linux/drivers/gpu/drm/nouveau/nv50_pm.c
<<
>>
Prefs
   1/*
   2 * Copyright 2010 Red Hat Inc.
   3 *
   4 * Permission is hereby granted, free of charge, to any person obtaining a
   5 * copy of this software and associated documentation files (the "Software"),
   6 * to deal in the Software without restriction, including without limitation
   7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
   8 * and/or sell copies of the Software, and to permit persons to whom the
   9 * Software is furnished to do so, subject to the following conditions:
  10 *
  11 * The above copyright notice and this permission notice shall be included in
  12 * all copies or substantial portions of the Software.
  13 *
  14 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  15 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  16 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
  17 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
  18 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
  19 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
  20 * OTHER DEALINGS IN THE SOFTWARE.
  21 *
  22 * Authors: Ben Skeggs
  23 */
  24
  25#include <drm/drmP.h>
  26#include "nouveau_drm.h"
  27#include "nouveau_bios.h"
  28#include "dispnv04/hw.h"
  29#include "nouveau_pm.h"
  30#include "nouveau_hwsq.h"
  31
  32#include "nv50_display.h"
  33
  34#include <subdev/bios/pll.h>
  35#include <subdev/clock.h>
  36#include <subdev/timer.h>
  37#include <subdev/fb.h>
  38
  39enum clk_src {
  40        clk_src_crystal,
  41        clk_src_href,
  42        clk_src_hclk,
  43        clk_src_hclkm3,
  44        clk_src_hclkm3d2,
  45        clk_src_host,
  46        clk_src_nvclk,
  47        clk_src_sclk,
  48        clk_src_mclk,
  49        clk_src_vdec,
  50        clk_src_dom6
  51};
  52
  53static u32 read_clk(struct drm_device *, enum clk_src);
  54
  55static u32
  56read_div(struct drm_device *dev)
  57{
  58        struct nouveau_device *device = nouveau_dev(dev);
  59        struct nouveau_drm *drm = nouveau_drm(dev);
  60
  61        switch (nv_device(drm->device)->chipset) {
  62        case 0x50: /* it exists, but only has bit 31, not the dividers.. */
  63        case 0x84:
  64        case 0x86:
  65        case 0x98:
  66        case 0xa0:
  67                return nv_rd32(device, 0x004700);
  68        case 0x92:
  69        case 0x94:
  70        case 0x96:
  71                return nv_rd32(device, 0x004800);
  72        default:
  73                return 0x00000000;
  74        }
  75}
  76
  77static u32
  78read_pll_src(struct drm_device *dev, u32 base)
  79{
  80        struct nouveau_device *device = nouveau_dev(dev);
  81        struct nouveau_drm *drm = nouveau_drm(dev);
  82        u32 coef, ref = read_clk(dev, clk_src_crystal);
  83        u32 rsel = nv_rd32(device, 0x00e18c);
  84        int P, N, M, id;
  85
  86        switch (nv_device(drm->device)->chipset) {
  87        case 0x50:
  88        case 0xa0:
  89                switch (base) {
  90                case 0x4020:
  91                case 0x4028: id = !!(rsel & 0x00000004); break;
  92                case 0x4008: id = !!(rsel & 0x00000008); break;
  93                case 0x4030: id = 0; break;
  94                default:
  95                        NV_ERROR(drm, "ref: bad pll 0x%06x\n", base);
  96                        return 0;
  97                }
  98
  99                coef = nv_rd32(device, 0x00e81c + (id * 0x0c));
 100                ref *=  (coef & 0x01000000) ? 2 : 4;
 101                P    =  (coef & 0x00070000) >> 16;
 102                N    = ((coef & 0x0000ff00) >> 8) + 1;
 103                M    = ((coef & 0x000000ff) >> 0) + 1;
 104                break;
 105        case 0x84:
 106        case 0x86:
 107        case 0x92:
 108                coef = nv_rd32(device, 0x00e81c);
 109                P    = (coef & 0x00070000) >> 16;
 110                N    = (coef & 0x0000ff00) >> 8;
 111                M    = (coef & 0x000000ff) >> 0;
 112                break;
 113        case 0x94:
 114        case 0x96:
 115        case 0x98:
 116                rsel = nv_rd32(device, 0x00c050);
 117                switch (base) {
 118                case 0x4020: rsel = (rsel & 0x00000003) >> 0; break;
 119                case 0x4008: rsel = (rsel & 0x0000000c) >> 2; break;
 120                case 0x4028: rsel = (rsel & 0x00001800) >> 11; break;
 121                case 0x4030: rsel = 3; break;
 122                default:
 123                        NV_ERROR(drm, "ref: bad pll 0x%06x\n", base);
 124                        return 0;
 125                }
 126
 127                switch (rsel) {
 128                case 0: id = 1; break;
 129                case 1: return read_clk(dev, clk_src_crystal);
 130                case 2: return read_clk(dev, clk_src_href);
 131                case 3: id = 0; break;
 132                }
 133
 134                coef =  nv_rd32(device, 0x00e81c + (id * 0x28));
 135                P    = (nv_rd32(device, 0x00e824 + (id * 0x28)) >> 16) & 7;
 136                P   += (coef & 0x00070000) >> 16;
 137                N    = (coef & 0x0000ff00) >> 8;
 138                M    = (coef & 0x000000ff) >> 0;
 139                break;
 140        default:
 141                BUG_ON(1);
 142        }
 143
 144        if (M)
 145                return (ref * N / M) >> P;
 146        return 0;
 147}
 148
 149static u32
 150read_pll_ref(struct drm_device *dev, u32 base)
 151{
 152        struct nouveau_device *device = nouveau_dev(dev);
 153        struct nouveau_drm *drm = nouveau_drm(dev);
 154        u32 src, mast = nv_rd32(device, 0x00c040);
 155
 156        switch (base) {
 157        case 0x004028:
 158                src = !!(mast & 0x00200000);
 159                break;
 160        case 0x004020:
 161                src = !!(mast & 0x00400000);
 162                break;
 163        case 0x004008:
 164                src = !!(mast & 0x00010000);
 165                break;
 166        case 0x004030:
 167                src = !!(mast & 0x02000000);
 168                break;
 169        case 0x00e810:
 170                return read_clk(dev, clk_src_crystal);
 171        default:
 172                NV_ERROR(drm, "bad pll 0x%06x\n", base);
 173                return 0;
 174        }
 175
 176        if (src)
 177                return read_clk(dev, clk_src_href);
 178        return read_pll_src(dev, base);
 179}
 180
 181static u32
 182read_pll(struct drm_device *dev, u32 base)
 183{
 184        struct nouveau_device *device = nouveau_dev(dev);
 185        struct nouveau_drm *drm = nouveau_drm(dev);
 186        u32 mast = nv_rd32(device, 0x00c040);
 187        u32 ctrl = nv_rd32(device, base + 0);
 188        u32 coef = nv_rd32(device, base + 4);
 189        u32 ref = read_pll_ref(dev, base);
 190        u32 clk = 0;
 191        int N1, N2, M1, M2;
 192
 193        if (base == 0x004028 && (mast & 0x00100000)) {
 194                /* wtf, appears to only disable post-divider on nva0 */
 195                if (nv_device(drm->device)->chipset != 0xa0)
 196                        return read_clk(dev, clk_src_dom6);
 197        }
 198
 199        N2 = (coef & 0xff000000) >> 24;
 200        M2 = (coef & 0x00ff0000) >> 16;
 201        N1 = (coef & 0x0000ff00) >> 8;
 202        M1 = (coef & 0x000000ff);
 203        if ((ctrl & 0x80000000) && M1) {
 204                clk = ref * N1 / M1;
 205                if ((ctrl & 0x40000100) == 0x40000000) {
 206                        if (M2)
 207                                clk = clk * N2 / M2;
 208                        else
 209                                clk = 0;
 210                }
 211        }
 212
 213        return clk;
 214}
 215
 216static u32
 217read_clk(struct drm_device *dev, enum clk_src src)
 218{
 219        struct nouveau_device *device = nouveau_dev(dev);
 220        struct nouveau_drm *drm = nouveau_drm(dev);
 221        u32 mast = nv_rd32(device, 0x00c040);
 222        u32 P = 0;
 223
 224        switch (src) {
 225        case clk_src_crystal:
 226                return device->crystal;
 227        case clk_src_href:
 228                return 100000; /* PCIE reference clock */
 229        case clk_src_hclk:
 230                return read_clk(dev, clk_src_href) * 27778 / 10000;
 231        case clk_src_hclkm3:
 232                return read_clk(dev, clk_src_hclk) * 3;
 233        case clk_src_hclkm3d2:
 234                return read_clk(dev, clk_src_hclk) * 3 / 2;
 235        case clk_src_host:
 236                switch (mast & 0x30000000) {
 237                case 0x00000000: return read_clk(dev, clk_src_href);
 238                case 0x10000000: break;
 239                case 0x20000000: /* !0x50 */
 240                case 0x30000000: return read_clk(dev, clk_src_hclk);
 241                }
 242                break;
 243        case clk_src_nvclk:
 244                if (!(mast & 0x00100000))
 245                        P = (nv_rd32(device, 0x004028) & 0x00070000) >> 16;
 246                switch (mast & 0x00000003) {
 247                case 0x00000000: return read_clk(dev, clk_src_crystal) >> P;
 248                case 0x00000001: return read_clk(dev, clk_src_dom6);
 249                case 0x00000002: return read_pll(dev, 0x004020) >> P;
 250                case 0x00000003: return read_pll(dev, 0x004028) >> P;
 251                }
 252                break;
 253        case clk_src_sclk:
 254                P = (nv_rd32(device, 0x004020) & 0x00070000) >> 16;
 255                switch (mast & 0x00000030) {
 256                case 0x00000000:
 257                        if (mast & 0x00000080)
 258                                return read_clk(dev, clk_src_host) >> P;
 259                        return read_clk(dev, clk_src_crystal) >> P;
 260                case 0x00000010: break;
 261                case 0x00000020: return read_pll(dev, 0x004028) >> P;
 262                case 0x00000030: return read_pll(dev, 0x004020) >> P;
 263                }
 264                break;
 265        case clk_src_mclk:
 266                P = (nv_rd32(device, 0x004008) & 0x00070000) >> 16;
 267                if (nv_rd32(device, 0x004008) & 0x00000200) {
 268                        switch (mast & 0x0000c000) {
 269                        case 0x00000000:
 270                                return read_clk(dev, clk_src_crystal) >> P;
 271                        case 0x00008000:
 272                        case 0x0000c000:
 273                                return read_clk(dev, clk_src_href) >> P;
 274                        }
 275                } else {
 276                        return read_pll(dev, 0x004008) >> P;
 277                }
 278                break;
 279        case clk_src_vdec:
 280                P = (read_div(dev) & 0x00000700) >> 8;
 281                switch (nv_device(drm->device)->chipset) {
 282                case 0x84:
 283                case 0x86:
 284                case 0x92:
 285                case 0x94:
 286                case 0x96:
 287                case 0xa0:
 288                        switch (mast & 0x00000c00) {
 289                        case 0x00000000:
 290                                if (nv_device(drm->device)->chipset == 0xa0) /* wtf?? */
 291                                        return read_clk(dev, clk_src_nvclk) >> P;
 292                                return read_clk(dev, clk_src_crystal) >> P;
 293                        case 0x00000400:
 294                                return 0;
 295                        case 0x00000800:
 296                                if (mast & 0x01000000)
 297                                        return read_pll(dev, 0x004028) >> P;
 298                                return read_pll(dev, 0x004030) >> P;
 299                        case 0x00000c00:
 300                                return read_clk(dev, clk_src_nvclk) >> P;
 301                        }
 302                        break;
 303                case 0x98:
 304                        switch (mast & 0x00000c00) {
 305                        case 0x00000000:
 306                                return read_clk(dev, clk_src_nvclk) >> P;
 307                        case 0x00000400:
 308                                return 0;
 309                        case 0x00000800:
 310                                return read_clk(dev, clk_src_hclkm3d2) >> P;
 311                        case 0x00000c00:
 312                                return read_clk(dev, clk_src_mclk) >> P;
 313                        }
 314                        break;
 315                }
 316                break;
 317        case clk_src_dom6:
 318                switch (nv_device(drm->device)->chipset) {
 319                case 0x50:
 320                case 0xa0:
 321                        return read_pll(dev, 0x00e810) >> 2;
 322                case 0x84:
 323                case 0x86:
 324                case 0x92:
 325                case 0x94:
 326                case 0x96:
 327                case 0x98:
 328                        P = (read_div(dev) & 0x00000007) >> 0;
 329                        switch (mast & 0x0c000000) {
 330                        case 0x00000000: return read_clk(dev, clk_src_href);
 331                        case 0x04000000: break;
 332                        case 0x08000000: return read_clk(dev, clk_src_hclk);
 333                        case 0x0c000000:
 334                                return read_clk(dev, clk_src_hclkm3) >> P;
 335                        }
 336                        break;
 337                default:
 338                        break;
 339                }
 340        default:
 341                break;
 342        }
 343
 344        NV_DEBUG(drm, "unknown clock source %d 0x%08x\n", src, mast);
 345        return 0;
 346}
 347
 348int
 349nv50_pm_clocks_get(struct drm_device *dev, struct nouveau_pm_level *perflvl)
 350{
 351        struct nouveau_drm *drm = nouveau_drm(dev);
 352        if (nv_device(drm->device)->chipset == 0xaa ||
 353            nv_device(drm->device)->chipset == 0xac)
 354                return 0;
 355
 356        perflvl->core   = read_clk(dev, clk_src_nvclk);
 357        perflvl->shader = read_clk(dev, clk_src_sclk);
 358        perflvl->memory = read_clk(dev, clk_src_mclk);
 359        if (nv_device(drm->device)->chipset != 0x50) {
 360                perflvl->vdec = read_clk(dev, clk_src_vdec);
 361                perflvl->dom6 = read_clk(dev, clk_src_dom6);
 362        }
 363
 364        return 0;
 365}
 366
 367struct nv50_pm_state {
 368        struct nouveau_pm_level *perflvl;
 369        struct hwsq_ucode eclk_hwsq;
 370        struct hwsq_ucode mclk_hwsq;
 371        u32 mscript;
 372        u32 mmast;
 373        u32 mctrl;
 374        u32 mcoef;
 375};
 376
 377static u32
 378calc_pll(struct drm_device *dev, u32 reg, struct nvbios_pll *pll,
 379         u32 clk, int *N1, int *M1, int *log2P)
 380{
 381        struct nouveau_device *device = nouveau_dev(dev);
 382        struct nouveau_bios *bios = nouveau_bios(device);
 383        struct nouveau_clock *pclk = nouveau_clock(device);
 384        struct nouveau_pll_vals coef;
 385        int ret;
 386
 387        ret = nvbios_pll_parse(bios, reg, pll);
 388        if (ret)
 389                return 0;
 390
 391        pll->vco2.max_freq = 0;
 392        pll->refclk = read_pll_ref(dev, reg);
 393        if (!pll->refclk)
 394                return 0;
 395
 396        ret = pclk->pll_calc(pclk, pll, clk, &coef);
 397        if (ret == 0)
 398                return 0;
 399
 400        *N1 = coef.N1;
 401        *M1 = coef.M1;
 402        *log2P = coef.log2P;
 403        return ret;
 404}
 405
 406static inline u32
 407calc_div(u32 src, u32 target, int *div)
 408{
 409        u32 clk0 = src, clk1 = src;
 410        for (*div = 0; *div <= 7; (*div)++) {
 411                if (clk0 <= target) {
 412                        clk1 = clk0 << (*div ? 1 : 0);
 413                        break;
 414                }
 415                clk0 >>= 1;
 416        }
 417
 418        if (target - clk0 <= clk1 - target)
 419                return clk0;
 420        (*div)--;
 421        return clk1;
 422}
 423
 424static inline u32
 425clk_same(u32 a, u32 b)
 426{
 427        return ((a / 1000) == (b / 1000));
 428}
 429
 430static void
 431mclk_precharge(struct nouveau_mem_exec_func *exec)
 432{
 433        struct nv50_pm_state *info = exec->priv;
 434        struct hwsq_ucode *hwsq = &info->mclk_hwsq;
 435
 436        hwsq_wr32(hwsq, 0x1002d4, 0x00000001);
 437}
 438
 439static void
 440mclk_refresh(struct nouveau_mem_exec_func *exec)
 441{
 442        struct nv50_pm_state *info = exec->priv;
 443        struct hwsq_ucode *hwsq = &info->mclk_hwsq;
 444
 445        hwsq_wr32(hwsq, 0x1002d0, 0x00000001);
 446}
 447
 448static void
 449mclk_refresh_auto(struct nouveau_mem_exec_func *exec, bool enable)
 450{
 451        struct nv50_pm_state *info = exec->priv;
 452        struct hwsq_ucode *hwsq = &info->mclk_hwsq;
 453
 454        hwsq_wr32(hwsq, 0x100210, enable ? 0x80000000 : 0x00000000);
 455}
 456
 457static void
 458mclk_refresh_self(struct nouveau_mem_exec_func *exec, bool enable)
 459{
 460        struct nv50_pm_state *info = exec->priv;
 461        struct hwsq_ucode *hwsq = &info->mclk_hwsq;
 462
 463        hwsq_wr32(hwsq, 0x1002dc, enable ? 0x00000001 : 0x00000000);
 464}
 465
 466static void
 467mclk_wait(struct nouveau_mem_exec_func *exec, u32 nsec)
 468{
 469        struct nv50_pm_state *info = exec->priv;
 470        struct hwsq_ucode *hwsq = &info->mclk_hwsq;
 471
 472        if (nsec > 1000)
 473                hwsq_usec(hwsq, (nsec + 500) / 1000);
 474}
 475
 476static u32
 477mclk_mrg(struct nouveau_mem_exec_func *exec, int mr)
 478{
 479        struct nouveau_device *device = nouveau_dev(exec->dev);
 480        if (mr <= 1)
 481                return nv_rd32(device, 0x1002c0 + ((mr - 0) * 4));
 482        if (mr <= 3)
 483                return nv_rd32(device, 0x1002e0 + ((mr - 2) * 4));
 484        return 0;
 485}
 486
 487static void
 488mclk_mrs(struct nouveau_mem_exec_func *exec, int mr, u32 data)
 489{
 490        struct nouveau_device *device = nouveau_dev(exec->dev);
 491        struct nouveau_fb *pfb = nouveau_fb(device);
 492        struct nv50_pm_state *info = exec->priv;
 493        struct hwsq_ucode *hwsq = &info->mclk_hwsq;
 494
 495        if (mr <= 1) {
 496                if (pfb->ram.ranks > 1)
 497                        hwsq_wr32(hwsq, 0x1002c8 + ((mr - 0) * 4), data);
 498                hwsq_wr32(hwsq, 0x1002c0 + ((mr - 0) * 4), data);
 499        } else
 500        if (mr <= 3) {
 501                if (pfb->ram.ranks > 1)
 502                        hwsq_wr32(hwsq, 0x1002e8 + ((mr - 2) * 4), data);
 503                hwsq_wr32(hwsq, 0x1002e0 + ((mr - 2) * 4), data);
 504        }
 505}
 506
 507static void
 508mclk_clock_set(struct nouveau_mem_exec_func *exec)
 509{
 510        struct nouveau_device *device = nouveau_dev(exec->dev);
 511        struct nv50_pm_state *info = exec->priv;
 512        struct hwsq_ucode *hwsq = &info->mclk_hwsq;
 513        u32 ctrl = nv_rd32(device, 0x004008);
 514
 515        info->mmast = nv_rd32(device, 0x00c040);
 516        info->mmast &= ~0xc0000000; /* get MCLK_2 from HREF */
 517        info->mmast |=  0x0000c000; /* use MCLK_2 as MPLL_BYPASS clock */
 518
 519        hwsq_wr32(hwsq, 0xc040, info->mmast);
 520        hwsq_wr32(hwsq, 0x4008, ctrl | 0x00000200); /* bypass MPLL */
 521        if (info->mctrl & 0x80000000)
 522                hwsq_wr32(hwsq, 0x400c, info->mcoef);
 523        hwsq_wr32(hwsq, 0x4008, info->mctrl);
 524}
 525
 526static void
 527mclk_timing_set(struct nouveau_mem_exec_func *exec)
 528{
 529        struct nouveau_device *device = nouveau_dev(exec->dev);
 530        struct nv50_pm_state *info = exec->priv;
 531        struct nouveau_pm_level *perflvl = info->perflvl;
 532        struct hwsq_ucode *hwsq = &info->mclk_hwsq;
 533        int i;
 534
 535        for (i = 0; i < 9; i++) {
 536                u32 reg = 0x100220 + (i * 4);
 537                u32 val = nv_rd32(device, reg);
 538                if (val != perflvl->timing.reg[i])
 539                        hwsq_wr32(hwsq, reg, perflvl->timing.reg[i]);
 540        }
 541}
 542
 543static int
 544calc_mclk(struct drm_device *dev, struct nouveau_pm_level *perflvl,
 545          struct nv50_pm_state *info)
 546{
 547        struct nouveau_drm *drm = nouveau_drm(dev);
 548        struct nouveau_device *device = nouveau_dev(dev);
 549        u32 crtc_mask = 0; /*XXX: nv50_display_active_crtcs(dev); */
 550        struct nouveau_mem_exec_func exec = {
 551                .dev = dev,
 552                .precharge = mclk_precharge,
 553                .refresh = mclk_refresh,
 554                .refresh_auto = mclk_refresh_auto,
 555                .refresh_self = mclk_refresh_self,
 556                .wait = mclk_wait,
 557                .mrg = mclk_mrg,
 558                .mrs = mclk_mrs,
 559                .clock_set = mclk_clock_set,
 560                .timing_set = mclk_timing_set,
 561                .priv = info
 562        };
 563        struct hwsq_ucode *hwsq = &info->mclk_hwsq;
 564        struct nvbios_pll pll;
 565        int N, M, P;
 566        int ret;
 567
 568        /* use pcie refclock if possible, otherwise use mpll */
 569        info->mctrl  = nv_rd32(device, 0x004008);
 570        info->mctrl &= ~0x81ff0200;
 571        if (clk_same(perflvl->memory, read_clk(dev, clk_src_href))) {
 572                info->mctrl |= 0x00000200 | (pll.bias_p << 19);
 573        } else {
 574                ret = calc_pll(dev, 0x4008, &pll, perflvl->memory, &N, &M, &P);
 575                if (ret == 0)
 576                        return -EINVAL;
 577
 578                info->mctrl |= 0x80000000 | (P << 22) | (P << 16);
 579                info->mctrl |= pll.bias_p << 19;
 580                info->mcoef  = (N << 8) | M;
 581        }
 582
 583        /* build the ucode which will reclock the memory for us */
 584        hwsq_init(hwsq);
 585        if (crtc_mask) {
 586                hwsq_op5f(hwsq, crtc_mask, 0x00); /* wait for scanout */
 587                hwsq_op5f(hwsq, crtc_mask, 0x01); /* wait for vblank */
 588        }
 589        if (nv_device(drm->device)->chipset >= 0x92)
 590                hwsq_wr32(hwsq, 0x611200, 0x00003300); /* disable scanout */
 591        hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
 592        hwsq_op5f(hwsq, 0x00, 0x01); /* no idea :s */
 593
 594        ret = nouveau_mem_exec(&exec, perflvl);
 595        if (ret)
 596                return ret;
 597
 598        hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
 599        hwsq_op5f(hwsq, 0x00, 0x00); /* no idea, reverse of 0x00, 0x01? */
 600        if (nv_device(drm->device)->chipset >= 0x92)
 601                hwsq_wr32(hwsq, 0x611200, 0x00003330); /* enable scanout */
 602        hwsq_fini(hwsq);
 603        return 0;
 604}
 605
 606void *
 607nv50_pm_clocks_pre(struct drm_device *dev, struct nouveau_pm_level *perflvl)
 608{
 609        struct nouveau_device *device = nouveau_dev(dev);
 610        struct nouveau_drm *drm = nouveau_drm(dev);
 611        struct nv50_pm_state *info;
 612        struct hwsq_ucode *hwsq;
 613        struct nvbios_pll pll;
 614        u32 out, mast, divs, ctrl;
 615        int clk, ret = -EINVAL;
 616        int N, M, P1, P2;
 617
 618        if (nv_device(drm->device)->chipset == 0xaa ||
 619            nv_device(drm->device)->chipset == 0xac)
 620                return ERR_PTR(-ENODEV);
 621
 622        info = kmalloc(sizeof(*info), GFP_KERNEL);
 623        if (!info)
 624                return ERR_PTR(-ENOMEM);
 625        info->perflvl = perflvl;
 626
 627        /* memory: build hwsq ucode which we'll use to reclock memory.
 628         *         use pcie refclock if possible, otherwise use mpll */
 629        info->mclk_hwsq.len = 0;
 630        if (perflvl->memory) {
 631                ret = calc_mclk(dev, perflvl, info);
 632                if (ret)
 633                        goto error;
 634                info->mscript = perflvl->memscript;
 635        }
 636
 637        divs = read_div(dev);
 638        mast = info->mmast;
 639
 640        /* start building HWSQ script for engine reclocking */
 641        hwsq = &info->eclk_hwsq;
 642        hwsq_init(hwsq);
 643        hwsq_setf(hwsq, 0x10, 0); /* disable bus access */
 644        hwsq_op5f(hwsq, 0x00, 0x01); /* wait for access disabled? */
 645
 646        /* vdec/dom6: switch to "safe" clocks temporarily */
 647        if (perflvl->vdec) {
 648                mast &= ~0x00000c00;
 649                divs &= ~0x00000700;
 650        }
 651
 652        if (perflvl->dom6) {
 653                mast &= ~0x0c000000;
 654                divs &= ~0x00000007;
 655        }
 656
 657        hwsq_wr32(hwsq, 0x00c040, mast);
 658
 659        /* vdec: avoid modifying xpll until we know exactly how the other
 660         * clock domains work, i suspect at least some of them can also be
 661         * tied to xpll...
 662         */
 663        if (perflvl->vdec) {
 664                /* see how close we can get using nvclk as a source */
 665                clk = calc_div(perflvl->core, perflvl->vdec, &P1);
 666
 667                /* see how close we can get using xpll/hclk as a source */
 668                if (nv_device(drm->device)->chipset != 0x98)
 669                        out = read_pll(dev, 0x004030);
 670                else
 671                        out = read_clk(dev, clk_src_hclkm3d2);
 672                out = calc_div(out, perflvl->vdec, &P2);
 673
 674                /* select whichever gets us closest */
 675                if (abs((int)perflvl->vdec - clk) <=
 676                    abs((int)perflvl->vdec - out)) {
 677                        if (nv_device(drm->device)->chipset != 0x98)
 678                                mast |= 0x00000c00;
 679                        divs |= P1 << 8;
 680                } else {
 681                        mast |= 0x00000800;
 682                        divs |= P2 << 8;
 683                }
 684        }
 685
 686        /* dom6: nfi what this is, but we're limited to various combinations
 687         * of the host clock frequency
 688         */
 689        if (perflvl->dom6) {
 690                if (clk_same(perflvl->dom6, read_clk(dev, clk_src_href))) {
 691                        mast |= 0x00000000;
 692                } else
 693                if (clk_same(perflvl->dom6, read_clk(dev, clk_src_hclk))) {
 694                        mast |= 0x08000000;
 695                } else {
 696                        clk = read_clk(dev, clk_src_hclk) * 3;
 697                        clk = calc_div(clk, perflvl->dom6, &P1);
 698
 699                        mast |= 0x0c000000;
 700                        divs |= P1;
 701                }
 702        }
 703
 704        /* vdec/dom6: complete switch to new clocks */
 705        switch (nv_device(drm->device)->chipset) {
 706        case 0x92:
 707        case 0x94:
 708        case 0x96:
 709                hwsq_wr32(hwsq, 0x004800, divs);
 710                break;
 711        default:
 712                hwsq_wr32(hwsq, 0x004700, divs);
 713                break;
 714        }
 715
 716        hwsq_wr32(hwsq, 0x00c040, mast);
 717
 718        /* core/shader: make sure sclk/nvclk are disconnected from their
 719         * PLLs (nvclk to dom6, sclk to hclk)
 720         */
 721        if (nv_device(drm->device)->chipset < 0x92)
 722                mast = (mast & ~0x001000b0) | 0x00100080;
 723        else
 724                mast = (mast & ~0x000000b3) | 0x00000081;
 725
 726        hwsq_wr32(hwsq, 0x00c040, mast);
 727
 728        /* core: for the moment at least, always use nvpll */
 729        clk = calc_pll(dev, 0x4028, &pll, perflvl->core, &N, &M, &P1);
 730        if (clk == 0)
 731                goto error;
 732
 733        ctrl  = nv_rd32(device, 0x004028) & ~0xc03f0100;
 734        mast &= ~0x00100000;
 735        mast |= 3;
 736
 737        hwsq_wr32(hwsq, 0x004028, 0x80000000 | (P1 << 19) | (P1 << 16) | ctrl);
 738        hwsq_wr32(hwsq, 0x00402c, (N << 8) | M);
 739
 740        /* shader: tie to nvclk if possible, otherwise use spll.  have to be
 741         * very careful that the shader clock is at least twice the core, or
 742         * some chipsets will be very unhappy.  i expect most or all of these
 743         * cases will be handled by tying to nvclk, but it's possible there's
 744         * corners
 745         */
 746        ctrl = nv_rd32(device, 0x004020) & ~0xc03f0100;
 747
 748        if (P1-- && perflvl->shader == (perflvl->core << 1)) {
 749                hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl);
 750                hwsq_wr32(hwsq, 0x00c040, 0x00000020 | mast);
 751        } else {
 752                clk = calc_pll(dev, 0x4020, &pll, perflvl->shader, &N, &M, &P1);
 753                if (clk == 0)
 754                        goto error;
 755                ctrl |= 0x80000000;
 756
 757                hwsq_wr32(hwsq, 0x004020, (P1 << 19) | (P1 << 16) | ctrl);
 758                hwsq_wr32(hwsq, 0x004024, (N << 8) | M);
 759                hwsq_wr32(hwsq, 0x00c040, 0x00000030 | mast);
 760        }
 761
 762        hwsq_setf(hwsq, 0x10, 1); /* enable bus access */
 763        hwsq_op5f(hwsq, 0x00, 0x00); /* wait for access enabled? */
 764        hwsq_fini(hwsq);
 765
 766        return info;
 767error:
 768        kfree(info);
 769        return ERR_PTR(ret);
 770}
 771
 772static int
 773prog_hwsq(struct drm_device *dev, struct hwsq_ucode *hwsq)
 774{
 775        struct nouveau_device *device = nouveau_dev(dev);
 776        struct nouveau_drm *drm = nouveau_drm(dev);
 777        u32 hwsq_data, hwsq_kick;
 778        int i;
 779
 780        if (nv_device(drm->device)->chipset < 0x94) {
 781                hwsq_data = 0x001400;
 782                hwsq_kick = 0x00000003;
 783        } else {
 784                hwsq_data = 0x080000;
 785                hwsq_kick = 0x00000001;
 786        }
 787        /* upload hwsq ucode */
 788        nv_mask(device, 0x001098, 0x00000008, 0x00000000);
 789        nv_wr32(device, 0x001304, 0x00000000);
 790        if (nv_device(drm->device)->chipset >= 0x92)
 791                nv_wr32(device, 0x001318, 0x00000000);
 792        for (i = 0; i < hwsq->len / 4; i++)
 793                nv_wr32(device, hwsq_data + (i * 4), hwsq->ptr.u32[i]);
 794        nv_mask(device, 0x001098, 0x00000018, 0x00000018);
 795
 796        /* launch, and wait for completion */
 797        nv_wr32(device, 0x00130c, hwsq_kick);
 798        if (!nv_wait(device, 0x001308, 0x00000100, 0x00000000)) {
 799                NV_ERROR(drm, "hwsq ucode exec timed out\n");
 800                NV_ERROR(drm, "0x001308: 0x%08x\n", nv_rd32(device, 0x001308));
 801                for (i = 0; i < hwsq->len / 4; i++) {
 802                        NV_ERROR(drm, "0x%06x: 0x%08x\n", 0x1400 + (i * 4),
 803                                 nv_rd32(device, 0x001400 + (i * 4)));
 804                }
 805
 806                return -EIO;
 807        }
 808
 809        return 0;
 810}
 811
 812int
 813nv50_pm_clocks_set(struct drm_device *dev, void *data)
 814{
 815        struct nouveau_device *device = nouveau_dev(dev);
 816        struct nv50_pm_state *info = data;
 817        struct bit_entry M;
 818        int ret = -EBUSY;
 819
 820        /* halt and idle execution engines */
 821        nv_mask(device, 0x002504, 0x00000001, 0x00000001);
 822        if (!nv_wait(device, 0x002504, 0x00000010, 0x00000010))
 823                goto resume;
 824        if (!nv_wait(device, 0x00251c, 0x0000003f, 0x0000003f))
 825                goto resume;
 826
 827        /* program memory clock, if necessary - must come before engine clock
 828         * reprogramming due to how we construct the hwsq scripts in pre()
 829         */
 830#define nouveau_bios_init_exec(a,b) nouveau_bios_run_init_table((a), (b), NULL, 0)
 831        if (info->mclk_hwsq.len) {
 832                /* execute some scripts that do ??? from the vbios.. */
 833                if (!bit_table(dev, 'M', &M) && M.version == 1) {
 834                        if (M.length >= 6)
 835                                nouveau_bios_init_exec(dev, ROM16(M.data[5]));
 836                        if (M.length >= 8)
 837                                nouveau_bios_init_exec(dev, ROM16(M.data[7]));
 838                        if (M.length >= 10)
 839                                nouveau_bios_init_exec(dev, ROM16(M.data[9]));
 840                        nouveau_bios_init_exec(dev, info->mscript);
 841                }
 842
 843                ret = prog_hwsq(dev, &info->mclk_hwsq);
 844                if (ret)
 845                        goto resume;
 846        }
 847
 848        /* program engine clocks */
 849        ret = prog_hwsq(dev, &info->eclk_hwsq);
 850
 851resume:
 852        nv_mask(device, 0x002504, 0x00000001, 0x00000000);
 853        kfree(info);
 854        return ret;
 855}
 856