linux/drivers/edac/i3000_edac.c
<<
>>
Prefs
   1/*
   2 * Intel 3000/3010 Memory Controller kernel module
   3 * Copyright (C) 2007 Akamai Technologies, Inc.
   4 * Shamelessly copied from:
   5 *      Intel D82875P Memory Controller kernel module
   6 *      (C) 2003 Linux Networx (http://lnxi.com)
   7 *
   8 * This file may be distributed under the terms of the
   9 * GNU General Public License.
  10 */
  11
  12#include <linux/module.h>
  13#include <linux/init.h>
  14#include <linux/pci.h>
  15#include <linux/pci_ids.h>
  16#include <linux/edac.h>
  17#include "edac_core.h"
  18
  19#define I3000_REVISION          "1.1"
  20
  21#define EDAC_MOD_STR            "i3000_edac"
  22
  23#define I3000_RANKS             8
  24#define I3000_RANKS_PER_CHANNEL 4
  25#define I3000_CHANNELS          2
  26
  27/* Intel 3000 register addresses - device 0 function 0 - DRAM Controller */
  28
  29#define I3000_MCHBAR            0x44    /* MCH Memory Mapped Register BAR */
  30#define I3000_MCHBAR_MASK       0xffffc000
  31#define I3000_MMR_WINDOW_SIZE   16384
  32
  33#define I3000_EDEAP     0x70    /* Extended DRAM Error Address Pointer (8b)
  34                                 *
  35                                 * 7:1   reserved
  36                                 * 0     bit 32 of address
  37                                 */
  38#define I3000_DEAP      0x58    /* DRAM Error Address Pointer (32b)
  39                                 *
  40                                 * 31:7  address
  41                                 * 6:1   reserved
  42                                 * 0     Error channel 0/1
  43                                 */
  44#define I3000_DEAP_GRAIN                (1 << 7)
  45
  46/*
  47 * Helper functions to decode the DEAP/EDEAP hardware registers.
  48 *
  49 * The type promotion here is deliberate; we're deriving an
  50 * unsigned long pfn and offset from hardware regs which are u8/u32.
  51 */
  52
  53static inline unsigned long deap_pfn(u8 edeap, u32 deap)
  54{
  55        deap >>= PAGE_SHIFT;
  56        deap |= (edeap & 1) << (32 - PAGE_SHIFT);
  57        return deap;
  58}
  59
  60static inline unsigned long deap_offset(u32 deap)
  61{
  62        return deap & ~(I3000_DEAP_GRAIN - 1) & ~PAGE_MASK;
  63}
  64
  65static inline int deap_channel(u32 deap)
  66{
  67        return deap & 1;
  68}
  69
  70#define I3000_DERRSYN   0x5c    /* DRAM Error Syndrome (8b)
  71                                 *
  72                                 *  7:0  DRAM ECC Syndrome
  73                                 */
  74
  75#define I3000_ERRSTS    0xc8    /* Error Status Register (16b)
  76                                 *
  77                                 * 15:12 reserved
  78                                 * 11    MCH Thermal Sensor Event
  79                                 *         for SMI/SCI/SERR
  80                                 * 10    reserved
  81                                 *  9    LOCK to non-DRAM Memory Flag (LCKF)
  82                                 *  8    Received Refresh Timeout Flag (RRTOF)
  83                                 *  7:2  reserved
  84                                 *  1    Multi-bit DRAM ECC Error Flag (DMERR)
  85                                 *  0    Single-bit DRAM ECC Error Flag (DSERR)
  86                                 */
  87#define I3000_ERRSTS_BITS       0x0b03  /* bits which indicate errors */
  88#define I3000_ERRSTS_UE         0x0002
  89#define I3000_ERRSTS_CE         0x0001
  90
  91#define I3000_ERRCMD    0xca    /* Error Command (16b)
  92                                 *
  93                                 * 15:12 reserved
  94                                 * 11    SERR on MCH Thermal Sensor Event
  95                                 *         (TSESERR)
  96                                 * 10    reserved
  97                                 *  9    SERR on LOCK to non-DRAM Memory
  98                                 *         (LCKERR)
  99                                 *  8    SERR on DRAM Refresh Timeout
 100                                 *         (DRTOERR)
 101                                 *  7:2  reserved
 102                                 *  1    SERR Multi-Bit DRAM ECC Error
 103                                 *         (DMERR)
 104                                 *  0    SERR on Single-Bit ECC Error
 105                                 *         (DSERR)
 106                                 */
 107
 108/* Intel  MMIO register space - device 0 function 0 - MMR space */
 109
 110#define I3000_DRB_SHIFT 25      /* 32MiB grain */
 111
 112#define I3000_C0DRB     0x100   /* Channel 0 DRAM Rank Boundary (8b x 4)
 113                                 *
 114                                 * 7:0   Channel 0 DRAM Rank Boundary Address
 115                                 */
 116#define I3000_C1DRB     0x180   /* Channel 1 DRAM Rank Boundary (8b x 4)
 117                                 *
 118                                 * 7:0   Channel 1 DRAM Rank Boundary Address
 119                                 */
 120
 121#define I3000_C0DRA     0x108   /* Channel 0 DRAM Rank Attribute (8b x 2)
 122                                 *
 123                                 * 7     reserved
 124                                 * 6:4   DRAM odd Rank Attribute
 125                                 * 3     reserved
 126                                 * 2:0   DRAM even Rank Attribute
 127                                 *
 128                                 * Each attribute defines the page
 129                                 * size of the corresponding rank:
 130                                 *     000: unpopulated
 131                                 *     001: reserved
 132                                 *     010: 4 KB
 133                                 *     011: 8 KB
 134                                 *     100: 16 KB
 135                                 *     Others: reserved
 136                                 */
 137#define I3000_C1DRA     0x188   /* Channel 1 DRAM Rank Attribute (8b x 2) */
 138
 139static inline unsigned char odd_rank_attrib(unsigned char dra)
 140{
 141        return (dra & 0x70) >> 4;
 142}
 143
 144static inline unsigned char even_rank_attrib(unsigned char dra)
 145{
 146        return dra & 0x07;
 147}
 148
 149#define I3000_C0DRC0    0x120   /* DRAM Controller Mode 0 (32b)
 150                                 *
 151                                 * 31:30 reserved
 152                                 * 29    Initialization Complete (IC)
 153                                 * 28:11 reserved
 154                                 * 10:8  Refresh Mode Select (RMS)
 155                                 * 7     reserved
 156                                 * 6:4   Mode Select (SMS)
 157                                 * 3:2   reserved
 158                                 * 1:0   DRAM Type (DT)
 159                                 */
 160
 161#define I3000_C0DRC1    0x124   /* DRAM Controller Mode 1 (32b)
 162                                 *
 163                                 * 31    Enhanced Addressing Enable (ENHADE)
 164                                 * 30:0  reserved
 165                                 */
 166
 167enum i3000p_chips {
 168        I3000 = 0,
 169};
 170
 171struct i3000_dev_info {
 172        const char *ctl_name;
 173};
 174
 175struct i3000_error_info {
 176        u16 errsts;
 177        u8 derrsyn;
 178        u8 edeap;
 179        u32 deap;
 180        u16 errsts2;
 181};
 182
 183static const struct i3000_dev_info i3000_devs[] = {
 184        [I3000] = {
 185                .ctl_name = "i3000"},
 186};
 187
 188static struct pci_dev *mci_pdev;
 189static int i3000_registered = 1;
 190static struct edac_pci_ctl_info *i3000_pci;
 191
 192static void i3000_get_error_info(struct mem_ctl_info *mci,
 193                                 struct i3000_error_info *info)
 194{
 195        struct pci_dev *pdev;
 196
 197        pdev = to_pci_dev(mci->pdev);
 198
 199        /*
 200         * This is a mess because there is no atomic way to read all the
 201         * registers at once and the registers can transition from CE being
 202         * overwritten by UE.
 203         */
 204        pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts);
 205        if (!(info->errsts & I3000_ERRSTS_BITS))
 206                return;
 207        pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
 208        pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
 209        pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
 210        pci_read_config_word(pdev, I3000_ERRSTS, &info->errsts2);
 211
 212        /*
 213         * If the error is the same for both reads then the first set
 214         * of reads is valid.  If there is a change then there is a CE
 215         * with no info and the second set of reads is valid and
 216         * should be UE info.
 217         */
 218        if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
 219                pci_read_config_byte(pdev, I3000_EDEAP, &info->edeap);
 220                pci_read_config_dword(pdev, I3000_DEAP, &info->deap);
 221                pci_read_config_byte(pdev, I3000_DERRSYN, &info->derrsyn);
 222        }
 223
 224        /*
 225         * Clear any error bits.
 226         * (Yes, we really clear bits by writing 1 to them.)
 227         */
 228        pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
 229                         I3000_ERRSTS_BITS);
 230}
 231
 232static int i3000_process_error_info(struct mem_ctl_info *mci,
 233                                struct i3000_error_info *info,
 234                                int handle_errors)
 235{
 236        int row, multi_chan, channel;
 237        unsigned long pfn, offset;
 238
 239        multi_chan = mci->csrows[0]->nr_channels - 1;
 240
 241        if (!(info->errsts & I3000_ERRSTS_BITS))
 242                return 0;
 243
 244        if (!handle_errors)
 245                return 1;
 246
 247        if ((info->errsts ^ info->errsts2) & I3000_ERRSTS_BITS) {
 248                edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1, 0, 0, 0,
 249                                     -1, -1, -1,
 250                                     "UE overwrote CE", "");
 251                info->errsts = info->errsts2;
 252        }
 253
 254        pfn = deap_pfn(info->edeap, info->deap);
 255        offset = deap_offset(info->deap);
 256        channel = deap_channel(info->deap);
 257
 258        row = edac_mc_find_csrow_by_page(mci, pfn);
 259
 260        if (info->errsts & I3000_ERRSTS_UE)
 261                edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci, 1,
 262                                     pfn, offset, 0,
 263                                     row, -1, -1,
 264                                     "i3000 UE", "");
 265        else
 266                edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci, 1,
 267                                     pfn, offset, info->derrsyn,
 268                                     row, multi_chan ? channel : 0, -1,
 269                                     "i3000 CE", "");
 270
 271        return 1;
 272}
 273
 274static void i3000_check(struct mem_ctl_info *mci)
 275{
 276        struct i3000_error_info info;
 277
 278        edac_dbg(1, "MC%d\n", mci->mc_idx);
 279        i3000_get_error_info(mci, &info);
 280        i3000_process_error_info(mci, &info, 1);
 281}
 282
 283static int i3000_is_interleaved(const unsigned char *c0dra,
 284                                const unsigned char *c1dra,
 285                                const unsigned char *c0drb,
 286                                const unsigned char *c1drb)
 287{
 288        int i;
 289
 290        /*
 291         * If the channels aren't populated identically then
 292         * we're not interleaved.
 293         */
 294        for (i = 0; i < I3000_RANKS_PER_CHANNEL / 2; i++)
 295                if (odd_rank_attrib(c0dra[i]) != odd_rank_attrib(c1dra[i]) ||
 296                        even_rank_attrib(c0dra[i]) !=
 297                                                even_rank_attrib(c1dra[i]))
 298                        return 0;
 299
 300        /*
 301         * If the rank boundaries for the two channels are different
 302         * then we're not interleaved.
 303         */
 304        for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++)
 305                if (c0drb[i] != c1drb[i])
 306                        return 0;
 307
 308        return 1;
 309}
 310
 311static int i3000_probe1(struct pci_dev *pdev, int dev_idx)
 312{
 313        int rc;
 314        int i, j;
 315        struct mem_ctl_info *mci = NULL;
 316        struct edac_mc_layer layers[2];
 317        unsigned long last_cumul_size, nr_pages;
 318        int interleaved, nr_channels;
 319        unsigned char dra[I3000_RANKS / 2], drb[I3000_RANKS];
 320        unsigned char *c0dra = dra, *c1dra = &dra[I3000_RANKS_PER_CHANNEL / 2];
 321        unsigned char *c0drb = drb, *c1drb = &drb[I3000_RANKS_PER_CHANNEL];
 322        unsigned long mchbar;
 323        void __iomem *window;
 324
 325        edac_dbg(0, "MC:\n");
 326
 327        pci_read_config_dword(pdev, I3000_MCHBAR, (u32 *) & mchbar);
 328        mchbar &= I3000_MCHBAR_MASK;
 329        window = ioremap_nocache(mchbar, I3000_MMR_WINDOW_SIZE);
 330        if (!window) {
 331                printk(KERN_ERR "i3000: cannot map mmio space at 0x%lx\n",
 332                        mchbar);
 333                return -ENODEV;
 334        }
 335
 336        c0dra[0] = readb(window + I3000_C0DRA + 0);     /* ranks 0,1 */
 337        c0dra[1] = readb(window + I3000_C0DRA + 1);     /* ranks 2,3 */
 338        c1dra[0] = readb(window + I3000_C1DRA + 0);     /* ranks 0,1 */
 339        c1dra[1] = readb(window + I3000_C1DRA + 1);     /* ranks 2,3 */
 340
 341        for (i = 0; i < I3000_RANKS_PER_CHANNEL; i++) {
 342                c0drb[i] = readb(window + I3000_C0DRB + i);
 343                c1drb[i] = readb(window + I3000_C1DRB + i);
 344        }
 345
 346        iounmap(window);
 347
 348        /*
 349         * Figure out how many channels we have.
 350         *
 351         * If we have what the datasheet calls "asymmetric channels"
 352         * (essentially the same as what was called "virtual single
 353         * channel mode" in the i82875) then it's a single channel as
 354         * far as EDAC is concerned.
 355         */
 356        interleaved = i3000_is_interleaved(c0dra, c1dra, c0drb, c1drb);
 357        nr_channels = interleaved ? 2 : 1;
 358
 359        layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
 360        layers[0].size = I3000_RANKS / nr_channels;
 361        layers[0].is_virt_csrow = true;
 362        layers[1].type = EDAC_MC_LAYER_CHANNEL;
 363        layers[1].size = nr_channels;
 364        layers[1].is_virt_csrow = false;
 365        mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, 0);
 366        if (!mci)
 367                return -ENOMEM;
 368
 369        edac_dbg(3, "MC: init mci\n");
 370
 371        mci->pdev = &pdev->dev;
 372        mci->mtype_cap = MEM_FLAG_DDR2;
 373
 374        mci->edac_ctl_cap = EDAC_FLAG_SECDED;
 375        mci->edac_cap = EDAC_FLAG_SECDED;
 376
 377        mci->mod_name = EDAC_MOD_STR;
 378        mci->mod_ver = I3000_REVISION;
 379        mci->ctl_name = i3000_devs[dev_idx].ctl_name;
 380        mci->dev_name = pci_name(pdev);
 381        mci->edac_check = i3000_check;
 382        mci->ctl_page_to_phys = NULL;
 383
 384        /*
 385         * The dram rank boundary (DRB) reg values are boundary addresses
 386         * for each DRAM rank with a granularity of 32MB.  DRB regs are
 387         * cumulative; the last one will contain the total memory
 388         * contained in all ranks.
 389         *
 390         * If we're in interleaved mode then we're only walking through
 391         * the ranks of controller 0, so we double all the values we see.
 392         */
 393        for (last_cumul_size = i = 0; i < mci->nr_csrows; i++) {
 394                u8 value;
 395                u32 cumul_size;
 396                struct csrow_info *csrow = mci->csrows[i];
 397
 398                value = drb[i];
 399                cumul_size = value << (I3000_DRB_SHIFT - PAGE_SHIFT);
 400                if (interleaved)
 401                        cumul_size <<= 1;
 402                edac_dbg(3, "MC: (%d) cumul_size 0x%x\n", i, cumul_size);
 403                if (cumul_size == last_cumul_size)
 404                        continue;
 405
 406                csrow->first_page = last_cumul_size;
 407                csrow->last_page = cumul_size - 1;
 408                nr_pages = cumul_size - last_cumul_size;
 409                last_cumul_size = cumul_size;
 410
 411                for (j = 0; j < nr_channels; j++) {
 412                        struct dimm_info *dimm = csrow->channels[j]->dimm;
 413
 414                        dimm->nr_pages = nr_pages / nr_channels;
 415                        dimm->grain = I3000_DEAP_GRAIN;
 416                        dimm->mtype = MEM_DDR2;
 417                        dimm->dtype = DEV_UNKNOWN;
 418                        dimm->edac_mode = EDAC_UNKNOWN;
 419                }
 420        }
 421
 422        /*
 423         * Clear any error bits.
 424         * (Yes, we really clear bits by writing 1 to them.)
 425         */
 426        pci_write_bits16(pdev, I3000_ERRSTS, I3000_ERRSTS_BITS,
 427                         I3000_ERRSTS_BITS);
 428
 429        rc = -ENODEV;
 430        if (edac_mc_add_mc(mci)) {
 431                edac_dbg(3, "MC: failed edac_mc_add_mc()\n");
 432                goto fail;
 433        }
 434
 435        /* allocating generic PCI control info */
 436        i3000_pci = edac_pci_create_generic_ctl(&pdev->dev, EDAC_MOD_STR);
 437        if (!i3000_pci) {
 438                printk(KERN_WARNING
 439                        "%s(): Unable to create PCI control\n",
 440                        __func__);
 441                printk(KERN_WARNING
 442                        "%s(): PCI error report via EDAC not setup\n",
 443                        __func__);
 444        }
 445
 446        /* get this far and it's successful */
 447        edac_dbg(3, "MC: success\n");
 448        return 0;
 449
 450fail:
 451        if (mci)
 452                edac_mc_free(mci);
 453
 454        return rc;
 455}
 456
 457/* returns count (>= 0), or negative on error */
 458static int i3000_init_one(struct pci_dev *pdev, const struct pci_device_id *ent)
 459{
 460        int rc;
 461
 462        edac_dbg(0, "MC:\n");
 463
 464        if (pci_enable_device(pdev) < 0)
 465                return -EIO;
 466
 467        rc = i3000_probe1(pdev, ent->driver_data);
 468        if (!mci_pdev)
 469                mci_pdev = pci_dev_get(pdev);
 470
 471        return rc;
 472}
 473
 474static void i3000_remove_one(struct pci_dev *pdev)
 475{
 476        struct mem_ctl_info *mci;
 477
 478        edac_dbg(0, "\n");
 479
 480        if (i3000_pci)
 481                edac_pci_release_generic_ctl(i3000_pci);
 482
 483        mci = edac_mc_del_mc(&pdev->dev);
 484        if (!mci)
 485                return;
 486
 487        edac_mc_free(mci);
 488}
 489
 490static DEFINE_PCI_DEVICE_TABLE(i3000_pci_tbl) = {
 491        {
 492         PCI_VEND_DEV(INTEL, 3000_HB), PCI_ANY_ID, PCI_ANY_ID, 0, 0,
 493         I3000},
 494        {
 495         0,
 496         }                      /* 0 terminated list. */
 497};
 498
 499MODULE_DEVICE_TABLE(pci, i3000_pci_tbl);
 500
 501static struct pci_driver i3000_driver = {
 502        .name = EDAC_MOD_STR,
 503        .probe = i3000_init_one,
 504        .remove = i3000_remove_one,
 505        .id_table = i3000_pci_tbl,
 506};
 507
 508static int __init i3000_init(void)
 509{
 510        int pci_rc;
 511
 512        edac_dbg(3, "MC:\n");
 513
 514       /* Ensure that the OPSTATE is set correctly for POLL or NMI */
 515       opstate_init();
 516
 517        pci_rc = pci_register_driver(&i3000_driver);
 518        if (pci_rc < 0)
 519                goto fail0;
 520
 521        if (!mci_pdev) {
 522                i3000_registered = 0;
 523                mci_pdev = pci_get_device(PCI_VENDOR_ID_INTEL,
 524                                        PCI_DEVICE_ID_INTEL_3000_HB, NULL);
 525                if (!mci_pdev) {
 526                        edac_dbg(0, "i3000 pci_get_device fail\n");
 527                        pci_rc = -ENODEV;
 528                        goto fail1;
 529                }
 530
 531                pci_rc = i3000_init_one(mci_pdev, i3000_pci_tbl);
 532                if (pci_rc < 0) {
 533                        edac_dbg(0, "i3000 init fail\n");
 534                        pci_rc = -ENODEV;
 535                        goto fail1;
 536                }
 537        }
 538
 539        return 0;
 540
 541fail1:
 542        pci_unregister_driver(&i3000_driver);
 543
 544fail0:
 545        if (mci_pdev)
 546                pci_dev_put(mci_pdev);
 547
 548        return pci_rc;
 549}
 550
 551static void __exit i3000_exit(void)
 552{
 553        edac_dbg(3, "MC:\n");
 554
 555        pci_unregister_driver(&i3000_driver);
 556        if (!i3000_registered) {
 557                i3000_remove_one(mci_pdev);
 558                pci_dev_put(mci_pdev);
 559        }
 560}
 561
 562module_init(i3000_init);
 563module_exit(i3000_exit);
 564
 565MODULE_LICENSE("GPL");
 566MODULE_AUTHOR("Akamai Technologies Arthur Ulfeldt/Jason Uhlenkott");
 567MODULE_DESCRIPTION("MC support for Intel 3000 memory hub controllers");
 568
 569module_param(edac_op_state, int, 0444);
 570MODULE_PARM_DESC(edac_op_state, "EDAC Error Reporting state: 0=Poll,1=NMI");
 571