linux/drivers/block/loop.c
<<
>>
Prefs
   1/*
   2 *  linux/drivers/block/loop.c
   3 *
   4 *  Written by Theodore Ts'o, 3/29/93
   5 *
   6 * Copyright 1993 by Theodore Ts'o.  Redistribution of this file is
   7 * permitted under the GNU General Public License.
   8 *
   9 * DES encryption plus some minor changes by Werner Almesberger, 30-MAY-1993
  10 * more DES encryption plus IDEA encryption by Nicholas J. Leon, June 20, 1996
  11 *
  12 * Modularized and updated for 1.1.16 kernel - Mitch Dsouza 28th May 1994
  13 * Adapted for 1.3.59 kernel - Andries Brouwer, 1 Feb 1996
  14 *
  15 * Fixed do_loop_request() re-entrancy - Vincent.Renardias@waw.com Mar 20, 1997
  16 *
  17 * Added devfs support - Richard Gooch <rgooch@atnf.csiro.au> 16-Jan-1998
  18 *
  19 * Handle sparse backing files correctly - Kenn Humborg, Jun 28, 1998
  20 *
  21 * Loadable modules and other fixes by AK, 1998
  22 *
  23 * Make real block number available to downstream transfer functions, enables
  24 * CBC (and relatives) mode encryption requiring unique IVs per data block.
  25 * Reed H. Petty, rhp@draper.net
  26 *
  27 * Maximum number of loop devices now dynamic via max_loop module parameter.
  28 * Russell Kroll <rkroll@exploits.org> 19990701
  29 *
  30 * Maximum number of loop devices when compiled-in now selectable by passing
  31 * max_loop=<1-255> to the kernel on boot.
  32 * Erik I. Bolsø, <eriki@himolde.no>, Oct 31, 1999
  33 *
  34 * Completely rewrite request handling to be make_request_fn style and
  35 * non blocking, pushing work to a helper thread. Lots of fixes from
  36 * Al Viro too.
  37 * Jens Axboe <axboe@suse.de>, Nov 2000
  38 *
  39 * Support up to 256 loop devices
  40 * Heinz Mauelshagen <mge@sistina.com>, Feb 2002
  41 *
  42 * Support for falling back on the write file operation when the address space
  43 * operations write_begin is not available on the backing filesystem.
  44 * Anton Altaparmakov, 16 Feb 2005
  45 *
  46 * Still To Fix:
  47 * - Advisory locking is ignored here.
  48 * - Should use an own CAP_* category instead of CAP_SYS_ADMIN
  49 *
  50 */
  51
  52#include <linux/module.h>
  53#include <linux/moduleparam.h>
  54#include <linux/sched.h>
  55#include <linux/fs.h>
  56#include <linux/file.h>
  57#include <linux/stat.h>
  58#include <linux/errno.h>
  59#include <linux/major.h>
  60#include <linux/wait.h>
  61#include <linux/blkdev.h>
  62#include <linux/blkpg.h>
  63#include <linux/init.h>
  64#include <linux/swap.h>
  65#include <linux/slab.h>
  66#include <linux/loop.h>
  67#include <linux/compat.h>
  68#include <linux/suspend.h>
  69#include <linux/freezer.h>
  70#include <linux/mutex.h>
  71#include <linux/writeback.h>
  72#include <linux/completion.h>
  73#include <linux/highmem.h>
  74#include <linux/kthread.h>
  75#include <linux/splice.h>
  76#include <linux/sysfs.h>
  77#include <linux/miscdevice.h>
  78#include <linux/falloc.h>
  79
  80#include <asm/uaccess.h>
  81
  82static DEFINE_IDR(loop_index_idr);
  83static DEFINE_MUTEX(loop_index_mutex);
  84
  85static int max_part;
  86static int part_shift;
  87
  88/*
  89 * Transfer functions
  90 */
  91static int transfer_none(struct loop_device *lo, int cmd,
  92                         struct page *raw_page, unsigned raw_off,
  93                         struct page *loop_page, unsigned loop_off,
  94                         int size, sector_t real_block)
  95{
  96        char *raw_buf = kmap_atomic(raw_page) + raw_off;
  97        char *loop_buf = kmap_atomic(loop_page) + loop_off;
  98
  99        if (cmd == READ)
 100                memcpy(loop_buf, raw_buf, size);
 101        else
 102                memcpy(raw_buf, loop_buf, size);
 103
 104        kunmap_atomic(loop_buf);
 105        kunmap_atomic(raw_buf);
 106        cond_resched();
 107        return 0;
 108}
 109
 110static int transfer_xor(struct loop_device *lo, int cmd,
 111                        struct page *raw_page, unsigned raw_off,
 112                        struct page *loop_page, unsigned loop_off,
 113                        int size, sector_t real_block)
 114{
 115        char *raw_buf = kmap_atomic(raw_page) + raw_off;
 116        char *loop_buf = kmap_atomic(loop_page) + loop_off;
 117        char *in, *out, *key;
 118        int i, keysize;
 119
 120        if (cmd == READ) {
 121                in = raw_buf;
 122                out = loop_buf;
 123        } else {
 124                in = loop_buf;
 125                out = raw_buf;
 126        }
 127
 128        key = lo->lo_encrypt_key;
 129        keysize = lo->lo_encrypt_key_size;
 130        for (i = 0; i < size; i++)
 131                *out++ = *in++ ^ key[(i & 511) % keysize];
 132
 133        kunmap_atomic(loop_buf);
 134        kunmap_atomic(raw_buf);
 135        cond_resched();
 136        return 0;
 137}
 138
 139static int xor_init(struct loop_device *lo, const struct loop_info64 *info)
 140{
 141        if (unlikely(info->lo_encrypt_key_size <= 0))
 142                return -EINVAL;
 143        return 0;
 144}
 145
 146static struct loop_func_table none_funcs = {
 147        .number = LO_CRYPT_NONE,
 148        .transfer = transfer_none,
 149};      
 150
 151static struct loop_func_table xor_funcs = {
 152        .number = LO_CRYPT_XOR,
 153        .transfer = transfer_xor,
 154        .init = xor_init
 155};      
 156
 157/* xfer_funcs[0] is special - its release function is never called */
 158static struct loop_func_table *xfer_funcs[MAX_LO_CRYPT] = {
 159        &none_funcs,
 160        &xor_funcs
 161};
 162
 163static loff_t get_size(loff_t offset, loff_t sizelimit, struct file *file)
 164{
 165        loff_t loopsize;
 166
 167        /* Compute loopsize in bytes */
 168        loopsize = i_size_read(file->f_mapping->host);
 169        if (offset > 0)
 170                loopsize -= offset;
 171        /* offset is beyond i_size, weird but possible */
 172        if (loopsize < 0)
 173                return 0;
 174
 175        if (sizelimit > 0 && sizelimit < loopsize)
 176                loopsize = sizelimit;
 177        /*
 178         * Unfortunately, if we want to do I/O on the device,
 179         * the number of 512-byte sectors has to fit into a sector_t.
 180         */
 181        return loopsize >> 9;
 182}
 183
 184static loff_t get_loop_size(struct loop_device *lo, struct file *file)
 185{
 186        return get_size(lo->lo_offset, lo->lo_sizelimit, file);
 187}
 188
 189static int
 190figure_loop_size(struct loop_device *lo, loff_t offset, loff_t sizelimit)
 191{
 192        loff_t size = get_size(offset, sizelimit, lo->lo_backing_file);
 193        sector_t x = (sector_t)size;
 194        struct block_device *bdev = lo->lo_device;
 195
 196        if (unlikely((loff_t)x != size))
 197                return -EFBIG;
 198        if (lo->lo_offset != offset)
 199                lo->lo_offset = offset;
 200        if (lo->lo_sizelimit != sizelimit)
 201                lo->lo_sizelimit = sizelimit;
 202        set_capacity(lo->lo_disk, x);
 203        bd_set_size(bdev, (loff_t)get_capacity(bdev->bd_disk) << 9);
 204        /* let user-space know about the new size */
 205        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 206        return 0;
 207}
 208
 209static inline int
 210lo_do_transfer(struct loop_device *lo, int cmd,
 211               struct page *rpage, unsigned roffs,
 212               struct page *lpage, unsigned loffs,
 213               int size, sector_t rblock)
 214{
 215        if (unlikely(!lo->transfer))
 216                return 0;
 217
 218        return lo->transfer(lo, cmd, rpage, roffs, lpage, loffs, size, rblock);
 219}
 220
 221/**
 222 * __do_lo_send_write - helper for writing data to a loop device
 223 *
 224 * This helper just factors out common code between do_lo_send_direct_write()
 225 * and do_lo_send_write().
 226 */
 227static int __do_lo_send_write(struct file *file,
 228                u8 *buf, const int len, loff_t pos)
 229{
 230        ssize_t bw;
 231        mm_segment_t old_fs = get_fs();
 232
 233        file_start_write(file);
 234        set_fs(get_ds());
 235        bw = file->f_op->write(file, buf, len, &pos);
 236        set_fs(old_fs);
 237        file_end_write(file);
 238        if (likely(bw == len))
 239                return 0;
 240        printk(KERN_ERR "loop: Write error at byte offset %llu, length %i.\n",
 241                        (unsigned long long)pos, len);
 242        if (bw >= 0)
 243                bw = -EIO;
 244        return bw;
 245}
 246
 247/**
 248 * do_lo_send_direct_write - helper for writing data to a loop device
 249 *
 250 * This is the fast, non-transforming version that does not need double
 251 * buffering.
 252 */
 253static int do_lo_send_direct_write(struct loop_device *lo,
 254                struct bio_vec *bvec, loff_t pos, struct page *page)
 255{
 256        ssize_t bw = __do_lo_send_write(lo->lo_backing_file,
 257                        kmap(bvec->bv_page) + bvec->bv_offset,
 258                        bvec->bv_len, pos);
 259        kunmap(bvec->bv_page);
 260        cond_resched();
 261        return bw;
 262}
 263
 264/**
 265 * do_lo_send_write - helper for writing data to a loop device
 266 *
 267 * This is the slow, transforming version that needs to double buffer the
 268 * data as it cannot do the transformations in place without having direct
 269 * access to the destination pages of the backing file.
 270 */
 271static int do_lo_send_write(struct loop_device *lo, struct bio_vec *bvec,
 272                loff_t pos, struct page *page)
 273{
 274        int ret = lo_do_transfer(lo, WRITE, page, 0, bvec->bv_page,
 275                        bvec->bv_offset, bvec->bv_len, pos >> 9);
 276        if (likely(!ret))
 277                return __do_lo_send_write(lo->lo_backing_file,
 278                                page_address(page), bvec->bv_len,
 279                                pos);
 280        printk(KERN_ERR "loop: Transfer error at byte offset %llu, "
 281                        "length %i.\n", (unsigned long long)pos, bvec->bv_len);
 282        if (ret > 0)
 283                ret = -EIO;
 284        return ret;
 285}
 286
 287static int lo_send(struct loop_device *lo, struct bio *bio, loff_t pos)
 288{
 289        int (*do_lo_send)(struct loop_device *, struct bio_vec *, loff_t,
 290                        struct page *page);
 291        struct bio_vec *bvec;
 292        struct page *page = NULL;
 293        int i, ret = 0;
 294
 295        if (lo->transfer != transfer_none) {
 296                page = alloc_page(GFP_NOIO | __GFP_HIGHMEM);
 297                if (unlikely(!page))
 298                        goto fail;
 299                kmap(page);
 300                do_lo_send = do_lo_send_write;
 301        } else {
 302                do_lo_send = do_lo_send_direct_write;
 303        }
 304
 305        bio_for_each_segment(bvec, bio, i) {
 306                ret = do_lo_send(lo, bvec, pos, page);
 307                if (ret < 0)
 308                        break;
 309                pos += bvec->bv_len;
 310        }
 311        if (page) {
 312                kunmap(page);
 313                __free_page(page);
 314        }
 315out:
 316        return ret;
 317fail:
 318        printk(KERN_ERR "loop: Failed to allocate temporary page for write.\n");
 319        ret = -ENOMEM;
 320        goto out;
 321}
 322
 323struct lo_read_data {
 324        struct loop_device *lo;
 325        struct page *page;
 326        unsigned offset;
 327        int bsize;
 328};
 329
 330static int
 331lo_splice_actor(struct pipe_inode_info *pipe, struct pipe_buffer *buf,
 332                struct splice_desc *sd)
 333{
 334        struct lo_read_data *p = sd->u.data;
 335        struct loop_device *lo = p->lo;
 336        struct page *page = buf->page;
 337        sector_t IV;
 338        int size;
 339
 340        IV = ((sector_t) page->index << (PAGE_CACHE_SHIFT - 9)) +
 341                                                        (buf->offset >> 9);
 342        size = sd->len;
 343        if (size > p->bsize)
 344                size = p->bsize;
 345
 346        if (lo_do_transfer(lo, READ, page, buf->offset, p->page, p->offset, size, IV)) {
 347                printk(KERN_ERR "loop: transfer error block %ld\n",
 348                       page->index);
 349                size = -EINVAL;
 350        }
 351
 352        flush_dcache_page(p->page);
 353
 354        if (size > 0)
 355                p->offset += size;
 356
 357        return size;
 358}
 359
 360static int
 361lo_direct_splice_actor(struct pipe_inode_info *pipe, struct splice_desc *sd)
 362{
 363        return __splice_from_pipe(pipe, sd, lo_splice_actor);
 364}
 365
 366static ssize_t
 367do_lo_receive(struct loop_device *lo,
 368              struct bio_vec *bvec, int bsize, loff_t pos)
 369{
 370        struct lo_read_data cookie;
 371        struct splice_desc sd;
 372        struct file *file;
 373        ssize_t retval;
 374
 375        cookie.lo = lo;
 376        cookie.page = bvec->bv_page;
 377        cookie.offset = bvec->bv_offset;
 378        cookie.bsize = bsize;
 379
 380        sd.len = 0;
 381        sd.total_len = bvec->bv_len;
 382        sd.flags = 0;
 383        sd.pos = pos;
 384        sd.u.data = &cookie;
 385
 386        file = lo->lo_backing_file;
 387        retval = splice_direct_to_actor(file, &sd, lo_direct_splice_actor);
 388
 389        return retval;
 390}
 391
 392static int
 393lo_receive(struct loop_device *lo, struct bio *bio, int bsize, loff_t pos)
 394{
 395        struct bio_vec *bvec;
 396        ssize_t s;
 397        int i;
 398
 399        bio_for_each_segment(bvec, bio, i) {
 400                s = do_lo_receive(lo, bvec, bsize, pos);
 401                if (s < 0)
 402                        return s;
 403
 404                if (s != bvec->bv_len) {
 405                        zero_fill_bio(bio);
 406                        break;
 407                }
 408                pos += bvec->bv_len;
 409        }
 410        return 0;
 411}
 412
 413static int do_bio_filebacked(struct loop_device *lo, struct bio *bio)
 414{
 415        loff_t pos;
 416        int ret;
 417
 418        pos = ((loff_t) bio->bi_sector << 9) + lo->lo_offset;
 419
 420        if (bio_rw(bio) == WRITE) {
 421                struct file *file = lo->lo_backing_file;
 422
 423                if (bio->bi_rw & REQ_FLUSH) {
 424                        ret = vfs_fsync(file, 0);
 425                        if (unlikely(ret && ret != -EINVAL)) {
 426                                ret = -EIO;
 427                                goto out;
 428                        }
 429                }
 430
 431                /*
 432                 * We use punch hole to reclaim the free space used by the
 433                 * image a.k.a. discard. However we do not support discard if
 434                 * encryption is enabled, because it may give an attacker
 435                 * useful information.
 436                 */
 437                if (bio->bi_rw & REQ_DISCARD) {
 438                        struct file *file = lo->lo_backing_file;
 439                        int mode = FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE;
 440
 441                        if ((!file->f_op->fallocate) ||
 442                            lo->lo_encrypt_key_size) {
 443                                ret = -EOPNOTSUPP;
 444                                goto out;
 445                        }
 446                        ret = file->f_op->fallocate(file, mode, pos,
 447                                                    bio->bi_size);
 448                        if (unlikely(ret && ret != -EINVAL &&
 449                                     ret != -EOPNOTSUPP))
 450                                ret = -EIO;
 451                        goto out;
 452                }
 453
 454                ret = lo_send(lo, bio, pos);
 455
 456                if ((bio->bi_rw & REQ_FUA) && !ret) {
 457                        ret = vfs_fsync(file, 0);
 458                        if (unlikely(ret && ret != -EINVAL))
 459                                ret = -EIO;
 460                }
 461        } else
 462                ret = lo_receive(lo, bio, lo->lo_blocksize, pos);
 463
 464out:
 465        return ret;
 466}
 467
 468/*
 469 * Add bio to back of pending list
 470 */
 471static void loop_add_bio(struct loop_device *lo, struct bio *bio)
 472{
 473        lo->lo_bio_count++;
 474        bio_list_add(&lo->lo_bio_list, bio);
 475}
 476
 477/*
 478 * Grab first pending buffer
 479 */
 480static struct bio *loop_get_bio(struct loop_device *lo)
 481{
 482        lo->lo_bio_count--;
 483        return bio_list_pop(&lo->lo_bio_list);
 484}
 485
 486static void loop_make_request(struct request_queue *q, struct bio *old_bio)
 487{
 488        struct loop_device *lo = q->queuedata;
 489        int rw = bio_rw(old_bio);
 490
 491        if (rw == READA)
 492                rw = READ;
 493
 494        BUG_ON(!lo || (rw != READ && rw != WRITE));
 495
 496        spin_lock_irq(&lo->lo_lock);
 497        if (lo->lo_state != Lo_bound)
 498                goto out;
 499        if (unlikely(rw == WRITE && (lo->lo_flags & LO_FLAGS_READ_ONLY)))
 500                goto out;
 501        if (lo->lo_bio_count >= q->nr_congestion_on)
 502                wait_event_lock_irq(lo->lo_req_wait,
 503                                    lo->lo_bio_count < q->nr_congestion_off,
 504                                    lo->lo_lock);
 505        loop_add_bio(lo, old_bio);
 506        wake_up(&lo->lo_event);
 507        spin_unlock_irq(&lo->lo_lock);
 508        return;
 509
 510out:
 511        spin_unlock_irq(&lo->lo_lock);
 512        bio_io_error(old_bio);
 513}
 514
 515struct switch_request {
 516        struct file *file;
 517        struct completion wait;
 518};
 519
 520static void do_loop_switch(struct loop_device *, struct switch_request *);
 521
 522static inline void loop_handle_bio(struct loop_device *lo, struct bio *bio)
 523{
 524        if (unlikely(!bio->bi_bdev)) {
 525                do_loop_switch(lo, bio->bi_private);
 526                bio_put(bio);
 527        } else {
 528                int ret = do_bio_filebacked(lo, bio);
 529                bio_endio(bio, ret);
 530        }
 531}
 532
 533/*
 534 * worker thread that handles reads/writes to file backed loop devices,
 535 * to avoid blocking in our make_request_fn. it also does loop decrypting
 536 * on reads for block backed loop, as that is too heavy to do from
 537 * b_end_io context where irqs may be disabled.
 538 *
 539 * Loop explanation:  loop_clr_fd() sets lo_state to Lo_rundown before
 540 * calling kthread_stop().  Therefore once kthread_should_stop() is
 541 * true, make_request will not place any more requests.  Therefore
 542 * once kthread_should_stop() is true and lo_bio is NULL, we are
 543 * done with the loop.
 544 */
 545static int loop_thread(void *data)
 546{
 547        struct loop_device *lo = data;
 548        struct bio *bio;
 549
 550        set_user_nice(current, -20);
 551
 552        while (!kthread_should_stop() || !bio_list_empty(&lo->lo_bio_list)) {
 553
 554                wait_event_interruptible(lo->lo_event,
 555                                !bio_list_empty(&lo->lo_bio_list) ||
 556                                kthread_should_stop());
 557
 558                if (bio_list_empty(&lo->lo_bio_list))
 559                        continue;
 560                spin_lock_irq(&lo->lo_lock);
 561                bio = loop_get_bio(lo);
 562                if (lo->lo_bio_count < lo->lo_queue->nr_congestion_off)
 563                        wake_up(&lo->lo_req_wait);
 564                spin_unlock_irq(&lo->lo_lock);
 565
 566                BUG_ON(!bio);
 567                loop_handle_bio(lo, bio);
 568        }
 569
 570        return 0;
 571}
 572
 573/*
 574 * loop_switch performs the hard work of switching a backing store.
 575 * First it needs to flush existing IO, it does this by sending a magic
 576 * BIO down the pipe. The completion of this BIO does the actual switch.
 577 */
 578static int loop_switch(struct loop_device *lo, struct file *file)
 579{
 580        struct switch_request w;
 581        struct bio *bio = bio_alloc(GFP_KERNEL, 0);
 582        if (!bio)
 583                return -ENOMEM;
 584        init_completion(&w.wait);
 585        w.file = file;
 586        bio->bi_private = &w;
 587        bio->bi_bdev = NULL;
 588        loop_make_request(lo->lo_queue, bio);
 589        wait_for_completion(&w.wait);
 590        return 0;
 591}
 592
 593/*
 594 * Helper to flush the IOs in loop, but keeping loop thread running
 595 */
 596static int loop_flush(struct loop_device *lo)
 597{
 598        /* loop not yet configured, no running thread, nothing to flush */
 599        if (!lo->lo_thread)
 600                return 0;
 601
 602        return loop_switch(lo, NULL);
 603}
 604
 605/*
 606 * Do the actual switch; called from the BIO completion routine
 607 */
 608static void do_loop_switch(struct loop_device *lo, struct switch_request *p)
 609{
 610        struct file *file = p->file;
 611        struct file *old_file = lo->lo_backing_file;
 612        struct address_space *mapping;
 613
 614        /* if no new file, only flush of queued bios requested */
 615        if (!file)
 616                goto out;
 617
 618        mapping = file->f_mapping;
 619        mapping_set_gfp_mask(old_file->f_mapping, lo->old_gfp_mask);
 620        lo->lo_backing_file = file;
 621        lo->lo_blocksize = S_ISBLK(mapping->host->i_mode) ?
 622                mapping->host->i_bdev->bd_block_size : PAGE_SIZE;
 623        lo->old_gfp_mask = mapping_gfp_mask(mapping);
 624        mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 625out:
 626        complete(&p->wait);
 627}
 628
 629
 630/*
 631 * loop_change_fd switched the backing store of a loopback device to
 632 * a new file. This is useful for operating system installers to free up
 633 * the original file and in High Availability environments to switch to
 634 * an alternative location for the content in case of server meltdown.
 635 * This can only work if the loop device is used read-only, and if the
 636 * new backing store is the same size and type as the old backing store.
 637 */
 638static int loop_change_fd(struct loop_device *lo, struct block_device *bdev,
 639                          unsigned int arg)
 640{
 641        struct file     *file, *old_file;
 642        struct inode    *inode;
 643        int             error;
 644
 645        error = -ENXIO;
 646        if (lo->lo_state != Lo_bound)
 647                goto out;
 648
 649        /* the loop device has to be read-only */
 650        error = -EINVAL;
 651        if (!(lo->lo_flags & LO_FLAGS_READ_ONLY))
 652                goto out;
 653
 654        error = -EBADF;
 655        file = fget(arg);
 656        if (!file)
 657                goto out;
 658
 659        inode = file->f_mapping->host;
 660        old_file = lo->lo_backing_file;
 661
 662        error = -EINVAL;
 663
 664        if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 665                goto out_putf;
 666
 667        /* size of the new backing store needs to be the same */
 668        if (get_loop_size(lo, file) != get_loop_size(lo, old_file))
 669                goto out_putf;
 670
 671        /* and ... switch */
 672        error = loop_switch(lo, file);
 673        if (error)
 674                goto out_putf;
 675
 676        fput(old_file);
 677        if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 678                ioctl_by_bdev(bdev, BLKRRPART, 0);
 679        return 0;
 680
 681 out_putf:
 682        fput(file);
 683 out:
 684        return error;
 685}
 686
 687static inline int is_loop_device(struct file *file)
 688{
 689        struct inode *i = file->f_mapping->host;
 690
 691        return i && S_ISBLK(i->i_mode) && MAJOR(i->i_rdev) == LOOP_MAJOR;
 692}
 693
 694/* loop sysfs attributes */
 695
 696static ssize_t loop_attr_show(struct device *dev, char *page,
 697                              ssize_t (*callback)(struct loop_device *, char *))
 698{
 699        struct gendisk *disk = dev_to_disk(dev);
 700        struct loop_device *lo = disk->private_data;
 701
 702        return callback(lo, page);
 703}
 704
 705#define LOOP_ATTR_RO(_name)                                             \
 706static ssize_t loop_attr_##_name##_show(struct loop_device *, char *);  \
 707static ssize_t loop_attr_do_show_##_name(struct device *d,              \
 708                                struct device_attribute *attr, char *b) \
 709{                                                                       \
 710        return loop_attr_show(d, b, loop_attr_##_name##_show);          \
 711}                                                                       \
 712static struct device_attribute loop_attr_##_name =                      \
 713        __ATTR(_name, S_IRUGO, loop_attr_do_show_##_name, NULL);
 714
 715static ssize_t loop_attr_backing_file_show(struct loop_device *lo, char *buf)
 716{
 717        ssize_t ret;
 718        char *p = NULL;
 719
 720        spin_lock_irq(&lo->lo_lock);
 721        if (lo->lo_backing_file)
 722                p = d_path(&lo->lo_backing_file->f_path, buf, PAGE_SIZE - 1);
 723        spin_unlock_irq(&lo->lo_lock);
 724
 725        if (IS_ERR_OR_NULL(p))
 726                ret = PTR_ERR(p);
 727        else {
 728                ret = strlen(p);
 729                memmove(buf, p, ret);
 730                buf[ret++] = '\n';
 731                buf[ret] = 0;
 732        }
 733
 734        return ret;
 735}
 736
 737static ssize_t loop_attr_offset_show(struct loop_device *lo, char *buf)
 738{
 739        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_offset);
 740}
 741
 742static ssize_t loop_attr_sizelimit_show(struct loop_device *lo, char *buf)
 743{
 744        return sprintf(buf, "%llu\n", (unsigned long long)lo->lo_sizelimit);
 745}
 746
 747static ssize_t loop_attr_autoclear_show(struct loop_device *lo, char *buf)
 748{
 749        int autoclear = (lo->lo_flags & LO_FLAGS_AUTOCLEAR);
 750
 751        return sprintf(buf, "%s\n", autoclear ? "1" : "0");
 752}
 753
 754static ssize_t loop_attr_partscan_show(struct loop_device *lo, char *buf)
 755{
 756        int partscan = (lo->lo_flags & LO_FLAGS_PARTSCAN);
 757
 758        return sprintf(buf, "%s\n", partscan ? "1" : "0");
 759}
 760
 761LOOP_ATTR_RO(backing_file);
 762LOOP_ATTR_RO(offset);
 763LOOP_ATTR_RO(sizelimit);
 764LOOP_ATTR_RO(autoclear);
 765LOOP_ATTR_RO(partscan);
 766
 767static struct attribute *loop_attrs[] = {
 768        &loop_attr_backing_file.attr,
 769        &loop_attr_offset.attr,
 770        &loop_attr_sizelimit.attr,
 771        &loop_attr_autoclear.attr,
 772        &loop_attr_partscan.attr,
 773        NULL,
 774};
 775
 776static struct attribute_group loop_attribute_group = {
 777        .name = "loop",
 778        .attrs= loop_attrs,
 779};
 780
 781static int loop_sysfs_init(struct loop_device *lo)
 782{
 783        return sysfs_create_group(&disk_to_dev(lo->lo_disk)->kobj,
 784                                  &loop_attribute_group);
 785}
 786
 787static void loop_sysfs_exit(struct loop_device *lo)
 788{
 789        sysfs_remove_group(&disk_to_dev(lo->lo_disk)->kobj,
 790                           &loop_attribute_group);
 791}
 792
 793static void loop_config_discard(struct loop_device *lo)
 794{
 795        struct file *file = lo->lo_backing_file;
 796        struct inode *inode = file->f_mapping->host;
 797        struct request_queue *q = lo->lo_queue;
 798
 799        /*
 800         * We use punch hole to reclaim the free space used by the
 801         * image a.k.a. discard. However we do support discard if
 802         * encryption is enabled, because it may give an attacker
 803         * useful information.
 804         */
 805        if ((!file->f_op->fallocate) ||
 806            lo->lo_encrypt_key_size) {
 807                q->limits.discard_granularity = 0;
 808                q->limits.discard_alignment = 0;
 809                q->limits.max_discard_sectors = 0;
 810                q->limits.discard_zeroes_data = 0;
 811                queue_flag_clear_unlocked(QUEUE_FLAG_DISCARD, q);
 812                return;
 813        }
 814
 815        q->limits.discard_granularity = inode->i_sb->s_blocksize;
 816        q->limits.discard_alignment = 0;
 817        q->limits.max_discard_sectors = UINT_MAX >> 9;
 818        q->limits.discard_zeroes_data = 1;
 819        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, q);
 820}
 821
 822static int loop_set_fd(struct loop_device *lo, fmode_t mode,
 823                       struct block_device *bdev, unsigned int arg)
 824{
 825        struct file     *file, *f;
 826        struct inode    *inode;
 827        struct address_space *mapping;
 828        unsigned lo_blocksize;
 829        int             lo_flags = 0;
 830        int             error;
 831        loff_t          size;
 832
 833        /* This is safe, since we have a reference from open(). */
 834        __module_get(THIS_MODULE);
 835
 836        error = -EBADF;
 837        file = fget(arg);
 838        if (!file)
 839                goto out;
 840
 841        error = -EBUSY;
 842        if (lo->lo_state != Lo_unbound)
 843                goto out_putf;
 844
 845        /* Avoid recursion */
 846        f = file;
 847        while (is_loop_device(f)) {
 848                struct loop_device *l;
 849
 850                if (f->f_mapping->host->i_bdev == bdev)
 851                        goto out_putf;
 852
 853                l = f->f_mapping->host->i_bdev->bd_disk->private_data;
 854                if (l->lo_state == Lo_unbound) {
 855                        error = -EINVAL;
 856                        goto out_putf;
 857                }
 858                f = l->lo_backing_file;
 859        }
 860
 861        mapping = file->f_mapping;
 862        inode = mapping->host;
 863
 864        error = -EINVAL;
 865        if (!S_ISREG(inode->i_mode) && !S_ISBLK(inode->i_mode))
 866                goto out_putf;
 867
 868        if (!(file->f_mode & FMODE_WRITE) || !(mode & FMODE_WRITE) ||
 869            !file->f_op->write)
 870                lo_flags |= LO_FLAGS_READ_ONLY;
 871
 872        lo_blocksize = S_ISBLK(inode->i_mode) ?
 873                inode->i_bdev->bd_block_size : PAGE_SIZE;
 874
 875        error = -EFBIG;
 876        size = get_loop_size(lo, file);
 877        if ((loff_t)(sector_t)size != size)
 878                goto out_putf;
 879
 880        error = 0;
 881
 882        set_device_ro(bdev, (lo_flags & LO_FLAGS_READ_ONLY) != 0);
 883
 884        lo->lo_blocksize = lo_blocksize;
 885        lo->lo_device = bdev;
 886        lo->lo_flags = lo_flags;
 887        lo->lo_backing_file = file;
 888        lo->transfer = transfer_none;
 889        lo->ioctl = NULL;
 890        lo->lo_sizelimit = 0;
 891        lo->lo_bio_count = 0;
 892        lo->old_gfp_mask = mapping_gfp_mask(mapping);
 893        mapping_set_gfp_mask(mapping, lo->old_gfp_mask & ~(__GFP_IO|__GFP_FS));
 894
 895        bio_list_init(&lo->lo_bio_list);
 896
 897        /*
 898         * set queue make_request_fn, and add limits based on lower level
 899         * device
 900         */
 901        blk_queue_make_request(lo->lo_queue, loop_make_request);
 902        lo->lo_queue->queuedata = lo;
 903
 904        if (!(lo_flags & LO_FLAGS_READ_ONLY) && file->f_op->fsync)
 905                blk_queue_flush(lo->lo_queue, REQ_FLUSH);
 906
 907        set_capacity(lo->lo_disk, size);
 908        bd_set_size(bdev, size << 9);
 909        loop_sysfs_init(lo);
 910        /* let user-space know about the new size */
 911        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 912
 913        set_blocksize(bdev, lo_blocksize);
 914
 915        lo->lo_thread = kthread_create(loop_thread, lo, "loop%d",
 916                                                lo->lo_number);
 917        if (IS_ERR(lo->lo_thread)) {
 918                error = PTR_ERR(lo->lo_thread);
 919                goto out_clr;
 920        }
 921        lo->lo_state = Lo_bound;
 922        wake_up_process(lo->lo_thread);
 923        if (part_shift)
 924                lo->lo_flags |= LO_FLAGS_PARTSCAN;
 925        if (lo->lo_flags & LO_FLAGS_PARTSCAN)
 926                ioctl_by_bdev(bdev, BLKRRPART, 0);
 927
 928        /* Grab the block_device to prevent its destruction after we
 929         * put /dev/loopXX inode. Later in loop_clr_fd() we bdput(bdev).
 930         */
 931        bdgrab(bdev);
 932        return 0;
 933
 934out_clr:
 935        loop_sysfs_exit(lo);
 936        lo->lo_thread = NULL;
 937        lo->lo_device = NULL;
 938        lo->lo_backing_file = NULL;
 939        lo->lo_flags = 0;
 940        set_capacity(lo->lo_disk, 0);
 941        invalidate_bdev(bdev);
 942        bd_set_size(bdev, 0);
 943        kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
 944        mapping_set_gfp_mask(mapping, lo->old_gfp_mask);
 945        lo->lo_state = Lo_unbound;
 946 out_putf:
 947        fput(file);
 948 out:
 949        /* This is safe: open() is still holding a reference. */
 950        module_put(THIS_MODULE);
 951        return error;
 952}
 953
 954static int
 955loop_release_xfer(struct loop_device *lo)
 956{
 957        int err = 0;
 958        struct loop_func_table *xfer = lo->lo_encryption;
 959
 960        if (xfer) {
 961                if (xfer->release)
 962                        err = xfer->release(lo);
 963                lo->transfer = NULL;
 964                lo->lo_encryption = NULL;
 965                module_put(xfer->owner);
 966        }
 967        return err;
 968}
 969
 970static int
 971loop_init_xfer(struct loop_device *lo, struct loop_func_table *xfer,
 972               const struct loop_info64 *i)
 973{
 974        int err = 0;
 975
 976        if (xfer) {
 977                struct module *owner = xfer->owner;
 978
 979                if (!try_module_get(owner))
 980                        return -EINVAL;
 981                if (xfer->init)
 982                        err = xfer->init(lo, i);
 983                if (err)
 984                        module_put(owner);
 985                else
 986                        lo->lo_encryption = xfer;
 987        }
 988        return err;
 989}
 990
 991static int loop_clr_fd(struct loop_device *lo)
 992{
 993        struct file *filp = lo->lo_backing_file;
 994        gfp_t gfp = lo->old_gfp_mask;
 995        struct block_device *bdev = lo->lo_device;
 996
 997        if (lo->lo_state != Lo_bound)
 998                return -ENXIO;
 999
1000        /*
1001         * If we've explicitly asked to tear down the loop device,
1002         * and it has an elevated reference count, set it for auto-teardown when
1003         * the last reference goes away. This stops $!~#$@ udev from
1004         * preventing teardown because it decided that it needs to run blkid on
1005         * the loopback device whenever they appear. xfstests is notorious for
1006         * failing tests because blkid via udev races with a losetup
1007         * <dev>/do something like mkfs/losetup -d <dev> causing the losetup -d
1008         * command to fail with EBUSY.
1009         */
1010        if (lo->lo_refcnt > 1) {
1011                lo->lo_flags |= LO_FLAGS_AUTOCLEAR;
1012                mutex_unlock(&lo->lo_ctl_mutex);
1013                return 0;
1014        }
1015
1016        if (filp == NULL)
1017                return -EINVAL;
1018
1019        spin_lock_irq(&lo->lo_lock);
1020        lo->lo_state = Lo_rundown;
1021        spin_unlock_irq(&lo->lo_lock);
1022
1023        kthread_stop(lo->lo_thread);
1024
1025        spin_lock_irq(&lo->lo_lock);
1026        lo->lo_backing_file = NULL;
1027        spin_unlock_irq(&lo->lo_lock);
1028
1029        loop_release_xfer(lo);
1030        lo->transfer = NULL;
1031        lo->ioctl = NULL;
1032        lo->lo_device = NULL;
1033        lo->lo_encryption = NULL;
1034        lo->lo_offset = 0;
1035        lo->lo_sizelimit = 0;
1036        lo->lo_encrypt_key_size = 0;
1037        lo->lo_thread = NULL;
1038        memset(lo->lo_encrypt_key, 0, LO_KEY_SIZE);
1039        memset(lo->lo_crypt_name, 0, LO_NAME_SIZE);
1040        memset(lo->lo_file_name, 0, LO_NAME_SIZE);
1041        if (bdev) {
1042                bdput(bdev);
1043                invalidate_bdev(bdev);
1044        }
1045        set_capacity(lo->lo_disk, 0);
1046        loop_sysfs_exit(lo);
1047        if (bdev) {
1048                bd_set_size(bdev, 0);
1049                /* let user-space know about this change */
1050                kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, KOBJ_CHANGE);
1051        }
1052        mapping_set_gfp_mask(filp->f_mapping, gfp);
1053        lo->lo_state = Lo_unbound;
1054        /* This is safe: open() is still holding a reference. */
1055        module_put(THIS_MODULE);
1056        if (lo->lo_flags & LO_FLAGS_PARTSCAN && bdev)
1057                ioctl_by_bdev(bdev, BLKRRPART, 0);
1058        lo->lo_flags = 0;
1059        if (!part_shift)
1060                lo->lo_disk->flags |= GENHD_FL_NO_PART_SCAN;
1061        mutex_unlock(&lo->lo_ctl_mutex);
1062        /*
1063         * Need not hold lo_ctl_mutex to fput backing file.
1064         * Calling fput holding lo_ctl_mutex triggers a circular
1065         * lock dependency possibility warning as fput can take
1066         * bd_mutex which is usually taken before lo_ctl_mutex.
1067         */
1068        fput(filp);
1069        return 0;
1070}
1071
1072static int
1073loop_set_status(struct loop_device *lo, const struct loop_info64 *info)
1074{
1075        int err;
1076        struct loop_func_table *xfer;
1077        kuid_t uid = current_uid();
1078
1079        if (lo->lo_encrypt_key_size &&
1080            !uid_eq(lo->lo_key_owner, uid) &&
1081            !capable(CAP_SYS_ADMIN))
1082                return -EPERM;
1083        if (lo->lo_state != Lo_bound)
1084                return -ENXIO;
1085        if ((unsigned int) info->lo_encrypt_key_size > LO_KEY_SIZE)
1086                return -EINVAL;
1087
1088        err = loop_release_xfer(lo);
1089        if (err)
1090                return err;
1091
1092        if (info->lo_encrypt_type) {
1093                unsigned int type = info->lo_encrypt_type;
1094
1095                if (type >= MAX_LO_CRYPT)
1096                        return -EINVAL;
1097                xfer = xfer_funcs[type];
1098                if (xfer == NULL)
1099                        return -EINVAL;
1100        } else
1101                xfer = NULL;
1102
1103        err = loop_init_xfer(lo, xfer, info);
1104        if (err)
1105                return err;
1106
1107        if (lo->lo_offset != info->lo_offset ||
1108            lo->lo_sizelimit != info->lo_sizelimit)
1109                if (figure_loop_size(lo, info->lo_offset, info->lo_sizelimit))
1110                        return -EFBIG;
1111
1112        loop_config_discard(lo);
1113
1114        memcpy(lo->lo_file_name, info->lo_file_name, LO_NAME_SIZE);
1115        memcpy(lo->lo_crypt_name, info->lo_crypt_name, LO_NAME_SIZE);
1116        lo->lo_file_name[LO_NAME_SIZE-1] = 0;
1117        lo->lo_crypt_name[LO_NAME_SIZE-1] = 0;
1118
1119        if (!xfer)
1120                xfer = &none_funcs;
1121        lo->transfer = xfer->transfer;
1122        lo->ioctl = xfer->ioctl;
1123
1124        if ((lo->lo_flags & LO_FLAGS_AUTOCLEAR) !=
1125             (info->lo_flags & LO_FLAGS_AUTOCLEAR))
1126                lo->lo_flags ^= LO_FLAGS_AUTOCLEAR;
1127
1128        if ((info->lo_flags & LO_FLAGS_PARTSCAN) &&
1129             !(lo->lo_flags & LO_FLAGS_PARTSCAN)) {
1130                lo->lo_flags |= LO_FLAGS_PARTSCAN;
1131                lo->lo_disk->flags &= ~GENHD_FL_NO_PART_SCAN;
1132                ioctl_by_bdev(lo->lo_device, BLKRRPART, 0);
1133        }
1134
1135        lo->lo_encrypt_key_size = info->lo_encrypt_key_size;
1136        lo->lo_init[0] = info->lo_init[0];
1137        lo->lo_init[1] = info->lo_init[1];
1138        if (info->lo_encrypt_key_size) {
1139                memcpy(lo->lo_encrypt_key, info->lo_encrypt_key,
1140                       info->lo_encrypt_key_size);
1141                lo->lo_key_owner = uid;
1142        }       
1143
1144        return 0;
1145}
1146
1147static int
1148loop_get_status(struct loop_device *lo, struct loop_info64 *info)
1149{
1150        struct file *file = lo->lo_backing_file;
1151        struct kstat stat;
1152        int error;
1153
1154        if (lo->lo_state != Lo_bound)
1155                return -ENXIO;
1156        error = vfs_getattr(&file->f_path, &stat);
1157        if (error)
1158                return error;
1159        memset(info, 0, sizeof(*info));
1160        info->lo_number = lo->lo_number;
1161        info->lo_device = huge_encode_dev(stat.dev);
1162        info->lo_inode = stat.ino;
1163        info->lo_rdevice = huge_encode_dev(lo->lo_device ? stat.rdev : stat.dev);
1164        info->lo_offset = lo->lo_offset;
1165        info->lo_sizelimit = lo->lo_sizelimit;
1166        info->lo_flags = lo->lo_flags;
1167        memcpy(info->lo_file_name, lo->lo_file_name, LO_NAME_SIZE);
1168        memcpy(info->lo_crypt_name, lo->lo_crypt_name, LO_NAME_SIZE);
1169        info->lo_encrypt_type =
1170                lo->lo_encryption ? lo->lo_encryption->number : 0;
1171        if (lo->lo_encrypt_key_size && capable(CAP_SYS_ADMIN)) {
1172                info->lo_encrypt_key_size = lo->lo_encrypt_key_size;
1173                memcpy(info->lo_encrypt_key, lo->lo_encrypt_key,
1174                       lo->lo_encrypt_key_size);
1175        }
1176        return 0;
1177}
1178
1179static void
1180loop_info64_from_old(const struct loop_info *info, struct loop_info64 *info64)
1181{
1182        memset(info64, 0, sizeof(*info64));
1183        info64->lo_number = info->lo_number;
1184        info64->lo_device = info->lo_device;
1185        info64->lo_inode = info->lo_inode;
1186        info64->lo_rdevice = info->lo_rdevice;
1187        info64->lo_offset = info->lo_offset;
1188        info64->lo_sizelimit = 0;
1189        info64->lo_encrypt_type = info->lo_encrypt_type;
1190        info64->lo_encrypt_key_size = info->lo_encrypt_key_size;
1191        info64->lo_flags = info->lo_flags;
1192        info64->lo_init[0] = info->lo_init[0];
1193        info64->lo_init[1] = info->lo_init[1];
1194        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1195                memcpy(info64->lo_crypt_name, info->lo_name, LO_NAME_SIZE);
1196        else
1197                memcpy(info64->lo_file_name, info->lo_name, LO_NAME_SIZE);
1198        memcpy(info64->lo_encrypt_key, info->lo_encrypt_key, LO_KEY_SIZE);
1199}
1200
1201static int
1202loop_info64_to_old(const struct loop_info64 *info64, struct loop_info *info)
1203{
1204        memset(info, 0, sizeof(*info));
1205        info->lo_number = info64->lo_number;
1206        info->lo_device = info64->lo_device;
1207        info->lo_inode = info64->lo_inode;
1208        info->lo_rdevice = info64->lo_rdevice;
1209        info->lo_offset = info64->lo_offset;
1210        info->lo_encrypt_type = info64->lo_encrypt_type;
1211        info->lo_encrypt_key_size = info64->lo_encrypt_key_size;
1212        info->lo_flags = info64->lo_flags;
1213        info->lo_init[0] = info64->lo_init[0];
1214        info->lo_init[1] = info64->lo_init[1];
1215        if (info->lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1216                memcpy(info->lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1217        else
1218                memcpy(info->lo_name, info64->lo_file_name, LO_NAME_SIZE);
1219        memcpy(info->lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1220
1221        /* error in case values were truncated */
1222        if (info->lo_device != info64->lo_device ||
1223            info->lo_rdevice != info64->lo_rdevice ||
1224            info->lo_inode != info64->lo_inode ||
1225            info->lo_offset != info64->lo_offset)
1226                return -EOVERFLOW;
1227
1228        return 0;
1229}
1230
1231static int
1232loop_set_status_old(struct loop_device *lo, const struct loop_info __user *arg)
1233{
1234        struct loop_info info;
1235        struct loop_info64 info64;
1236
1237        if (copy_from_user(&info, arg, sizeof (struct loop_info)))
1238                return -EFAULT;
1239        loop_info64_from_old(&info, &info64);
1240        return loop_set_status(lo, &info64);
1241}
1242
1243static int
1244loop_set_status64(struct loop_device *lo, const struct loop_info64 __user *arg)
1245{
1246        struct loop_info64 info64;
1247
1248        if (copy_from_user(&info64, arg, sizeof (struct loop_info64)))
1249                return -EFAULT;
1250        return loop_set_status(lo, &info64);
1251}
1252
1253static int
1254loop_get_status_old(struct loop_device *lo, struct loop_info __user *arg) {
1255        struct loop_info info;
1256        struct loop_info64 info64;
1257        int err = 0;
1258
1259        if (!arg)
1260                err = -EINVAL;
1261        if (!err)
1262                err = loop_get_status(lo, &info64);
1263        if (!err)
1264                err = loop_info64_to_old(&info64, &info);
1265        if (!err && copy_to_user(arg, &info, sizeof(info)))
1266                err = -EFAULT;
1267
1268        return err;
1269}
1270
1271static int
1272loop_get_status64(struct loop_device *lo, struct loop_info64 __user *arg) {
1273        struct loop_info64 info64;
1274        int err = 0;
1275
1276        if (!arg)
1277                err = -EINVAL;
1278        if (!err)
1279                err = loop_get_status(lo, &info64);
1280        if (!err && copy_to_user(arg, &info64, sizeof(info64)))
1281                err = -EFAULT;
1282
1283        return err;
1284}
1285
1286static int loop_set_capacity(struct loop_device *lo, struct block_device *bdev)
1287{
1288        if (unlikely(lo->lo_state != Lo_bound))
1289                return -ENXIO;
1290
1291        return figure_loop_size(lo, lo->lo_offset, lo->lo_sizelimit);
1292}
1293
1294static int lo_ioctl(struct block_device *bdev, fmode_t mode,
1295        unsigned int cmd, unsigned long arg)
1296{
1297        struct loop_device *lo = bdev->bd_disk->private_data;
1298        int err;
1299
1300        mutex_lock_nested(&lo->lo_ctl_mutex, 1);
1301        switch (cmd) {
1302        case LOOP_SET_FD:
1303                err = loop_set_fd(lo, mode, bdev, arg);
1304                break;
1305        case LOOP_CHANGE_FD:
1306                err = loop_change_fd(lo, bdev, arg);
1307                break;
1308        case LOOP_CLR_FD:
1309                /* loop_clr_fd would have unlocked lo_ctl_mutex on success */
1310                err = loop_clr_fd(lo);
1311                if (!err)
1312                        goto out_unlocked;
1313                break;
1314        case LOOP_SET_STATUS:
1315                err = -EPERM;
1316                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1317                        err = loop_set_status_old(lo,
1318                                        (struct loop_info __user *)arg);
1319                break;
1320        case LOOP_GET_STATUS:
1321                err = loop_get_status_old(lo, (struct loop_info __user *) arg);
1322                break;
1323        case LOOP_SET_STATUS64:
1324                err = -EPERM;
1325                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1326                        err = loop_set_status64(lo,
1327                                        (struct loop_info64 __user *) arg);
1328                break;
1329        case LOOP_GET_STATUS64:
1330                err = loop_get_status64(lo, (struct loop_info64 __user *) arg);
1331                break;
1332        case LOOP_SET_CAPACITY:
1333                err = -EPERM;
1334                if ((mode & FMODE_WRITE) || capable(CAP_SYS_ADMIN))
1335                        err = loop_set_capacity(lo, bdev);
1336                break;
1337        default:
1338                err = lo->ioctl ? lo->ioctl(lo, cmd, arg) : -EINVAL;
1339        }
1340        mutex_unlock(&lo->lo_ctl_mutex);
1341
1342out_unlocked:
1343        return err;
1344}
1345
1346#ifdef CONFIG_COMPAT
1347struct compat_loop_info {
1348        compat_int_t    lo_number;      /* ioctl r/o */
1349        compat_dev_t    lo_device;      /* ioctl r/o */
1350        compat_ulong_t  lo_inode;       /* ioctl r/o */
1351        compat_dev_t    lo_rdevice;     /* ioctl r/o */
1352        compat_int_t    lo_offset;
1353        compat_int_t    lo_encrypt_type;
1354        compat_int_t    lo_encrypt_key_size;    /* ioctl w/o */
1355        compat_int_t    lo_flags;       /* ioctl r/o */
1356        char            lo_name[LO_NAME_SIZE];
1357        unsigned char   lo_encrypt_key[LO_KEY_SIZE]; /* ioctl w/o */
1358        compat_ulong_t  lo_init[2];
1359        char            reserved[4];
1360};
1361
1362/*
1363 * Transfer 32-bit compatibility structure in userspace to 64-bit loop info
1364 * - noinlined to reduce stack space usage in main part of driver
1365 */
1366static noinline int
1367loop_info64_from_compat(const struct compat_loop_info __user *arg,
1368                        struct loop_info64 *info64)
1369{
1370        struct compat_loop_info info;
1371
1372        if (copy_from_user(&info, arg, sizeof(info)))
1373                return -EFAULT;
1374
1375        memset(info64, 0, sizeof(*info64));
1376        info64->lo_number = info.lo_number;
1377        info64->lo_device = info.lo_device;
1378        info64->lo_inode = info.lo_inode;
1379        info64->lo_rdevice = info.lo_rdevice;
1380        info64->lo_offset = info.lo_offset;
1381        info64->lo_sizelimit = 0;
1382        info64->lo_encrypt_type = info.lo_encrypt_type;
1383        info64->lo_encrypt_key_size = info.lo_encrypt_key_size;
1384        info64->lo_flags = info.lo_flags;
1385        info64->lo_init[0] = info.lo_init[0];
1386        info64->lo_init[1] = info.lo_init[1];
1387        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1388                memcpy(info64->lo_crypt_name, info.lo_name, LO_NAME_SIZE);
1389        else
1390                memcpy(info64->lo_file_name, info.lo_name, LO_NAME_SIZE);
1391        memcpy(info64->lo_encrypt_key, info.lo_encrypt_key, LO_KEY_SIZE);
1392        return 0;
1393}
1394
1395/*
1396 * Transfer 64-bit loop info to 32-bit compatibility structure in userspace
1397 * - noinlined to reduce stack space usage in main part of driver
1398 */
1399static noinline int
1400loop_info64_to_compat(const struct loop_info64 *info64,
1401                      struct compat_loop_info __user *arg)
1402{
1403        struct compat_loop_info info;
1404
1405        memset(&info, 0, sizeof(info));
1406        info.lo_number = info64->lo_number;
1407        info.lo_device = info64->lo_device;
1408        info.lo_inode = info64->lo_inode;
1409        info.lo_rdevice = info64->lo_rdevice;
1410        info.lo_offset = info64->lo_offset;
1411        info.lo_encrypt_type = info64->lo_encrypt_type;
1412        info.lo_encrypt_key_size = info64->lo_encrypt_key_size;
1413        info.lo_flags = info64->lo_flags;
1414        info.lo_init[0] = info64->lo_init[0];
1415        info.lo_init[1] = info64->lo_init[1];
1416        if (info.lo_encrypt_type == LO_CRYPT_CRYPTOAPI)
1417                memcpy(info.lo_name, info64->lo_crypt_name, LO_NAME_SIZE);
1418        else
1419                memcpy(info.lo_name, info64->lo_file_name, LO_NAME_SIZE);
1420        memcpy(info.lo_encrypt_key, info64->lo_encrypt_key, LO_KEY_SIZE);
1421
1422        /* error in case values were truncated */
1423        if (info.lo_device != info64->lo_device ||
1424            info.lo_rdevice != info64->lo_rdevice ||
1425            info.lo_inode != info64->lo_inode ||
1426            info.lo_offset != info64->lo_offset ||
1427            info.lo_init[0] != info64->lo_init[0] ||
1428            info.lo_init[1] != info64->lo_init[1])
1429                return -EOVERFLOW;
1430
1431        if (copy_to_user(arg, &info, sizeof(info)))
1432                return -EFAULT;
1433        return 0;
1434}
1435
1436static int
1437loop_set_status_compat(struct loop_device *lo,
1438                       const struct compat_loop_info __user *arg)
1439{
1440        struct loop_info64 info64;
1441        int ret;
1442
1443        ret = loop_info64_from_compat(arg, &info64);
1444        if (ret < 0)
1445                return ret;
1446        return loop_set_status(lo, &info64);
1447}
1448
1449static int
1450loop_get_status_compat(struct loop_device *lo,
1451                       struct compat_loop_info __user *arg)
1452{
1453        struct loop_info64 info64;
1454        int err = 0;
1455
1456        if (!arg)
1457                err = -EINVAL;
1458        if (!err)
1459                err = loop_get_status(lo, &info64);
1460        if (!err)
1461                err = loop_info64_to_compat(&info64, arg);
1462        return err;
1463}
1464
1465static int lo_compat_ioctl(struct block_device *bdev, fmode_t mode,
1466                           unsigned int cmd, unsigned long arg)
1467{
1468        struct loop_device *lo = bdev->bd_disk->private_data;
1469        int err;
1470
1471        switch(cmd) {
1472        case LOOP_SET_STATUS:
1473                mutex_lock(&lo->lo_ctl_mutex);
1474                err = loop_set_status_compat(
1475                        lo, (const struct compat_loop_info __user *) arg);
1476                mutex_unlock(&lo->lo_ctl_mutex);
1477                break;
1478        case LOOP_GET_STATUS:
1479                mutex_lock(&lo->lo_ctl_mutex);
1480                err = loop_get_status_compat(
1481                        lo, (struct compat_loop_info __user *) arg);
1482                mutex_unlock(&lo->lo_ctl_mutex);
1483                break;
1484        case LOOP_SET_CAPACITY:
1485        case LOOP_CLR_FD:
1486        case LOOP_GET_STATUS64:
1487        case LOOP_SET_STATUS64:
1488                arg = (unsigned long) compat_ptr(arg);
1489        case LOOP_SET_FD:
1490        case LOOP_CHANGE_FD:
1491                err = lo_ioctl(bdev, mode, cmd, arg);
1492                break;
1493        default:
1494                err = -ENOIOCTLCMD;
1495                break;
1496        }
1497        return err;
1498}
1499#endif
1500
1501static int lo_open(struct block_device *bdev, fmode_t mode)
1502{
1503        struct loop_device *lo;
1504        int err = 0;
1505
1506        mutex_lock(&loop_index_mutex);
1507        lo = bdev->bd_disk->private_data;
1508        if (!lo) {
1509                err = -ENXIO;
1510                goto out;
1511        }
1512
1513        mutex_lock(&lo->lo_ctl_mutex);
1514        lo->lo_refcnt++;
1515        mutex_unlock(&lo->lo_ctl_mutex);
1516out:
1517        mutex_unlock(&loop_index_mutex);
1518        return err;
1519}
1520
1521static void lo_release(struct gendisk *disk, fmode_t mode)
1522{
1523        struct loop_device *lo = disk->private_data;
1524        int err;
1525
1526        mutex_lock(&lo->lo_ctl_mutex);
1527
1528        if (--lo->lo_refcnt)
1529                goto out;
1530
1531        if (lo->lo_flags & LO_FLAGS_AUTOCLEAR) {
1532                /*
1533                 * In autoclear mode, stop the loop thread
1534                 * and remove configuration after last close.
1535                 */
1536                err = loop_clr_fd(lo);
1537                if (!err)
1538                        return;
1539        } else {
1540                /*
1541                 * Otherwise keep thread (if running) and config,
1542                 * but flush possible ongoing bios in thread.
1543                 */
1544                loop_flush(lo);
1545        }
1546
1547out:
1548        mutex_unlock(&lo->lo_ctl_mutex);
1549}
1550
1551static const struct block_device_operations lo_fops = {
1552        .owner =        THIS_MODULE,
1553        .open =         lo_open,
1554        .release =      lo_release,
1555        .ioctl =        lo_ioctl,
1556#ifdef CONFIG_COMPAT
1557        .compat_ioctl = lo_compat_ioctl,
1558#endif
1559};
1560
1561/*
1562 * And now the modules code and kernel interface.
1563 */
1564static int max_loop;
1565module_param(max_loop, int, S_IRUGO);
1566MODULE_PARM_DESC(max_loop, "Maximum number of loop devices");
1567module_param(max_part, int, S_IRUGO);
1568MODULE_PARM_DESC(max_part, "Maximum number of partitions per loop device");
1569MODULE_LICENSE("GPL");
1570MODULE_ALIAS_BLOCKDEV_MAJOR(LOOP_MAJOR);
1571
1572int loop_register_transfer(struct loop_func_table *funcs)
1573{
1574        unsigned int n = funcs->number;
1575
1576        if (n >= MAX_LO_CRYPT || xfer_funcs[n])
1577                return -EINVAL;
1578        xfer_funcs[n] = funcs;
1579        return 0;
1580}
1581
1582static int unregister_transfer_cb(int id, void *ptr, void *data)
1583{
1584        struct loop_device *lo = ptr;
1585        struct loop_func_table *xfer = data;
1586
1587        mutex_lock(&lo->lo_ctl_mutex);
1588        if (lo->lo_encryption == xfer)
1589                loop_release_xfer(lo);
1590        mutex_unlock(&lo->lo_ctl_mutex);
1591        return 0;
1592}
1593
1594int loop_unregister_transfer(int number)
1595{
1596        unsigned int n = number;
1597        struct loop_func_table *xfer;
1598
1599        if (n == 0 || n >= MAX_LO_CRYPT || (xfer = xfer_funcs[n]) == NULL)
1600                return -EINVAL;
1601
1602        xfer_funcs[n] = NULL;
1603        idr_for_each(&loop_index_idr, &unregister_transfer_cb, xfer);
1604        return 0;
1605}
1606
1607EXPORT_SYMBOL(loop_register_transfer);
1608EXPORT_SYMBOL(loop_unregister_transfer);
1609
1610static int loop_add(struct loop_device **l, int i)
1611{
1612        struct loop_device *lo;
1613        struct gendisk *disk;
1614        int err;
1615
1616        err = -ENOMEM;
1617        lo = kzalloc(sizeof(*lo), GFP_KERNEL);
1618        if (!lo)
1619                goto out;
1620
1621        /* allocate id, if @id >= 0, we're requesting that specific id */
1622        if (i >= 0) {
1623                err = idr_alloc(&loop_index_idr, lo, i, i + 1, GFP_KERNEL);
1624                if (err == -ENOSPC)
1625                        err = -EEXIST;
1626        } else {
1627                err = idr_alloc(&loop_index_idr, lo, 0, 0, GFP_KERNEL);
1628        }
1629        if (err < 0)
1630                goto out_free_dev;
1631        i = err;
1632
1633        err = -ENOMEM;
1634        lo->lo_queue = blk_alloc_queue(GFP_KERNEL);
1635        if (!lo->lo_queue)
1636                goto out_free_dev;
1637
1638        disk = lo->lo_disk = alloc_disk(1 << part_shift);
1639        if (!disk)
1640                goto out_free_queue;
1641
1642        /*
1643         * Disable partition scanning by default. The in-kernel partition
1644         * scanning can be requested individually per-device during its
1645         * setup. Userspace can always add and remove partitions from all
1646         * devices. The needed partition minors are allocated from the
1647         * extended minor space, the main loop device numbers will continue
1648         * to match the loop minors, regardless of the number of partitions
1649         * used.
1650         *
1651         * If max_part is given, partition scanning is globally enabled for
1652         * all loop devices. The minors for the main loop devices will be
1653         * multiples of max_part.
1654         *
1655         * Note: Global-for-all-devices, set-only-at-init, read-only module
1656         * parameteters like 'max_loop' and 'max_part' make things needlessly
1657         * complicated, are too static, inflexible and may surprise
1658         * userspace tools. Parameters like this in general should be avoided.
1659         */
1660        if (!part_shift)
1661                disk->flags |= GENHD_FL_NO_PART_SCAN;
1662        disk->flags |= GENHD_FL_EXT_DEVT;
1663        mutex_init(&lo->lo_ctl_mutex);
1664        lo->lo_number           = i;
1665        lo->lo_thread           = NULL;
1666        init_waitqueue_head(&lo->lo_event);
1667        init_waitqueue_head(&lo->lo_req_wait);
1668        spin_lock_init(&lo->lo_lock);
1669        disk->major             = LOOP_MAJOR;
1670        disk->first_minor       = i << part_shift;
1671        disk->fops              = &lo_fops;
1672        disk->private_data      = lo;
1673        disk->queue             = lo->lo_queue;
1674        sprintf(disk->disk_name, "loop%d", i);
1675        add_disk(disk);
1676        *l = lo;
1677        return lo->lo_number;
1678
1679out_free_queue:
1680        blk_cleanup_queue(lo->lo_queue);
1681out_free_dev:
1682        kfree(lo);
1683out:
1684        return err;
1685}
1686
1687static void loop_remove(struct loop_device *lo)
1688{
1689        del_gendisk(lo->lo_disk);
1690        blk_cleanup_queue(lo->lo_queue);
1691        put_disk(lo->lo_disk);
1692        kfree(lo);
1693}
1694
1695static int find_free_cb(int id, void *ptr, void *data)
1696{
1697        struct loop_device *lo = ptr;
1698        struct loop_device **l = data;
1699
1700        if (lo->lo_state == Lo_unbound) {
1701                *l = lo;
1702                return 1;
1703        }
1704        return 0;
1705}
1706
1707static int loop_lookup(struct loop_device **l, int i)
1708{
1709        struct loop_device *lo;
1710        int ret = -ENODEV;
1711
1712        if (i < 0) {
1713                int err;
1714
1715                err = idr_for_each(&loop_index_idr, &find_free_cb, &lo);
1716                if (err == 1) {
1717                        *l = lo;
1718                        ret = lo->lo_number;
1719                }
1720                goto out;
1721        }
1722
1723        /* lookup and return a specific i */
1724        lo = idr_find(&loop_index_idr, i);
1725        if (lo) {
1726                *l = lo;
1727                ret = lo->lo_number;
1728        }
1729out:
1730        return ret;
1731}
1732
1733static struct kobject *loop_probe(dev_t dev, int *part, void *data)
1734{
1735        struct loop_device *lo;
1736        struct kobject *kobj;
1737        int err;
1738
1739        mutex_lock(&loop_index_mutex);
1740        err = loop_lookup(&lo, MINOR(dev) >> part_shift);
1741        if (err < 0)
1742                err = loop_add(&lo, MINOR(dev) >> part_shift);
1743        if (err < 0)
1744                kobj = ERR_PTR(err);
1745        else
1746                kobj = get_disk(lo->lo_disk);
1747        mutex_unlock(&loop_index_mutex);
1748
1749        *part = 0;
1750        return kobj;
1751}
1752
1753static long loop_control_ioctl(struct file *file, unsigned int cmd,
1754                               unsigned long parm)
1755{
1756        struct loop_device *lo;
1757        int ret = -ENOSYS;
1758
1759        mutex_lock(&loop_index_mutex);
1760        switch (cmd) {
1761        case LOOP_CTL_ADD:
1762                ret = loop_lookup(&lo, parm);
1763                if (ret >= 0) {
1764                        ret = -EEXIST;
1765                        break;
1766                }
1767                ret = loop_add(&lo, parm);
1768                break;
1769        case LOOP_CTL_REMOVE:
1770                ret = loop_lookup(&lo, parm);
1771                if (ret < 0)
1772                        break;
1773                mutex_lock(&lo->lo_ctl_mutex);
1774                if (lo->lo_state != Lo_unbound) {
1775                        ret = -EBUSY;
1776                        mutex_unlock(&lo->lo_ctl_mutex);
1777                        break;
1778                }
1779                if (lo->lo_refcnt > 0) {
1780                        ret = -EBUSY;
1781                        mutex_unlock(&lo->lo_ctl_mutex);
1782                        break;
1783                }
1784                lo->lo_disk->private_data = NULL;
1785                mutex_unlock(&lo->lo_ctl_mutex);
1786                idr_remove(&loop_index_idr, lo->lo_number);
1787                loop_remove(lo);
1788                break;
1789        case LOOP_CTL_GET_FREE:
1790                ret = loop_lookup(&lo, -1);
1791                if (ret >= 0)
1792                        break;
1793                ret = loop_add(&lo, -1);
1794        }
1795        mutex_unlock(&loop_index_mutex);
1796
1797        return ret;
1798}
1799
1800static const struct file_operations loop_ctl_fops = {
1801        .open           = nonseekable_open,
1802        .unlocked_ioctl = loop_control_ioctl,
1803        .compat_ioctl   = loop_control_ioctl,
1804        .owner          = THIS_MODULE,
1805        .llseek         = noop_llseek,
1806};
1807
1808static struct miscdevice loop_misc = {
1809        .minor          = LOOP_CTRL_MINOR,
1810        .name           = "loop-control",
1811        .fops           = &loop_ctl_fops,
1812};
1813
1814MODULE_ALIAS_MISCDEV(LOOP_CTRL_MINOR);
1815MODULE_ALIAS("devname:loop-control");
1816
1817static int __init loop_init(void)
1818{
1819        int i, nr;
1820        unsigned long range;
1821        struct loop_device *lo;
1822        int err;
1823
1824        err = misc_register(&loop_misc);
1825        if (err < 0)
1826                return err;
1827
1828        part_shift = 0;
1829        if (max_part > 0) {
1830                part_shift = fls(max_part);
1831
1832                /*
1833                 * Adjust max_part according to part_shift as it is exported
1834                 * to user space so that user can decide correct minor number
1835                 * if [s]he want to create more devices.
1836                 *
1837                 * Note that -1 is required because partition 0 is reserved
1838                 * for the whole disk.
1839                 */
1840                max_part = (1UL << part_shift) - 1;
1841        }
1842
1843        if ((1UL << part_shift) > DISK_MAX_PARTS) {
1844                err = -EINVAL;
1845                goto misc_out;
1846        }
1847
1848        if (max_loop > 1UL << (MINORBITS - part_shift)) {
1849                err = -EINVAL;
1850                goto misc_out;
1851        }
1852
1853        /*
1854         * If max_loop is specified, create that many devices upfront.
1855         * This also becomes a hard limit. If max_loop is not specified,
1856         * create CONFIG_BLK_DEV_LOOP_MIN_COUNT loop devices at module
1857         * init time. Loop devices can be requested on-demand with the
1858         * /dev/loop-control interface, or be instantiated by accessing
1859         * a 'dead' device node.
1860         */
1861        if (max_loop) {
1862                nr = max_loop;
1863                range = max_loop << part_shift;
1864        } else {
1865                nr = CONFIG_BLK_DEV_LOOP_MIN_COUNT;
1866                range = 1UL << MINORBITS;
1867        }
1868
1869        if (register_blkdev(LOOP_MAJOR, "loop")) {
1870                err = -EIO;
1871                goto misc_out;
1872        }
1873
1874        blk_register_region(MKDEV(LOOP_MAJOR, 0), range,
1875                                  THIS_MODULE, loop_probe, NULL, NULL);
1876
1877        /* pre-create number of devices given by config or max_loop */
1878        mutex_lock(&loop_index_mutex);
1879        for (i = 0; i < nr; i++)
1880                loop_add(&lo, i);
1881        mutex_unlock(&loop_index_mutex);
1882
1883        printk(KERN_INFO "loop: module loaded\n");
1884        return 0;
1885
1886misc_out:
1887        misc_deregister(&loop_misc);
1888        return err;
1889}
1890
1891static int loop_exit_cb(int id, void *ptr, void *data)
1892{
1893        struct loop_device *lo = ptr;
1894
1895        loop_remove(lo);
1896        return 0;
1897}
1898
1899static void __exit loop_exit(void)
1900{
1901        unsigned long range;
1902
1903        range = max_loop ? max_loop << part_shift : 1UL << MINORBITS;
1904
1905        idr_for_each(&loop_index_idr, &loop_exit_cb, NULL);
1906        idr_destroy(&loop_index_idr);
1907
1908        blk_unregister_region(MKDEV(LOOP_MAJOR, 0), range);
1909        unregister_blkdev(LOOP_MAJOR, "loop");
1910
1911        misc_deregister(&loop_misc);
1912}
1913
1914module_init(loop_init);
1915module_exit(loop_exit);
1916
1917#ifndef MODULE
1918static int __init max_loop_setup(char *str)
1919{
1920        max_loop = simple_strtol(str, NULL, 0);
1921        return 1;
1922}
1923
1924__setup("max_loop=", max_loop_setup);
1925#endif
1926