linux/drivers/block/nvme-core.c
<<
>>
Prefs
   1/*
   2 * NVM Express device driver
   3 * Copyright (c) 2011, Intel Corporation.
   4 *
   5 * This program is free software; you can redistribute it and/or modify it
   6 * under the terms and conditions of the GNU General Public License,
   7 * version 2, as published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope it will be useful, but WITHOUT
  10 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  12 * more details.
  13 *
  14 * You should have received a copy of the GNU General Public License along with
  15 * this program; if not, write to the Free Software Foundation, Inc.,
  16 * 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  17 */
  18
  19#include <linux/nvme.h>
  20#include <linux/bio.h>
  21#include <linux/bitops.h>
  22#include <linux/blkdev.h>
  23#include <linux/delay.h>
  24#include <linux/errno.h>
  25#include <linux/fs.h>
  26#include <linux/genhd.h>
  27#include <linux/idr.h>
  28#include <linux/init.h>
  29#include <linux/interrupt.h>
  30#include <linux/io.h>
  31#include <linux/kdev_t.h>
  32#include <linux/kthread.h>
  33#include <linux/kernel.h>
  34#include <linux/mm.h>
  35#include <linux/module.h>
  36#include <linux/moduleparam.h>
  37#include <linux/pci.h>
  38#include <linux/poison.h>
  39#include <linux/sched.h>
  40#include <linux/slab.h>
  41#include <linux/types.h>
  42#include <scsi/sg.h>
  43#include <asm-generic/io-64-nonatomic-lo-hi.h>
  44
  45#define NVME_Q_DEPTH 1024
  46#define SQ_SIZE(depth)          (depth * sizeof(struct nvme_command))
  47#define CQ_SIZE(depth)          (depth * sizeof(struct nvme_completion))
  48#define NVME_MINORS 64
  49#define ADMIN_TIMEOUT   (60 * HZ)
  50
  51static int nvme_major;
  52module_param(nvme_major, int, 0);
  53
  54static int use_threaded_interrupts;
  55module_param(use_threaded_interrupts, int, 0);
  56
  57static DEFINE_SPINLOCK(dev_list_lock);
  58static LIST_HEAD(dev_list);
  59static struct task_struct *nvme_thread;
  60
  61/*
  62 * An NVM Express queue.  Each device has at least two (one for admin
  63 * commands and one for I/O commands).
  64 */
  65struct nvme_queue {
  66        struct device *q_dmadev;
  67        struct nvme_dev *dev;
  68        spinlock_t q_lock;
  69        struct nvme_command *sq_cmds;
  70        volatile struct nvme_completion *cqes;
  71        dma_addr_t sq_dma_addr;
  72        dma_addr_t cq_dma_addr;
  73        wait_queue_head_t sq_full;
  74        wait_queue_t sq_cong_wait;
  75        struct bio_list sq_cong;
  76        u32 __iomem *q_db;
  77        u16 q_depth;
  78        u16 cq_vector;
  79        u16 sq_head;
  80        u16 sq_tail;
  81        u16 cq_head;
  82        u16 cq_phase;
  83        unsigned long cmdid_data[];
  84};
  85
  86/*
  87 * Check we didin't inadvertently grow the command struct
  88 */
  89static inline void _nvme_check_size(void)
  90{
  91        BUILD_BUG_ON(sizeof(struct nvme_rw_command) != 64);
  92        BUILD_BUG_ON(sizeof(struct nvme_create_cq) != 64);
  93        BUILD_BUG_ON(sizeof(struct nvme_create_sq) != 64);
  94        BUILD_BUG_ON(sizeof(struct nvme_delete_queue) != 64);
  95        BUILD_BUG_ON(sizeof(struct nvme_features) != 64);
  96        BUILD_BUG_ON(sizeof(struct nvme_format_cmd) != 64);
  97        BUILD_BUG_ON(sizeof(struct nvme_command) != 64);
  98        BUILD_BUG_ON(sizeof(struct nvme_id_ctrl) != 4096);
  99        BUILD_BUG_ON(sizeof(struct nvme_id_ns) != 4096);
 100        BUILD_BUG_ON(sizeof(struct nvme_lba_range_type) != 64);
 101        BUILD_BUG_ON(sizeof(struct nvme_smart_log) != 512);
 102}
 103
 104typedef void (*nvme_completion_fn)(struct nvme_dev *, void *,
 105                                                struct nvme_completion *);
 106
 107struct nvme_cmd_info {
 108        nvme_completion_fn fn;
 109        void *ctx;
 110        unsigned long timeout;
 111};
 112
 113static struct nvme_cmd_info *nvme_cmd_info(struct nvme_queue *nvmeq)
 114{
 115        return (void *)&nvmeq->cmdid_data[BITS_TO_LONGS(nvmeq->q_depth)];
 116}
 117
 118/**
 119 * alloc_cmdid() - Allocate a Command ID
 120 * @nvmeq: The queue that will be used for this command
 121 * @ctx: A pointer that will be passed to the handler
 122 * @handler: The function to call on completion
 123 *
 124 * Allocate a Command ID for a queue.  The data passed in will
 125 * be passed to the completion handler.  This is implemented by using
 126 * the bottom two bits of the ctx pointer to store the handler ID.
 127 * Passing in a pointer that's not 4-byte aligned will cause a BUG.
 128 * We can change this if it becomes a problem.
 129 *
 130 * May be called with local interrupts disabled and the q_lock held,
 131 * or with interrupts enabled and no locks held.
 132 */
 133static int alloc_cmdid(struct nvme_queue *nvmeq, void *ctx,
 134                                nvme_completion_fn handler, unsigned timeout)
 135{
 136        int depth = nvmeq->q_depth - 1;
 137        struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
 138        int cmdid;
 139
 140        do {
 141                cmdid = find_first_zero_bit(nvmeq->cmdid_data, depth);
 142                if (cmdid >= depth)
 143                        return -EBUSY;
 144        } while (test_and_set_bit(cmdid, nvmeq->cmdid_data));
 145
 146        info[cmdid].fn = handler;
 147        info[cmdid].ctx = ctx;
 148        info[cmdid].timeout = jiffies + timeout;
 149        return cmdid;
 150}
 151
 152static int alloc_cmdid_killable(struct nvme_queue *nvmeq, void *ctx,
 153                                nvme_completion_fn handler, unsigned timeout)
 154{
 155        int cmdid;
 156        wait_event_killable(nvmeq->sq_full,
 157                (cmdid = alloc_cmdid(nvmeq, ctx, handler, timeout)) >= 0);
 158        return (cmdid < 0) ? -EINTR : cmdid;
 159}
 160
 161/* Special values must be less than 0x1000 */
 162#define CMD_CTX_BASE            ((void *)POISON_POINTER_DELTA)
 163#define CMD_CTX_CANCELLED       (0x30C + CMD_CTX_BASE)
 164#define CMD_CTX_COMPLETED       (0x310 + CMD_CTX_BASE)
 165#define CMD_CTX_INVALID         (0x314 + CMD_CTX_BASE)
 166#define CMD_CTX_FLUSH           (0x318 + CMD_CTX_BASE)
 167
 168static void special_completion(struct nvme_dev *dev, void *ctx,
 169                                                struct nvme_completion *cqe)
 170{
 171        if (ctx == CMD_CTX_CANCELLED)
 172                return;
 173        if (ctx == CMD_CTX_FLUSH)
 174                return;
 175        if (ctx == CMD_CTX_COMPLETED) {
 176                dev_warn(&dev->pci_dev->dev,
 177                                "completed id %d twice on queue %d\n",
 178                                cqe->command_id, le16_to_cpup(&cqe->sq_id));
 179                return;
 180        }
 181        if (ctx == CMD_CTX_INVALID) {
 182                dev_warn(&dev->pci_dev->dev,
 183                                "invalid id %d completed on queue %d\n",
 184                                cqe->command_id, le16_to_cpup(&cqe->sq_id));
 185                return;
 186        }
 187
 188        dev_warn(&dev->pci_dev->dev, "Unknown special completion %p\n", ctx);
 189}
 190
 191/*
 192 * Called with local interrupts disabled and the q_lock held.  May not sleep.
 193 */
 194static void *free_cmdid(struct nvme_queue *nvmeq, int cmdid,
 195                                                nvme_completion_fn *fn)
 196{
 197        void *ctx;
 198        struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
 199
 200        if (cmdid >= nvmeq->q_depth) {
 201                *fn = special_completion;
 202                return CMD_CTX_INVALID;
 203        }
 204        if (fn)
 205                *fn = info[cmdid].fn;
 206        ctx = info[cmdid].ctx;
 207        info[cmdid].fn = special_completion;
 208        info[cmdid].ctx = CMD_CTX_COMPLETED;
 209        clear_bit(cmdid, nvmeq->cmdid_data);
 210        wake_up(&nvmeq->sq_full);
 211        return ctx;
 212}
 213
 214static void *cancel_cmdid(struct nvme_queue *nvmeq, int cmdid,
 215                                                nvme_completion_fn *fn)
 216{
 217        void *ctx;
 218        struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
 219        if (fn)
 220                *fn = info[cmdid].fn;
 221        ctx = info[cmdid].ctx;
 222        info[cmdid].fn = special_completion;
 223        info[cmdid].ctx = CMD_CTX_CANCELLED;
 224        return ctx;
 225}
 226
 227struct nvme_queue *get_nvmeq(struct nvme_dev *dev)
 228{
 229        return dev->queues[get_cpu() + 1];
 230}
 231
 232void put_nvmeq(struct nvme_queue *nvmeq)
 233{
 234        put_cpu();
 235}
 236
 237/**
 238 * nvme_submit_cmd() - Copy a command into a queue and ring the doorbell
 239 * @nvmeq: The queue to use
 240 * @cmd: The command to send
 241 *
 242 * Safe to use from interrupt context
 243 */
 244static int nvme_submit_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd)
 245{
 246        unsigned long flags;
 247        u16 tail;
 248        spin_lock_irqsave(&nvmeq->q_lock, flags);
 249        tail = nvmeq->sq_tail;
 250        memcpy(&nvmeq->sq_cmds[tail], cmd, sizeof(*cmd));
 251        if (++tail == nvmeq->q_depth)
 252                tail = 0;
 253        writel(tail, nvmeq->q_db);
 254        nvmeq->sq_tail = tail;
 255        spin_unlock_irqrestore(&nvmeq->q_lock, flags);
 256
 257        return 0;
 258}
 259
 260static __le64 **iod_list(struct nvme_iod *iod)
 261{
 262        return ((void *)iod) + iod->offset;
 263}
 264
 265/*
 266 * Will slightly overestimate the number of pages needed.  This is OK
 267 * as it only leads to a small amount of wasted memory for the lifetime of
 268 * the I/O.
 269 */
 270static int nvme_npages(unsigned size)
 271{
 272        unsigned nprps = DIV_ROUND_UP(size + PAGE_SIZE, PAGE_SIZE);
 273        return DIV_ROUND_UP(8 * nprps, PAGE_SIZE - 8);
 274}
 275
 276static struct nvme_iod *
 277nvme_alloc_iod(unsigned nseg, unsigned nbytes, gfp_t gfp)
 278{
 279        struct nvme_iod *iod = kmalloc(sizeof(struct nvme_iod) +
 280                                sizeof(__le64 *) * nvme_npages(nbytes) +
 281                                sizeof(struct scatterlist) * nseg, gfp);
 282
 283        if (iod) {
 284                iod->offset = offsetof(struct nvme_iod, sg[nseg]);
 285                iod->npages = -1;
 286                iod->length = nbytes;
 287                iod->nents = 0;
 288        }
 289
 290        return iod;
 291}
 292
 293void nvme_free_iod(struct nvme_dev *dev, struct nvme_iod *iod)
 294{
 295        const int last_prp = PAGE_SIZE / 8 - 1;
 296        int i;
 297        __le64 **list = iod_list(iod);
 298        dma_addr_t prp_dma = iod->first_dma;
 299
 300        if (iod->npages == 0)
 301                dma_pool_free(dev->prp_small_pool, list[0], prp_dma);
 302        for (i = 0; i < iod->npages; i++) {
 303                __le64 *prp_list = list[i];
 304                dma_addr_t next_prp_dma = le64_to_cpu(prp_list[last_prp]);
 305                dma_pool_free(dev->prp_page_pool, prp_list, prp_dma);
 306                prp_dma = next_prp_dma;
 307        }
 308        kfree(iod);
 309}
 310
 311static void bio_completion(struct nvme_dev *dev, void *ctx,
 312                                                struct nvme_completion *cqe)
 313{
 314        struct nvme_iod *iod = ctx;
 315        struct bio *bio = iod->private;
 316        u16 status = le16_to_cpup(&cqe->status) >> 1;
 317
 318        if (iod->nents)
 319                dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
 320                        bio_data_dir(bio) ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
 321        nvme_free_iod(dev, iod);
 322        if (status)
 323                bio_endio(bio, -EIO);
 324        else
 325                bio_endio(bio, 0);
 326}
 327
 328/* length is in bytes.  gfp flags indicates whether we may sleep. */
 329int nvme_setup_prps(struct nvme_dev *dev, struct nvme_common_command *cmd,
 330                        struct nvme_iod *iod, int total_len, gfp_t gfp)
 331{
 332        struct dma_pool *pool;
 333        int length = total_len;
 334        struct scatterlist *sg = iod->sg;
 335        int dma_len = sg_dma_len(sg);
 336        u64 dma_addr = sg_dma_address(sg);
 337        int offset = offset_in_page(dma_addr);
 338        __le64 *prp_list;
 339        __le64 **list = iod_list(iod);
 340        dma_addr_t prp_dma;
 341        int nprps, i;
 342
 343        cmd->prp1 = cpu_to_le64(dma_addr);
 344        length -= (PAGE_SIZE - offset);
 345        if (length <= 0)
 346                return total_len;
 347
 348        dma_len -= (PAGE_SIZE - offset);
 349        if (dma_len) {
 350                dma_addr += (PAGE_SIZE - offset);
 351        } else {
 352                sg = sg_next(sg);
 353                dma_addr = sg_dma_address(sg);
 354                dma_len = sg_dma_len(sg);
 355        }
 356
 357        if (length <= PAGE_SIZE) {
 358                cmd->prp2 = cpu_to_le64(dma_addr);
 359                return total_len;
 360        }
 361
 362        nprps = DIV_ROUND_UP(length, PAGE_SIZE);
 363        if (nprps <= (256 / 8)) {
 364                pool = dev->prp_small_pool;
 365                iod->npages = 0;
 366        } else {
 367                pool = dev->prp_page_pool;
 368                iod->npages = 1;
 369        }
 370
 371        prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
 372        if (!prp_list) {
 373                cmd->prp2 = cpu_to_le64(dma_addr);
 374                iod->npages = -1;
 375                return (total_len - length) + PAGE_SIZE;
 376        }
 377        list[0] = prp_list;
 378        iod->first_dma = prp_dma;
 379        cmd->prp2 = cpu_to_le64(prp_dma);
 380        i = 0;
 381        for (;;) {
 382                if (i == PAGE_SIZE / 8) {
 383                        __le64 *old_prp_list = prp_list;
 384                        prp_list = dma_pool_alloc(pool, gfp, &prp_dma);
 385                        if (!prp_list)
 386                                return total_len - length;
 387                        list[iod->npages++] = prp_list;
 388                        prp_list[0] = old_prp_list[i - 1];
 389                        old_prp_list[i - 1] = cpu_to_le64(prp_dma);
 390                        i = 1;
 391                }
 392                prp_list[i++] = cpu_to_le64(dma_addr);
 393                dma_len -= PAGE_SIZE;
 394                dma_addr += PAGE_SIZE;
 395                length -= PAGE_SIZE;
 396                if (length <= 0)
 397                        break;
 398                if (dma_len > 0)
 399                        continue;
 400                BUG_ON(dma_len < 0);
 401                sg = sg_next(sg);
 402                dma_addr = sg_dma_address(sg);
 403                dma_len = sg_dma_len(sg);
 404        }
 405
 406        return total_len;
 407}
 408
 409struct nvme_bio_pair {
 410        struct bio b1, b2, *parent;
 411        struct bio_vec *bv1, *bv2;
 412        int err;
 413        atomic_t cnt;
 414};
 415
 416static void nvme_bio_pair_endio(struct bio *bio, int err)
 417{
 418        struct nvme_bio_pair *bp = bio->bi_private;
 419
 420        if (err)
 421                bp->err = err;
 422
 423        if (atomic_dec_and_test(&bp->cnt)) {
 424                bio_endio(bp->parent, bp->err);
 425                if (bp->bv1)
 426                        kfree(bp->bv1);
 427                if (bp->bv2)
 428                        kfree(bp->bv2);
 429                kfree(bp);
 430        }
 431}
 432
 433static struct nvme_bio_pair *nvme_bio_split(struct bio *bio, int idx,
 434                                                        int len, int offset)
 435{
 436        struct nvme_bio_pair *bp;
 437
 438        BUG_ON(len > bio->bi_size);
 439        BUG_ON(idx > bio->bi_vcnt);
 440
 441        bp = kmalloc(sizeof(*bp), GFP_ATOMIC);
 442        if (!bp)
 443                return NULL;
 444        bp->err = 0;
 445
 446        bp->b1 = *bio;
 447        bp->b2 = *bio;
 448
 449        bp->b1.bi_size = len;
 450        bp->b2.bi_size -= len;
 451        bp->b1.bi_vcnt = idx;
 452        bp->b2.bi_idx = idx;
 453        bp->b2.bi_sector += len >> 9;
 454
 455        if (offset) {
 456                bp->bv1 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
 457                                                                GFP_ATOMIC);
 458                if (!bp->bv1)
 459                        goto split_fail_1;
 460
 461                bp->bv2 = kmalloc(bio->bi_max_vecs * sizeof(struct bio_vec),
 462                                                                GFP_ATOMIC);
 463                if (!bp->bv2)
 464                        goto split_fail_2;
 465
 466                memcpy(bp->bv1, bio->bi_io_vec,
 467                        bio->bi_max_vecs * sizeof(struct bio_vec));
 468                memcpy(bp->bv2, bio->bi_io_vec,
 469                        bio->bi_max_vecs * sizeof(struct bio_vec));
 470
 471                bp->b1.bi_io_vec = bp->bv1;
 472                bp->b2.bi_io_vec = bp->bv2;
 473                bp->b2.bi_io_vec[idx].bv_offset += offset;
 474                bp->b2.bi_io_vec[idx].bv_len -= offset;
 475                bp->b1.bi_io_vec[idx].bv_len = offset;
 476                bp->b1.bi_vcnt++;
 477        } else
 478                bp->bv1 = bp->bv2 = NULL;
 479
 480        bp->b1.bi_private = bp;
 481        bp->b2.bi_private = bp;
 482
 483        bp->b1.bi_end_io = nvme_bio_pair_endio;
 484        bp->b2.bi_end_io = nvme_bio_pair_endio;
 485
 486        bp->parent = bio;
 487        atomic_set(&bp->cnt, 2);
 488
 489        return bp;
 490
 491 split_fail_2:
 492        kfree(bp->bv1);
 493 split_fail_1:
 494        kfree(bp);
 495        return NULL;
 496}
 497
 498static int nvme_split_and_submit(struct bio *bio, struct nvme_queue *nvmeq,
 499                                                int idx, int len, int offset)
 500{
 501        struct nvme_bio_pair *bp = nvme_bio_split(bio, idx, len, offset);
 502        if (!bp)
 503                return -ENOMEM;
 504
 505        if (bio_list_empty(&nvmeq->sq_cong))
 506                add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
 507        bio_list_add(&nvmeq->sq_cong, &bp->b1);
 508        bio_list_add(&nvmeq->sq_cong, &bp->b2);
 509
 510        return 0;
 511}
 512
 513/* NVMe scatterlists require no holes in the virtual address */
 514#define BIOVEC_NOT_VIRT_MERGEABLE(vec1, vec2)   ((vec2)->bv_offset || \
 515                        (((vec1)->bv_offset + (vec1)->bv_len) % PAGE_SIZE))
 516
 517static int nvme_map_bio(struct nvme_queue *nvmeq, struct nvme_iod *iod,
 518                struct bio *bio, enum dma_data_direction dma_dir, int psegs)
 519{
 520        struct bio_vec *bvec, *bvprv = NULL;
 521        struct scatterlist *sg = NULL;
 522        int i, length = 0, nsegs = 0, split_len = bio->bi_size;
 523
 524        if (nvmeq->dev->stripe_size)
 525                split_len = nvmeq->dev->stripe_size -
 526                        ((bio->bi_sector << 9) & (nvmeq->dev->stripe_size - 1));
 527
 528        sg_init_table(iod->sg, psegs);
 529        bio_for_each_segment(bvec, bio, i) {
 530                if (bvprv && BIOVEC_PHYS_MERGEABLE(bvprv, bvec)) {
 531                        sg->length += bvec->bv_len;
 532                } else {
 533                        if (bvprv && BIOVEC_NOT_VIRT_MERGEABLE(bvprv, bvec))
 534                                return nvme_split_and_submit(bio, nvmeq, i,
 535                                                                length, 0);
 536
 537                        sg = sg ? sg + 1 : iod->sg;
 538                        sg_set_page(sg, bvec->bv_page, bvec->bv_len,
 539                                                        bvec->bv_offset);
 540                        nsegs++;
 541                }
 542
 543                if (split_len - length < bvec->bv_len)
 544                        return nvme_split_and_submit(bio, nvmeq, i, split_len,
 545                                                        split_len - length);
 546                length += bvec->bv_len;
 547                bvprv = bvec;
 548        }
 549        iod->nents = nsegs;
 550        sg_mark_end(sg);
 551        if (dma_map_sg(nvmeq->q_dmadev, iod->sg, iod->nents, dma_dir) == 0)
 552                return -ENOMEM;
 553
 554        BUG_ON(length != bio->bi_size);
 555        return length;
 556}
 557
 558/*
 559 * We reuse the small pool to allocate the 16-byte range here as it is not
 560 * worth having a special pool for these or additional cases to handle freeing
 561 * the iod.
 562 */
 563static int nvme_submit_discard(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 564                struct bio *bio, struct nvme_iod *iod, int cmdid)
 565{
 566        struct nvme_dsm_range *range;
 567        struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 568
 569        range = dma_pool_alloc(nvmeq->dev->prp_small_pool, GFP_ATOMIC,
 570                                                        &iod->first_dma);
 571        if (!range)
 572                return -ENOMEM;
 573
 574        iod_list(iod)[0] = (__le64 *)range;
 575        iod->npages = 0;
 576
 577        range->cattr = cpu_to_le32(0);
 578        range->nlb = cpu_to_le32(bio->bi_size >> ns->lba_shift);
 579        range->slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
 580
 581        memset(cmnd, 0, sizeof(*cmnd));
 582        cmnd->dsm.opcode = nvme_cmd_dsm;
 583        cmnd->dsm.command_id = cmdid;
 584        cmnd->dsm.nsid = cpu_to_le32(ns->ns_id);
 585        cmnd->dsm.prp1 = cpu_to_le64(iod->first_dma);
 586        cmnd->dsm.nr = 0;
 587        cmnd->dsm.attributes = cpu_to_le32(NVME_DSMGMT_AD);
 588
 589        if (++nvmeq->sq_tail == nvmeq->q_depth)
 590                nvmeq->sq_tail = 0;
 591        writel(nvmeq->sq_tail, nvmeq->q_db);
 592
 593        return 0;
 594}
 595
 596static int nvme_submit_flush(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 597                                                                int cmdid)
 598{
 599        struct nvme_command *cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 600
 601        memset(cmnd, 0, sizeof(*cmnd));
 602        cmnd->common.opcode = nvme_cmd_flush;
 603        cmnd->common.command_id = cmdid;
 604        cmnd->common.nsid = cpu_to_le32(ns->ns_id);
 605
 606        if (++nvmeq->sq_tail == nvmeq->q_depth)
 607                nvmeq->sq_tail = 0;
 608        writel(nvmeq->sq_tail, nvmeq->q_db);
 609
 610        return 0;
 611}
 612
 613int nvme_submit_flush_data(struct nvme_queue *nvmeq, struct nvme_ns *ns)
 614{
 615        int cmdid = alloc_cmdid(nvmeq, (void *)CMD_CTX_FLUSH,
 616                                        special_completion, NVME_IO_TIMEOUT);
 617        if (unlikely(cmdid < 0))
 618                return cmdid;
 619
 620        return nvme_submit_flush(nvmeq, ns, cmdid);
 621}
 622
 623/*
 624 * Called with local interrupts disabled and the q_lock held.  May not sleep.
 625 */
 626static int nvme_submit_bio_queue(struct nvme_queue *nvmeq, struct nvme_ns *ns,
 627                                                                struct bio *bio)
 628{
 629        struct nvme_command *cmnd;
 630        struct nvme_iod *iod;
 631        enum dma_data_direction dma_dir;
 632        int cmdid, length, result;
 633        u16 control;
 634        u32 dsmgmt;
 635        int psegs = bio_phys_segments(ns->queue, bio);
 636
 637        if ((bio->bi_rw & REQ_FLUSH) && psegs) {
 638                result = nvme_submit_flush_data(nvmeq, ns);
 639                if (result)
 640                        return result;
 641        }
 642
 643        result = -ENOMEM;
 644        iod = nvme_alloc_iod(psegs, bio->bi_size, GFP_ATOMIC);
 645        if (!iod)
 646                goto nomem;
 647        iod->private = bio;
 648
 649        result = -EBUSY;
 650        cmdid = alloc_cmdid(nvmeq, iod, bio_completion, NVME_IO_TIMEOUT);
 651        if (unlikely(cmdid < 0))
 652                goto free_iod;
 653
 654        if (bio->bi_rw & REQ_DISCARD) {
 655                result = nvme_submit_discard(nvmeq, ns, bio, iod, cmdid);
 656                if (result)
 657                        goto free_cmdid;
 658                return result;
 659        }
 660        if ((bio->bi_rw & REQ_FLUSH) && !psegs)
 661                return nvme_submit_flush(nvmeq, ns, cmdid);
 662
 663        control = 0;
 664        if (bio->bi_rw & REQ_FUA)
 665                control |= NVME_RW_FUA;
 666        if (bio->bi_rw & (REQ_FAILFAST_DEV | REQ_RAHEAD))
 667                control |= NVME_RW_LR;
 668
 669        dsmgmt = 0;
 670        if (bio->bi_rw & REQ_RAHEAD)
 671                dsmgmt |= NVME_RW_DSM_FREQ_PREFETCH;
 672
 673        cmnd = &nvmeq->sq_cmds[nvmeq->sq_tail];
 674
 675        memset(cmnd, 0, sizeof(*cmnd));
 676        if (bio_data_dir(bio)) {
 677                cmnd->rw.opcode = nvme_cmd_write;
 678                dma_dir = DMA_TO_DEVICE;
 679        } else {
 680                cmnd->rw.opcode = nvme_cmd_read;
 681                dma_dir = DMA_FROM_DEVICE;
 682        }
 683
 684        result = nvme_map_bio(nvmeq, iod, bio, dma_dir, psegs);
 685        if (result <= 0)
 686                goto free_cmdid;
 687        length = result;
 688
 689        cmnd->rw.command_id = cmdid;
 690        cmnd->rw.nsid = cpu_to_le32(ns->ns_id);
 691        length = nvme_setup_prps(nvmeq->dev, &cmnd->common, iod, length,
 692                                                                GFP_ATOMIC);
 693        cmnd->rw.slba = cpu_to_le64(nvme_block_nr(ns, bio->bi_sector));
 694        cmnd->rw.length = cpu_to_le16((length >> ns->lba_shift) - 1);
 695        cmnd->rw.control = cpu_to_le16(control);
 696        cmnd->rw.dsmgmt = cpu_to_le32(dsmgmt);
 697
 698        if (++nvmeq->sq_tail == nvmeq->q_depth)
 699                nvmeq->sq_tail = 0;
 700        writel(nvmeq->sq_tail, nvmeq->q_db);
 701
 702        return 0;
 703
 704 free_cmdid:
 705        free_cmdid(nvmeq, cmdid, NULL);
 706 free_iod:
 707        nvme_free_iod(nvmeq->dev, iod);
 708 nomem:
 709        return result;
 710}
 711
 712static void nvme_make_request(struct request_queue *q, struct bio *bio)
 713{
 714        struct nvme_ns *ns = q->queuedata;
 715        struct nvme_queue *nvmeq = get_nvmeq(ns->dev);
 716        int result = -EBUSY;
 717
 718        spin_lock_irq(&nvmeq->q_lock);
 719        if (bio_list_empty(&nvmeq->sq_cong))
 720                result = nvme_submit_bio_queue(nvmeq, ns, bio);
 721        if (unlikely(result)) {
 722                if (bio_list_empty(&nvmeq->sq_cong))
 723                        add_wait_queue(&nvmeq->sq_full, &nvmeq->sq_cong_wait);
 724                bio_list_add(&nvmeq->sq_cong, bio);
 725        }
 726
 727        spin_unlock_irq(&nvmeq->q_lock);
 728        put_nvmeq(nvmeq);
 729}
 730
 731static irqreturn_t nvme_process_cq(struct nvme_queue *nvmeq)
 732{
 733        u16 head, phase;
 734
 735        head = nvmeq->cq_head;
 736        phase = nvmeq->cq_phase;
 737
 738        for (;;) {
 739                void *ctx;
 740                nvme_completion_fn fn;
 741                struct nvme_completion cqe = nvmeq->cqes[head];
 742                if ((le16_to_cpu(cqe.status) & 1) != phase)
 743                        break;
 744                nvmeq->sq_head = le16_to_cpu(cqe.sq_head);
 745                if (++head == nvmeq->q_depth) {
 746                        head = 0;
 747                        phase = !phase;
 748                }
 749
 750                ctx = free_cmdid(nvmeq, cqe.command_id, &fn);
 751                fn(nvmeq->dev, ctx, &cqe);
 752        }
 753
 754        /* If the controller ignores the cq head doorbell and continuously
 755         * writes to the queue, it is theoretically possible to wrap around
 756         * the queue twice and mistakenly return IRQ_NONE.  Linux only
 757         * requires that 0.1% of your interrupts are handled, so this isn't
 758         * a big problem.
 759         */
 760        if (head == nvmeq->cq_head && phase == nvmeq->cq_phase)
 761                return IRQ_NONE;
 762
 763        writel(head, nvmeq->q_db + (1 << nvmeq->dev->db_stride));
 764        nvmeq->cq_head = head;
 765        nvmeq->cq_phase = phase;
 766
 767        return IRQ_HANDLED;
 768}
 769
 770static irqreturn_t nvme_irq(int irq, void *data)
 771{
 772        irqreturn_t result;
 773        struct nvme_queue *nvmeq = data;
 774        spin_lock(&nvmeq->q_lock);
 775        result = nvme_process_cq(nvmeq);
 776        spin_unlock(&nvmeq->q_lock);
 777        return result;
 778}
 779
 780static irqreturn_t nvme_irq_check(int irq, void *data)
 781{
 782        struct nvme_queue *nvmeq = data;
 783        struct nvme_completion cqe = nvmeq->cqes[nvmeq->cq_head];
 784        if ((le16_to_cpu(cqe.status) & 1) != nvmeq->cq_phase)
 785                return IRQ_NONE;
 786        return IRQ_WAKE_THREAD;
 787}
 788
 789static void nvme_abort_command(struct nvme_queue *nvmeq, int cmdid)
 790{
 791        spin_lock_irq(&nvmeq->q_lock);
 792        cancel_cmdid(nvmeq, cmdid, NULL);
 793        spin_unlock_irq(&nvmeq->q_lock);
 794}
 795
 796struct sync_cmd_info {
 797        struct task_struct *task;
 798        u32 result;
 799        int status;
 800};
 801
 802static void sync_completion(struct nvme_dev *dev, void *ctx,
 803                                                struct nvme_completion *cqe)
 804{
 805        struct sync_cmd_info *cmdinfo = ctx;
 806        cmdinfo->result = le32_to_cpup(&cqe->result);
 807        cmdinfo->status = le16_to_cpup(&cqe->status) >> 1;
 808        wake_up_process(cmdinfo->task);
 809}
 810
 811/*
 812 * Returns 0 on success.  If the result is negative, it's a Linux error code;
 813 * if the result is positive, it's an NVM Express status code
 814 */
 815int nvme_submit_sync_cmd(struct nvme_queue *nvmeq, struct nvme_command *cmd,
 816                                                u32 *result, unsigned timeout)
 817{
 818        int cmdid;
 819        struct sync_cmd_info cmdinfo;
 820
 821        cmdinfo.task = current;
 822        cmdinfo.status = -EINTR;
 823
 824        cmdid = alloc_cmdid_killable(nvmeq, &cmdinfo, sync_completion,
 825                                                                timeout);
 826        if (cmdid < 0)
 827                return cmdid;
 828        cmd->common.command_id = cmdid;
 829
 830        set_current_state(TASK_KILLABLE);
 831        nvme_submit_cmd(nvmeq, cmd);
 832        schedule_timeout(timeout);
 833
 834        if (cmdinfo.status == -EINTR) {
 835                nvme_abort_command(nvmeq, cmdid);
 836                return -EINTR;
 837        }
 838
 839        if (result)
 840                *result = cmdinfo.result;
 841
 842        return cmdinfo.status;
 843}
 844
 845int nvme_submit_admin_cmd(struct nvme_dev *dev, struct nvme_command *cmd,
 846                                                                u32 *result)
 847{
 848        return nvme_submit_sync_cmd(dev->queues[0], cmd, result, ADMIN_TIMEOUT);
 849}
 850
 851static int adapter_delete_queue(struct nvme_dev *dev, u8 opcode, u16 id)
 852{
 853        int status;
 854        struct nvme_command c;
 855
 856        memset(&c, 0, sizeof(c));
 857        c.delete_queue.opcode = opcode;
 858        c.delete_queue.qid = cpu_to_le16(id);
 859
 860        status = nvme_submit_admin_cmd(dev, &c, NULL);
 861        if (status)
 862                return -EIO;
 863        return 0;
 864}
 865
 866static int adapter_alloc_cq(struct nvme_dev *dev, u16 qid,
 867                                                struct nvme_queue *nvmeq)
 868{
 869        int status;
 870        struct nvme_command c;
 871        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_CQ_IRQ_ENABLED;
 872
 873        memset(&c, 0, sizeof(c));
 874        c.create_cq.opcode = nvme_admin_create_cq;
 875        c.create_cq.prp1 = cpu_to_le64(nvmeq->cq_dma_addr);
 876        c.create_cq.cqid = cpu_to_le16(qid);
 877        c.create_cq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 878        c.create_cq.cq_flags = cpu_to_le16(flags);
 879        c.create_cq.irq_vector = cpu_to_le16(nvmeq->cq_vector);
 880
 881        status = nvme_submit_admin_cmd(dev, &c, NULL);
 882        if (status)
 883                return -EIO;
 884        return 0;
 885}
 886
 887static int adapter_alloc_sq(struct nvme_dev *dev, u16 qid,
 888                                                struct nvme_queue *nvmeq)
 889{
 890        int status;
 891        struct nvme_command c;
 892        int flags = NVME_QUEUE_PHYS_CONTIG | NVME_SQ_PRIO_MEDIUM;
 893
 894        memset(&c, 0, sizeof(c));
 895        c.create_sq.opcode = nvme_admin_create_sq;
 896        c.create_sq.prp1 = cpu_to_le64(nvmeq->sq_dma_addr);
 897        c.create_sq.sqid = cpu_to_le16(qid);
 898        c.create_sq.qsize = cpu_to_le16(nvmeq->q_depth - 1);
 899        c.create_sq.sq_flags = cpu_to_le16(flags);
 900        c.create_sq.cqid = cpu_to_le16(qid);
 901
 902        status = nvme_submit_admin_cmd(dev, &c, NULL);
 903        if (status)
 904                return -EIO;
 905        return 0;
 906}
 907
 908static int adapter_delete_cq(struct nvme_dev *dev, u16 cqid)
 909{
 910        return adapter_delete_queue(dev, nvme_admin_delete_cq, cqid);
 911}
 912
 913static int adapter_delete_sq(struct nvme_dev *dev, u16 sqid)
 914{
 915        return adapter_delete_queue(dev, nvme_admin_delete_sq, sqid);
 916}
 917
 918int nvme_identify(struct nvme_dev *dev, unsigned nsid, unsigned cns,
 919                                                        dma_addr_t dma_addr)
 920{
 921        struct nvme_command c;
 922
 923        memset(&c, 0, sizeof(c));
 924        c.identify.opcode = nvme_admin_identify;
 925        c.identify.nsid = cpu_to_le32(nsid);
 926        c.identify.prp1 = cpu_to_le64(dma_addr);
 927        c.identify.cns = cpu_to_le32(cns);
 928
 929        return nvme_submit_admin_cmd(dev, &c, NULL);
 930}
 931
 932int nvme_get_features(struct nvme_dev *dev, unsigned fid, unsigned nsid,
 933                                        dma_addr_t dma_addr, u32 *result)
 934{
 935        struct nvme_command c;
 936
 937        memset(&c, 0, sizeof(c));
 938        c.features.opcode = nvme_admin_get_features;
 939        c.features.nsid = cpu_to_le32(nsid);
 940        c.features.prp1 = cpu_to_le64(dma_addr);
 941        c.features.fid = cpu_to_le32(fid);
 942
 943        return nvme_submit_admin_cmd(dev, &c, result);
 944}
 945
 946int nvme_set_features(struct nvme_dev *dev, unsigned fid, unsigned dword11,
 947                                        dma_addr_t dma_addr, u32 *result)
 948{
 949        struct nvme_command c;
 950
 951        memset(&c, 0, sizeof(c));
 952        c.features.opcode = nvme_admin_set_features;
 953        c.features.prp1 = cpu_to_le64(dma_addr);
 954        c.features.fid = cpu_to_le32(fid);
 955        c.features.dword11 = cpu_to_le32(dword11);
 956
 957        return nvme_submit_admin_cmd(dev, &c, result);
 958}
 959
 960/**
 961 * nvme_cancel_ios - Cancel outstanding I/Os
 962 * @queue: The queue to cancel I/Os on
 963 * @timeout: True to only cancel I/Os which have timed out
 964 */
 965static void nvme_cancel_ios(struct nvme_queue *nvmeq, bool timeout)
 966{
 967        int depth = nvmeq->q_depth - 1;
 968        struct nvme_cmd_info *info = nvme_cmd_info(nvmeq);
 969        unsigned long now = jiffies;
 970        int cmdid;
 971
 972        for_each_set_bit(cmdid, nvmeq->cmdid_data, depth) {
 973                void *ctx;
 974                nvme_completion_fn fn;
 975                static struct nvme_completion cqe = {
 976                        .status = cpu_to_le16(NVME_SC_ABORT_REQ << 1),
 977                };
 978
 979                if (timeout && !time_after(now, info[cmdid].timeout))
 980                        continue;
 981                if (info[cmdid].ctx == CMD_CTX_CANCELLED)
 982                        continue;
 983                dev_warn(nvmeq->q_dmadev, "Cancelling I/O %d\n", cmdid);
 984                ctx = cancel_cmdid(nvmeq, cmdid, &fn);
 985                fn(nvmeq->dev, ctx, &cqe);
 986        }
 987}
 988
 989static void nvme_free_queue_mem(struct nvme_queue *nvmeq)
 990{
 991        dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
 992                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
 993        dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
 994                                        nvmeq->sq_cmds, nvmeq->sq_dma_addr);
 995        kfree(nvmeq);
 996}
 997
 998static void nvme_free_queue(struct nvme_dev *dev, int qid)
 999{
1000        struct nvme_queue *nvmeq = dev->queues[qid];
1001        int vector = dev->entry[nvmeq->cq_vector].vector;
1002
1003        spin_lock_irq(&nvmeq->q_lock);
1004        nvme_cancel_ios(nvmeq, false);
1005        while (bio_list_peek(&nvmeq->sq_cong)) {
1006                struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1007                bio_endio(bio, -EIO);
1008        }
1009        spin_unlock_irq(&nvmeq->q_lock);
1010
1011        irq_set_affinity_hint(vector, NULL);
1012        free_irq(vector, nvmeq);
1013
1014        /* Don't tell the adapter to delete the admin queue */
1015        if (qid) {
1016                adapter_delete_sq(dev, qid);
1017                adapter_delete_cq(dev, qid);
1018        }
1019
1020        nvme_free_queue_mem(nvmeq);
1021}
1022
1023static struct nvme_queue *nvme_alloc_queue(struct nvme_dev *dev, int qid,
1024                                                        int depth, int vector)
1025{
1026        struct device *dmadev = &dev->pci_dev->dev;
1027        unsigned extra = DIV_ROUND_UP(depth, 8) + (depth *
1028                                                sizeof(struct nvme_cmd_info));
1029        struct nvme_queue *nvmeq = kzalloc(sizeof(*nvmeq) + extra, GFP_KERNEL);
1030        if (!nvmeq)
1031                return NULL;
1032
1033        nvmeq->cqes = dma_alloc_coherent(dmadev, CQ_SIZE(depth),
1034                                        &nvmeq->cq_dma_addr, GFP_KERNEL);
1035        if (!nvmeq->cqes)
1036                goto free_nvmeq;
1037        memset((void *)nvmeq->cqes, 0, CQ_SIZE(depth));
1038
1039        nvmeq->sq_cmds = dma_alloc_coherent(dmadev, SQ_SIZE(depth),
1040                                        &nvmeq->sq_dma_addr, GFP_KERNEL);
1041        if (!nvmeq->sq_cmds)
1042                goto free_cqdma;
1043
1044        nvmeq->q_dmadev = dmadev;
1045        nvmeq->dev = dev;
1046        spin_lock_init(&nvmeq->q_lock);
1047        nvmeq->cq_head = 0;
1048        nvmeq->cq_phase = 1;
1049        init_waitqueue_head(&nvmeq->sq_full);
1050        init_waitqueue_entry(&nvmeq->sq_cong_wait, nvme_thread);
1051        bio_list_init(&nvmeq->sq_cong);
1052        nvmeq->q_db = &dev->dbs[qid << (dev->db_stride + 1)];
1053        nvmeq->q_depth = depth;
1054        nvmeq->cq_vector = vector;
1055
1056        return nvmeq;
1057
1058 free_cqdma:
1059        dma_free_coherent(dmadev, CQ_SIZE(depth), (void *)nvmeq->cqes,
1060                                                        nvmeq->cq_dma_addr);
1061 free_nvmeq:
1062        kfree(nvmeq);
1063        return NULL;
1064}
1065
1066static int queue_request_irq(struct nvme_dev *dev, struct nvme_queue *nvmeq,
1067                                                        const char *name)
1068{
1069        if (use_threaded_interrupts)
1070                return request_threaded_irq(dev->entry[nvmeq->cq_vector].vector,
1071                                        nvme_irq_check, nvme_irq,
1072                                        IRQF_DISABLED | IRQF_SHARED,
1073                                        name, nvmeq);
1074        return request_irq(dev->entry[nvmeq->cq_vector].vector, nvme_irq,
1075                                IRQF_DISABLED | IRQF_SHARED, name, nvmeq);
1076}
1077
1078static struct nvme_queue *nvme_create_queue(struct nvme_dev *dev, int qid,
1079                                            int cq_size, int vector)
1080{
1081        int result;
1082        struct nvme_queue *nvmeq = nvme_alloc_queue(dev, qid, cq_size, vector);
1083
1084        if (!nvmeq)
1085                return ERR_PTR(-ENOMEM);
1086
1087        result = adapter_alloc_cq(dev, qid, nvmeq);
1088        if (result < 0)
1089                goto free_nvmeq;
1090
1091        result = adapter_alloc_sq(dev, qid, nvmeq);
1092        if (result < 0)
1093                goto release_cq;
1094
1095        result = queue_request_irq(dev, nvmeq, "nvme");
1096        if (result < 0)
1097                goto release_sq;
1098
1099        return nvmeq;
1100
1101 release_sq:
1102        adapter_delete_sq(dev, qid);
1103 release_cq:
1104        adapter_delete_cq(dev, qid);
1105 free_nvmeq:
1106        dma_free_coherent(nvmeq->q_dmadev, CQ_SIZE(nvmeq->q_depth),
1107                                (void *)nvmeq->cqes, nvmeq->cq_dma_addr);
1108        dma_free_coherent(nvmeq->q_dmadev, SQ_SIZE(nvmeq->q_depth),
1109                                        nvmeq->sq_cmds, nvmeq->sq_dma_addr);
1110        kfree(nvmeq);
1111        return ERR_PTR(result);
1112}
1113
1114static int nvme_wait_ready(struct nvme_dev *dev, u64 cap, bool enabled)
1115{
1116        unsigned long timeout;
1117        u32 bit = enabled ? NVME_CSTS_RDY : 0;
1118
1119        timeout = ((NVME_CAP_TIMEOUT(cap) + 1) * HZ / 2) + jiffies;
1120
1121        while ((readl(&dev->bar->csts) & NVME_CSTS_RDY) != bit) {
1122                msleep(100);
1123                if (fatal_signal_pending(current))
1124                        return -EINTR;
1125                if (time_after(jiffies, timeout)) {
1126                        dev_err(&dev->pci_dev->dev,
1127                                "Device not ready; aborting initialisation\n");
1128                        return -ENODEV;
1129                }
1130        }
1131
1132        return 0;
1133}
1134
1135/*
1136 * If the device has been passed off to us in an enabled state, just clear
1137 * the enabled bit.  The spec says we should set the 'shutdown notification
1138 * bits', but doing so may cause the device to complete commands to the
1139 * admin queue ... and we don't know what memory that might be pointing at!
1140 */
1141static int nvme_disable_ctrl(struct nvme_dev *dev, u64 cap)
1142{
1143        u32 cc = readl(&dev->bar->cc);
1144
1145        if (cc & NVME_CC_ENABLE)
1146                writel(cc & ~NVME_CC_ENABLE, &dev->bar->cc);
1147        return nvme_wait_ready(dev, cap, false);
1148}
1149
1150static int nvme_enable_ctrl(struct nvme_dev *dev, u64 cap)
1151{
1152        return nvme_wait_ready(dev, cap, true);
1153}
1154
1155static int nvme_configure_admin_queue(struct nvme_dev *dev)
1156{
1157        int result;
1158        u32 aqa;
1159        u64 cap = readq(&dev->bar->cap);
1160        struct nvme_queue *nvmeq;
1161
1162        dev->dbs = ((void __iomem *)dev->bar) + 4096;
1163        dev->db_stride = NVME_CAP_STRIDE(cap);
1164
1165        result = nvme_disable_ctrl(dev, cap);
1166        if (result < 0)
1167                return result;
1168
1169        nvmeq = nvme_alloc_queue(dev, 0, 64, 0);
1170        if (!nvmeq)
1171                return -ENOMEM;
1172
1173        aqa = nvmeq->q_depth - 1;
1174        aqa |= aqa << 16;
1175
1176        dev->ctrl_config = NVME_CC_ENABLE | NVME_CC_CSS_NVM;
1177        dev->ctrl_config |= (PAGE_SHIFT - 12) << NVME_CC_MPS_SHIFT;
1178        dev->ctrl_config |= NVME_CC_ARB_RR | NVME_CC_SHN_NONE;
1179        dev->ctrl_config |= NVME_CC_IOSQES | NVME_CC_IOCQES;
1180
1181        writel(aqa, &dev->bar->aqa);
1182        writeq(nvmeq->sq_dma_addr, &dev->bar->asq);
1183        writeq(nvmeq->cq_dma_addr, &dev->bar->acq);
1184        writel(dev->ctrl_config, &dev->bar->cc);
1185
1186        result = nvme_enable_ctrl(dev, cap);
1187        if (result)
1188                goto free_q;
1189
1190        result = queue_request_irq(dev, nvmeq, "nvme admin");
1191        if (result)
1192                goto free_q;
1193
1194        dev->queues[0] = nvmeq;
1195        return result;
1196
1197 free_q:
1198        nvme_free_queue_mem(nvmeq);
1199        return result;
1200}
1201
1202struct nvme_iod *nvme_map_user_pages(struct nvme_dev *dev, int write,
1203                                unsigned long addr, unsigned length)
1204{
1205        int i, err, count, nents, offset;
1206        struct scatterlist *sg;
1207        struct page **pages;
1208        struct nvme_iod *iod;
1209
1210        if (addr & 3)
1211                return ERR_PTR(-EINVAL);
1212        if (!length || length > INT_MAX - PAGE_SIZE)
1213                return ERR_PTR(-EINVAL);
1214
1215        offset = offset_in_page(addr);
1216        count = DIV_ROUND_UP(offset + length, PAGE_SIZE);
1217        pages = kcalloc(count, sizeof(*pages), GFP_KERNEL);
1218        if (!pages)
1219                return ERR_PTR(-ENOMEM);
1220
1221        err = get_user_pages_fast(addr, count, 1, pages);
1222        if (err < count) {
1223                count = err;
1224                err = -EFAULT;
1225                goto put_pages;
1226        }
1227
1228        iod = nvme_alloc_iod(count, length, GFP_KERNEL);
1229        sg = iod->sg;
1230        sg_init_table(sg, count);
1231        for (i = 0; i < count; i++) {
1232                sg_set_page(&sg[i], pages[i],
1233                            min_t(unsigned, length, PAGE_SIZE - offset),
1234                            offset);
1235                length -= (PAGE_SIZE - offset);
1236                offset = 0;
1237        }
1238        sg_mark_end(&sg[i - 1]);
1239        iod->nents = count;
1240
1241        err = -ENOMEM;
1242        nents = dma_map_sg(&dev->pci_dev->dev, sg, count,
1243                                write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1244        if (!nents)
1245                goto free_iod;
1246
1247        kfree(pages);
1248        return iod;
1249
1250 free_iod:
1251        kfree(iod);
1252 put_pages:
1253        for (i = 0; i < count; i++)
1254                put_page(pages[i]);
1255        kfree(pages);
1256        return ERR_PTR(err);
1257}
1258
1259void nvme_unmap_user_pages(struct nvme_dev *dev, int write,
1260                        struct nvme_iod *iod)
1261{
1262        int i;
1263
1264        dma_unmap_sg(&dev->pci_dev->dev, iod->sg, iod->nents,
1265                                write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
1266
1267        for (i = 0; i < iod->nents; i++)
1268                put_page(sg_page(&iod->sg[i]));
1269}
1270
1271static int nvme_submit_io(struct nvme_ns *ns, struct nvme_user_io __user *uio)
1272{
1273        struct nvme_dev *dev = ns->dev;
1274        struct nvme_queue *nvmeq;
1275        struct nvme_user_io io;
1276        struct nvme_command c;
1277        unsigned length, meta_len;
1278        int status, i;
1279        struct nvme_iod *iod, *meta_iod = NULL;
1280        dma_addr_t meta_dma_addr;
1281        void *meta, *uninitialized_var(meta_mem);
1282
1283        if (copy_from_user(&io, uio, sizeof(io)))
1284                return -EFAULT;
1285        length = (io.nblocks + 1) << ns->lba_shift;
1286        meta_len = (io.nblocks + 1) * ns->ms;
1287
1288        if (meta_len && ((io.metadata & 3) || !io.metadata))
1289                return -EINVAL;
1290
1291        switch (io.opcode) {
1292        case nvme_cmd_write:
1293        case nvme_cmd_read:
1294        case nvme_cmd_compare:
1295                iod = nvme_map_user_pages(dev, io.opcode & 1, io.addr, length);
1296                break;
1297        default:
1298                return -EINVAL;
1299        }
1300
1301        if (IS_ERR(iod))
1302                return PTR_ERR(iod);
1303
1304        memset(&c, 0, sizeof(c));
1305        c.rw.opcode = io.opcode;
1306        c.rw.flags = io.flags;
1307        c.rw.nsid = cpu_to_le32(ns->ns_id);
1308        c.rw.slba = cpu_to_le64(io.slba);
1309        c.rw.length = cpu_to_le16(io.nblocks);
1310        c.rw.control = cpu_to_le16(io.control);
1311        c.rw.dsmgmt = cpu_to_le32(io.dsmgmt);
1312        c.rw.reftag = cpu_to_le32(io.reftag);
1313        c.rw.apptag = cpu_to_le16(io.apptag);
1314        c.rw.appmask = cpu_to_le16(io.appmask);
1315
1316        if (meta_len) {
1317                meta_iod = nvme_map_user_pages(dev, io.opcode & 1, io.metadata, meta_len);
1318                if (IS_ERR(meta_iod)) {
1319                        status = PTR_ERR(meta_iod);
1320                        meta_iod = NULL;
1321                        goto unmap;
1322                }
1323
1324                meta_mem = dma_alloc_coherent(&dev->pci_dev->dev, meta_len,
1325                                                &meta_dma_addr, GFP_KERNEL);
1326                if (!meta_mem) {
1327                        status = -ENOMEM;
1328                        goto unmap;
1329                }
1330
1331                if (io.opcode & 1) {
1332                        int meta_offset = 0;
1333
1334                        for (i = 0; i < meta_iod->nents; i++) {
1335                                meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1336                                                meta_iod->sg[i].offset;
1337                                memcpy(meta_mem + meta_offset, meta,
1338                                                meta_iod->sg[i].length);
1339                                kunmap_atomic(meta);
1340                                meta_offset += meta_iod->sg[i].length;
1341                        }
1342                }
1343
1344                c.rw.metadata = cpu_to_le64(meta_dma_addr);
1345        }
1346
1347        length = nvme_setup_prps(dev, &c.common, iod, length, GFP_KERNEL);
1348
1349        nvmeq = get_nvmeq(dev);
1350        /*
1351         * Since nvme_submit_sync_cmd sleeps, we can't keep preemption
1352         * disabled.  We may be preempted at any point, and be rescheduled
1353         * to a different CPU.  That will cause cacheline bouncing, but no
1354         * additional races since q_lock already protects against other CPUs.
1355         */
1356        put_nvmeq(nvmeq);
1357        if (length != (io.nblocks + 1) << ns->lba_shift)
1358                status = -ENOMEM;
1359        else
1360                status = nvme_submit_sync_cmd(nvmeq, &c, NULL, NVME_IO_TIMEOUT);
1361
1362        if (meta_len) {
1363                if (status == NVME_SC_SUCCESS && !(io.opcode & 1)) {
1364                        int meta_offset = 0;
1365
1366                        for (i = 0; i < meta_iod->nents; i++) {
1367                                meta = kmap_atomic(sg_page(&meta_iod->sg[i])) +
1368                                                meta_iod->sg[i].offset;
1369                                memcpy(meta, meta_mem + meta_offset,
1370                                                meta_iod->sg[i].length);
1371                                kunmap_atomic(meta);
1372                                meta_offset += meta_iod->sg[i].length;
1373                        }
1374                }
1375
1376                dma_free_coherent(&dev->pci_dev->dev, meta_len, meta_mem,
1377                                                                meta_dma_addr);
1378        }
1379
1380 unmap:
1381        nvme_unmap_user_pages(dev, io.opcode & 1, iod);
1382        nvme_free_iod(dev, iod);
1383
1384        if (meta_iod) {
1385                nvme_unmap_user_pages(dev, io.opcode & 1, meta_iod);
1386                nvme_free_iod(dev, meta_iod);
1387        }
1388
1389        return status;
1390}
1391
1392static int nvme_user_admin_cmd(struct nvme_dev *dev,
1393                                        struct nvme_admin_cmd __user *ucmd)
1394{
1395        struct nvme_admin_cmd cmd;
1396        struct nvme_command c;
1397        int status, length;
1398        struct nvme_iod *uninitialized_var(iod);
1399        unsigned timeout;
1400
1401        if (!capable(CAP_SYS_ADMIN))
1402                return -EACCES;
1403        if (copy_from_user(&cmd, ucmd, sizeof(cmd)))
1404                return -EFAULT;
1405
1406        memset(&c, 0, sizeof(c));
1407        c.common.opcode = cmd.opcode;
1408        c.common.flags = cmd.flags;
1409        c.common.nsid = cpu_to_le32(cmd.nsid);
1410        c.common.cdw2[0] = cpu_to_le32(cmd.cdw2);
1411        c.common.cdw2[1] = cpu_to_le32(cmd.cdw3);
1412        c.common.cdw10[0] = cpu_to_le32(cmd.cdw10);
1413        c.common.cdw10[1] = cpu_to_le32(cmd.cdw11);
1414        c.common.cdw10[2] = cpu_to_le32(cmd.cdw12);
1415        c.common.cdw10[3] = cpu_to_le32(cmd.cdw13);
1416        c.common.cdw10[4] = cpu_to_le32(cmd.cdw14);
1417        c.common.cdw10[5] = cpu_to_le32(cmd.cdw15);
1418
1419        length = cmd.data_len;
1420        if (cmd.data_len) {
1421                iod = nvme_map_user_pages(dev, cmd.opcode & 1, cmd.addr,
1422                                                                length);
1423                if (IS_ERR(iod))
1424                        return PTR_ERR(iod);
1425                length = nvme_setup_prps(dev, &c.common, iod, length,
1426                                                                GFP_KERNEL);
1427        }
1428
1429        timeout = cmd.timeout_ms ? msecs_to_jiffies(cmd.timeout_ms) :
1430                                                                ADMIN_TIMEOUT;
1431        if (length != cmd.data_len)
1432                status = -ENOMEM;
1433        else
1434                status = nvme_submit_sync_cmd(dev->queues[0], &c, &cmd.result,
1435                                                                timeout);
1436
1437        if (cmd.data_len) {
1438                nvme_unmap_user_pages(dev, cmd.opcode & 1, iod);
1439                nvme_free_iod(dev, iod);
1440        }
1441
1442        if ((status >= 0) && copy_to_user(&ucmd->result, &cmd.result,
1443                                                        sizeof(cmd.result)))
1444                status = -EFAULT;
1445
1446        return status;
1447}
1448
1449static int nvme_ioctl(struct block_device *bdev, fmode_t mode, unsigned int cmd,
1450                                                        unsigned long arg)
1451{
1452        struct nvme_ns *ns = bdev->bd_disk->private_data;
1453
1454        switch (cmd) {
1455        case NVME_IOCTL_ID:
1456                return ns->ns_id;
1457        case NVME_IOCTL_ADMIN_CMD:
1458                return nvme_user_admin_cmd(ns->dev, (void __user *)arg);
1459        case NVME_IOCTL_SUBMIT_IO:
1460                return nvme_submit_io(ns, (void __user *)arg);
1461        case SG_GET_VERSION_NUM:
1462                return nvme_sg_get_version_num((void __user *)arg);
1463        case SG_IO:
1464                return nvme_sg_io(ns, (void __user *)arg);
1465        default:
1466                return -ENOTTY;
1467        }
1468}
1469
1470static const struct block_device_operations nvme_fops = {
1471        .owner          = THIS_MODULE,
1472        .ioctl          = nvme_ioctl,
1473        .compat_ioctl   = nvme_ioctl,
1474};
1475
1476static void nvme_resubmit_bios(struct nvme_queue *nvmeq)
1477{
1478        while (bio_list_peek(&nvmeq->sq_cong)) {
1479                struct bio *bio = bio_list_pop(&nvmeq->sq_cong);
1480                struct nvme_ns *ns = bio->bi_bdev->bd_disk->private_data;
1481
1482                if (bio_list_empty(&nvmeq->sq_cong))
1483                        remove_wait_queue(&nvmeq->sq_full,
1484                                                        &nvmeq->sq_cong_wait);
1485                if (nvme_submit_bio_queue(nvmeq, ns, bio)) {
1486                        if (bio_list_empty(&nvmeq->sq_cong))
1487                                add_wait_queue(&nvmeq->sq_full,
1488                                                        &nvmeq->sq_cong_wait);
1489                        bio_list_add_head(&nvmeq->sq_cong, bio);
1490                        break;
1491                }
1492        }
1493}
1494
1495static int nvme_kthread(void *data)
1496{
1497        struct nvme_dev *dev;
1498
1499        while (!kthread_should_stop()) {
1500                set_current_state(TASK_INTERRUPTIBLE);
1501                spin_lock(&dev_list_lock);
1502                list_for_each_entry(dev, &dev_list, node) {
1503                        int i;
1504                        for (i = 0; i < dev->queue_count; i++) {
1505                                struct nvme_queue *nvmeq = dev->queues[i];
1506                                if (!nvmeq)
1507                                        continue;
1508                                spin_lock_irq(&nvmeq->q_lock);
1509                                if (nvme_process_cq(nvmeq))
1510                                        printk("process_cq did something\n");
1511                                nvme_cancel_ios(nvmeq, true);
1512                                nvme_resubmit_bios(nvmeq);
1513                                spin_unlock_irq(&nvmeq->q_lock);
1514                        }
1515                }
1516                spin_unlock(&dev_list_lock);
1517                schedule_timeout(round_jiffies_relative(HZ));
1518        }
1519        return 0;
1520}
1521
1522static DEFINE_IDA(nvme_index_ida);
1523
1524static int nvme_get_ns_idx(void)
1525{
1526        int index, error;
1527
1528        do {
1529                if (!ida_pre_get(&nvme_index_ida, GFP_KERNEL))
1530                        return -1;
1531
1532                spin_lock(&dev_list_lock);
1533                error = ida_get_new(&nvme_index_ida, &index);
1534                spin_unlock(&dev_list_lock);
1535        } while (error == -EAGAIN);
1536
1537        if (error)
1538                index = -1;
1539        return index;
1540}
1541
1542static void nvme_put_ns_idx(int index)
1543{
1544        spin_lock(&dev_list_lock);
1545        ida_remove(&nvme_index_ida, index);
1546        spin_unlock(&dev_list_lock);
1547}
1548
1549static void nvme_config_discard(struct nvme_ns *ns)
1550{
1551        u32 logical_block_size = queue_logical_block_size(ns->queue);
1552        ns->queue->limits.discard_zeroes_data = 0;
1553        ns->queue->limits.discard_alignment = logical_block_size;
1554        ns->queue->limits.discard_granularity = logical_block_size;
1555        ns->queue->limits.max_discard_sectors = 0xffffffff;
1556        queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, ns->queue);
1557}
1558
1559static struct nvme_ns *nvme_alloc_ns(struct nvme_dev *dev, int nsid,
1560                        struct nvme_id_ns *id, struct nvme_lba_range_type *rt)
1561{
1562        struct nvme_ns *ns;
1563        struct gendisk *disk;
1564        int lbaf;
1565
1566        if (rt->attributes & NVME_LBART_ATTRIB_HIDE)
1567                return NULL;
1568
1569        ns = kzalloc(sizeof(*ns), GFP_KERNEL);
1570        if (!ns)
1571                return NULL;
1572        ns->queue = blk_alloc_queue(GFP_KERNEL);
1573        if (!ns->queue)
1574                goto out_free_ns;
1575        ns->queue->queue_flags = QUEUE_FLAG_DEFAULT;
1576        queue_flag_set_unlocked(QUEUE_FLAG_NOMERGES, ns->queue);
1577        queue_flag_set_unlocked(QUEUE_FLAG_NONROT, ns->queue);
1578        blk_queue_make_request(ns->queue, nvme_make_request);
1579        ns->dev = dev;
1580        ns->queue->queuedata = ns;
1581
1582        disk = alloc_disk(NVME_MINORS);
1583        if (!disk)
1584                goto out_free_queue;
1585        ns->ns_id = nsid;
1586        ns->disk = disk;
1587        lbaf = id->flbas & 0xf;
1588        ns->lba_shift = id->lbaf[lbaf].ds;
1589        ns->ms = le16_to_cpu(id->lbaf[lbaf].ms);
1590        blk_queue_logical_block_size(ns->queue, 1 << ns->lba_shift);
1591        if (dev->max_hw_sectors)
1592                blk_queue_max_hw_sectors(ns->queue, dev->max_hw_sectors);
1593
1594        disk->major = nvme_major;
1595        disk->minors = NVME_MINORS;
1596        disk->first_minor = NVME_MINORS * nvme_get_ns_idx();
1597        disk->fops = &nvme_fops;
1598        disk->private_data = ns;
1599        disk->queue = ns->queue;
1600        disk->driverfs_dev = &dev->pci_dev->dev;
1601        sprintf(disk->disk_name, "nvme%dn%d", dev->instance, nsid);
1602        set_capacity(disk, le64_to_cpup(&id->nsze) << (ns->lba_shift - 9));
1603
1604        if (dev->oncs & NVME_CTRL_ONCS_DSM)
1605                nvme_config_discard(ns);
1606
1607        return ns;
1608
1609 out_free_queue:
1610        blk_cleanup_queue(ns->queue);
1611 out_free_ns:
1612        kfree(ns);
1613        return NULL;
1614}
1615
1616static void nvme_ns_free(struct nvme_ns *ns)
1617{
1618        int index = ns->disk->first_minor / NVME_MINORS;
1619        put_disk(ns->disk);
1620        nvme_put_ns_idx(index);
1621        blk_cleanup_queue(ns->queue);
1622        kfree(ns);
1623}
1624
1625static int set_queue_count(struct nvme_dev *dev, int count)
1626{
1627        int status;
1628        u32 result;
1629        u32 q_count = (count - 1) | ((count - 1) << 16);
1630
1631        status = nvme_set_features(dev, NVME_FEAT_NUM_QUEUES, q_count, 0,
1632                                                                &result);
1633        if (status)
1634                return -EIO;
1635        return min(result & 0xffff, result >> 16) + 1;
1636}
1637
1638static int nvme_setup_io_queues(struct nvme_dev *dev)
1639{
1640        struct pci_dev *pdev = dev->pci_dev;
1641        int result, cpu, i, nr_io_queues, db_bar_size, q_depth, q_count;
1642
1643        nr_io_queues = num_online_cpus();
1644        result = set_queue_count(dev, nr_io_queues);
1645        if (result < 0)
1646                return result;
1647        if (result < nr_io_queues)
1648                nr_io_queues = result;
1649
1650        q_count = nr_io_queues;
1651        /* Deregister the admin queue's interrupt */
1652        free_irq(dev->entry[0].vector, dev->queues[0]);
1653
1654        db_bar_size = 4096 + ((nr_io_queues + 1) << (dev->db_stride + 3));
1655        if (db_bar_size > 8192) {
1656                iounmap(dev->bar);
1657                dev->bar = ioremap(pci_resource_start(pdev, 0), db_bar_size);
1658                dev->dbs = ((void __iomem *)dev->bar) + 4096;
1659                dev->queues[0]->q_db = dev->dbs;
1660        }
1661
1662        for (i = 0; i < nr_io_queues; i++)
1663                dev->entry[i].entry = i;
1664        for (;;) {
1665                result = pci_enable_msix(pdev, dev->entry, nr_io_queues);
1666                if (result == 0) {
1667                        break;
1668                } else if (result > 0) {
1669                        nr_io_queues = result;
1670                        continue;
1671                } else {
1672                        nr_io_queues = 0;
1673                        break;
1674                }
1675        }
1676
1677        if (nr_io_queues == 0) {
1678                nr_io_queues = q_count;
1679                for (;;) {
1680                        result = pci_enable_msi_block(pdev, nr_io_queues);
1681                        if (result == 0) {
1682                                for (i = 0; i < nr_io_queues; i++)
1683                                        dev->entry[i].vector = i + pdev->irq;
1684                                break;
1685                        } else if (result > 0) {
1686                                nr_io_queues = result;
1687                                continue;
1688                        } else {
1689                                nr_io_queues = 1;
1690                                break;
1691                        }
1692                }
1693        }
1694
1695        result = queue_request_irq(dev, dev->queues[0], "nvme admin");
1696        /* XXX: handle failure here */
1697
1698        cpu = cpumask_first(cpu_online_mask);
1699        for (i = 0; i < nr_io_queues; i++) {
1700                irq_set_affinity_hint(dev->entry[i].vector, get_cpu_mask(cpu));
1701                cpu = cpumask_next(cpu, cpu_online_mask);
1702        }
1703
1704        q_depth = min_t(int, NVME_CAP_MQES(readq(&dev->bar->cap)) + 1,
1705                                                                NVME_Q_DEPTH);
1706        for (i = 0; i < nr_io_queues; i++) {
1707                dev->queues[i + 1] = nvme_create_queue(dev, i + 1, q_depth, i);
1708                if (IS_ERR(dev->queues[i + 1]))
1709                        return PTR_ERR(dev->queues[i + 1]);
1710                dev->queue_count++;
1711        }
1712
1713        for (; i < num_possible_cpus(); i++) {
1714                int target = i % rounddown_pow_of_two(dev->queue_count - 1);
1715                dev->queues[i + 1] = dev->queues[target + 1];
1716        }
1717
1718        return 0;
1719}
1720
1721static void nvme_free_queues(struct nvme_dev *dev)
1722{
1723        int i;
1724
1725        for (i = dev->queue_count - 1; i >= 0; i--)
1726                nvme_free_queue(dev, i);
1727}
1728
1729/*
1730 * Return: error value if an error occurred setting up the queues or calling
1731 * Identify Device.  0 if these succeeded, even if adding some of the
1732 * namespaces failed.  At the moment, these failures are silent.  TBD which
1733 * failures should be reported.
1734 */
1735static int nvme_dev_add(struct nvme_dev *dev)
1736{
1737        int res, nn, i;
1738        struct nvme_ns *ns;
1739        struct nvme_id_ctrl *ctrl;
1740        struct nvme_id_ns *id_ns;
1741        void *mem;
1742        dma_addr_t dma_addr;
1743        int shift = NVME_CAP_MPSMIN(readq(&dev->bar->cap)) + 12;
1744
1745        res = nvme_setup_io_queues(dev);
1746        if (res)
1747                return res;
1748
1749        mem = dma_alloc_coherent(&dev->pci_dev->dev, 8192, &dma_addr,
1750                                                                GFP_KERNEL);
1751        if (!mem)
1752                return -ENOMEM;
1753
1754        res = nvme_identify(dev, 0, 1, dma_addr);
1755        if (res) {
1756                res = -EIO;
1757                goto out;
1758        }
1759
1760        ctrl = mem;
1761        nn = le32_to_cpup(&ctrl->nn);
1762        dev->oncs = le16_to_cpup(&ctrl->oncs);
1763        memcpy(dev->serial, ctrl->sn, sizeof(ctrl->sn));
1764        memcpy(dev->model, ctrl->mn, sizeof(ctrl->mn));
1765        memcpy(dev->firmware_rev, ctrl->fr, sizeof(ctrl->fr));
1766        if (ctrl->mdts)
1767                dev->max_hw_sectors = 1 << (ctrl->mdts + shift - 9);
1768        if ((dev->pci_dev->vendor == PCI_VENDOR_ID_INTEL) &&
1769                        (dev->pci_dev->device == 0x0953) && ctrl->vs[3])
1770                dev->stripe_size = 1 << (ctrl->vs[3] + shift);
1771
1772        id_ns = mem;
1773        for (i = 1; i <= nn; i++) {
1774                res = nvme_identify(dev, i, 0, dma_addr);
1775                if (res)
1776                        continue;
1777
1778                if (id_ns->ncap == 0)
1779                        continue;
1780
1781                res = nvme_get_features(dev, NVME_FEAT_LBA_RANGE, i,
1782                                                        dma_addr + 4096, NULL);
1783                if (res)
1784                        memset(mem + 4096, 0, 4096);
1785
1786                ns = nvme_alloc_ns(dev, i, mem, mem + 4096);
1787                if (ns)
1788                        list_add_tail(&ns->list, &dev->namespaces);
1789        }
1790        list_for_each_entry(ns, &dev->namespaces, list)
1791                add_disk(ns->disk);
1792        res = 0;
1793
1794 out:
1795        dma_free_coherent(&dev->pci_dev->dev, 8192, mem, dma_addr);
1796        return res;
1797}
1798
1799static int nvme_dev_remove(struct nvme_dev *dev)
1800{
1801        struct nvme_ns *ns, *next;
1802
1803        spin_lock(&dev_list_lock);
1804        list_del(&dev->node);
1805        spin_unlock(&dev_list_lock);
1806
1807        list_for_each_entry_safe(ns, next, &dev->namespaces, list) {
1808                list_del(&ns->list);
1809                del_gendisk(ns->disk);
1810                nvme_ns_free(ns);
1811        }
1812
1813        nvme_free_queues(dev);
1814
1815        return 0;
1816}
1817
1818static int nvme_setup_prp_pools(struct nvme_dev *dev)
1819{
1820        struct device *dmadev = &dev->pci_dev->dev;
1821        dev->prp_page_pool = dma_pool_create("prp list page", dmadev,
1822                                                PAGE_SIZE, PAGE_SIZE, 0);
1823        if (!dev->prp_page_pool)
1824                return -ENOMEM;
1825
1826        /* Optimisation for I/Os between 4k and 128k */
1827        dev->prp_small_pool = dma_pool_create("prp list 256", dmadev,
1828                                                256, 256, 0);
1829        if (!dev->prp_small_pool) {
1830                dma_pool_destroy(dev->prp_page_pool);
1831                return -ENOMEM;
1832        }
1833        return 0;
1834}
1835
1836static void nvme_release_prp_pools(struct nvme_dev *dev)
1837{
1838        dma_pool_destroy(dev->prp_page_pool);
1839        dma_pool_destroy(dev->prp_small_pool);
1840}
1841
1842static DEFINE_IDA(nvme_instance_ida);
1843
1844static int nvme_set_instance(struct nvme_dev *dev)
1845{
1846        int instance, error;
1847
1848        do {
1849                if (!ida_pre_get(&nvme_instance_ida, GFP_KERNEL))
1850                        return -ENODEV;
1851
1852                spin_lock(&dev_list_lock);
1853                error = ida_get_new(&nvme_instance_ida, &instance);
1854                spin_unlock(&dev_list_lock);
1855        } while (error == -EAGAIN);
1856
1857        if (error)
1858                return -ENODEV;
1859
1860        dev->instance = instance;
1861        return 0;
1862}
1863
1864static void nvme_release_instance(struct nvme_dev *dev)
1865{
1866        spin_lock(&dev_list_lock);
1867        ida_remove(&nvme_instance_ida, dev->instance);
1868        spin_unlock(&dev_list_lock);
1869}
1870
1871static void nvme_free_dev(struct kref *kref)
1872{
1873        struct nvme_dev *dev = container_of(kref, struct nvme_dev, kref);
1874        nvme_dev_remove(dev);
1875        if (dev->pci_dev->msi_enabled)
1876                pci_disable_msi(dev->pci_dev);
1877        else if (dev->pci_dev->msix_enabled)
1878                pci_disable_msix(dev->pci_dev);
1879        iounmap(dev->bar);
1880        nvme_release_instance(dev);
1881        nvme_release_prp_pools(dev);
1882        pci_disable_device(dev->pci_dev);
1883        pci_release_regions(dev->pci_dev);
1884        kfree(dev->queues);
1885        kfree(dev->entry);
1886        kfree(dev);
1887}
1888
1889static int nvme_dev_open(struct inode *inode, struct file *f)
1890{
1891        struct nvme_dev *dev = container_of(f->private_data, struct nvme_dev,
1892                                                                miscdev);
1893        kref_get(&dev->kref);
1894        f->private_data = dev;
1895        return 0;
1896}
1897
1898static int nvme_dev_release(struct inode *inode, struct file *f)
1899{
1900        struct nvme_dev *dev = f->private_data;
1901        kref_put(&dev->kref, nvme_free_dev);
1902        return 0;
1903}
1904
1905static long nvme_dev_ioctl(struct file *f, unsigned int cmd, unsigned long arg)
1906{
1907        struct nvme_dev *dev = f->private_data;
1908        switch (cmd) {
1909        case NVME_IOCTL_ADMIN_CMD:
1910                return nvme_user_admin_cmd(dev, (void __user *)arg);
1911        default:
1912                return -ENOTTY;
1913        }
1914}
1915
1916static const struct file_operations nvme_dev_fops = {
1917        .owner          = THIS_MODULE,
1918        .open           = nvme_dev_open,
1919        .release        = nvme_dev_release,
1920        .unlocked_ioctl = nvme_dev_ioctl,
1921        .compat_ioctl   = nvme_dev_ioctl,
1922};
1923
1924static int nvme_probe(struct pci_dev *pdev, const struct pci_device_id *id)
1925{
1926        int bars, result = -ENOMEM;
1927        struct nvme_dev *dev;
1928
1929        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1930        if (!dev)
1931                return -ENOMEM;
1932        dev->entry = kcalloc(num_possible_cpus(), sizeof(*dev->entry),
1933                                                                GFP_KERNEL);
1934        if (!dev->entry)
1935                goto free;
1936        dev->queues = kcalloc(num_possible_cpus() + 1, sizeof(void *),
1937                                                                GFP_KERNEL);
1938        if (!dev->queues)
1939                goto free;
1940
1941        if (pci_enable_device_mem(pdev))
1942                goto free;
1943        pci_set_master(pdev);
1944        bars = pci_select_bars(pdev, IORESOURCE_MEM);
1945        if (pci_request_selected_regions(pdev, bars, "nvme"))
1946                goto disable;
1947
1948        INIT_LIST_HEAD(&dev->namespaces);
1949        dev->pci_dev = pdev;
1950        pci_set_drvdata(pdev, dev);
1951
1952        if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64)))
1953                dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
1954        else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32)))
1955                dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(32));
1956        else
1957                goto disable;
1958
1959        result = nvme_set_instance(dev);
1960        if (result)
1961                goto disable;
1962
1963        dev->entry[0].vector = pdev->irq;
1964
1965        result = nvme_setup_prp_pools(dev);
1966        if (result)
1967                goto disable_msix;
1968
1969        dev->bar = ioremap(pci_resource_start(pdev, 0), 8192);
1970        if (!dev->bar) {
1971                result = -ENOMEM;
1972                goto disable_msix;
1973        }
1974
1975        result = nvme_configure_admin_queue(dev);
1976        if (result)
1977                goto unmap;
1978        dev->queue_count++;
1979
1980        spin_lock(&dev_list_lock);
1981        list_add(&dev->node, &dev_list);
1982        spin_unlock(&dev_list_lock);
1983
1984        result = nvme_dev_add(dev);
1985        if (result)
1986                goto delete;
1987
1988        scnprintf(dev->name, sizeof(dev->name), "nvme%d", dev->instance);
1989        dev->miscdev.minor = MISC_DYNAMIC_MINOR;
1990        dev->miscdev.parent = &pdev->dev;
1991        dev->miscdev.name = dev->name;
1992        dev->miscdev.fops = &nvme_dev_fops;
1993        result = misc_register(&dev->miscdev);
1994        if (result)
1995                goto remove;
1996
1997        kref_init(&dev->kref);
1998        return 0;
1999
2000 remove:
2001        nvme_dev_remove(dev);
2002 delete:
2003        spin_lock(&dev_list_lock);
2004        list_del(&dev->node);
2005        spin_unlock(&dev_list_lock);
2006
2007        nvme_free_queues(dev);
2008 unmap:
2009        iounmap(dev->bar);
2010 disable_msix:
2011        if (dev->pci_dev->msi_enabled)
2012                pci_disable_msi(dev->pci_dev);
2013        else if (dev->pci_dev->msix_enabled)
2014                pci_disable_msix(dev->pci_dev);
2015        nvme_release_instance(dev);
2016        nvme_release_prp_pools(dev);
2017 disable:
2018        pci_disable_device(pdev);
2019        pci_release_regions(pdev);
2020 free:
2021        kfree(dev->queues);
2022        kfree(dev->entry);
2023        kfree(dev);
2024        return result;
2025}
2026
2027static void nvme_remove(struct pci_dev *pdev)
2028{
2029        struct nvme_dev *dev = pci_get_drvdata(pdev);
2030        misc_deregister(&dev->miscdev);
2031        kref_put(&dev->kref, nvme_free_dev);
2032}
2033
2034/* These functions are yet to be implemented */
2035#define nvme_error_detected NULL
2036#define nvme_dump_registers NULL
2037#define nvme_link_reset NULL
2038#define nvme_slot_reset NULL
2039#define nvme_error_resume NULL
2040#define nvme_suspend NULL
2041#define nvme_resume NULL
2042
2043static const struct pci_error_handlers nvme_err_handler = {
2044        .error_detected = nvme_error_detected,
2045        .mmio_enabled   = nvme_dump_registers,
2046        .link_reset     = nvme_link_reset,
2047        .slot_reset     = nvme_slot_reset,
2048        .resume         = nvme_error_resume,
2049};
2050
2051/* Move to pci_ids.h later */
2052#define PCI_CLASS_STORAGE_EXPRESS       0x010802
2053
2054static DEFINE_PCI_DEVICE_TABLE(nvme_id_table) = {
2055        { PCI_DEVICE_CLASS(PCI_CLASS_STORAGE_EXPRESS, 0xffffff) },
2056        { 0, }
2057};
2058MODULE_DEVICE_TABLE(pci, nvme_id_table);
2059
2060static struct pci_driver nvme_driver = {
2061        .name           = "nvme",
2062        .id_table       = nvme_id_table,
2063        .probe          = nvme_probe,
2064        .remove         = nvme_remove,
2065        .suspend        = nvme_suspend,
2066        .resume         = nvme_resume,
2067        .err_handler    = &nvme_err_handler,
2068};
2069
2070static int __init nvme_init(void)
2071{
2072        int result;
2073
2074        nvme_thread = kthread_run(nvme_kthread, NULL, "nvme");
2075        if (IS_ERR(nvme_thread))
2076                return PTR_ERR(nvme_thread);
2077
2078        result = register_blkdev(nvme_major, "nvme");
2079        if (result < 0)
2080                goto kill_kthread;
2081        else if (result > 0)
2082                nvme_major = result;
2083
2084        result = pci_register_driver(&nvme_driver);
2085        if (result)
2086                goto unregister_blkdev;
2087        return 0;
2088
2089 unregister_blkdev:
2090        unregister_blkdev(nvme_major, "nvme");
2091 kill_kthread:
2092        kthread_stop(nvme_thread);
2093        return result;
2094}
2095
2096static void __exit nvme_exit(void)
2097{
2098        pci_unregister_driver(&nvme_driver);
2099        unregister_blkdev(nvme_major, "nvme");
2100        kthread_stop(nvme_thread);
2101}
2102
2103MODULE_AUTHOR("Matthew Wilcox <willy@linux.intel.com>");
2104MODULE_LICENSE("GPL");
2105MODULE_VERSION("0.8");
2106module_init(nvme_init);
2107module_exit(nvme_exit);
2108