                                &tmp, i * sizeof(tmp), sizeof(tmp));
3797                if (r < 0)
3798                        goto out;
3799        }
3800        kvm->arch.ept_identity_pagetable_done = true;
3801        ret = 1;
3802out:
3803        srcu_read_unlock(&kvm->srcu, idx);
3804        return ret;
3805}
3806
3807static void seg_setup(int seg)
3808{
3809        const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3810        unsigned int ar;
3811
3812        vmcs_write16(sf->selector, 0);
3813        vmcs_writel(sf->base, 0);
3814        vmcs_write32(sf->limit, 0xffff);
3815        ar = 0x93;
3816        if (seg == VCPU_SREG_CS)
3817                ar |= 0x08; /* code segment */
3818
3819        vmcs_write32(sf->ar_bytes, ar);
3820}
3821
3822static int alloc_apic_access_page(struct kvm *kvm)
3823{
3824        struct page *page;
3825        struct kvm_userspace_memory_region kvm_userspace_mem;
3826        int r = 0;
3827
3828        mutex_lock(&kvm->slots_lock);
3829        if (kvm->arch.apic_access_page)
3830                goto out;
3831        kvm_userspace_mem.slot = APIC_ACCESS_PAGE_PRIVATE_MEMSLOT;
3832        kvm_userspace_mem.flags = 0;
3833        kvm_userspace_mem.guest_phys_addr = 0xfee00000ULL;
3834        kvm_userspace_mem.memory_size = PAGE_SIZE;
3835        r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3836        if (r)
3837                goto out;
3838
3839        page = gfn_to_page(kvm, 0xfee00);
3840        if (is_error_page(page)) {
3841                r = -EFAULT;
3842                goto out;
3843        }
3844
3845        kvm->arch.apic_access_page = page;
3846out:
3847        mutex_unlock(&kvm->slots_lock);
3848        return r;
3849}
3850
3851static int alloc_identity_pagetable(struct kvm *kvm)
3852{
3853        struct page *page;
3854        struct kvm_userspace_memory_region kvm_userspace_mem;
3855        int r = 0;
3856
3857        mutex_lock(&kvm->slots_lock);
3858        if (kvm->arch.ept_identity_pagetable)
3859                goto out;
3860        kvm_userspace_mem.slot = IDENTITY_PAGETABLE_PRIVATE_MEMSLOT;
3861        kvm_userspace_mem.flags = 0;
3862        kvm_userspace_mem.guest_phys_addr =
3863                kvm->arch.ept_identity_map_addr;
3864        kvm_userspace_mem.memory_size = PAGE_SIZE;
3865        r = __kvm_set_memory_region(kvm, &kvm_userspace_mem);
3866        if (r)
3867                goto out;
3868
3869        page = gfn_to_page(kvm, kvm->arch.ept_identity_map_addr >> PAGE_SHIFT);
3870        if (is_error_page(page)) {
3871                r = -EFAULT;
3872                goto out;
3873        }
3874
3875        kvm->arch.ept_identity_pagetable = page;
3876out:
3877        mutex_unlock(&kvm->slots_lock);
3878        return r;
3879}
3880
3881static void allocate_vpid(struct vcpu_vmx *vmx)
3882{
3883        int vpid;
3884
3885        vmx->vpid = 0;
3886        if (!enable_vpid)
3887                return;
3888        spin_lock(&vmx_vpid_lock);
3889        vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
3890        if (vpid < VMX_NR_VPIDS) {
3891                vmx->vpid = vpid;
3892                __set_bit(vpid, vmx_vpid_bitmap);
3893        }
3894        spin_unlock(&vmx_vpid_lock);
3895}
3896
3897static void free_vpid(struct vcpu_vmx *vmx)
3898{
3899        if (!enable_vpid)
3900                return;
3901        spin_lock(&vmx_vpid_lock);
3902        if (vmx->vpid != 0)
3903                __clear_bit(vmx->vpid, vmx_vpid_bitmap);
3904        spin_unlock(&vmx_vpid_lock);
3905}
3906
3907#define MSR_TYPE_R      1
3908#define MSR_TYPE_W      2
3909static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
3910                                                u32 msr, int type)
3911{
3912        int f = sizeof(unsigned long);
3913
3914        if (!cpu_has_vmx_msr_bitmap())
3915                return;
3916
3917        /*
3918         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3919         * have the write-low and read-high bitmap offsets the wrong way round.
3920         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3921         */
3922        if (msr <= 0x1fff) {
3923                if (type & MSR_TYPE_R)
3924                        /* read-low */
3925                        __clear_bit(msr, msr_bitmap + 0x000 / f);
3926
3927                if (type & MSR_TYPE_W)
3928                        /* write-low */
3929                        __clear_bit(msr, msr_bitmap + 0x800 / f);
3930
3931        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3932                msr &= 0x1fff;
3933                if (type & MSR_TYPE_R)
3934                        /* read-high */
3935                        __clear_bit(msr, msr_bitmap + 0x400 / f);
3936
3937                if (type & MSR_TYPE_W)
3938                        /* write-high */
3939                        __clear_bit(msr, msr_bitmap + 0xc00 / f);
3940
3941        }
3942}
3943
3944static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
3945                                                u32 msr, int type)
3946{
3947        int f = sizeof(unsigned long);
3948
3949        if (!cpu_has_vmx_msr_bitmap())
3950                return;
3951
3952        /*
3953         * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
3954         * have the write-low and read-high bitmap offsets the wrong way round.
3955         * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
3956         */
3957        if (msr <= 0x1fff) {
3958                if (type & MSR_TYPE_R)
3959                        /* read-low */
3960                        __set_bit(msr, msr_bitmap + 0x000 / f);
3961
3962                if (type & MSR_TYPE_W)
3963                        /* write-low */
3964                        __set_bit(msr, msr_bitmap + 0x800 / f);
3965
3966        } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
3967                msr &= 0x1fff;
3968                if (type & MSR_TYPE_R)
3969                        /* read-high */
3970                        __set_bit(msr, msr_bitmap + 0x400 / f);
3971
3972                if (type & MSR_TYPE_W)
3973                        /* write-high */
3974                        __set_bit(msr, msr_bitmap + 0xc00 / f);
3975
3976        }
3977}
3978
3979static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
3980{
3981        if (!longmode_only)
3982                __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
3983                                                msr, MSR_TYPE_R | MSR_TYPE_W);
3984        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
3985                                                msr, MSR_TYPE_R | MSR_TYPE_W);
3986}
3987
3988static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
3989{
3990        __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3991                        msr, MSR_TYPE_R);
3992        __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
3993                        msr, MSR_TYPE_R);
3994}
3995
3996static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
3997{
3998        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
3999                        msr, MSR_TYPE_R);
4000        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4001                        msr, MSR_TYPE_R);
4002}
4003
4004static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4005{
4006        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4007                        msr, MSR_TYPE_W);
4008        __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4009                        msr, MSR_TYPE_W);
4010}
4011
4012static int vmx_vm_has_apicv(struct kvm *kvm)
4013{
4014        return enable_apicv && irqchip_in_kernel(kvm);
4015}
4016
4017/*
4018 * Send interrupt to vcpu via posted interrupt way.
4019 * 1. If target vcpu is running(non-root mode), send posted interrupt
4020 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4021 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4022 * interrupt from PIR in next vmentry.
4023 */
4024static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4025{
4026        struct vcpu_vmx *vmx = to_vmx(vcpu);
4027        int r;
4028
4029        if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4030                return;
4031
4032        r = pi_test_and_set_on(&vmx->pi_desc);
4033        kvm_make_request(KVM_REQ_EVENT, vcpu);
4034#ifdef CONFIG_SMP
4035        if (!r && (vcpu->mode == IN_GUEST_MODE))
4036                apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4037                                POSTED_INTR_VECTOR);
4038        else
4039#endif
4040                kvm_vcpu_kick(vcpu);
4041}
4042
4043static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4044{
4045        struct vcpu_vmx *vmx = to_vmx(vcpu);
4046
4047        if (!pi_test_and_clear_on(&vmx->pi_desc))
4048                return;
4049
4050        kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4051}
4052
4053static void vmx_sync_pir_to_irr_dummy(struct kvm_vcpu *vcpu)
4054{
4055        return;
4056}
4057
4058/*
4059 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4060 * will not change in the lifetime of the guest.
4061 * Note that host-state that does change is set elsewhere. E.g., host-state
4062 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4063 */
4064static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
4065{
4066        u32 low32, high32;
4067        unsigned long tmpl;
4068        struct desc_ptr dt;
4069
4070        vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS);  /* 22.2.3 */
4071        vmcs_writel(HOST_CR4, read_cr4());  /* 22.2.3, 22.2.5 */
4072        vmcs_writel(HOST_CR3, read_cr3());  /* 22.2.3  FIXME: shadow tables */
4073
4074        vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS);  /* 22.2.4 */
4075#ifdef CONFIG_X86_64
4076        /*
4077         * Load null selectors, so we can avoid reloading them in
4078         * __vmx_load_host_state(), in case userspace uses the null selectors
4079         * too (the expected case).
4080         */
4081        vmcs_write16(HOST_DS_SELECTOR, 0);
4082        vmcs_write16(HOST_ES_SELECTOR, 0);
4083#else
4084        vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4085        vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4086#endif
4087        vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS);  /* 22.2.4 */
4088        vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8);  /* 22.2.4 */
4089
4090        native_store_idt(&dt);
4091        vmcs_writel(HOST_IDTR_BASE, dt.address);   /* 22.2.4 */
4092        vmx->host_idt_base = dt.address;
4093
4094        vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
4095
4096        rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4097        vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4098        rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4099        vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl);   /* 22.2.3 */
4100
4101        if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4102                rdmsr(MSR_IA32_CR_PAT, low32, high32);
4103                vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4104        }
4105}
4106
4107static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4108{
4109        vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4110        if (enable_ept)
4111                vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
4112        if (is_guest_mode(&vmx->vcpu))
4113                vmx->vcpu.arch.cr4_guest_owned_bits &=
4114                        ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
4115        vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4116}
4117
4118static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4119{
4120        u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4121
4122        if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4123                pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4124        return pin_based_exec_ctrl;
4125}
4126
4127static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4128{
4129        u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
4130        if (!vm_need_tpr_shadow(vmx->vcpu.kvm)) {
4131                exec_control &= ~CPU_BASED_TPR_SHADOW;
4132#ifdef CONFIG_X86_64
4133                exec_control |= CPU_BASED_CR8_STORE_EXITING |
4134                                CPU_BASED_CR8_LOAD_EXITING;
4135#endif
4136        }
4137        if (!enable_ept)
4138                exec_control |= CPU_BASED_CR3_STORE_EXITING |
4139                                CPU_BASED_CR3_LOAD_EXITING  |
4140                                CPU_BASED_INVLPG_EXITING;
4141        return exec_control;
4142}
4143
4144static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4145{
4146        u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
4147        if (!vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4148                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4149        if (vmx->vpid == 0)
4150                exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4151        if (!enable_ept) {
4152                exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4153                enable_unrestricted_guest = 0;
4154                /* Enable INVPCID for non-ept guests may cause performance regression. */
4155                exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
4156        }
4157        if (!enable_unrestricted_guest)
4158                exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4159        if (!ple_gap)
4160                exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
4161        if (!vmx_vm_has_apicv(vmx->vcpu.kvm))
4162                exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4163                                  SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
4164        exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
4165        /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4166           (handle_vmptrld).
4167           We can NOT enable shadow_vmcs here because we don't have yet
4168           a current VMCS12
4169        */
4170        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
4171        return exec_control;
4172}
4173
4174static void ept_set_mmio_spte_mask(void)
4175{
4176        /*
4177         * EPT Misconfigurations can be generated if the value of bits 2:0
4178         * of an EPT paging-structure entry is 110b (write/execute).
4179         * Also, magic bits (0xffull << 49) is set to quickly identify mmio
4180         * spte.
4181         */
4182        kvm_mmu_set_mmio_spte_mask(0xffull << 49 | 0x6ull);
4183}
4184
4185/*
4186 * Sets up the vmcs for emulated real mode.
4187 */
4188static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
4189{
4190#ifdef CONFIG_X86_64
4191        unsigned long a;
4192#endif
4193        int i;
4194
4195        /* I/O */
4196        vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4197        vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
4198
4199        if (enable_shadow_vmcs) {
4200                vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4201                vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4202        }
4203        if (cpu_has_vmx_msr_bitmap())
4204                vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
4205
4206        vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4207
4208        /* Control */
4209        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4210
4211        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
4212
4213        if (cpu_has_secondary_exec_ctrls()) {
4214                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4215                                vmx_secondary_exec_control(vmx));
4216        }
4217
4218        if (vmx_vm_has_apicv(vmx->vcpu.kvm)) {
4219                vmcs_write64(EOI_EXIT_BITMAP0, 0);
4220                vmcs_write64(EOI_EXIT_BITMAP1, 0);
4221                vmcs_write64(EOI_EXIT_BITMAP2, 0);
4222                vmcs_write64(EOI_EXIT_BITMAP3, 0);
4223
4224                vmcs_write16(GUEST_INTR_STATUS, 0);
4225
4226                vmcs_write64(POSTED_INTR_NV, POSTED_INTR_VECTOR);
4227                vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
4228        }
4229
4230        if (ple_gap) {
4231                vmcs_write32(PLE_GAP, ple_gap);
4232                vmcs_write32(PLE_WINDOW, ple_window);
4233        }
4234
4235        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4236        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
4237        vmcs_write32(CR3_TARGET_COUNT, 0);           /* 22.2.1 */
4238
4239        vmcs_write16(HOST_FS_SELECTOR, 0);            /* 22.2.4 */
4240        vmcs_write16(HOST_GS_SELECTOR, 0);            /* 22.2.4 */
4241        vmx_set_constant_host_state(vmx);
4242#ifdef CONFIG_X86_64
4243        rdmsrl(MSR_FS_BASE, a);
4244        vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4245        rdmsrl(MSR_GS_BASE, a);
4246        vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4247#else
4248        vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4249        vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4250#endif
4251
4252        vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4253        vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
4254        vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
4255        vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
4256        vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
4257
4258        if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4259                u32 msr_low, msr_high;
4260                u64 host_pat;
4261                rdmsr(MSR_IA32_CR_PAT, msr_low, msr_high);
4262                host_pat = msr_low | ((u64) msr_high << 32);
4263                /* Write the default value follow host pat */
4264                vmcs_write64(GUEST_IA32_PAT, host_pat);
4265                /* Keep arch.pat sync with GUEST_IA32_PAT */
4266                vmx->vcpu.arch.pat = host_pat;
4267        }
4268
4269        for (i = 0; i < NR_VMX_MSR; ++i) {
4270                u32 index = vmx_msr_index[i];
4271                u32 data_low, data_high;
4272                int j = vmx->nmsrs;
4273
4274                if (rdmsr_safe(index, &data_low, &data_high) < 0)
4275                        continue;
4276                if (wrmsr_safe(index, data_low, data_high) < 0)
4277                        continue;
4278                vmx->guest_msrs[j].index = i;
4279                vmx->guest_msrs[j].data = 0;
4280                vmx->guest_msrs[j].mask = -1ull;
4281                ++vmx->nmsrs;
4282        }
4283
4284        vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
4285
4286        /* 22.2.1, 20.8.1 */
4287        vmcs_write32(VM_ENTRY_CONTROLS, vmcs_config.vmentry_ctrl);
4288
4289        vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
4290        set_cr4_guest_host_mask(vmx);
4291
4292        return 0;
4293}
4294
4295static void vmx_vcpu_reset(struct kvm_vcpu *vcpu)
4296{
4297        struct vcpu_vmx *vmx = to_vmx(vcpu);
4298        u64 msr;
4299
4300        vmx->rmode.vm86_active = 0;
4301
4302        vmx->soft_vnmi_blocked = 0;
4303
4304        vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
4305        kvm_set_cr8(&vmx->vcpu, 0);
4306        msr = 0xfee00000 | MSR_IA32_APICBASE_ENABLE;
4307        if (kvm_vcpu_is_bsp(&vmx->vcpu))
4308                msr |= MSR_IA32_APICBASE_BSP;
4309        kvm_set_apic_base(&vmx->vcpu, msr);
4310
4311        vmx_segment_cache_clear(vmx);
4312
4313        seg_setup(VCPU_SREG_CS);
4314        vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
4315        vmcs_write32(GUEST_CS_BASE, 0xffff0000);
4316
4317        seg_setup(VCPU_SREG_DS);
4318        seg_setup(VCPU_SREG_ES);
4319        seg_setup(VCPU_SREG_FS);
4320        seg_setup(VCPU_SREG_GS);
4321        seg_setup(VCPU_SREG_SS);
4322
4323        vmcs_write16(GUEST_TR_SELECTOR, 0);
4324        vmcs_writel(GUEST_TR_BASE, 0);
4325        vmcs_write32(GUEST_TR_LIMIT, 0xffff);
4326        vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
4327
4328        vmcs_write16(GUEST_LDTR_SELECTOR, 0);
4329        vmcs_writel(GUEST_LDTR_BASE, 0);
4330        vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
4331        vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
4332
4333        vmcs_write32(GUEST_SYSENTER_CS, 0);
4334        vmcs_writel(GUEST_SYSENTER_ESP, 0);
4335        vmcs_writel(GUEST_SYSENTER_EIP, 0);
4336
4337        vmcs_writel(GUEST_RFLAGS, 0x02);
4338        kvm_rip_write(vcpu, 0xfff0);
4339
4340        vmcs_writel(GUEST_GDTR_BASE, 0);
4341        vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
4342
4343        vmcs_writel(GUEST_IDTR_BASE, 0);
4344        vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
4345
4346        vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
4347        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
4348        vmcs_write32(GUEST_PENDING_DBG_EXCEPTIONS, 0);
4349
4350        /* Special registers */
4351        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
4352
4353        setup_msrs(vmx);
4354
4355        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);  /* 22.2.1 */
4356
4357        if (cpu_has_vmx_tpr_shadow()) {
4358                vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
4359                if (vm_need_tpr_shadow(vmx->vcpu.kvm))
4360                        vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
4361                                     __pa(vmx->vcpu.arch.apic->regs));
4362                vmcs_write32(TPR_THRESHOLD, 0);
4363        }
4364
4365        if (vm_need_virtualize_apic_accesses(vmx->vcpu.kvm))
4366                vmcs_write64(APIC_ACCESS_ADDR,
4367                             page_to_phys(vmx->vcpu.kvm->arch.apic_access_page));
4368
4369        if (vmx_vm_has_apicv(vcpu->kvm))
4370                memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
4371
4372        if (vmx->vpid != 0)
4373                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
4374
4375        vmx->vcpu.arch.cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
4376        vmx_set_cr0(&vmx->vcpu, kvm_read_cr0(vcpu)); /* enter rmode */
4377        vmx_set_cr4(&vmx->vcpu, 0);
4378        vmx_set_efer(&vmx->vcpu, 0);
4379        vmx_fpu_activate(&vmx->vcpu);
4380        update_exception_bitmap(&vmx->vcpu);
4381
4382        vpid_sync_context(vmx);
4383}
4384
4385/*
4386 * In nested virtualization, check if L1 asked to exit on external interrupts.
4387 * For most existing hypervisors, this will always return true.
4388 */
4389static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
4390{
4391        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4392                PIN_BASED_EXT_INTR_MASK;
4393}
4394
4395static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
4396{
4397        return get_vmcs12(vcpu)->pin_based_vm_exec_control &
4398                PIN_BASED_NMI_EXITING;
4399}
4400
4401static int enable_irq_window(struct kvm_vcpu *vcpu)
4402{
4403        u32 cpu_based_vm_exec_control;
4404
4405        if (is_guest_mode(vcpu) && nested_exit_on_intr(vcpu))
4406                /*
4407                 * We get here if vmx_interrupt_allowed() said we can't
4408                 * inject to L1 now because L2 must run. The caller will have
4409                 * to make L2 exit right after entry, so we can inject to L1
4410                 * more promptly.
4411                 */
4412                return -EBUSY;
4413
4414        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4415        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
4416        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4417        return 0;
4418}
4419
4420static int enable_nmi_window(struct kvm_vcpu *vcpu)
4421{
4422        u32 cpu_based_vm_exec_control;
4423
4424        if (!cpu_has_virtual_nmis())
4425                return enable_irq_window(vcpu);
4426
4427        if (vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI)
4428                return enable_irq_window(vcpu);
4429
4430        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
4431        cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
4432        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
4433        return 0;
4434}
4435
4436static void vmx_inject_irq(struct kvm_vcpu *vcpu)
4437{
4438        struct vcpu_vmx *vmx = to_vmx(vcpu);
4439        uint32_t intr;
4440        int irq = vcpu->arch.interrupt.nr;
4441
4442        trace_kvm_inj_virq(irq);
4443
4444        ++vcpu->stat.irq_injections;
4445        if (vmx->rmode.vm86_active) {
4446                int inc_eip = 0;
4447                if (vcpu->arch.interrupt.soft)
4448                        inc_eip = vcpu->arch.event_exit_inst_len;
4449                if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
4450                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4451                return;
4452        }
4453        intr = irq | INTR_INFO_VALID_MASK;
4454        if (vcpu->arch.interrupt.soft) {
4455                intr |= INTR_TYPE_SOFT_INTR;
4456                vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
4457                             vmx->vcpu.arch.event_exit_inst_len);
4458        } else
4459                intr |= INTR_TYPE_EXT_INTR;
4460        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
4461}
4462
4463static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
4464{
4465        struct vcpu_vmx *vmx = to_vmx(vcpu);
4466
4467        if (is_guest_mode(vcpu))
4468                return;
4469
4470        if (!cpu_has_virtual_nmis()) {
4471                /*
4472                 * Tracking the NMI-blocked state in software is built upon
4473                 * finding the next open IRQ window. This, in turn, depends on
4474                 * well-behaving guests: They have to keep IRQs disabled at
4475                 * least as long as the NMI handler runs. Otherwise we may
4476                 * cause NMI nesting, maybe breaking the guest. But as this is
4477                 * highly unlikely, we can live with the residual risk.
4478                 */
4479                vmx->soft_vnmi_blocked = 1;
4480                vmx->vnmi_blocked_time = 0;
4481        }
4482
4483        ++vcpu->stat.nmi_injections;
4484        vmx->nmi_known_unmasked = false;
4485        if (vmx->rmode.vm86_active) {
4486                if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
4487                        kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
4488                return;
4489        }
4490        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
4491                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
4492}
4493
4494static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
4495{
4496        if (!cpu_has_virtual_nmis())
4497                return to_vmx(vcpu)->soft_vnmi_blocked;
4498        if (to_vmx(vcpu)->nmi_known_unmasked)
4499                return false;
4500        return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
4501}
4502
4503static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
4504{
4505        struct vcpu_vmx *vmx = to_vmx(vcpu);
4506
4507        if (!cpu_has_virtual_nmis()) {
4508                if (vmx->soft_vnmi_blocked != masked) {
4509                        vmx->soft_vnmi_blocked = masked;
4510                        vmx->vnmi_blocked_time = 0;
4511                }
4512        } else {
4513                vmx->nmi_known_unmasked = !masked;
4514                if (masked)
4515                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
4516                                      GUEST_INTR_STATE_NMI);
4517                else
4518                        vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
4519                                        GUEST_INTR_STATE_NMI);
4520        }
4521}
4522
4523static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
4524{
4525        if (is_guest_mode(vcpu)) {
4526                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4527
4528                if (to_vmx(vcpu)->nested.nested_run_pending)
4529                        return 0;
4530                if (nested_exit_on_nmi(vcpu)) {
4531                        nested_vmx_vmexit(vcpu);
4532                        vmcs12->vm_exit_reason = EXIT_REASON_EXCEPTION_NMI;
4533                        vmcs12->vm_exit_intr_info = NMI_VECTOR |
4534                                INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK;
4535                        /*
4536                         * The NMI-triggered VM exit counts as injection:
4537                         * clear this one and block further NMIs.
4538                         */
4539                        vcpu->arch.nmi_pending = 0;
4540                        vmx_set_nmi_mask(vcpu, true);
4541                        return 0;
4542                }
4543        }
4544
4545        if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
4546                return 0;
4547
4548        return  !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4549                  (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
4550                   | GUEST_INTR_STATE_NMI));
4551}
4552
4553static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
4554{
4555        if (is_guest_mode(vcpu)) {
4556                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4557
4558                if (to_vmx(vcpu)->nested.nested_run_pending)
4559                        return 0;
4560                if (nested_exit_on_intr(vcpu)) {
4561                        nested_vmx_vmexit(vcpu);
4562                        vmcs12->vm_exit_reason =
4563                                EXIT_REASON_EXTERNAL_INTERRUPT;
4564                        vmcs12->vm_exit_intr_info = 0;
4565                        /*
4566                         * fall through to normal code, but now in L1, not L2
4567                         */
4568                }
4569        }
4570
4571        return (vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
4572                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
4573                        (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
4574}
4575
4576static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
4577{
4578        int ret;
4579        struct kvm_userspace_memory_region tss_mem = {
4580                .slot = TSS_PRIVATE_MEMSLOT,
4581                .guest_phys_addr = addr,
4582                .memory_size = PAGE_SIZE * 3,
4583                .flags = 0,
4584        };
4585
4586        ret = kvm_set_memory_region(kvm, &tss_mem);
4587        if (ret)
4588                return ret;
4589        kvm->arch.tss_addr = addr;
4590        if (!init_rmode_tss(kvm))
4591                return  -ENOMEM;
4592
4593        return 0;
4594}
4595
4596static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
4597{
4598        switch (vec) {
4599        case BP_VECTOR:
4600                /*
4601                 * Update instruction length as we may reinject the exception
4602                 * from user space while in guest debugging mode.
4603                 */
4604                to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
4605                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4606                if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
4607                        return false;
4608                /* fall through */
4609        case DB_VECTOR:
4610                if (vcpu->guest_debug &
4611                        (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
4612                        return false;
4613                /* fall through */
4614        case DE_VECTOR:
4615        case OF_VECTOR:
4616        case BR_VECTOR:
4617        case UD_VECTOR:
4618        case DF_VECTOR:
4619        case SS_VECTOR:
4620        case GP_VECTOR:
4621        case MF_VECTOR:
4622                return true;
4623        break;
4624        }
4625        return false;
4626}
4627
4628static int handle_rmode_exception(struct kvm_vcpu *vcpu,
4629                                  int vec, u32 err_code)
4630{
4631        /*
4632         * Instruction with address size override prefix opcode 0x67
4633         * Cause the #SS fault with 0 error code in VM86 mode.
4634         */
4635        if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
4636                if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
4637                        if (vcpu->arch.halt_request) {
4638                                vcpu->arch.halt_request = 0;
4639                                return kvm_emulate_halt(vcpu);
4640                        }
4641                        return 1;
4642                }
4643                return 0;
4644        }
4645
4646        /*
4647         * Forward all other exceptions that are valid in real mode.
4648         * FIXME: Breaks guest debugging in real mode, needs to be fixed with
4649         *        the required debugging infrastructure rework.
4650         */
4651        kvm_queue_exception(vcpu, vec);
4652        return 1;
4653}
4654
4655/*
4656 * Trigger machine check on the host. We assume all the MSRs are already set up
4657 * by the CPU and that we still run on the same CPU as the MCE occurred on.
4658 * We pass a fake environment to the machine check handler because we want
4659 * the guest to be always treated like user space, no matter what context
4660 * it used internally.
4661 */
4662static void kvm_machine_check(void)
4663{
4664#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
4665        struct pt_regs regs = {
4666                .cs = 3, /* Fake ring 3 no matter what the guest ran on */
4667                .flags = X86_EFLAGS_IF,
4668        };
4669
4670        do_machine_check(&regs, 0);
4671#endif
4672}
4673
4674static int handle_machine_check(struct kvm_vcpu *vcpu)
4675{
4676        /* already handled by vcpu_run */
4677        return 1;
4678}
4679
4680static int handle_exception(struct kvm_vcpu *vcpu)
4681{
4682        struct vcpu_vmx *vmx = to_vmx(vcpu);
4683        struct kvm_run *kvm_run = vcpu->run;
4684        u32 intr_info, ex_no, error_code;
4685        unsigned long cr2, rip, dr6;
4686        u32 vect_info;
4687        enum emulation_result er;
4688
4689        vect_info = vmx->idt_vectoring_info;
4690        intr_info = vmx->exit_intr_info;
4691
4692        if (is_machine_check(intr_info))
4693                return handle_machine_check(vcpu);
4694
4695        if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
4696                return 1;  /* already handled by vmx_vcpu_run() */
4697
4698        if (is_no_device(intr_info)) {
4699                vmx_fpu_activate(vcpu);
4700                return 1;
4701        }
4702
4703        if (is_invalid_opcode(intr_info)) {
4704                er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
4705                if (er != EMULATE_DONE)
4706                        kvm_queue_exception(vcpu, UD_VECTOR);
4707                return 1;
4708        }
4709
4710        error_code = 0;
4711        if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
4712                error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
4713
4714        /*
4715         * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
4716         * MMIO, it is better to report an internal error.
4717         * See the comments in vmx_handle_exit.
4718         */
4719        if ((vect_info & VECTORING_INFO_VALID_MASK) &&
4720            !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
4721                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
4722                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
4723                vcpu->run->internal.ndata = 2;
4724                vcpu->run->internal.data[0] = vect_info;
4725                vcpu->run->internal.data[1] = intr_info;
4726                return 0;
4727        }
4728
4729        if (is_page_fault(intr_info)) {
4730                /* EPT won't cause page fault directly */
4731                BUG_ON(enable_ept);
4732                cr2 = vmcs_readl(EXIT_QUALIFICATION);
4733                trace_kvm_page_fault(cr2, error_code);
4734
4735                if (kvm_event_needs_reinjection(vcpu))
4736                        kvm_mmu_unprotect_page_virt(vcpu, cr2);
4737                return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
4738        }
4739
4740        ex_no = intr_info & INTR_INFO_VECTOR_MASK;
4741
4742        if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
4743                return handle_rmode_exception(vcpu, ex_no, error_code);
4744
4745        switch (ex_no) {
4746        case DB_VECTOR:
4747                dr6 = vmcs_readl(EXIT_QUALIFICATION);
4748                if (!(vcpu->guest_debug &
4749                      (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
4750                        vcpu->arch.dr6 = dr6 | DR6_FIXED_1;
4751                        kvm_queue_exception(vcpu, DB_VECTOR);
4752                        return 1;
4753                }
4754                kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
4755                kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
4756                /* fall through */
4757        case BP_VECTOR:
4758                /*
4759                 * Update instruction length as we may reinject #BP from
4760                 * user space while in guest debugging mode. Reading it for
4761                 * #DB as well causes no harm, it is not used in that case.
4762                 */
4763                vmx->vcpu.arch.event_exit_inst_len =
4764                        vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
4765                kvm_run->exit_reason = KVM_EXIT_DEBUG;
4766                rip = kvm_rip_read(vcpu);
4767                kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
4768                kvm_run->debug.arch.exception = ex_no;
4769                break;
4770        default:
4771                kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
4772                kvm_run->ex.exception = ex_no;
4773                kvm_run->ex.error_code = error_code;
4774                break;
4775        }
4776        return 0;
4777}
4778
4779static int handle_external_interrupt(struct kvm_vcpu *vcpu)
4780{
4781        ++vcpu->stat.irq_exits;
4782        return 1;
4783}
4784
4785static int handle_triple_fault(struct kvm_vcpu *vcpu)
4786{
4787        vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
4788        return 0;
4789}
4790
4791static int handle_io(struct kvm_vcpu *vcpu)
4792{
4793        unsigned long exit_qualification;
4794        int size, in, string;
4795        unsigned port;
4796
4797        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4798        string = (exit_qualification & 16) != 0;
4799        in = (exit_qualification & 8) != 0;
4800
4801        ++vcpu->stat.io_exits;
4802
4803        if (string || in)
4804                return emulate_instruction(vcpu, 0) == EMULATE_DONE;
4805
4806        port = exit_qualification >> 16;
4807        size = (exit_qualification & 7) + 1;
4808        skip_emulated_instruction(vcpu);
4809
4810        return kvm_fast_pio_out(vcpu, size, port);
4811}
4812
4813static void
4814vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
4815{
4816        /*
4817         * Patch in the VMCALL instruction:
4818         */
4819        hypercall[0] = 0x0f;
4820        hypercall[1] = 0x01;
4821        hypercall[2] = 0xc1;
4822}
4823
4824/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
4825static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
4826{
4827        if (is_guest_mode(vcpu)) {
4828                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4829                unsigned long orig_val = val;
4830
4831                /*
4832                 * We get here when L2 changed cr0 in a way that did not change
4833                 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
4834                 * but did change L0 shadowed bits. So we first calculate the
4835                 * effective cr0 value that L1 would like to write into the
4836                 * hardware. It consists of the L2-owned bits from the new
4837                 * value combined with the L1-owned bits from L1's guest_cr0.
4838                 */
4839                val = (val & ~vmcs12->cr0_guest_host_mask) |
4840                        (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
4841
4842                /* TODO: will have to take unrestricted guest mode into
4843                 * account */
4844                if ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON)
4845                        return 1;
4846
4847                if (kvm_set_cr0(vcpu, val))
4848                        return 1;
4849                vmcs_writel(CR0_READ_SHADOW, orig_val);
4850                return 0;
4851        } else {
4852                if (to_vmx(vcpu)->nested.vmxon &&
4853                    ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
4854                        return 1;
4855                return kvm_set_cr0(vcpu, val);
4856        }
4857}
4858
4859static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
4860{
4861        if (is_guest_mode(vcpu)) {
4862                struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
4863                unsigned long orig_val = val;
4864
4865                /* analogously to handle_set_cr0 */
4866                val = (val & ~vmcs12->cr4_guest_host_mask) |
4867                        (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
4868                if (kvm_set_cr4(vcpu, val))
4869                        return 1;
4870                vmcs_writel(CR4_READ_SHADOW, orig_val);
4871                return 0;
4872        } else
4873                return kvm_set_cr4(vcpu, val);
4874}
4875
4876/* called to set cr0 as approriate for clts instruction exit. */
4877static void handle_clts(struct kvm_vcpu *vcpu)
4878{
4879        if (is_guest_mode(vcpu)) {
4880                /*
4881                 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
4882                 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
4883                 * just pretend it's off (also in arch.cr0 for fpu_activate).
4884                 */
4885                vmcs_writel(CR0_READ_SHADOW,
4886                        vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
4887                vcpu->arch.cr0 &= ~X86_CR0_TS;
4888        } else
4889                vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
4890}
4891
4892static int handle_cr(struct kvm_vcpu *vcpu)
4893{
4894        unsigned long exit_qualification, val;
4895        int cr;
4896        int reg;
4897        int err;
4898
4899        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
4900        cr = exit_qualification & 15;
4901        reg = (exit_qualification >> 8) & 15;
4902        switch ((exit_qualification >> 4) & 3) {
4903        case 0: /* mov to cr */
4904                val = kvm_register_read(vcpu, reg);
4905                trace_kvm_cr_write(cr, val);
4906                switch (cr) {
4907                case 0:
4908                        err = handle_set_cr0(vcpu, val);
4909                        kvm_complete_insn_gp(vcpu, err);
4910                        return 1;
4911                case 3:
4912                        err = kvm_set_cr3(vcpu, val);
4913                        kvm_complete_insn_gp(vcpu, err);
4914                        return 1;
4915                case 4:
4916                        err = handle_set_cr4(vcpu, val);
4917                        kvm_complete_insn_gp(vcpu, err);
4918                        return 1;
4919                case 8: {
4920                                u8 cr8_prev = kvm_get_cr8(vcpu);
4921                                u8 cr8 = kvm_register_read(vcpu, reg);
4922                                err = kvm_set_cr8(vcpu, cr8);
4923                                kvm_complete_insn_gp(vcpu, err);
4924                                if (irqchip_in_kernel(vcpu->kvm))
4925                                        return 1;
4926                                if (cr8_prev <= cr8)
4927                                        return 1;
4928                                vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
4929                                return 0;
4930                        }
4931                }
4932                break;
4933        case 2: /* clts */
4934                handle_clts(vcpu);
4935                trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
4936                skip_emulated_instruction(vcpu);
4937                vmx_fpu_activate(vcpu);
4938                return 1;
4939        case 1: /*mov from cr*/
4940                switch (cr) {
4941                case 3:
4942                        val = kvm_read_cr3(vcpu);
4943                        kvm_register_write(vcpu, reg, val);
4944                        trace_kvm_cr_read(cr, val);
4945                        skip_emulated_instruction(vcpu);
4946                        return 1;
4947                case 8:
4948                        val = kvm_get_cr8(vcpu);
4949                        kvm_register_write(vcpu, reg, val);
4950                        trace_kvm_cr_read(cr, val);
4951                        skip_emulated_instruction(vcpu);
4952                        return 1;
4953                }
4954                break;
4955        case 3: /* lmsw */
4956                val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4957                trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
4958                kvm_lmsw(vcpu, val);
4959
4960                skip_emulated_instruction(vcpu);
4961                return 1;
4962        default:
4963                break;
4964        }
4965        vcpu->run->exit_reason = 0;
4966        vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
4967               (int)(exit_qualification >> 4) & 3, cr);
4968        return 0;
4969}
4970
4971static int handle_dr(struct kvm_vcpu *vcpu)
4972{
4973        unsigned long exit_qualification;
4974        int dr, reg;
4975
4976        /* Do not handle if the CPL > 0, will trigger GP on re-entry */
4977        if (!kvm_require_cpl(vcpu, 0))
4978                return 1;
4979        dr = vmcs_readl(GUEST_DR7);
4980        if (dr & DR7_GD) {
4981                /*
4982                 * As the vm-exit takes precedence over the debug trap, we
4983                 * need to emulate the latter, either for the host or the
4984                 * guest debugging itself.
4985                 */
4986                if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
4987                        vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
4988                        vcpu->run->debug.arch.dr7 = dr;
4989                        vcpu->run->debug.arch.pc =
4990                                vmcs_readl(GUEST_CS_BASE) +
4991                                vmcs_readl(GUEST_RIP);
4992                        vcpu->run->debug.arch.exception = DB_VECTOR;
4993                        vcpu->run->exit_reason = KVM_EXIT_DEBUG;
4994                        return 0;
4995                } else {
4996                        vcpu->arch.dr7 &= ~DR7_GD;
4997                        vcpu->arch.dr6 |= DR6_BD;
4998                        vmcs_writel(GUEST_DR7, vcpu->arch.dr7);
4999                        kvm_queue_exception(vcpu, DB_VECTOR);
5000                        return 1;
5001                }
5002        }
5003
5004        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5005        dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5006        reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5007        if (exit_qualification & TYPE_MOV_FROM_DR) {
5008                unsigned long val;
5009                if (!kvm_get_dr(vcpu, dr, &val))
5010                        kvm_register_write(vcpu, reg, val);
5011        } else
5012                kvm_set_dr(vcpu, dr, vcpu->arch.regs[reg]);
5013        skip_emulated_instruction(vcpu);
5014        return 1;
5015}
5016
5017static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5018{
5019        vmcs_writel(GUEST_DR7, val);
5020}
5021
5022static int handle_cpuid(struct kvm_vcpu *vcpu)
5023{
5024        kvm_emulate_cpuid(vcpu);
5025        return 1;
5026}
5027
5028static int handle_rdmsr(struct kvm_vcpu *vcpu)
5029{
5030        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5031        u64 data;
5032
5033        if (vmx_get_msr(vcpu, ecx, &data)) {
5034                trace_kvm_msr_read_ex(ecx);
5035                kvm_inject_gp(vcpu, 0);
5036                return 1;
5037        }
5038
5039        trace_kvm_msr_read(ecx, data);
5040
5041        /* FIXME: handling of bits 32:63 of rax, rdx */
5042        vcpu->arch.regs[VCPU_REGS_RAX] = data & -1u;
5043        vcpu->arch.regs[VCPU_REGS_RDX] = (data >> 32) & -1u;
5044        skip_emulated_instruction(vcpu);
5045        return 1;
5046}
5047
5048static int handle_wrmsr(struct kvm_vcpu *vcpu)
5049{
5050        struct msr_data msr;
5051        u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5052        u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5053                | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
5054
5055        msr.data = data;
5056        msr.index = ecx;
5057        msr.host_initiated = false;
5058        if (vmx_set_msr(vcpu, &msr) != 0) {
5059                trace_kvm_msr_write_ex(ecx, data);
5060                kvm_inject_gp(vcpu, 0);
5061                return 1;
5062        }
5063
5064        trace_kvm_msr_write(ecx, data);
5065        skip_emulated_instruction(vcpu);
5066        return 1;
5067}
5068
5069static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
5070{
5071        kvm_make_request(KVM_REQ_EVENT, vcpu);
5072        return 1;
5073}
5074
5075static int handle_interrupt_window(struct kvm_vcpu *vcpu)
5076{
5077        u32 cpu_based_vm_exec_control;
5078
5079        /* clear pending irq */
5080        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5081        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5082        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5083
5084        kvm_make_request(KVM_REQ_EVENT, vcpu);
5085
5086        ++vcpu->stat.irq_window_exits;
5087
5088        /*
5089         * If the user space waits to inject interrupts, exit as soon as
5090         * possible
5091         */
5092        if (!irqchip_in_kernel(vcpu->kvm) &&
5093            vcpu->run->request_interrupt_window &&
5094            !kvm_cpu_has_interrupt(vcpu)) {
5095                vcpu->run->exit_reason = KVM_EXIT_IRQ_WINDOW_OPEN;
5096                return 0;
5097        }
5098        return 1;
5099}
5100
5101static int handle_halt(struct kvm_vcpu *vcpu)
5102{
5103        skip_emulated_instruction(vcpu);
5104        return kvm_emulate_halt(vcpu);
5105}
5106
5107static int handle_vmcall(struct kvm_vcpu *vcpu)
5108{
5109        skip_emulated_instruction(vcpu);
5110        kvm_emulate_hypercall(vcpu);
5111        return 1;
5112}
5113
5114static int handle_invd(struct kvm_vcpu *vcpu)
5115{
5116        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5117}
5118
5119static int handle_invlpg(struct kvm_vcpu *vcpu)
5120{
5121        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5122
5123        kvm_mmu_invlpg(vcpu, exit_qualification);
5124        skip_emulated_instruction(vcpu);
5125        return 1;
5126}
5127
5128static int handle_rdpmc(struct kvm_vcpu *vcpu)
5129{
5130        int err;
5131
5132        err = kvm_rdpmc(vcpu);
5133        kvm_complete_insn_gp(vcpu, err);
5134
5135        return 1;
5136}
5137
5138static int handle_wbinvd(struct kvm_vcpu *vcpu)
5139{
5140        skip_emulated_instruction(vcpu);
5141        kvm_emulate_wbinvd(vcpu);
5142        return 1;
5143}
5144
5145static int handle_xsetbv(struct kvm_vcpu *vcpu)
5146{
5147        u64 new_bv = kvm_read_edx_eax(vcpu);
5148        u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5149
5150        if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5151                skip_emulated_instruction(vcpu);
5152        return 1;
5153}
5154
5155static int handle_apic_access(struct kvm_vcpu *vcpu)
5156{
5157        if (likely(fasteoi)) {
5158                unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5159                int access_type, offset;
5160
5161                access_type = exit_qualification & APIC_ACCESS_TYPE;
5162                offset = exit_qualification & APIC_ACCESS_OFFSET;
5163                /*
5164                 * Sane guest uses MOV to write EOI, with written value
5165                 * not cared. So make a short-circuit here by avoiding
5166                 * heavy instruction emulation.
5167                 */
5168                if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5169                    (offset == APIC_EOI)) {
5170                        kvm_lapic_set_eoi(vcpu);
5171                        skip_emulated_instruction(vcpu);
5172                        return 1;
5173                }
5174        }
5175        return emulate_instruction(vcpu, 0) == EMULATE_DONE;
5176}
5177
5178static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5179{
5180        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5181        int vector = exit_qualification & 0xff;
5182
5183        /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5184        kvm_apic_set_eoi_accelerated(vcpu, vector);
5185        return 1;
5186}
5187
5188static int handle_apic_write(struct kvm_vcpu *vcpu)
5189{
5190        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5191        u32 offset = exit_qualification & 0xfff;
5192
5193        /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5194        kvm_apic_write_nodecode(vcpu, offset);
5195        return 1;
5196}
5197
5198static int handle_task_switch(struct kvm_vcpu *vcpu)
5199{
5200        struct vcpu_vmx *vmx = to_vmx(vcpu);
5201        unsigned long exit_qualification;
5202        bool has_error_code = false;
5203        u32 error_code = 0;
5204        u16 tss_selector;
5205        int reason, type, idt_v, idt_index;
5206
5207        idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
5208        idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
5209        type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
5210
5211        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5212
5213        reason = (u32)exit_qualification >> 30;
5214        if (reason == TASK_SWITCH_GATE && idt_v) {
5215                switch (type) {
5216                case INTR_TYPE_NMI_INTR:
5217                        vcpu->arch.nmi_injected = false;
5218                        vmx_set_nmi_mask(vcpu, true);
5219                        break;
5220                case INTR_TYPE_EXT_INTR:
5221                case INTR_TYPE_SOFT_INTR:
5222                        kvm_clear_interrupt_queue(vcpu);
5223                        break;
5224                case INTR_TYPE_HARD_EXCEPTION:
5225                        if (vmx->idt_vectoring_info &
5226                            VECTORING_INFO_DELIVER_CODE_MASK) {
5227                                has_error_code = true;
5228                                error_code =
5229                                        vmcs_read32(IDT_VECTORING_ERROR_CODE);
5230                        }
5231                        /* fall through */
5232                case INTR_TYPE_SOFT_EXCEPTION:
5233                        kvm_clear_exception_queue(vcpu);
5234                        break;
5235                default:
5236                        break;
5237                }
5238        }
5239        tss_selector = exit_qualification;
5240
5241        if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5242                       type != INTR_TYPE_EXT_INTR &&
5243                       type != INTR_TYPE_NMI_INTR))
5244                skip_emulated_instruction(vcpu);
5245
5246        if (kvm_task_switch(vcpu, tss_selector,
5247                            type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5248                            has_error_code, error_code) == EMULATE_FAIL) {
5249                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5250                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5251                vcpu->run->internal.ndata = 0;
5252                return 0;
5253        }
5254
5255        /* clear all local breakpoint enable flags */
5256        vmcs_writel(GUEST_DR7, vmcs_readl(GUEST_DR7) & ~55);
5257
5258        /*
5259         * TODO: What about debug traps on tss switch?
5260         *       Are we supposed to inject them and update dr6?
5261         */
5262
5263        return 1;
5264}
5265
5266static int handle_ept_violation(struct kvm_vcpu *vcpu)
5267{
5268        unsigned long exit_qualification;
5269        gpa_t gpa;
5270        u32 error_code;
5271        int gla_validity;
5272
5273        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5274
5275        gla_validity = (exit_qualification >> 7) & 0x3;
5276        if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5277                printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5278                printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5279                        (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
5280                        vmcs_readl(GUEST_LINEAR_ADDRESS));
5281                printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5282                        (long unsigned int)exit_qualification);
5283                vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5284                vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
5285                return 0;
5286        }
5287
5288        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5289        trace_kvm_page_fault(gpa, exit_qualification);
5290
5291        /* It is a write fault? */
5292        error_code = exit_qualification & (1U << 1);
5293        /* ept page table is present? */
5294        error_code |= (exit_qualification >> 3) & 0x1;
5295
5296        return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
5297}
5298
5299static u64 ept_rsvd_mask(u64 spte, int level)
5300{
5301        int i;
5302        u64 mask = 0;
5303
5304        for (i = 51; i > boot_cpu_data.x86_phys_bits; i--)
5305                mask |= (1ULL << i);
5306
5307        if (level > 2)
5308                /* bits 7:3 reserved */
5309                mask |= 0xf8;
5310        else if (level == 2) {
5311                if (spte & (1ULL << 7))
5312                        /* 2MB ref, bits 20:12 reserved */
5313                        mask |= 0x1ff000;
5314                else
5315                        /* bits 6:3 reserved */
5316                        mask |= 0x78;
5317        }
5318
5319        return mask;
5320}
5321
5322static void ept_misconfig_inspect_spte(struct kvm_vcpu *vcpu, u64 spte,
5323                                       int level)
5324{
5325        printk(KERN_ERR "%s: spte 0x%llx level %d\n", __func__, spte, level);
5326
5327        /* 010b (write-only) */
5328        WARN_ON((spte & 0x7) == 0x2);
5329
5330        /* 110b (write/execute) */
5331        WARN_ON((spte & 0x7) == 0x6);
5332
5333        /* 100b (execute-only) and value not supported by logical processor */
5334        if (!cpu_has_vmx_ept_execute_only())
5335                WARN_ON((spte & 0x7) == 0x4);
5336
5337        /* not 000b */
5338        if ((spte & 0x7)) {
5339                u64 rsvd_bits = spte & ept_rsvd_mask(spte, level);
5340
5341                if (rsvd_bits != 0) {
5342                        printk(KERN_ERR "%s: rsvd_bits = 0x%llx\n",
5343                                         __func__, rsvd_bits);
5344                        WARN_ON(1);
5345                }
5346
5347                if (level == 1 || (level == 2 && (spte & (1ULL << 7)))) {
5348                        u64 ept_mem_type = (spte & 0x38) >> 3;
5349
5350                        if (ept_mem_type == 2 || ept_mem_type == 3 ||
5351                            ept_mem_type == 7) {
5352                                printk(KERN_ERR "%s: ept_mem_type=0x%llx\n",
5353                                                __func__, ept_mem_type);
5354                                WARN_ON(1);
5355                        }
5356                }
5357        }
5358}
5359
5360static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
5361{
5362        u64 sptes[4];
5363        int nr_sptes, i, ret;
5364        gpa_t gpa;
5365
5366        gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
5367
5368        ret = handle_mmio_page_fault_common(vcpu, gpa, true);
5369        if (likely(ret == 1))
5370                return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
5371                                              EMULATE_DONE;
5372        if (unlikely(!ret))
5373                return 1;
5374
5375        /* It is the real ept misconfig */
5376        printk(KERN_ERR "EPT: Misconfiguration.\n");
5377        printk(KERN_ERR "EPT: GPA: 0x%llx\n", gpa);
5378
5379        nr_sptes = kvm_mmu_get_spte_hierarchy(vcpu, gpa, sptes);
5380
5381        for (i = PT64_ROOT_LEVEL; i > PT64_ROOT_LEVEL - nr_sptes; --i)
5382                ept_misconfig_inspect_spte(vcpu, sptes[i-1], i);
5383
5384        vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5385        vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
5386
5387        return 0;
5388}
5389
5390static int handle_nmi_window(struct kvm_vcpu *vcpu)
5391{
5392        u32 cpu_based_vm_exec_control;
5393
5394        /* clear pending NMI */
5395        cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5396        cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
5397        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5398        ++vcpu->stat.nmi_window_exits;
5399        kvm_make_request(KVM_REQ_EVENT, vcpu);
5400
5401        return 1;
5402}
5403
5404static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
5405{
5406        struct vcpu_vmx *vmx = to_vmx(vcpu);
5407        enum emulation_result err = EMULATE_DONE;
5408        int ret = 1;
5409        u32 cpu_exec_ctrl;
5410        bool intr_window_requested;
5411        unsigned count = 130;
5412
5413        cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5414        intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
5415
5416        while (!guest_state_valid(vcpu) && count-- != 0) {
5417                if (intr_window_requested && vmx_interrupt_allowed(vcpu))
5418                        return handle_interrupt_window(&vmx->vcpu);
5419
5420                if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
5421                        return 1;
5422
5423                err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
5424
5425                if (err == EMULATE_DO_MMIO) {
5426                        ret = 0;
5427                        goto out;
5428                }
5429
5430                if (err != EMULATE_DONE) {
5431                        vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5432                        vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5433                        vcpu->run->internal.ndata = 0;
5434                        return 0;
5435                }
5436
5437                if (vcpu->arch.halt_request) {
5438                        vcpu->arch.halt_request = 0;
5439                        ret = kvm_emulate_halt(vcpu);
5440                        goto out;
5441                }
5442
5443                if (signal_pending(current))
5444                        goto out;
5445                if (need_resched())
5446                        schedule();
5447        }
5448
5449        vmx->emulation_required = emulation_required(vcpu);
5450out:
5451        return ret;
5452}
5453
5454/*
5455 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
5456 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
5457 */
5458static int handle_pause(struct kvm_vcpu *vcpu)
5459{
5460        skip_emulated_instruction(vcpu);
5461        kvm_vcpu_on_spin(vcpu);
5462
5463        return 1;
5464}
5465
5466static int handle_invalid_op(struct kvm_vcpu *vcpu)
5467{
5468        kvm_queue_exception(vcpu, UD_VECTOR);
5469        return 1;
5470}
5471
5472/*
5473 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
5474 * We could reuse a single VMCS for all the L2 guests, but we also want the
5475 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
5476 * allows keeping them loaded on the processor, and in the future will allow
5477 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
5478 * every entry if they never change.
5479 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
5480 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
5481 *
5482 * The following functions allocate and free a vmcs02 in this pool.
5483 */
5484
5485/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
5486static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
5487{
5488        struct vmcs02_list *item;
5489        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5490                if (item->vmptr == vmx->nested.current_vmptr) {
5491                        list_move(&item->list, &vmx->nested.vmcs02_pool);
5492                        return &item->vmcs02;
5493                }
5494
5495        if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
5496                /* Recycle the least recently used VMCS. */
5497                item = list_entry(vmx->nested.vmcs02_pool.prev,
5498                        struct vmcs02_list, list);
5499                item->vmptr = vmx->nested.current_vmptr;
5500                list_move(&item->list, &vmx->nested.vmcs02_pool);
5501                return &item->vmcs02;
5502        }
5503
5504        /* Create a new VMCS */
5505        item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
5506        if (!item)
5507                return NULL;
5508        item->vmcs02.vmcs = alloc_vmcs();
5509        if (!item->vmcs02.vmcs) {
5510                kfree(item);
5511                return NULL;
5512        }
5513        loaded_vmcs_init(&item->vmcs02);
5514        item->vmptr = vmx->nested.current_vmptr;
5515        list_add(&(item->list), &(vmx->nested.vmcs02_pool));
5516        vmx->nested.vmcs02_num++;
5517        return &item->vmcs02;
5518}
5519
5520/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
5521static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
5522{
5523        struct vmcs02_list *item;
5524        list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
5525                if (item->vmptr == vmptr) {
5526                        free_loaded_vmcs(&item->vmcs02);
5527                        list_del(&item->list);
5528                        kfree(item);
5529                        vmx->nested.vmcs02_num--;
5530                        return;
5531                }
5532}
5533
5534/*
5535 * Free all VMCSs saved for this vcpu, except the one pointed by
5536 * vmx->loaded_vmcs. These include the VMCSs in vmcs02_pool (except the one
5537 * currently used, if running L2), and vmcs01 when running L2.
5538 */
5539static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
5540{
5541        struct vmcs02_list *item, *n;
5542        list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
5543                if (vmx->loaded_vmcs != &item->vmcs02)
5544                        free_loaded_vmcs(&item->vmcs02);
5545                list_del(&item->list);
5546                kfree(item);
5547        }
5548        vmx->nested.vmcs02_num = 0;
5549
5550        if (vmx->loaded_vmcs != &vmx->vmcs01)
5551                free_loaded_vmcs(&vmx->vmcs01);
5552}
5553
5554static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5555                                 u32 vm_instruction_error);
5556
5557/*
5558 * Emulate the VMXON instruction.
5559 * Currently, we just remember that VMX is active, and do not save or even
5560 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
5561 * do not currently need to store anything in that guest-allocated memory
5562 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
5563 * argument is different from the VMXON pointer (which the spec says they do).
5564 */
5565static int handle_vmon(struct kvm_vcpu *vcpu)
5566{
5567        struct kvm_segment cs;
5568        struct vcpu_vmx *vmx = to_vmx(vcpu);
5569        struct vmcs *shadow_vmcs;
5570
5571        /* The Intel VMX Instruction Reference lists a bunch of bits that
5572         * are prerequisite to running VMXON, most notably cr4.VMXE must be
5573         * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
5574         * Otherwise, we should fail with #UD. We test these now:
5575         */
5576        if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
5577            !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
5578            (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
5579                kvm_queue_exception(vcpu, UD_VECTOR);
5580                return 1;
5581        }
5582
5583        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5584        if (is_long_mode(vcpu) && !cs.l) {
5585                kvm_queue_exception(vcpu, UD_VECTOR);
5586                return 1;
5587        }
5588
5589        if (vmx_get_cpl(vcpu)) {
5590                kvm_inject_gp(vcpu, 0);
5591                return 1;
5592        }
5593        if (vmx->nested.vmxon) {
5594                nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
5595                skip_emulated_instruction(vcpu);
5596                return 1;
5597        }
5598        if (enable_shadow_vmcs) {
5599                shadow_vmcs = alloc_vmcs();
5600                if (!shadow_vmcs)
5601                        return -ENOMEM;
5602                /* mark vmcs as shadow */
5603                shadow_vmcs->revision_id |= (1u << 31);
5604                /* init shadow vmcs */
5605                vmcs_clear(shadow_vmcs);
5606                vmx->nested.current_shadow_vmcs = shadow_vmcs;
5607        }
5608
5609        INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
5610        vmx->nested.vmcs02_num = 0;
5611
5612        vmx->nested.vmxon = true;
5613
5614        skip_emulated_instruction(vcpu);
5615        return 1;
5616}
5617
5618/*
5619 * Intel's VMX Instruction Reference specifies a common set of prerequisites
5620 * for running VMX instructions (except VMXON, whose prerequisites are
5621 * slightly different). It also specifies what exception to inject otherwise.
5622 */
5623static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
5624{
5625        struct kvm_segment cs;
5626        struct vcpu_vmx *vmx = to_vmx(vcpu);
5627
5628        if (!vmx->nested.vmxon) {
5629                kvm_queue_exception(vcpu, UD_VECTOR);
5630                return 0;
5631        }
5632
5633        vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
5634        if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
5635            (is_long_mode(vcpu) && !cs.l)) {
5636                kvm_queue_exception(vcpu, UD_VECTOR);
5637                return 0;
5638        }
5639
5640        if (vmx_get_cpl(vcpu)) {
5641                kvm_inject_gp(vcpu, 0);
5642                return 0;
5643        }
5644
5645        return 1;
5646}
5647
5648static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
5649{
5650        u32 exec_control;
5651        if (enable_shadow_vmcs) {
5652                if (vmx->nested.current_vmcs12 != NULL) {
5653                        /* copy to memory all shadowed fields in case
5654                           they were modified */
5655                        copy_shadow_to_vmcs12(vmx);
5656                        vmx->nested.sync_shadow_vmcs = false;
5657                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
5658                        exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
5659                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
5660                        vmcs_write64(VMCS_LINK_POINTER, -1ull);
5661                }
5662        }
5663        kunmap(vmx->nested.current_vmcs12_page);
5664        nested_release_page(vmx->nested.current_vmcs12_page);
5665}
5666
5667/*
5668 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
5669 * just stops using VMX.
5670 */
5671static void free_nested(struct vcpu_vmx *vmx)
5672{
5673        if (!vmx->nested.vmxon)
5674                return;
5675        vmx->nested.vmxon = false;
5676        if (vmx->nested.current_vmptr != -1ull) {
5677                nested_release_vmcs12(vmx);
5678                vmx->nested.current_vmptr = -1ull;
5679                vmx->nested.current_vmcs12 = NULL;
5680        }
5681        if (enable_shadow_vmcs)
5682                free_vmcs(vmx->nested.current_shadow_vmcs);
5683        /* Unpin physical memory we referred to in current vmcs02 */
5684        if (vmx->nested.apic_access_page) {
5685                nested_release_page(vmx->nested.apic_access_page);
5686                vmx->nested.apic_access_page = 0;
5687        }
5688
5689        nested_free_all_saved_vmcss(vmx);
5690}
5691
5692/* Emulate the VMXOFF instruction */
5693static int handle_vmoff(struct kvm_vcpu *vcpu)
5694{
5695        if (!nested_vmx_check_permission(vcpu))
5696                return 1;
5697        free_nested(to_vmx(vcpu));
5698        skip_emulated_instruction(vcpu);
5699        return 1;
5700}
5701
5702/*
5703 * Decode the memory-address operand of a vmx instruction, as recorded on an
5704 * exit caused by such an instruction (run by a guest hypervisor).
5705 * On success, returns 0. When the operand is invalid, returns 1 and throws
5706 * #UD or #GP.
5707 */
5708static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
5709                                 unsigned long exit_qualification,
5710                                 u32 vmx_instruction_info, gva_t *ret)
5711{
5712        /*
5713         * According to Vol. 3B, "Information for VM Exits Due to Instruction
5714         * Execution", on an exit, vmx_instruction_info holds most of the
5715         * addressing components of the operand. Only the displacement part
5716         * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
5717         * For how an actual address is calculated from all these components,
5718         * refer to Vol. 1, "Operand Addressing".
5719         */
5720        int  scaling = vmx_instruction_info & 3;
5721        int  addr_size = (vmx_instruction_info >> 7) & 7;
5722        bool is_reg = vmx_instruction_info & (1u << 10);
5723        int  seg_reg = (vmx_instruction_info >> 15) & 7;
5724        int  index_reg = (vmx_instruction_info >> 18) & 0xf;
5725        bool index_is_valid = !(vmx_instruction_info & (1u << 22));
5726        int  base_reg       = (vmx_instruction_info >> 23) & 0xf;
5727        bool base_is_valid  = !(vmx_instruction_info & (1u << 27));
5728
5729        if (is_reg) {
5730                kvm_queue_exception(vcpu, UD_VECTOR);
5731                return 1;
5732        }
5733
5734        /* Addr = segment_base + offset */
5735        /* offset = base + [index * scale] + displacement */
5736        *ret = vmx_get_segment_base(vcpu, seg_reg);
5737        if (base_is_valid)
5738                *ret += kvm_register_read(vcpu, base_reg);
5739        if (index_is_valid)
5740                *ret += kvm_register_read(vcpu, index_reg)<<scaling;
5741        *ret += exit_qualification; /* holds the displacement */
5742
5743        if (addr_size == 1) /* 32 bit */
5744                *ret &= 0xffffffff;
5745
5746        /*
5747         * TODO: throw #GP (and return 1) in various cases that the VM*
5748         * instructions require it - e.g., offset beyond segment limit,
5749         * unusable or unreadable/unwritable segment, non-canonical 64-bit
5750         * address, and so on. Currently these are not checked.
5751         */
5752        return 0;
5753}
5754
5755/*
5756 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
5757 * set the success or error code of an emulated VMX instruction, as specified
5758 * by Vol 2B, VMX Instruction Reference, "Conventions".
5759 */
5760static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
5761{
5762        vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
5763                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5764                            X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
5765}
5766
5767static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
5768{
5769        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5770                        & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
5771                            X86_EFLAGS_SF | X86_EFLAGS_OF))
5772                        | X86_EFLAGS_CF);
5773}
5774
5775static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
5776                                        u32 vm_instruction_error)
5777{
5778        if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
5779                /*
5780                 * failValid writes the error number to the current VMCS, which
5781                 * can't be done there isn't a current VMCS.
5782                 */
5783                nested_vmx_failInvalid(vcpu);
5784                return;
5785        }
5786        vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
5787                        & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
5788                            X86_EFLAGS_SF | X86_EFLAGS_OF))
5789                        | X86_EFLAGS_ZF);
5790        get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
5791        /*
5792         * We don't need to force a shadow sync because
5793         * VM_INSTRUCTION_ERROR is not shadowed
5794         */
5795}
5796
5797/* Emulate the VMCLEAR instruction */
5798static int handle_vmclear(struct kvm_vcpu *vcpu)
5799{
5800        struct vcpu_vmx *vmx = to_vmx(vcpu);
5801        gva_t gva;
5802        gpa_t vmptr;
5803        struct vmcs12 *vmcs12;
5804        struct page *page;
5805        struct x86_exception e;
5806
5807        if (!nested_vmx_check_permission(vcpu))
5808                return 1;
5809
5810        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
5811                        vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
5812                return 1;
5813
5814        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
5815                                sizeof(vmptr), &e)) {
5816                kvm_inject_page_fault(vcpu, &e);
5817                return 1;
5818        }
5819
5820        if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
5821                nested_vmx_failValid(vcpu, VMXERR_VMCLEAR_INVALID_ADDRESS);
5822                skip_emulated_instruction(vcpu);
5823                return 1;
5824        }
5825
5826        if (vmptr == vmx->nested.current_vmptr) {
5827                nested_release_vmcs12(vmx);
5828                vmx->nested.current_vmptr = -1ull;
5829                vmx->nested.current_vmcs12 = NULL;
5830        }
5831
5832        page = nested_get_page(vcpu, vmptr);
5833        if (page == NULL) {
5834                /*
5835                 * For accurate processor emulation, VMCLEAR beyond available
5836                 * physical memory should do nothing at all. However, it is
5837                 * possible that a nested vmx bug, not a guest hypervisor bug,
5838                 * resulted in this case, so let's shut down before doing any
5839                 * more damage:
5840                 */
5841                kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
5842                return 1;
5843        }
5844        vmcs12 = kmap(page);
5845        vmcs12->launch_state = 0;
5846        kunmap(page);
5847        nested_release_page(page);
5848
5849        nested_free_vmcs02(vmx, vmptr);
5850
5851        skip_emulated_instruction(vcpu);
5852        nested_vmx_succeed(vcpu);
5853        return 1;
5854}
5855
5856static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
5857
5858/* Emulate the VMLAUNCH instruction */
5859static int handle_vmlaunch(struct kvm_vcpu *vcpu)
5860{
5861        return nested_vmx_run(vcpu, true);
5862}
5863
5864/* Emulate the VMRESUME instruction */
5865static int handle_vmresume(struct kvm_vcpu *vcpu)
5866{
5867
5868        return nested_vmx_run(vcpu, false);
5869}
5870
5871enum vmcs_field_type {
5872        VMCS_FIELD_TYPE_U16 = 0,
5873        VMCS_FIELD_TYPE_U64 = 1,
5874        VMCS_FIELD_TYPE_U32 = 2,
5875        VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
5876};
5877
5878static inline int vmcs_field_type(unsigned long field)
5879{
5880        if (0x1 & field)        /* the *_HIGH fields are all 32 bit */
5881                return VMCS_FIELD_TYPE_U32;
5882        return (field >> 13) & 0x3 ;
5883}
5884
5885static inline int vmcs_field_readonly(unsigned long field)
5886{
5887        return (((field >> 10) & 0x3) == 1);
5888}
5889
5890/*
5891 * Read a vmcs12 field. Since these can have varying lengths and we return
5892 * one type, we chose the biggest type (u64) and zero-extend the return value
5893 * to that size. Note that the caller, handle_vmread, might need to use only
5894 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
5895 * 64-bit fields are to be returned).
5896 */
5897static inline bool vmcs12_read_any(struct kvm_vcpu *vcpu,
5898                                        unsigned long field, u64 *ret)
5899{
5900        short offset = vmcs_field_to_offset(field);
5901        char *p;
5902
5903        if (offset < 0)
5904                return 0;
5905
5906        p = ((char *)(get_vmcs12(vcpu))) + offset;
5907
5908        switch (vmcs_field_type(field)) {
5909        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5910                *ret = *((natural_width *)p);
5911                return 1;
5912        case VMCS_FIELD_TYPE_U16:
5913                *ret = *((u16 *)p);
5914                return 1;
5915        case VMCS_FIELD_TYPE_U32:
5916                *ret = *((u32 *)p);
5917                return 1;
5918        case VMCS_FIELD_TYPE_U64:
5919                *ret = *((u64 *)p);
5920                return 1;
5921        default:
5922                return 0; /* can never happen. */
5923        }
5924}
5925
5926
5927static inline bool vmcs12_write_any(struct kvm_vcpu *vcpu,
5928                                    unsigned long field, u64 field_value){
5929        short offset = vmcs_field_to_offset(field);
5930        char *p = ((char *) get_vmcs12(vcpu)) + offset;
5931        if (offset < 0)
5932                return false;
5933
5934        switch (vmcs_field_type(field)) {
5935        case VMCS_FIELD_TYPE_U16:
5936                *(u16 *)p = field_value;
5937                return true;
5938        case VMCS_FIELD_TYPE_U32:
5939                *(u32 *)p = field_value;
5940                return true;
5941        case VMCS_FIELD_TYPE_U64:
5942                *(u64 *)p = field_value;
5943                return true;
5944        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5945                *(natural_width *)p = field_value;
5946                return true;
5947        default:
5948                return false; /* can never happen. */
5949        }
5950
5951}
5952
5953static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
5954{
5955        int i;
5956        unsigned long field;
5957        u64 field_value;
5958        struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
5959        unsigned long *fields = (unsigned long *)shadow_read_write_fields;
5960        int num_fields = max_shadow_read_write_fields;
5961
5962        vmcs_load(shadow_vmcs);
5963
5964        for (i = 0; i < num_fields; i++) {
5965                field = fields[i];
5966                switch (vmcs_field_type(field)) {
5967                case VMCS_FIELD_TYPE_U16:
5968                        field_value = vmcs_read16(field);
5969                        break;
5970                case VMCS_FIELD_TYPE_U32:
5971                        field_value = vmcs_read32(field);
5972                        break;
5973                case VMCS_FIELD_TYPE_U64:
5974                        field_value = vmcs_read64(field);
5975                        break;
5976                case VMCS_FIELD_TYPE_NATURAL_WIDTH:
5977                        field_value = vmcs_readl(field);
5978                        break;
5979                }
5980                vmcs12_write_any(&vmx->vcpu, field, field_value);
5981        }
5982
5983        vmcs_clear(shadow_vmcs);
5984        vmcs_load(vmx->loaded_vmcs->vmcs);
5985}
5986
5987static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
5988{
5989        unsigned long *fields[] = {
5990                (unsigned long *)shadow_read_write_fields,
5991                (unsigned long *)shadow_read_only_fields
5992        };
5993        int num_lists =  ARRAY_SIZE(fields);
5994        int max_fields[] = {
5995                max_shadow_read_write_fields,
5996                max_shadow_read_only_fields
5997        };
5998        int i, q;
5999        unsigned long field;
6000        u64 field_value = 0;
6001        struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
6002
6003        vmcs_load(shadow_vmcs);
6004
6005        for (q = 0; q < num_lists; q++) {
6006                for (i = 0; i < max_fields[q]; i++) {
6007                        field = fields[q][i];
6008                        vmcs12_read_any(&vmx->vcpu, field, &field_value);
6009
6010                        switch (vmcs_field_type(field)) {
6011                        case VMCS_FIELD_TYPE_U16:
6012                                vmcs_write16(field, (u16)field_value);
6013                                break;
6014                        case VMCS_FIELD_TYPE_U32:
6015                                vmcs_write32(field, (u32)field_value);
6016                                break;
6017                        case VMCS_FIELD_TYPE_U64:
6018                                vmcs_write64(field, (u64)field_value);
6019                                break;
6020                        case VMCS_FIELD_TYPE_NATURAL_WIDTH:
6021                                vmcs_writel(field, (long)field_value);
6022                                break;
6023                        }
6024                }
6025        }
6026
6027        vmcs_clear(shadow_vmcs);
6028        vmcs_load(vmx->loaded_vmcs->vmcs);
6029}
6030
6031/*
6032 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
6033 * used before) all generate the same failure when it is missing.
6034 */
6035static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
6036{
6037        struct vcpu_vmx *vmx = to_vmx(vcpu);
6038        if (vmx->nested.current_vmptr == -1ull) {
6039                nested_vmx_failInvalid(vcpu);
6040                skip_emulated_instruction(vcpu);
6041                return 0;
6042        }
6043        return 1;
6044}
6045
6046static int handle_vmread(struct kvm_vcpu *vcpu)
6047{
6048        unsigned long field;
6049        u64 field_value;
6050        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6051        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6052        gva_t gva = 0;
6053
6054        if (!nested_vmx_check_permission(vcpu) ||
6055            !nested_vmx_check_vmcs12(vcpu))
6056                return 1;
6057
6058        /* Decode instruction info and find the field to read */
6059        field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6060        /* Read the field, zero-extended to a u64 field_value */
6061        if (!vmcs12_read_any(vcpu, field, &field_value)) {
6062                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6063                skip_emulated_instruction(vcpu);
6064                return 1;
6065        }
6066        /*
6067         * Now copy part of this value to register or memory, as requested.
6068         * Note that the number of bits actually copied is 32 or 64 depending
6069         * on the guest's mode (32 or 64 bit), not on the given field's length.
6070         */
6071        if (vmx_instruction_info & (1u << 10)) {
6072                kvm_register_write(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
6073                        field_value);
6074        } else {
6075                if (get_vmx_mem_address(vcpu, exit_qualification,
6076                                vmx_instruction_info, &gva))
6077                        return 1;
6078                /* _system ok, as nested_vmx_check_permission verified cpl=0 */
6079                kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
6080                             &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
6081        }
6082
6083        nested_vmx_succeed(vcpu);
6084        skip_emulated_instruction(vcpu);
6085        return 1;
6086}
6087
6088
6089static int handle_vmwrite(struct kvm_vcpu *vcpu)
6090{
6091        unsigned long field;
6092        gva_t gva;
6093        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6094        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6095        /* The value to write might be 32 or 64 bits, depending on L1's long
6096         * mode, and eventually we need to write that into a field of several
6097         * possible lengths. The code below first zero-extends the value to 64
6098         * bit (field_value), and then copies only the approriate number of
6099         * bits into the vmcs12 field.
6100         */
6101        u64 field_value = 0;
6102        struct x86_exception e;
6103
6104        if (!nested_vmx_check_permission(vcpu) ||
6105            !nested_vmx_check_vmcs12(vcpu))
6106                return 1;
6107
6108        if (vmx_instruction_info & (1u << 10))
6109                field_value = kvm_register_read(vcpu,
6110                        (((vmx_instruction_info) >> 3) & 0xf));
6111        else {
6112                if (get_vmx_mem_address(vcpu, exit_qualification,
6113                                vmx_instruction_info, &gva))
6114                        return 1;
6115                if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
6116                           &field_value, (is_long_mode(vcpu) ? 8 : 4), &e)) {
6117                        kvm_inject_page_fault(vcpu, &e);
6118                        return 1;
6119                }
6120        }
6121
6122
6123        field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
6124        if (vmcs_field_readonly(field)) {
6125                nested_vmx_failValid(vcpu,
6126                        VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
6127                skip_emulated_instruction(vcpu);
6128                return 1;
6129        }
6130
6131        if (!vmcs12_write_any(vcpu, field, field_value)) {
6132                nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
6133                skip_emulated_instruction(vcpu);
6134                return 1;
6135        }
6136
6137        nested_vmx_succeed(vcpu);
6138        skip_emulated_instruction(vcpu);
6139        return 1;
6140}
6141
6142/* Emulate the VMPTRLD instruction */
6143static int handle_vmptrld(struct kvm_vcpu *vcpu)
6144{
6145        struct vcpu_vmx *vmx = to_vmx(vcpu);
6146        gva_t gva;
6147        gpa_t vmptr;
6148        struct x86_exception e;
6149        u32 exec_control;
6150
6151        if (!nested_vmx_check_permission(vcpu))
6152                return 1;
6153
6154        if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
6155                        vmcs_read32(VMX_INSTRUCTION_INFO), &gva))
6156                return 1;
6157
6158        if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6159                                sizeof(vmptr), &e)) {
6160                kvm_inject_page_fault(vcpu, &e);
6161                return 1;
6162        }
6163
6164        if (!IS_ALIGNED(vmptr, PAGE_SIZE)) {
6165                nested_vmx_failValid(vcpu, VMXERR_VMPTRLD_INVALID_ADDRESS);
6166                skip_emulated_instruction(vcpu);
6167                return 1;
6168        }
6169
6170        if (vmx->nested.current_vmptr != vmptr) {
6171                struct vmcs12 *new_vmcs12;
6172                struct page *page;
6173                page = nested_get_page(vcpu, vmptr);
6174                if (page == NULL) {
6175                        nested_vmx_failInvalid(vcpu);
6176                        skip_emulated_instruction(vcpu);
6177                        return 1;
6178                }
6179                new_vmcs12 = kmap(page);
6180                if (new_vmcs12->revision_id != VMCS12_REVISION) {
6181                        kunmap(page);
6182                        nested_release_page_clean(page);
6183                        nested_vmx_failValid(vcpu,
6184                                VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
6185                        skip_emulated_instruction(vcpu);
6186                        return 1;
6187                }
6188                if (vmx->nested.current_vmptr != -1ull)
6189                        nested_release_vmcs12(vmx);
6190
6191                vmx->nested.current_vmptr = vmptr;
6192                vmx->nested.current_vmcs12 = new_vmcs12;
6193                vmx->nested.current_vmcs12_page = page;
6194                if (enable_shadow_vmcs) {
6195                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6196                        exec_control |= SECONDARY_EXEC_SHADOW_VMCS;
6197                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
6198                        vmcs_write64(VMCS_LINK_POINTER,
6199                                     __pa(vmx->nested.current_shadow_vmcs));
6200                        vmx->nested.sync_shadow_vmcs = true;
6201                }
6202        }
6203
6204        nested_vmx_succeed(vcpu);
6205        skip_emulated_instruction(vcpu);
6206        return 1;
6207}
6208
6209/* Emulate the VMPTRST instruction */
6210static int handle_vmptrst(struct kvm_vcpu *vcpu)
6211{
6212        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6213        u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
6214        gva_t vmcs_gva;
6215        struct x86_exception e;
6216
6217        if (!nested_vmx_check_permission(vcpu))
6218                return 1;
6219
6220        if (get_vmx_mem_address(vcpu, exit_qualification,
6221                        vmx_instruction_info, &vmcs_gva))
6222                return 1;
6223        /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
6224        if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
6225                                 (void *)&to_vmx(vcpu)->nested.current_vmptr,
6226                                 sizeof(u64), &e)) {
6227                kvm_inject_page_fault(vcpu, &e);
6228                return 1;
6229        }
6230        nested_vmx_succeed(vcpu);
6231        skip_emulated_instruction(vcpu);
6232        return 1;
6233}
6234
6235/*
6236 * The exit handlers return 1 if the exit was handled fully and guest execution
6237 * may resume.  Otherwise they set the kvm_run parameter to indicate what needs
6238 * to be done to userspace and return 0.
6239 */
6240static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6241        [EXIT_REASON_EXCEPTION_NMI]           = handle_exception,
6242        [EXIT_REASON_EXTERNAL_INTERRUPT]      = handle_external_interrupt,
6243        [EXIT_REASON_TRIPLE_FAULT]            = handle_triple_fault,
6244        [EXIT_REASON_NMI_WINDOW]              = handle_nmi_window,
6245        [EXIT_REASON_IO_INSTRUCTION]          = handle_io,
6246        [EXIT_REASON_CR_ACCESS]               = handle_cr,
6247        [EXIT_REASON_DR_ACCESS]               = handle_dr,
6248        [EXIT_REASON_CPUID]                   = handle_cpuid,
6249        [EXIT_REASON_MSR_READ]                = handle_rdmsr,
6250        [EXIT_REASON_MSR_WRITE]               = handle_wrmsr,
6251        [EXIT_REASON_PENDING_INTERRUPT]       = handle_interrupt_window,
6252        [EXIT_REASON_HLT]                     = handle_halt,
6253        [EXIT_REASON_INVD]                    = handle_invd,
6254        [EXIT_REASON_INVLPG]                  = handle_invlpg,
6255        [EXIT_REASON_RDPMC]                   = handle_rdpmc,
6256        [EXIT_REASON_VMCALL]                  = handle_vmcall,
6257        [EXIT_REASON_VMCLEAR]                 = handle_vmclear,
6258        [EXIT_REASON_VMLAUNCH]                = handle_vmlaunch,
6259        [EXIT_REASON_VMPTRLD]                 = handle_vmptrld,
6260        [EXIT_REASON_VMPTRST]                 = handle_vmptrst,
6261        [EXIT_REASON_VMREAD]                  = handle_vmread,
6262        [EXIT_REASON_VMRESUME]                = handle_vmresume,
6263        [EXIT_REASON_VMWRITE]                 = handle_vmwrite,
6264        [EXIT_REASON_VMOFF]                   = handle_vmoff,
6265        [EXIT_REASON_VMON]                    = handle_vmon,
6266        [EXIT_REASON_TPR_BELOW_THRESHOLD]     = handle_tpr_below_threshold,
6267        [EXIT_REASON_APIC_ACCESS]             = handle_apic_access,
6268        [EXIT_REASON_APIC_WRITE]              = handle_apic_write,
6269        [EXIT_REASON_EOI_INDUCED]             = handle_apic_eoi_induced,
6270        [EXIT_REASON_WBINVD]                  = handle_wbinvd,
6271        [EXIT_REASON_XSETBV]                  = handle_xsetbv,
6272        [EXIT_REASON_TASK_SWITCH]             = handle_task_switch,
6273        [EXIT_REASON_MCE_DURING_VMENTRY]      = handle_machine_check,
6274        [EXIT_REASON_EPT_VIOLATION]           = handle_ept_violation,
6275        [EXIT_REASON_EPT_MISCONFIG]           = handle_ept_misconfig,
6276        [EXIT_REASON_PAUSE_INSTRUCTION]       = handle_pause,
6277        [EXIT_REASON_MWAIT_INSTRUCTION]       = handle_invalid_op,
6278        [EXIT_REASON_MONITOR_INSTRUCTION]     = handle_invalid_op,
6279};
6280
6281static const int kvm_vmx_max_exit_handlers =
6282        ARRAY_SIZE(kvm_vmx_exit_handlers);
6283
6284static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
6285                                       struct vmcs12 *vmcs12)
6286{
6287        unsigned long exit_qualification;
6288        gpa_t bitmap, last_bitmap;
6289        unsigned int port;
6290        int size;
6291        u8 b;
6292
6293        if (nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING))
6294                return 1;
6295
6296        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
6297                return 0;
6298
6299        exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6300
6301        port = exit_qualification >> 16;
6302        size = (exit_qualification & 7) + 1;
6303
6304        last_bitmap = (gpa_t)-1;
6305        b = -1;
6306
6307        while (size > 0) {
6308                if (port < 0x8000)
6309                        bitmap = vmcs12->io_bitmap_a;
6310                else if (port < 0x10000)
6311                        bitmap = vmcs12->io_bitmap_b;
6312                else
6313                        return 1;
6314                bitmap += (port & 0x7fff) / 8;
6315
6316                if (last_bitmap != bitmap)
6317                        if (kvm_read_guest(vcpu->kvm, bitmap, &b, 1))
6318                                return 1;
6319                if (b & (1 << (port & 7)))
6320                        return 1;
6321
6322                port++;
6323                size--;
6324                last_bitmap = bitmap;
6325        }
6326
6327        return 0;
6328}
6329
6330/*
6331 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
6332 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
6333 * disinterest in the current event (read or write a specific MSR) by using an
6334 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
6335 */
6336static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
6337        struct vmcs12 *vmcs12, u32 exit_reason)
6338{
6339        u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
6340        gpa_t bitmap;
6341
6342        if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
6343                return 1;
6344
6345        /*
6346         * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
6347         * for the four combinations of read/write and low/high MSR numbers.
6348         * First we need to figure out which of the four to use:
6349         */
6350        bitmap = vmcs12->msr_bitmap;
6351        if (exit_reason == EXIT_REASON_MSR_WRITE)
6352                bitmap += 2048;
6353        if (msr_index >= 0xc0000000) {
6354                msr_index -= 0xc0000000;
6355                bitmap += 1024;
6356        }
6357
6358        /* Then read the msr_index'th bit from this bitmap: */
6359        if (msr_index < 1024*8) {
6360                unsigned char b;
6361                if (kvm_read_guest(vcpu->kvm, bitmap + msr_index/8, &b, 1))
6362                        return 1;
6363                return 1 & (b >> (msr_index & 7));
6364        } else
6365                return 1; /* let L1 handle the wrong parameter */
6366}
6367
6368/*
6369 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
6370 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
6371 * intercept (via guest_host_mask etc.) the current event.
6372 */
6373static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
6374        struct vmcs12 *vmcs12)
6375{
6376        unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6377        int cr = exit_qualification & 15;
6378        int reg = (exit_qualification >> 8) & 15;
6379        unsigned long val = kvm_register_read(vcpu, reg);
6380
6381        switch ((exit_qualification >> 4) & 3) {
6382        case 0: /* mov to cr */
6383                switch (cr) {
6384                case 0:
6385                        if (vmcs12->cr0_guest_host_mask &
6386                            (val ^ vmcs12->cr0_read_shadow))
6387                                return 1;
6388                        break;
6389                case 3:
6390                        if ((vmcs12->cr3_target_count >= 1 &&
6391                                        vmcs12->cr3_target_value0 == val) ||
6392                                (vmcs12->cr3_target_count >= 2 &&
6393                                        vmcs12->cr3_target_value1 == val) ||
6394                                (vmcs12->cr3_target_count >= 3 &&
6395                                        vmcs12->cr3_target_value2 == val) ||
6396                                (vmcs12->cr3_target_count >= 4 &&
6397                                        vmcs12->cr3_target_value3 == val))
6398                                return 0;
6399                        if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
6400                                return 1;
6401                        break;
6402                case 4:
6403                        if (vmcs12->cr4_guest_host_mask &
6404                            (vmcs12->cr4_read_shadow ^ val))
6405                                return 1;
6406                        break;
6407                case 8:
6408                        if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
6409                                return 1;
6410                        break;
6411                }
6412                break;
6413        case 2: /* clts */
6414                if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
6415                    (vmcs12->cr0_read_shadow & X86_CR0_TS))
6416                        return 1;
6417                break;
6418        case 1: /* mov from cr */
6419                switch (cr) {
6420                case 3:
6421                        if (vmcs12->cpu_based_vm_exec_control &
6422                            CPU_BASED_CR3_STORE_EXITING)
6423                                return 1;
6424                        break;
6425                case 8:
6426                        if (vmcs12->cpu_based_vm_exec_control &
6427                            CPU_BASED_CR8_STORE_EXITING)
6428                                return 1;
6429                        break;
6430                }
6431                break;
6432        case 3: /* lmsw */
6433                /*
6434                 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
6435                 * cr0. Other attempted changes are ignored, with no exit.
6436                 */
6437                if (vmcs12->cr0_guest_host_mask & 0xe &
6438                    (val ^ vmcs12->cr0_read_shadow))
6439                        return 1;
6440                if ((vmcs12->cr0_guest_host_mask & 0x1) &&
6441                    !(vmcs12->cr0_read_shadow & 0x1) &&
6442                    (val & 0x1))
6443                        return 1;
6444                break;
6445        }
6446        return 0;
6447}
6448
6449/*
6450 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
6451 * should handle it ourselves in L0 (and then continue L2). Only call this
6452 * when in is_guest_mode (L2).
6453 */
6454static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
6455{
6456        u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6457        struct vcpu_vmx *vmx = to_vmx(vcpu);
6458        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
6459        u32 exit_reason = vmx->exit_reason;
6460
6461        if (vmx->nested.nested_run_pending)
6462                return 0;
6463
6464        if (unlikely(vmx->fail)) {
6465                pr_info_ratelimited("%s failed vm entry %x\n", __func__,
6466                                    vmcs_read32(VM_INSTRUCTION_ERROR));
6467                return 1;
6468        }
6469
6470        switch (exit_reason) {
6471        case EXIT_REASON_EXCEPTION_NMI:
6472                if (!is_exception(intr_info))
6473                        return 0;
6474                else if (is_page_fault(intr_info))
6475                        return enable_ept;
6476                return vmcs12->exception_bitmap &
6477                                (1u << (intr_info & INTR_INFO_VECTOR_MASK));
6478        case EXIT_REASON_EXTERNAL_INTERRUPT:
6479                return 0;
6480        case EXIT_REASON_TRIPLE_FAULT:
6481                return 1;
6482        case EXIT_REASON_PENDING_INTERRUPT:
6483                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
6484        case EXIT_REASON_NMI_WINDOW:
6485                return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
6486        case EXIT_REASON_TASK_SWITCH:
6487                return 1;
6488        case EXIT_REASON_CPUID:
6489                return 1;
6490        case EXIT_REASON_HLT:
6491                return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
6492        case EXIT_REASON_INVD:
6493                return 1;
6494        case EXIT_REASON_INVLPG:
6495                return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
6496        case EXIT_REASON_RDPMC:
6497                return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
6498        case EXIT_REASON_RDTSC:
6499                return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
6500        case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
6501        case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
6502        case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
6503        case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
6504        case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
6505                /*
6506                 * VMX instructions trap unconditionally. This allows L1 to
6507                 * emulate them for its L2 guest, i.e., allows 3-level nesting!
6508                 */
6509                return 1;
6510        case EXIT_REASON_CR_ACCESS:
6511                return nested_vmx_exit_handled_cr(vcpu, vmcs12);
6512        case EXIT_REASON_DR_ACCESS:
6513                return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
6514        case EXIT_REASON_IO_INSTRUCTION:
6515                return nested_vmx_exit_handled_io(vcpu, vmcs12);
6516        case EXIT_REASON_MSR_READ:
6517        case EXIT_REASON_MSR_WRITE:
6518                return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
6519        case EXIT_REASON_INVALID_STATE:
6520                return 1;
6521        case EXIT_REASON_MWAIT_INSTRUCTION:
6522                return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
6523        case EXIT_REASON_MONITOR_INSTRUCTION:
6524                return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
6525        case EXIT_REASON_PAUSE_INSTRUCTION:
6526                return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
6527                        nested_cpu_has2(vmcs12,
6528                                SECONDARY_EXEC_PAUSE_LOOP_EXITING);
6529        case EXIT_REASON_MCE_DURING_VMENTRY:
6530                return 0;
6531        case EXIT_REASON_TPR_BELOW_THRESHOLD:
6532                return 1;
6533        case EXIT_REASON_APIC_ACCESS:
6534                return nested_cpu_has2(vmcs12,
6535                        SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
6536        case EXIT_REASON_EPT_VIOLATION:
6537        case EXIT_REASON_EPT_MISCONFIG:
6538                return 0;
6539        case EXIT_REASON_PREEMPTION_TIMER:
6540                return vmcs12->pin_based_vm_exec_control &
6541                        PIN_BASED_VMX_PREEMPTION_TIMER;
6542        case EXIT_REASON_WBINVD:
6543                return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
6544        case EXIT_REASON_XSETBV:
6545                return 1;
6546        default:
6547                return 1;
6548        }
6549}
6550
6551static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
6552{
6553        *info1 = vmcs_readl(EXIT_QUALIFICATION);
6554        *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
6555}
6556
6557/*
6558 * The guest has exited.  See if we can fix it or if we need userspace
6559 * assistance.
6560 */
6561static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6562{
6563        struct vcpu_vmx *vmx = to_vmx(vcpu);
6564        u32 exit_reason = vmx->exit_reason;
6565        u32 vectoring_info = vmx->idt_vectoring_info;
6566
6567        /* If guest state is invalid, start emulating */
6568        if (vmx->emulation_required)
6569                return handle_invalid_guest_state(vcpu);
6570
6571        /*
6572         * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
6573         * we did not inject a still-pending event to L1 now because of
6574         * nested_run_pending, we need to re-enable this bit.
6575         */
6576        if (vmx->nested.nested_run_pending)
6577                kvm_make_request(KVM_REQ_EVENT, vcpu);
6578
6579        if (!is_guest_mode(vcpu) && (exit_reason == EXIT_REASON_VMLAUNCH ||
6580            exit_reason == EXIT_REASON_VMRESUME))
6581                vmx->nested.nested_run_pending = 1;
6582        else
6583                vmx->nested.nested_run_pending = 0;
6584
6585        if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
6586                nested_vmx_vmexit(vcpu);
6587                return 1;
6588        }
6589
6590        if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
6591                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6592                vcpu->run->fail_entry.hardware_entry_failure_reason
6593                        = exit_reason;
6594                return 0;
6595        }
6596
6597        if (unlikely(vmx->fail)) {
6598                vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
6599                vcpu->run->fail_entry.hardware_entry_failure_reason
6600                        = vmcs_read32(VM_INSTRUCTION_ERROR);
6601                return 0;
6602        }
6603
6604        /*
6605         * Note:
6606         * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
6607         * delivery event since it indicates guest is accessing MMIO.
6608         * The vm-exit can be triggered again after return to guest that
6609         * will cause infinite loop.
6610         */
6611        if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
6612                        (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
6613                        exit_reason != EXIT_REASON_EPT_VIOLATION &&
6614                        exit_reason != EXIT_REASON_TASK_SWITCH)) {
6615                vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6616                vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
6617                vcpu->run->internal.ndata = 2;
6618                vcpu->run->internal.data[0] = vectoring_info;
6619                vcpu->run->internal.data[1] = exit_reason;
6620                return 0;
6621        }
6622
6623        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
6624            !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
6625                                        get_vmcs12(vcpu), vcpu)))) {
6626                if (vmx_interrupt_allowed(vcpu)) {
6627                        vmx->soft_vnmi_blocked = 0;
6628                } else if (vmx->vnmi_blocked_time > 1000000000LL &&
6629                           vcpu->arch.nmi_pending) {
6630                        /*
6631                         * This CPU don't support us in finding the end of an
6632                         * NMI-blocked window if the guest runs with IRQs
6633                         * disabled. So we pull the trigger after 1 s of
6634                         * futile waiting, but inform the user about this.
6635                         */
6636                        printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
6637                               "state on VCPU %d after 1 s timeout\n",
6638                               __func__, vcpu->vcpu_id);
6639                        vmx->soft_vnmi_blocked = 0;
6640                }
6641        }
6642
6643        if (exit_reason < kvm_vmx_max_exit_handlers
6644            && kvm_vmx_exit_handlers[exit_reason])
6645                return kvm_vmx_exit_handlers[exit_reason](vcpu);
6646        else {
6647                vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6648                vcpu->run->hw.hardware_exit_reason = exit_reason;
6649        }
6650        return 0;
6651}
6652
6653static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6654{
6655        if (irr == -1 || tpr < irr) {
6656                vmcs_write32(TPR_THRESHOLD, 0);
6657                return;
6658        }
6659
6660        vmcs_write32(TPR_THRESHOLD, irr);
6661}
6662
6663static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
6664{
6665        u32 sec_exec_control;
6666
6667        /*
6668         * There is not point to enable virtualize x2apic without enable
6669         * apicv
6670         */
6671        if (!cpu_has_vmx_virtualize_x2apic_mode() ||
6672                                !vmx_vm_has_apicv(vcpu->kvm))
6673                return;
6674
6675        if (!vm_need_tpr_shadow(vcpu->kvm))
6676                return;
6677
6678        sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
6679
6680        if (set) {
6681                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6682                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6683        } else {
6684                sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
6685                sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
6686        }
6687        vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
6688
6689        vmx_set_msr_bitmap(vcpu);
6690}
6691
6692static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
6693{
6694        u16 status;
6695        u8 old;
6696
6697        if (!vmx_vm_has_apicv(kvm))
6698                return;
6699
6700        if (isr == -1)
6701                isr = 0;
6702
6703        status = vmcs_read16(GUEST_INTR_STATUS);
6704        old = status >> 8;
6705        if (isr != old) {
6706                status &= 0xff;
6707                status |= isr << 8;
6708                vmcs_write16(GUEST_INTR_STATUS, status);
6709        }
6710}
6711
6712static void vmx_set_rvi(int vector)
6713{
6714        u16 status;
6715        u8 old;
6716
6717        status = vmcs_read16(GUEST_INTR_STATUS);
6718        old = (u8)status & 0xff;
6719        if ((u8)vector != old) {
6720                status &= ~0xff;
6721                status |= (u8)vector;
6722                vmcs_write16(GUEST_INTR_STATUS, status);
6723        }
6724}
6725
6726static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
6727{
6728        if (max_irr == -1)
6729                return;
6730
6731        vmx_set_rvi(max_irr);
6732}
6733
6734static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
6735{
6736        if (!vmx_vm_has_apicv(vcpu->kvm))
6737                return;
6738
6739        vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
6740        vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
6741        vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
6742        vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
6743}
6744
6745static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
6746{
6747        u32 exit_intr_info;
6748
6749        if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
6750              || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
6751                return;
6752
6753        vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6754        exit_intr_info = vmx->exit_intr_info;
6755
6756        /* Handle machine checks before interrupts are enabled */
6757        if (is_machine_check(exit_intr_info))
6758                kvm_machine_check();
6759
6760        /* We need to handle NMIs before interrupts are enabled */
6761        if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
6762            (exit_intr_info & INTR_INFO_VALID_MASK)) {
6763                kvm_before_handle_nmi(&vmx->vcpu);
6764                asm("int $2");
6765                kvm_after_handle_nmi(&vmx->vcpu);
6766        }
6767}
6768
6769static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
6770{
6771        u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6772
6773        /*
6774         * If external interrupt exists, IF bit is set in rflags/eflags on the
6775         * interrupt stack frame, and interrupt will be enabled on a return
6776         * from interrupt handler.
6777         */
6778        if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
6779                        == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
6780                unsigned int vector;
6781                unsigned long entry;
6782                gate_desc *desc;
6783                struct vcpu_vmx *vmx = to_vmx(vcpu);
6784#ifdef CONFIG_X86_64
6785                unsigned long tmp;
6786#endif
6787
6788                vector =  exit_intr_info & INTR_INFO_VECTOR_MASK;
6789                desc = (gate_desc *)vmx->host_idt_base + vector;
6790                entry = gate_offset(*desc);
6791                asm volatile(
6792#ifdef CONFIG_X86_64
6793                        "mov %%" _ASM_SP ", %[sp]\n\t"
6794                        "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
6795                        "push $%c[ss]\n\t"
6796                        "push %[sp]\n\t"
6797#endif
6798                        "pushf\n\t"
6799                        "orl $0x200, (%%" _ASM_SP ")\n\t"
6800                        __ASM_SIZE(push) " $%c[cs]\n\t"
6801                        "call *%[entry]\n\t"
6802                        :
6803#ifdef CONFIG_X86_64
6804                        [sp]"=&r"(tmp)
6805#endif
6806                        :
6807                        [entry]"r"(entry),
6808                        [ss]"i"(__KERNEL_DS),
6809                        [cs]"i"(__KERNEL_CS)
6810                        );
6811        } else
6812                local_irq_enable();
6813}
6814
6815static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
6816{
6817        u32 exit_intr_info;
6818        bool unblock_nmi;
6819        u8 vector;
6820        bool idtv_info_valid;
6821
6822        idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6823
6824        if (cpu_has_virtual_nmis()) {
6825                if (vmx->nmi_known_unmasked)
6826                        return;
6827                /*
6828                 * Can't use vmx->exit_intr_info since we're not sure what
6829                 * the exit reason is.
6830                 */
6831                exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
6832                unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
6833                vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
6834                /*
6835                 * SDM 3: 27.7.1.2 (September 2008)
6836                 * Re-set bit "block by NMI" before VM entry if vmexit caused by
6837                 * a guest IRET fault.
6838                 * SDM 3: 23.2.2 (September 2008)
6839                 * Bit 12 is undefined in any of the following cases:
6840                 *  If the VM exit sets the valid bit in the IDT-vectoring
6841                 *   information field.
6842                 *  If the VM exit is due to a double fault.
6843                 */
6844                if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
6845                    vector != DF_VECTOR && !idtv_info_valid)
6846                        vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
6847                                      GUEST_INTR_STATE_NMI);
6848                else
6849                        vmx->nmi_known_unmasked =
6850                                !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
6851                                  & GUEST_INTR_STATE_NMI);
6852        } else if (unlikely(vmx->soft_vnmi_blocked))
6853                vmx->vnmi_blocked_time +=
6854                        ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
6855}
6856
6857static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
6858                                      u32 idt_vectoring_info,
6859                                      int instr_len_field,
6860                                      int error_code_field)
6861{
6862        u8 vector;
6863        int type;
6864        bool idtv_info_valid;
6865
6866        idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
6867
6868        vcpu->arch.nmi_injected = false;
6869        kvm_clear_exception_queue(vcpu);
6870        kvm_clear_interrupt_queue(vcpu);
6871
6872        if (!idtv_info_valid)
6873                return;
6874
6875        kvm_make_request(KVM_REQ_EVENT, vcpu);
6876
6877        vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
6878        type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
6879
6880        switch (type) {
6881        case INTR_TYPE_NMI_INTR:
6882                vcpu->arch.nmi_injected = true;
6883                /*
6884                 * SDM 3: 27.7.1.2 (September 2008)
6885                 * Clear bit "block by NMI" before VM entry if a NMI
6886                 * delivery faulted.
6887                 */
6888                vmx_set_nmi_mask(vcpu, false);
6889                break;
6890        case INTR_TYPE_SOFT_EXCEPTION:
6891                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6892                /* fall through */
6893        case INTR_TYPE_HARD_EXCEPTION:
6894                if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
6895                        u32 err = vmcs_read32(error_code_field);
6896                        kvm_queue_exception_e(vcpu, vector, err);
6897                } else
6898                        kvm_queue_exception(vcpu, vector);
6899                break;
6900        case INTR_TYPE_SOFT_INTR:
6901                vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
6902                /* fall through */
6903        case INTR_TYPE_EXT_INTR:
6904                kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
6905                break;
6906        default:
6907                break;
6908        }
6909}
6910
6911static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
6912{
6913        __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
6914                                  VM_EXIT_INSTRUCTION_LEN,
6915                                  IDT_VECTORING_ERROR_CODE);
6916}
6917
6918static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
6919{
6920        __vmx_complete_interrupts(vcpu,
6921                                  vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
6922                                  VM_ENTRY_INSTRUCTION_LEN,
6923                                  VM_ENTRY_EXCEPTION_ERROR_CODE);
6924
6925        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
6926}
6927
6928static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
6929{
6930        int i, nr_msrs;
6931        struct perf_guest_switch_msr *msrs;
6932
6933        msrs = perf_guest_get_msrs(&nr_msrs);
6934
6935        if (!msrs)
6936                return;
6937
6938        for (i = 0; i < nr_msrs; i++)
6939                if (msrs[i].host == msrs[i].guest)
6940                        clear_atomic_switch_msr(vmx, msrs[i].msr);
6941                else
6942                        add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
6943                                        msrs[i].host);
6944}
6945
6946static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6947{
6948        struct vcpu_vmx *vmx = to_vmx(vcpu);
6949        unsigned long debugctlmsr;
6950
6951        /* Record the guest's net vcpu time for enforced NMI injections. */
6952        if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
6953                vmx->entry_time = ktime_get();
6954
6955        /* Don't enter VMX if guest state is invalid, let the exit handler
6956           start emulation until we arrive back to a valid state */
6957        if (vmx->emulation_required)
6958                return;
6959
6960        if (vmx->nested.sync_shadow_vmcs) {
6961                copy_vmcs12_to_shadow(vmx);
6962                vmx->nested.sync_shadow_vmcs = false;
6963        }
6964
6965        if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
6966                vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
6967        if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
6968                vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
6969
6970        /* When single-stepping over STI and MOV SS, we must clear the
6971         * corresponding interruptibility bits in the guest state. Otherwise
6972         * vmentry fails as it then expects bit 14 (BS) in pending debug
6973         * exceptions being set, but that's not correct for the guest debugging
6974         * case. */
6975        if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
6976                vmx_set_interrupt_shadow(vcpu, 0);
6977
6978        atomic_switch_perf_msrs(vmx);
6979        debugctlmsr = get_debugctlmsr();
6980
6981        vmx->__launched = vmx->loaded_vmcs->launched;
6982        asm(
6983                /* Store host registers */
6984                "push %%" _ASM_DX "; push %%" _ASM_BP ";"
6985                "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
6986                "push %%" _ASM_CX " \n\t"
6987                "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6988                "je 1f \n\t"
6989                "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
6990                __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
6991                "1: \n\t"
6992                /* Reload cr2 if changed */
6993                "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
6994                "mov %%cr2, %%" _ASM_DX " \n\t"
6995                "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
6996                "je 2f \n\t"
6997                "mov %%" _ASM_AX", %%cr2 \n\t"
6998                "2: \n\t"
6999                /* Check if vmlaunch of vmresume is needed */
7000                "cmpl $0, %c[launched](%0) \n\t"
7001                /* Load guest registers.  Don't clobber flags. */
7002                "mov %c[rax](%0), %%" _ASM_AX " \n\t"
7003                "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
7004                "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
7005                "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
7006                "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
7007                "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
7008#ifdef CONFIG_X86_64
7009                "mov %c[r8](%0),  %%r8  \n\t"
7010                "mov %c[r9](%0),  %%r9  \n\t"
7011                "mov %c[r10](%0), %%r10 \n\t"
7012                "mov %c[r11](%0), %%r11 \n\t"
7013                "mov %c[r12](%0), %%r12 \n\t"
7014                "mov %c[r13](%0), %%r13 \n\t"
7015                "mov %c[r14](%0), %%r14 \n\t"
7016                "mov %c[r15](%0), %%r15 \n\t"
7017#endif
7018                "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
7019
7020                /* Enter guest mode */
7021                "jne 1f \n\t"
7022                __ex(ASM_VMX_VMLAUNCH) "\n\t"
7023                "jmp 2f \n\t"
7024                "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
7025                "2: "
7026                /* Save guest registers, load host registers, keep flags */
7027                "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
7028                "pop %0 \n\t"
7029                "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
7030                "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
7031                __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
7032                "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
7033                "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
7034                "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
7035                "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
7036#ifdef CONFIG_X86_64
7037                "mov %%r8,  %c[r8](%0) \n\t"
7038                "mov %%r9,  %c[r9](%0) \n\t"
7039                "mov %%r10, %c[r10](%0) \n\t"
7040                "mov %%r11, %c[r11](%0) \n\t"
7041                "mov %%r12, %c[r12](%0) \n\t"
7042                "mov %%r13, %c[r13](%0) \n\t"
7043                "mov %%r14, %c[r14](%0) \n\t"
7044                "mov %%r15, %c[r15](%0) \n\t"
7045#endif
7046                "mov %%cr2, %%" _ASM_AX "   \n\t"
7047                "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
7048
7049                "pop  %%" _ASM_BP "; pop  %%" _ASM_DX " \n\t"
7050                "setbe %c[fail](%0) \n\t"
7051                ".pushsection .rodata \n\t"
7052                ".global vmx_return \n\t"
7053                "vmx_return: " _ASM_PTR " 2b \n\t"
7054                ".popsection"
7055              : : "c"(vmx), "d"((unsigned long)HOST_RSP),
7056                [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
7057                [fail]"i"(offsetof(struct vcpu_vmx, fail)),
7058                [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
7059                [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
7060                [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
7061                [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
7062                [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
7063                [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
7064                [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
7065                [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
7066#ifdef CONFIG_X86_64
7067                [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
7068                [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
7069                [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
7070                [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
7071                [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
7072                [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
7073                [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
7074                [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
7075#endif
7076                [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
7077                [wordsize]"i"(sizeof(ulong))
7078              : "cc", "memory"
7079#ifdef CONFIG_X86_64
7080                , "rax", "rbx", "rdi", "rsi"
7081                , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
7082#else
7083                , "eax", "ebx", "edi", "esi"
7084#endif
7085              );
7086
7087        /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
7088        if (debugctlmsr)
7089                update_debugctlmsr(debugctlmsr);
7090
7091#ifndef CONFIG_X86_64
7092        /*
7093         * The sysexit path does not restore ds/es, so we must set them to
7094         * a reasonable value ourselves.
7095         *
7096         * We can't defer this to vmx_load_host_state() since that function
7097         * may be executed in interrupt context, which saves and restore segments
7098         * around it, nullifying its effect.
7099         */
7100        loadsegment(ds, __USER_DS);
7101        loadsegment(es, __USER_DS);
7102#endif
7103
7104        vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
7105                                  | (1 << VCPU_EXREG_RFLAGS)
7106                                  | (1 << VCPU_EXREG_CPL)
7107                                  | (1 << VCPU_EXREG_PDPTR)
7108                                  | (1 << VCPU_EXREG_SEGMENTS)
7109                                  | (1 << VCPU_EXREG_CR3));
7110        vcpu->arch.regs_dirty = 0;
7111
7112        vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
7113
7114        vmx->loaded_vmcs->launched = 1;
7115
7116        vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
7117        trace_kvm_exit(vmx->exit_reason, vcpu, KVM_ISA_VMX);
7118
7119        vmx_complete_atomic_exit(vmx);
7120        vmx_recover_nmi_blocking(vmx);
7121        vmx_complete_interrupts(vmx);
7122}
7123
7124static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
7125{
7126        struct vcpu_vmx *vmx = to_vmx(vcpu);
7127
7128        free_vpid(vmx);
7129        free_nested(vmx);
7130        free_loaded_vmcs(vmx->loaded_vmcs);
7131        kfree(vmx->guest_msrs);
7132        kvm_vcpu_uninit(vcpu);
7133        kmem_cache_free(kvm_vcpu_cache, vmx);
7134}
7135
7136static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
7137{
7138        int err;
7139        struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
7140        int cpu;
7141
7142        if (!vmx)
7143                return ERR_PTR(-ENOMEM);
7144
7145        allocate_vpid(vmx);
7146
7147        err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
7148        if (err)
7149                goto free_vcpu;
7150
7151        vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
7152        err = -ENOMEM;
7153        if (!vmx->guest_msrs) {
7154                goto uninit_vcpu;
7155        }
7156
7157        vmx->loaded_vmcs = &vmx->vmcs01;
7158        vmx->loaded_vmcs->vmcs = alloc_vmcs();
7159        if (!vmx->loaded_vmcs->vmcs)
7160                goto free_msrs;
7161        if (!vmm_exclusive)
7162                kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
7163        loaded_vmcs_init(vmx->loaded_vmcs);
7164        if (!vmm_exclusive)
7165                kvm_cpu_vmxoff();
7166
7167        cpu = get_cpu();
7168        vmx_vcpu_load(&vmx->vcpu, cpu);
7169        vmx->vcpu.cpu = cpu;
7170        err = vmx_vcpu_setup(vmx);
7171        vmx_vcpu_put(&vmx->vcpu);
7172        put_cpu();
7173        if (err)
7174                goto free_vmcs;
7175        if (vm_need_virtualize_apic_accesses(kvm)) {
7176                err = alloc_apic_access_page(kvm);
7177                if (err)
7178                        goto free_vmcs;
7179        }
7180
7181        if (enable_ept) {
7182                if (!kvm->arch.ept_identity_map_addr)
7183                        kvm->arch.ept_identity_map_addr =
7184                                VMX_EPT_IDENTITY_PAGETABLE_ADDR;
7185                err = -ENOMEM;
7186                if (alloc_identity_pagetable(kvm) != 0)
7187                        goto free_vmcs;
7188                if (!init_rmode_identity_map(kvm))
7189                        goto free_vmcs;
7190        }
7191
7192        vmx->nested.current_vmptr = -1ull;
7193        vmx->nested.current_vmcs12 = NULL;
7194
7195        return &vmx->vcpu;
7196
7197free_vmcs:
7198        free_loaded_vmcs(vmx->loaded_vmcs);
7199free_msrs:
7200        kfree(vmx->guest_msrs);
7201uninit_vcpu:
7202        kvm_vcpu_uninit(&vmx->vcpu);
7203free_vcpu:
7204        free_vpid(vmx);
7205        kmem_cache_free(kvm_vcpu_cache, vmx);
7206        return ERR_PTR(err);
7207}
7208
7209static void __init vmx_check_processor_compat(void *rtn)
7210{
7211        struct vmcs_config vmcs_conf;
7212
7213        *(int *)rtn = 0;
7214        if (setup_vmcs_config(&vmcs_conf) < 0)
7215                *(int *)rtn = -EIO;
7216        if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
7217                printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
7218                                smp_processor_id());
7219                *(int *)rtn = -EIO;
7220        }
7221}
7222
7223static int get_ept_level(void)
7224{
7225        return VMX_EPT_DEFAULT_GAW + 1;
7226}
7227
7228static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
7229{
7230        u64 ret;
7231
7232        /* For VT-d and EPT combination
7233         * 1. MMIO: always map as UC
7234         * 2. EPT with VT-d:
7235         *   a. VT-d without snooping control feature: can't guarantee the
7236         *      result, try to trust guest.
7237         *   b. VT-d with snooping control feature: snooping control feature of
7238         *      VT-d engine can guarantee the cache correctness. Just set it
7239         *      to WB to keep consistent with host. So the same as item 3.
7240         * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
7241         *    consistent with host MTRR
7242         */
7243        if (is_mmio)
7244                ret = MTRR_TYPE_UNCACHABLE << VMX_EPT_MT_EPTE_SHIFT;
7245        else if (vcpu->kvm->arch.iommu_domain &&
7246                !(vcpu->kvm->arch.iommu_flags & KVM_IOMMU_CACHE_COHERENCY))
7247                ret = kvm_get_guest_memory_type(vcpu, gfn) <<
7248                      VMX_EPT_MT_EPTE_SHIFT;
7249        else
7250                ret = (MTRR_TYPE_WRBACK << VMX_EPT_MT_EPTE_SHIFT)
7251                        | VMX_EPT_IPAT_BIT;
7252
7253        return ret;
7254}
7255
7256static int vmx_get_lpage_level(void)
7257{
7258        if (enable_ept && !cpu_has_vmx_ept_1g_page())
7259                return PT_DIRECTORY_LEVEL;
7260        else
7261                /* For shadow and EPT supported 1GB page */
7262                return PT_PDPE_LEVEL;
7263}
7264
7265static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
7266{
7267        struct kvm_cpuid_entry2 *best;
7268        struct vcpu_vmx *vmx = to_vmx(vcpu);
7269        u32 exec_control;
7270
7271        vmx->rdtscp_enabled = false;
7272        if (vmx_rdtscp_supported()) {
7273                exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7274                if (exec_control & SECONDARY_EXEC_RDTSCP) {
7275                        best = kvm_find_cpuid_entry(vcpu, 0x80000001, 0);
7276                        if (best && (best->edx & bit(X86_FEATURE_RDTSCP)))
7277                                vmx->rdtscp_enabled = true;
7278                        else {
7279                                exec_control &= ~SECONDARY_EXEC_RDTSCP;
7280                                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7281                                                exec_control);
7282                        }
7283                }
7284        }
7285
7286        /* Exposing INVPCID only when PCID is exposed */
7287        best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
7288        if (vmx_invpcid_supported() &&
7289            best && (best->ebx & bit(X86_FEATURE_INVPCID)) &&
7290            guest_cpuid_has_pcid(vcpu)) {
7291                exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7292                exec_control |= SECONDARY_EXEC_ENABLE_INVPCID;
7293                vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7294                             exec_control);
7295        } else {
7296                if (cpu_has_secondary_exec_ctrls()) {
7297                        exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
7298                        exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
7299                        vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
7300                                     exec_control);
7301                }
7302                if (best)
7303                        best->ebx &= ~bit(X86_FEATURE_INVPCID);
7304        }
7305}
7306
7307static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
7308{
7309        if (func == 1 && nested)
7310                entry->ecx |= bit(X86_FEATURE_VMX);
7311}
7312
7313/*
7314 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
7315 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
7316 * with L0's requirements for its guest (a.k.a. vmsc01), so we can run the L2
7317 * guest in a way that will both be appropriate to L1's requests, and our
7318 * needs. In addition to modifying the active vmcs (which is vmcs02), this
7319 * function also has additional necessary side-effects, like setting various
7320 * vcpu->arch fields.
7321 */
7322static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7323{
7324        struct vcpu_vmx *vmx = to_vmx(vcpu);
7325        u32 exec_control;
7326
7327        vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
7328        vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
7329        vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
7330        vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
7331        vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
7332        vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
7333        vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
7334        vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
7335        vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
7336        vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
7337        vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
7338        vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
7339        vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
7340        vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
7341        vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
7342        vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
7343        vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
7344        vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
7345        vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
7346        vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
7347        vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
7348        vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
7349        vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
7350        vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
7351        vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
7352        vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
7353        vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
7354        vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
7355        vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
7356        vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
7357        vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
7358        vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
7359        vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
7360        vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
7361        vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
7362        vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
7363
7364        vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
7365        vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
7366                vmcs12->vm_entry_intr_info_field);
7367        vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
7368                vmcs12->vm_entry_exception_error_code);
7369        vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
7370                vmcs12->vm_entry_instruction_len);
7371        vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
7372                vmcs12->guest_interruptibility_info);
7373        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
7374        kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
7375        vmcs_writel(GUEST_RFLAGS, vmcs12->guest_rflags);
7376        vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
7377                vmcs12->guest_pending_dbg_exceptions);
7378        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
7379        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
7380
7381        vmcs_write64(VMCS_LINK_POINTER, -1ull);
7382
7383        vmcs_write32(PIN_BASED_VM_EXEC_CONTROL,
7384                (vmcs_config.pin_based_exec_ctrl |
7385                 vmcs12->pin_based_vm_exec_control));
7386
7387        if (vmcs12->pin_based_vm_exec_control & PIN_BASED_VMX_PREEMPTION_TIMER)
7388                vmcs_write32(VMX_PREEMPTION_TIMER_VALUE,
7389                             vmcs12->vmx_preemption_timer_value);
7390
7391        /*
7392         * Whether page-faults are trapped is determined by a combination of
7393         * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
7394         * If enable_ept, L0 doesn't care about page faults and we should
7395         * set all of these to L1's desires. However, if !enable_ept, L0 does
7396         * care about (at least some) page faults, and because it is not easy
7397         * (if at all possible?) to merge L0 and L1's desires, we simply ask
7398         * to exit on each and every L2 page fault. This is done by setting
7399         * MASK=MATCH=0 and (see below) EB.PF=1.
7400         * Note that below we don't need special code to set EB.PF beyond the
7401         * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
7402         * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
7403         * !enable_ept, EB.PF is 1, so the "or" will always be 1.
7404         *
7405         * A problem with this approach (when !enable_ept) is that L1 may be
7406         * injected with more page faults than it asked for. This could have
7407         * caused problems, but in practice existing hypervisors don't care.
7408         * To fix this, we will need to emulate the PFEC checking (on the L1
7409         * page tables), using walk_addr(), when injecting PFs to L1.
7410         */
7411        vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
7412                enable_ept ? vmcs12->page_fault_error_code_mask : 0);
7413        vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
7414                enable_ept ? vmcs12->page_fault_error_code_match : 0);
7415
7416        if (cpu_has_secondary_exec_ctrls()) {
7417                u32 exec_control = vmx_secondary_exec_control(vmx);
7418                if (!vmx->rdtscp_enabled)
7419                        exec_control &= ~SECONDARY_EXEC_RDTSCP;
7420                /* Take the following fields only from vmcs12 */
7421                exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7422                if (nested_cpu_has(vmcs12,
7423                                CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
7424                        exec_control |= vmcs12->secondary_vm_exec_control;
7425
7426                if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
7427                        /*
7428                         * Translate L1 physical address to host physical
7429                         * address for vmcs02. Keep the page pinned, so this
7430                         * physical address remains valid. We keep a reference
7431                         * to it so we can release it later.
7432                         */
7433                        if (vmx->nested.apic_access_page) /* shouldn't happen */
7434                                nested_release_page(vmx->nested.apic_access_page);
7435                        vmx->nested.apic_access_page =
7436                                nested_get_page(vcpu, vmcs12->apic_access_addr);
7437                        /*
7438                         * If translation failed, no matter: This feature asks
7439                         * to exit when accessing the given address, and if it
7440                         * can never be accessed, this feature won't do
7441                         * anything anyway.
7442                         */
7443                        if (!vmx->nested.apic_access_page)
7444                                exec_control &=
7445                                  ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
7446                        else
7447                                vmcs_write64(APIC_ACCESS_ADDR,
7448                                  page_to_phys(vmx->nested.apic_access_page));
7449                }
7450
7451                vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
7452        }
7453
7454
7455        /*
7456         * Set host-state according to L0's settings (vmcs12 is irrelevant here)
7457         * Some constant fields are set here by vmx_set_constant_host_state().
7458         * Other fields are different per CPU, and will be set later when
7459         * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
7460         */
7461        vmx_set_constant_host_state(vmx);
7462
7463        /*
7464         * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
7465         * entry, but only if the current (host) sp changed from the value
7466         * we wrote last (vmx->host_rsp). This cache is no longer relevant
7467         * if we switch vmcs, and rather than hold a separate cache per vmcs,
7468         * here we just force the write to happen on entry.
7469         */
7470        vmx->host_rsp = 0;
7471
7472        exec_control = vmx_exec_control(vmx); /* L0's desires */
7473        exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
7474        exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
7475        exec_control &= ~CPU_BASED_TPR_SHADOW;
7476        exec_control |= vmcs12->cpu_based_vm_exec_control;
7477        /*
7478         * Merging of IO and MSR bitmaps not currently supported.
7479         * Rather, exit every time.
7480         */
7481        exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
7482        exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
7483        exec_control |= CPU_BASED_UNCOND_IO_EXITING;
7484
7485        vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
7486
7487        /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
7488         * bitwise-or of what L1 wants to trap for L2, and what we want to
7489         * trap. Note that CR0.TS also needs updating - we do this later.
7490         */
7491        update_exception_bitmap(vcpu);
7492        vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
7493        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7494
7495        /* Note: IA32_MODE, LOAD_IA32_EFER are modified by vmx_set_efer below */
7496        vmcs_write32(VM_EXIT_CONTROLS,
7497                vmcs12->vm_exit_controls | vmcs_config.vmexit_ctrl);
7498        vmcs_write32(VM_ENTRY_CONTROLS, vmcs12->vm_entry_controls |
7499                (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
7500
7501        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)
7502                vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
7503        else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
7504                vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
7505
7506
7507        set_cr4_guest_host_mask(vmx);
7508
7509        if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
7510                vmcs_write64(TSC_OFFSET,
7511                        vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
7512        else
7513                vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
7514
7515        if (enable_vpid) {
7516                /*
7517                 * Trivially support vpid by letting L2s share their parent
7518                 * L1's vpid. TODO: move to a more elaborate solution, giving
7519                 * each L2 its own vpid and exposing the vpid feature to L1.
7520                 */
7521                vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
7522                vmx_flush_tlb(vcpu);
7523        }
7524
7525        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
7526                vcpu->arch.efer = vmcs12->guest_ia32_efer;
7527        else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
7528                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7529        else
7530                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7531        /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
7532        vmx_set_efer(vcpu, vcpu->arch.efer);
7533
7534        /*
7535         * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
7536         * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
7537         * The CR0_READ_SHADOW is what L2 should have expected to read given
7538         * the specifications by L1; It's not enough to take
7539         * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
7540         * have more bits than L1 expected.
7541         */
7542        vmx_set_cr0(vcpu, vmcs12->guest_cr0);
7543        vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
7544
7545        vmx_set_cr4(vcpu, vmcs12->guest_cr4);
7546        vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
7547
7548        /* shadow page tables on either EPT or shadow page tables */
7549        kvm_set_cr3(vcpu, vmcs12->guest_cr3);
7550        kvm_mmu_reset_context(vcpu);
7551
7552        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
7553        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
7554}
7555
7556/*
7557 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
7558 * for running an L2 nested guest.
7559 */
7560static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
7561{
7562        struct vmcs12 *vmcs12;
7563        struct vcpu_vmx *vmx = to_vmx(vcpu);
7564        int cpu;
7565        struct loaded_vmcs *vmcs02;
7566        bool ia32e;
7567
7568        if (!nested_vmx_check_permission(vcpu) ||
7569            !nested_vmx_check_vmcs12(vcpu))
7570                return 1;
7571
7572        skip_emulated_instruction(vcpu);
7573        vmcs12 = get_vmcs12(vcpu);
7574
7575        if (enable_shadow_vmcs)
7576                copy_shadow_to_vmcs12(vmx);
7577
7578        /*
7579         * The nested entry process starts with enforcing various prerequisites
7580         * on vmcs12 as required by the Intel SDM, and act appropriately when
7581         * they fail: As the SDM explains, some conditions should cause the
7582         * instruction to fail, while others will cause the instruction to seem
7583         * to succeed, but return an EXIT_REASON_INVALID_STATE.
7584         * To speed up the normal (success) code path, we should avoid checking
7585         * for misconfigurations which will anyway be caught by the processor
7586         * when using the merged vmcs02.
7587         */
7588        if (vmcs12->launch_state == launch) {
7589                nested_vmx_failValid(vcpu,
7590                        launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
7591                               : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
7592                return 1;
7593        }
7594
7595        if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE) {
7596                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7597                return 1;
7598        }
7599
7600        if ((vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_MSR_BITMAPS) &&
7601                        !IS_ALIGNED(vmcs12->msr_bitmap, PAGE_SIZE)) {
7602                /*TODO: Also verify bits beyond physical address width are 0*/
7603                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7604                return 1;
7605        }
7606
7607        if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
7608                        !IS_ALIGNED(vmcs12->apic_access_addr, PAGE_SIZE)) {
7609                /*TODO: Also verify bits beyond physical address width are 0*/
7610                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7611                return 1;
7612        }
7613
7614        if (vmcs12->vm_entry_msr_load_count > 0 ||
7615            vmcs12->vm_exit_msr_load_count > 0 ||
7616            vmcs12->vm_exit_msr_store_count > 0) {
7617                pr_warn_ratelimited("%s: VMCS MSR_{LOAD,STORE} unsupported\n",
7618                                    __func__);
7619                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7620                return 1;
7621        }
7622
7623        if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
7624              nested_vmx_procbased_ctls_low, nested_vmx_procbased_ctls_high) ||
7625            !vmx_control_verify(vmcs12->secondary_vm_exec_control,
7626              nested_vmx_secondary_ctls_low, nested_vmx_secondary_ctls_high) ||
7627            !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
7628              nested_vmx_pinbased_ctls_low, nested_vmx_pinbased_ctls_high) ||
7629            !vmx_control_verify(vmcs12->vm_exit_controls,
7630              nested_vmx_exit_ctls_low, nested_vmx_exit_ctls_high) ||
7631            !vmx_control_verify(vmcs12->vm_entry_controls,
7632              nested_vmx_entry_ctls_low, nested_vmx_entry_ctls_high))
7633        {
7634                nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
7635                return 1;
7636        }
7637
7638        if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7639            ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7640                nested_vmx_failValid(vcpu,
7641                        VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
7642                return 1;
7643        }
7644
7645        if (((vmcs12->guest_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
7646            ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
7647                nested_vmx_entry_failure(vcpu, vmcs12,
7648                        EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7649                return 1;
7650        }
7651        if (vmcs12->vmcs_link_pointer != -1ull) {
7652                nested_vmx_entry_failure(vcpu, vmcs12,
7653                        EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
7654                return 1;
7655        }
7656
7657        /*
7658         * If the load IA32_EFER VM-entry control is 1, the following checks
7659         * are performed on the field for the IA32_EFER MSR:
7660         * - Bits reserved in the IA32_EFER MSR must be 0.
7661         * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
7662         *   the IA-32e mode guest VM-exit control. It must also be identical
7663         *   to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
7664         *   CR0.PG) is 1.
7665         */
7666        if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
7667                ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
7668                if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
7669                    ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
7670                    ((vmcs12->guest_cr0 & X86_CR0_PG) &&
7671                     ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
7672                        nested_vmx_entry_failure(vcpu, vmcs12,
7673                                EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7674                        return 1;
7675                }
7676        }
7677
7678        /*
7679         * If the load IA32_EFER VM-exit control is 1, bits reserved in the
7680         * IA32_EFER MSR must be 0 in the field for that register. In addition,
7681         * the values of the LMA and LME bits in the field must each be that of
7682         * the host address-space size VM-exit control.
7683         */
7684        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
7685                ia32e = (vmcs12->vm_exit_controls &
7686                         VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
7687                if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
7688                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
7689                    ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
7690                        nested_vmx_entry_failure(vcpu, vmcs12,
7691                                EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
7692                        return 1;
7693                }
7694        }
7695
7696        /*
7697         * We're finally done with prerequisite checking, and can start with
7698         * the nested entry.
7699         */
7700
7701        vmcs02 = nested_get_current_vmcs02(vmx);
7702        if (!vmcs02)
7703                return -ENOMEM;
7704
7705        enter_guest_mode(vcpu);
7706
7707        vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
7708
7709        cpu = get_cpu();
7710        vmx->loaded_vmcs = vmcs02;
7711        vmx_vcpu_put(vcpu);
7712        vmx_vcpu_load(vcpu, cpu);
7713        vcpu->cpu = cpu;
7714        put_cpu();
7715
7716        vmx_segment_cache_clear(vmx);
7717
7718        vmcs12->launch_state = 1;
7719
7720        prepare_vmcs02(vcpu, vmcs12);
7721
7722        /*
7723         * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
7724         * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
7725         * returned as far as L1 is concerned. It will only return (and set
7726         * the success flag) when L2 exits (see nested_vmx_vmexit()).
7727         */
7728        return 1;
7729}
7730
7731/*
7732 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
7733 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
7734 * This function returns the new value we should put in vmcs12.guest_cr0.
7735 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
7736 *  1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
7737 *     available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
7738 *     didn't trap the bit, because if L1 did, so would L0).
7739 *  2. Bits that L1 asked to trap (and therefore L0 also did) could not have
7740 *     been modified by L2, and L1 knows it. So just leave the old value of
7741 *     the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
7742 *     isn't relevant, because if L0 traps this bit it can set it to anything.
7743 *  3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
7744 *     changed these bits, and therefore they need to be updated, but L0
7745 *     didn't necessarily allow them to be changed in GUEST_CR0 - and rather
7746 *     put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
7747 */
7748static inline unsigned long
7749vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7750{
7751        return
7752        /*1*/   (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
7753        /*2*/   (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
7754        /*3*/   (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
7755                        vcpu->arch.cr0_guest_owned_bits));
7756}
7757
7758static inline unsigned long
7759vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7760{
7761        return
7762        /*1*/   (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
7763        /*2*/   (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
7764        /*3*/   (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
7765                        vcpu->arch.cr4_guest_owned_bits));
7766}
7767
7768static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
7769                                       struct vmcs12 *vmcs12)
7770{
7771        u32 idt_vectoring;
7772        unsigned int nr;
7773
7774        if (vcpu->arch.exception.pending) {
7775                nr = vcpu->arch.exception.nr;
7776                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7777
7778                if (kvm_exception_is_soft(nr)) {
7779                        vmcs12->vm_exit_instruction_len =
7780                                vcpu->arch.event_exit_inst_len;
7781                        idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
7782                } else
7783                        idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
7784
7785                if (vcpu->arch.exception.has_error_code) {
7786                        idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
7787                        vmcs12->idt_vectoring_error_code =
7788                                vcpu->arch.exception.error_code;
7789                }
7790
7791                vmcs12->idt_vectoring_info_field = idt_vectoring;
7792        } else if (vcpu->arch.nmi_pending) {
7793                vmcs12->idt_vectoring_info_field =
7794                        INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
7795        } else if (vcpu->arch.interrupt.pending) {
7796                nr = vcpu->arch.interrupt.nr;
7797                idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
7798
7799                if (vcpu->arch.interrupt.soft) {
7800                        idt_vectoring |= INTR_TYPE_SOFT_INTR;
7801                        vmcs12->vm_entry_instruction_len =
7802                                vcpu->arch.event_exit_inst_len;
7803                } else
7804                        idt_vectoring |= INTR_TYPE_EXT_INTR;
7805
7806                vmcs12->idt_vectoring_info_field = idt_vectoring;
7807        }
7808}
7809
7810/*
7811 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
7812 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
7813 * and this function updates it to reflect the changes to the guest state while
7814 * L2 was running (and perhaps made some exits which were handled directly by L0
7815 * without going back to L1), and to reflect the exit reason.
7816 * Note that we do not have to copy here all VMCS fields, just those that
7817 * could have changed by the L2 guest or the exit - i.e., the guest-state and
7818 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
7819 * which already writes to vmcs12 directly.
7820 */
7821static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
7822{
7823        /* update guest state fields: */
7824        vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
7825        vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
7826
7827        kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
7828        vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
7829        vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
7830        vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
7831
7832        vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
7833        vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
7834        vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
7835        vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
7836        vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
7837        vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
7838        vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
7839        vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
7840        vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
7841        vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
7842        vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
7843        vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
7844        vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
7845        vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
7846        vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
7847        vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
7848        vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
7849        vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
7850        vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
7851        vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
7852        vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
7853        vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
7854        vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
7855        vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
7856        vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
7857        vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
7858        vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
7859        vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
7860        vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
7861        vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
7862        vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
7863        vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
7864        vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
7865        vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
7866        vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
7867        vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
7868
7869        vmcs12->guest_interruptibility_info =
7870                vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
7871        vmcs12->guest_pending_dbg_exceptions =
7872                vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
7873
7874        vmcs12->vm_entry_controls =
7875                (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
7876                (vmcs_read32(VM_ENTRY_CONTROLS) & VM_ENTRY_IA32E_MODE);
7877
7878        /* TODO: These cannot have changed unless we have MSR bitmaps and
7879         * the relevant bit asks not to trap the change */
7880        vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
7881        if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
7882                vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
7883        vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
7884        vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
7885        vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
7886
7887        /* update exit information fields: */
7888
7889        vmcs12->vm_exit_reason  = to_vmx(vcpu)->exit_reason;
7890        vmcs12->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7891
7892        vmcs12->vm_exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7893        if ((vmcs12->vm_exit_intr_info &
7894             (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
7895            (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
7896                vmcs12->vm_exit_intr_error_code =
7897                        vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
7898        vmcs12->idt_vectoring_info_field = 0;
7899        vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
7900        vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7901
7902        if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
7903                /* vm_entry_intr_info_field is cleared on exit. Emulate this
7904                 * instead of reading the real value. */
7905                vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
7906
7907                /*
7908                 * Transfer the event that L0 or L1 may wanted to inject into
7909                 * L2 to IDT_VECTORING_INFO_FIELD.
7910                 */
7911                vmcs12_save_pending_event(vcpu, vmcs12);
7912        }
7913
7914        /*
7915         * Drop what we picked up for L2 via vmx_complete_interrupts. It is
7916         * preserved above and would only end up incorrectly in L1.
7917         */
7918        vcpu->arch.nmi_injected = false;
7919        kvm_clear_exception_queue(vcpu);
7920        kvm_clear_interrupt_queue(vcpu);
7921}
7922
7923/*
7924 * A part of what we need to when the nested L2 guest exits and we want to
7925 * run its L1 parent, is to reset L1's guest state to the host state specified
7926 * in vmcs12.
7927 * This function is to be called not only on normal nested exit, but also on
7928 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
7929 * Failures During or After Loading Guest State").
7930 * This function should be called when the active VMCS is L1's (vmcs01).
7931 */
7932static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
7933                                   struct vmcs12 *vmcs12)
7934{
7935        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
7936                vcpu->arch.efer = vmcs12->host_ia32_efer;
7937        else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
7938                vcpu->arch.efer |= (EFER_LMA | EFER_LME);
7939        else
7940                vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
7941        vmx_set_efer(vcpu, vcpu->arch.efer);
7942
7943        kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
7944        kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
7945        vmx_set_rflags(vcpu, X86_EFLAGS_BIT1);
7946        /*
7947         * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
7948         * actually changed, because it depends on the current state of
7949         * fpu_active (which may have changed).
7950         * Note that vmx_set_cr0 refers to efer set above.
7951         */
7952        kvm_set_cr0(vcpu, vmcs12->host_cr0);
7953        /*
7954         * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
7955         * to apply the same changes to L1's vmcs. We just set cr0 correctly,
7956         * but we also need to update cr0_guest_host_mask and exception_bitmap.
7957         */
7958        update_exception_bitmap(vcpu);
7959        vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
7960        vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
7961
7962        /*
7963         * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
7964         * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
7965         */
7966        vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
7967        kvm_set_cr4(vcpu, vmcs12->host_cr4);
7968
7969        /* shadow page tables on either EPT or shadow page tables */
7970        kvm_set_cr3(vcpu, vmcs12->host_cr3);
7971        kvm_mmu_reset_context(vcpu);
7972
7973        if (enable_vpid) {
7974                /*
7975                 * Trivially support vpid by letting L2s share their parent
7976                 * L1's vpid. TODO: move to a more elaborate solution, giving
7977                 * each L2 its own vpid and exposing the vpid feature to L1.
7978                 */
7979                vmx_flush_tlb(vcpu);
7980        }
7981
7982
7983        vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
7984        vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
7985        vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
7986        vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
7987        vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
7988        vmcs_writel(GUEST_TR_BASE, vmcs12->host_tr_base);
7989        vmcs_writel(GUEST_GS_BASE, vmcs12->host_gs_base);
7990        vmcs_writel(GUEST_FS_BASE, vmcs12->host_fs_base);
7991        vmcs_write16(GUEST_ES_SELECTOR, vmcs12->host_es_selector);
7992        vmcs_write16(GUEST_CS_SELECTOR, vmcs12->host_cs_selector);
7993        vmcs_write16(GUEST_SS_SELECTOR, vmcs12->host_ss_selector);
7994        vmcs_write16(GUEST_DS_SELECTOR, vmcs12->host_ds_selector);
7995        vmcs_write16(GUEST_FS_SELECTOR, vmcs12->host_fs_selector);
7996        vmcs_write16(GUEST_GS_SELECTOR, vmcs12->host_gs_selector);
7997        vmcs_write16(GUEST_TR_SELECTOR, vmcs12->host_tr_selector);
7998
7999        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT)
8000                vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
8001        if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
8002                vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
8003                        vmcs12->host_ia32_perf_global_ctrl);
8004
8005        kvm_set_dr(vcpu, 7, 0x400);
8006        vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
8007}
8008
8009/*
8010 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
8011 * and modify vmcs12 to make it see what it would expect to see there if
8012 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
8013 */
8014static void nested_vmx_vmexit(struct kvm_vcpu *vcpu)
8015{
8016        struct vcpu_vmx *vmx = to_vmx(vcpu);
8017        int cpu;
8018        struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8019
8020        /* trying to cancel vmlaunch/vmresume is a bug */
8021        WARN_ON_ONCE(vmx->nested.nested_run_pending);
8022
8023        leave_guest_mode(vcpu);
8024        prepare_vmcs12(vcpu, vmcs12);
8025
8026        cpu = get_cpu();
8027        vmx->loaded_vmcs = &vmx->vmcs01;
8028        vmx_vcpu_put(vcpu);
8029        vmx_vcpu_load(vcpu, cpu);
8030        vcpu->cpu = cpu;
8031        put_cpu();
8032
8033        vmx_segment_cache_clear(vmx);
8034
8035        /* if no vmcs02 cache requested, remove the one we used */
8036        if (VMCS02_POOL_SIZE == 0)
8037                nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
8038
8039        load_vmcs12_host_state(vcpu, vmcs12);
8040
8041        /* Update TSC_OFFSET if TSC was changed while L2 ran */
8042        vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
8043
8044        /* This is needed for same reason as it was needed in prepare_vmcs02 */
8045        vmx->host_rsp = 0;
8046
8047        /* Unpin physical memory we referred to in vmcs02 */
8048        if (vmx->nested.apic_access_page) {
8049                nested_release_page(vmx->nested.apic_access_page);
8050                vmx->nested.apic_access_page = 0;
8051        }
8052
8053        /*
8054         * Exiting from L2 to L1, we're now back to L1 which thinks it just
8055         * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
8056         * success or failure flag accordingly.
8057         */
8058        if (unlikely(vmx->fail)) {
8059                vmx->fail = 0;
8060                nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
8061        } else
8062                nested_vmx_succeed(vcpu);
8063        if (enable_shadow_vmcs)
8064                vmx->nested.sync_shadow_vmcs = true;
8065}
8066
8067/*
8068 * L1's failure to enter L2 is a subset of a normal exit, as explained in
8069 * 23.7 "VM-entry failures during or after loading guest state" (this also
8070 * lists the acceptable exit-reason and exit-qualification parameters).
8071 * It should only be called before L2 actually succeeded to run, and when
8072 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
8073 */
8074static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
8075                        struct vmcs12 *vmcs12,
8076                        u32 reason, unsigned long qualification)
8077{
8078        load_vmcs12_host_state(vcpu, vmcs12);
8079        vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
8080        vmcs12->exit_qualification = qualification;
8081        nested_vmx_succeed(vcpu);
8082        if (enable_shadow_vmcs)
8083                to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
8084}
8085
8086static int vmx_check_intercept(struct kvm_vcpu *vcpu,
8087                               struct x86_instruction_info *info,
8088                               enum x86_intercept_stage stage)
8089{
8090        return X86EMUL_CONTINUE;
8091}
8092
8093static struct kvm_x86_ops vmx_x86_ops = {
8094        .cpu_has_kvm_support = cpu_has_kvm_support,
8095        .disabled_by_bios = vmx_disabled_by_bios,
8096        .hardware_setup = hardware_setup,
8097        .hardware_unsetup = hardware_unsetup,
8098        .check_processor_compatibility = vmx_check_processor_compat,
8099        .hardware_enable = hardware_enable,
8100        .hardware_disable = hardware_disable,
8101        .cpu_has_accelerated_tpr = report_flexpriority,
8102
8103        .vcpu_create = vmx_create_vcpu,
8104        .vcpu_free = vmx_free_vcpu,
8105        .vcpu_reset = vmx_vcpu_reset,
8106
8107        .prepare_guest_switch = vmx_save_host_state,
8108        .vcpu_load = vmx_vcpu_load,
8109        .vcpu_put = vmx_vcpu_put,
8110
8111        .update_db_bp_intercept = update_exception_bitmap,
8112        .get_msr = vmx_get_msr,
8113        .set_msr = vmx_set_msr,
8114        .get_segment_base = vmx_get_segment_base,
8115        .get_segment = vmx_get_segment,
8116        .set_segment = vmx_set_segment,
8117        .get_cpl = vmx_get_cpl,
8118        .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
8119        .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
8120        .decache_cr3 = vmx_decache_cr3,
8121        .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
8122        .set_cr0 = vmx_set_cr0,
8123        .set_cr3 = vmx_set_cr3,
8124        .set_cr4 = vmx_set_cr4,
8125        .set_efer = vmx_set_efer,
8126        .get_idt = vmx_get_idt,
8127        .set_idt = vmx_set_idt,
8128        .get_gdt = vmx_get_gdt,
8129        .set_gdt = vmx_set_gdt,
8130        .set_dr7 = vmx_set_dr7,
8131        .cache_reg = vmx_cache_reg,
8132        .get_rflags = vmx_get_rflags,
8133        .set_rflags = vmx_set_rflags,
8134        .fpu_activate = vmx_fpu_activate,
8135        .fpu_deactivate = vmx_fpu_deactivate,
8136
8137        .tlb_flush = vmx_flush_tlb,
8138
8139        .run = vmx_vcpu_run,
8140        .handle_exit = vmx_handle_exit,
8141        .skip_emulated_instruction = skip_emulated_instruction,
8142        .set_interrupt_shadow = vmx_set_interrupt_shadow,
8143        .get_interrupt_shadow = vmx_get_interrupt_shadow,
8144        .patch_hypercall = vmx_patch_hypercall,
8145        .set_irq = vmx_inject_irq,
8146        .set_nmi = vmx_inject_nmi,
8147        .queue_exception = vmx_queue_exception,
8148        .cancel_injection = vmx_cancel_injection,
8149        .interrupt_allowed = vmx_interrupt_allowed,
8150        .nmi_allowed = vmx_nmi_allowed,
8151        .get_nmi_mask = vmx_get_nmi_mask,
8152        .set_nmi_mask = vmx_set_nmi_mask,
8153        .enable_nmi_window = enable_nmi_window,
8154        .enable_irq_window = enable_irq_window,
8155        .update_cr8_intercept = update_cr8_intercept,
8156        .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
8157        .vm_has_apicv = vmx_vm_has_apicv,
8158        .load_eoi_exitmap = vmx_load_eoi_exitmap,
8159        .hwapic_irr_update = vmx_hwapic_irr_update,
8160        .hwapic_isr_update = vmx_hwapic_isr_update,
8161        .sync_pir_to_irr = vmx_sync_pir_to_irr,
8162        .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
8163
8164        .set_tss_addr = vmx_set_tss_addr,
8165        .get_tdp_level = get_ept_level,
8166        .get_mt_mask = vmx_get_mt_mask,
8167
8168        .get_exit_info = vmx_get_exit_info,
8169
8170        .get_lpage_level = vmx_get_lpage_level,
8171
8172        .cpuid_update = vmx_cpuid_update,
8173
8174        .rdtscp_supported = vmx_rdtscp_supported,
8175        .invpcid_supported = vmx_invpcid_supported,
8176
8177        .set_supported_cpuid = vmx_set_supported_cpuid,
8178
8179        .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
8180
8181        .set_tsc_khz = vmx_set_tsc_khz,
8182        .read_tsc_offset = vmx_read_tsc_offset,
8183        .write_tsc_offset = vmx_write_tsc_offset,
8184        .adjust_tsc_offset = vmx_adjust_tsc_offset,
8185        .compute_tsc_offset = vmx_compute_tsc_offset,
8186        .read_l1_tsc = vmx_read_l1_tsc,
8187
8188        .set_tdp_cr3 = vmx_set_cr3,
8189
8190        .check_intercept = vmx_check_intercept,
8191        .handle_external_intr = vmx_handle_external_intr,
8192};
8193
8194static int __init vmx_init(void)
8195{
8196        int r, i, msr;
8197
8198        rdmsrl_safe(MSR_EFER, &host_efer);
8199
8200        for (i = 0; i < NR_VMX_MSR; ++i)
8201                kvm_define_shared_msr(i, vmx_msr_index[i]);
8202
8203        vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
8204        if (!vmx_io_bitmap_a)
8205                return -ENOMEM;
8206
8207        r = -ENOMEM;
8208
8209        vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
8210        if (!vmx_io_bitmap_b)
8211                goto out;
8212
8213        vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
8214        if (!vmx_msr_bitmap_legacy)
8215                goto out1;
8216
8217        vmx_msr_bitmap_legacy_x2apic =
8218                                (unsigned long *)__get_free_page(GFP_KERNEL);
8219        if (!vmx_msr_bitmap_legacy_x2apic)
8220                goto out2;
8221
8222        vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
8223        if (!vmx_msr_bitmap_longmode)
8224                goto out3;
8225
8226        vmx_msr_bitmap_longmode_x2apic =
8227                                (unsigned long *)__get_free_page(GFP_KERNEL);
8228        if (!vmx_msr_bitmap_longmode_x2apic)
8229                goto out4;
8230        vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8231        if (!vmx_vmread_bitmap)
8232                goto out5;
8233
8234        vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
8235        if (!vmx_vmwrite_bitmap)
8236                goto out6;
8237
8238        memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
8239        memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
8240        /* shadowed read/write fields */
8241        for (i = 0; i < max_shadow_read_write_fields; i++) {
8242                clear_bit(shadow_read_write_fields[i], vmx_vmwrite_bitmap);
8243                clear_bit(shadow_read_write_fields[i], vmx_vmread_bitmap);
8244        }
8245        /* shadowed read only fields */
8246        for (i = 0; i < max_shadow_read_only_fields; i++)
8247                clear_bit(shadow_read_only_fields[i], vmx_vmread_bitmap);
8248
8249        /*
8250         * Allow direct access to the PC debug port (it is often used for I/O
8251         * delays, but the vmexits simply slow things down).
8252         */
8253        memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
8254        clear_bit(0x80, vmx_io_bitmap_a);
8255
8256        memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
8257
8258        memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
8259        memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
8260
8261        set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
8262
8263        r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
8264                     __alignof__(struct vcpu_vmx), THIS_MODULE);
8265        if (r)
8266                goto out7;
8267
8268#ifdef CONFIG_KEXEC
8269        rcu_assign_pointer(crash_vmclear_loaded_vmcss,
8270                           crash_vmclear_local_loaded_vmcss);
8271#endif
8272
8273        vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
8274        vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
8275        vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
8276        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
8277        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
8278        vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
8279        memcpy(vmx_msr_bitmap_legacy_x2apic,
8280                        vmx_msr_bitmap_legacy, PAGE_SIZE);
8281        memcpy(vmx_msr_bitmap_longmode_x2apic,
8282                        vmx_msr_bitmap_longmode, PAGE_SIZE);
8283
8284        if (enable_apicv) {
8285                for (msr = 0x800; msr <= 0x8ff; msr++)
8286                        vmx_disable_intercept_msr_read_x2apic(msr);
8287
8288                /* According SDM, in x2apic mode, the whole id reg is used.
8289                 * But in KVM, it only use the highest eight bits. Need to
8290                 * intercept it */
8291                vmx_enable_intercept_msr_read_x2apic(0x802);
8292                /* TMCCT */
8293                vmx_enable_intercept_msr_read_x2apic(0x839);
8294                /* TPR */
8295                vmx_disable_intercept_msr_write_x2apic(0x808);
8296                /* EOI */
8297                vmx_disable_intercept_msr_write_x2apic(0x80b);
8298                /* SELF-IPI */
8299                vmx_disable_intercept_msr_write_x2apic(0x83f);
8300        }
8301
8302        if (enable_ept) {
8303                kvm_mmu_set_mask_ptes(0ull,
8304                        (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
8305                        (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
8306                        0ull, VMX_EPT_EXECUTABLE_MASK);
8307                ept_set_mmio_spte_mask();
8308                kvm_enable_tdp();
8309        } else
8310                kvm_disable_tdp();
8311
8312        return 0;
8313
8314out7:
8315        free_page((unsigned long)vmx_vmwrite_bitmap);
8316out6:
8317        free_page((unsigned long)vmx_vmread_bitmap);
8318out5:
8319        free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8320out4:
8321        free_page((unsigned long)vmx_msr_bitmap_longmode);
8322out3:
8323        free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8324out2:
8325        free_page((unsigned long)vmx_msr_bitmap_legacy);
8326out1:
8327        free_page((unsigned long)vmx_io_bitmap_b);
8328out:
8329        free_page((unsigned long)vmx_io_bitmap_a);
8330        return r;
8331}
8332
8333static void __exit vmx_exit(void)
8334{
8335        free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
8336        free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
8337        free_page((unsigned long)vmx_msr_bitmap_legacy);
8338        free_page((unsigned long)vmx_msr_bitmap_longmode);
8339        free_page((unsigned long)vmx_io_bitmap_b);
8340        free_page((unsigned long)vmx_io_bitmap_a);
8341        free_page((unsigned long)vmx_vmwrite_bitmap);
8342        free_page((unsigned long)vmx_vmread_bitmap);
8343
8344#ifdef CONFIG_KEXEC
8345        rcu_assign_pointer(crash_vmclear_loaded_vmcss, NULL);
8346        synchronize_rcu();
8347#endif
8348
8349        kvm_exit();
8350}
8351
8352module_init(vmx_init)
8353module_exit(vmx_exit)
8354