linux/drivers/iommu/amd_iommu.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007-2010 Advanced Micro Devices, Inc.
   3 * Author: Joerg Roedel <joerg.roedel@amd.com>
   4 *         Leo Duran <leo.duran@amd.com>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License version 2 as published
   8 * by the Free Software Foundation.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 *
  15 * You should have received a copy of the GNU General Public License
  16 * along with this program; if not, write to the Free Software
  17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307 USA
  18 */
  19
  20#include <linux/ratelimit.h>
  21#include <linux/pci.h>
  22#include <linux/pci-ats.h>
  23#include <linux/bitmap.h>
  24#include <linux/slab.h>
  25#include <linux/debugfs.h>
  26#include <linux/scatterlist.h>
  27#include <linux/dma-mapping.h>
  28#include <linux/iommu-helper.h>
  29#include <linux/iommu.h>
  30#include <linux/delay.h>
  31#include <linux/amd-iommu.h>
  32#include <linux/notifier.h>
  33#include <linux/export.h>
  34#include <linux/irq.h>
  35#include <linux/msi.h>
  36#include <asm/irq_remapping.h>
  37#include <asm/io_apic.h>
  38#include <asm/apic.h>
  39#include <asm/hw_irq.h>
  40#include <asm/msidef.h>
  41#include <asm/proto.h>
  42#include <asm/iommu.h>
  43#include <asm/gart.h>
  44#include <asm/dma.h>
  45
  46#include "amd_iommu_proto.h"
  47#include "amd_iommu_types.h"
  48#include "irq_remapping.h"
  49#include "pci.h"
  50
  51#define CMD_SET_TYPE(cmd, t) ((cmd)->data[1] |= ((t) << 28))
  52
  53#define LOOP_TIMEOUT    100000
  54
  55/*
  56 * This bitmap is used to advertise the page sizes our hardware support
  57 * to the IOMMU core, which will then use this information to split
  58 * physically contiguous memory regions it is mapping into page sizes
  59 * that we support.
  60 *
  61 * 512GB Pages are not supported due to a hardware bug
  62 */
  63#define AMD_IOMMU_PGSIZES       ((~0xFFFUL) & ~(2ULL << 38))
  64
  65static DEFINE_RWLOCK(amd_iommu_devtable_lock);
  66
  67/* A list of preallocated protection domains */
  68static LIST_HEAD(iommu_pd_list);
  69static DEFINE_SPINLOCK(iommu_pd_list_lock);
  70
  71/* List of all available dev_data structures */
  72static LIST_HEAD(dev_data_list);
  73static DEFINE_SPINLOCK(dev_data_list_lock);
  74
  75LIST_HEAD(ioapic_map);
  76LIST_HEAD(hpet_map);
  77
  78/*
  79 * Domain for untranslated devices - only allocated
  80 * if iommu=pt passed on kernel cmd line.
  81 */
  82static struct protection_domain *pt_domain;
  83
  84static struct iommu_ops amd_iommu_ops;
  85
  86static ATOMIC_NOTIFIER_HEAD(ppr_notifier);
  87int amd_iommu_max_glx_val = -1;
  88
  89static struct dma_map_ops amd_iommu_dma_ops;
  90
  91/*
  92 * general struct to manage commands send to an IOMMU
  93 */
  94struct iommu_cmd {
  95        u32 data[4];
  96};
  97
  98struct kmem_cache *amd_iommu_irq_cache;
  99
 100static void update_domain(struct protection_domain *domain);
 101static int __init alloc_passthrough_domain(void);
 102
 103/****************************************************************************
 104 *
 105 * Helper functions
 106 *
 107 ****************************************************************************/
 108
 109static struct iommu_dev_data *alloc_dev_data(u16 devid)
 110{
 111        struct iommu_dev_data *dev_data;
 112        unsigned long flags;
 113
 114        dev_data = kzalloc(sizeof(*dev_data), GFP_KERNEL);
 115        if (!dev_data)
 116                return NULL;
 117
 118        dev_data->devid = devid;
 119        atomic_set(&dev_data->bind, 0);
 120
 121        spin_lock_irqsave(&dev_data_list_lock, flags);
 122        list_add_tail(&dev_data->dev_data_list, &dev_data_list);
 123        spin_unlock_irqrestore(&dev_data_list_lock, flags);
 124
 125        return dev_data;
 126}
 127
 128static void free_dev_data(struct iommu_dev_data *dev_data)
 129{
 130        unsigned long flags;
 131
 132        spin_lock_irqsave(&dev_data_list_lock, flags);
 133        list_del(&dev_data->dev_data_list);
 134        spin_unlock_irqrestore(&dev_data_list_lock, flags);
 135
 136        if (dev_data->group)
 137                iommu_group_put(dev_data->group);
 138
 139        kfree(dev_data);
 140}
 141
 142static struct iommu_dev_data *search_dev_data(u16 devid)
 143{
 144        struct iommu_dev_data *dev_data;
 145        unsigned long flags;
 146
 147        spin_lock_irqsave(&dev_data_list_lock, flags);
 148        list_for_each_entry(dev_data, &dev_data_list, dev_data_list) {
 149                if (dev_data->devid == devid)
 150                        goto out_unlock;
 151        }
 152
 153        dev_data = NULL;
 154
 155out_unlock:
 156        spin_unlock_irqrestore(&dev_data_list_lock, flags);
 157
 158        return dev_data;
 159}
 160
 161static struct iommu_dev_data *find_dev_data(u16 devid)
 162{
 163        struct iommu_dev_data *dev_data;
 164
 165        dev_data = search_dev_data(devid);
 166
 167        if (dev_data == NULL)
 168                dev_data = alloc_dev_data(devid);
 169
 170        return dev_data;
 171}
 172
 173static inline u16 get_device_id(struct device *dev)
 174{
 175        struct pci_dev *pdev = to_pci_dev(dev);
 176
 177        return PCI_DEVID(pdev->bus->number, pdev->devfn);
 178}
 179
 180static struct iommu_dev_data *get_dev_data(struct device *dev)
 181{
 182        return dev->archdata.iommu;
 183}
 184
 185static bool pci_iommuv2_capable(struct pci_dev *pdev)
 186{
 187        static const int caps[] = {
 188                PCI_EXT_CAP_ID_ATS,
 189                PCI_EXT_CAP_ID_PRI,
 190                PCI_EXT_CAP_ID_PASID,
 191        };
 192        int i, pos;
 193
 194        for (i = 0; i < 3; ++i) {
 195                pos = pci_find_ext_capability(pdev, caps[i]);
 196                if (pos == 0)
 197                        return false;
 198        }
 199
 200        return true;
 201}
 202
 203static bool pdev_pri_erratum(struct pci_dev *pdev, u32 erratum)
 204{
 205        struct iommu_dev_data *dev_data;
 206
 207        dev_data = get_dev_data(&pdev->dev);
 208
 209        return dev_data->errata & (1 << erratum) ? true : false;
 210}
 211
 212/*
 213 * In this function the list of preallocated protection domains is traversed to
 214 * find the domain for a specific device
 215 */
 216static struct dma_ops_domain *find_protection_domain(u16 devid)
 217{
 218        struct dma_ops_domain *entry, *ret = NULL;
 219        unsigned long flags;
 220        u16 alias = amd_iommu_alias_table[devid];
 221
 222        if (list_empty(&iommu_pd_list))
 223                return NULL;
 224
 225        spin_lock_irqsave(&iommu_pd_list_lock, flags);
 226
 227        list_for_each_entry(entry, &iommu_pd_list, list) {
 228                if (entry->target_dev == devid ||
 229                    entry->target_dev == alias) {
 230                        ret = entry;
 231                        break;
 232                }
 233        }
 234
 235        spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
 236
 237        return ret;
 238}
 239
 240/*
 241 * This function checks if the driver got a valid device from the caller to
 242 * avoid dereferencing invalid pointers.
 243 */
 244static bool check_device(struct device *dev)
 245{
 246        u16 devid;
 247
 248        if (!dev || !dev->dma_mask)
 249                return false;
 250
 251        /* No device or no PCI device */
 252        if (dev->bus != &pci_bus_type)
 253                return false;
 254
 255        devid = get_device_id(dev);
 256
 257        /* Out of our scope? */
 258        if (devid > amd_iommu_last_bdf)
 259                return false;
 260
 261        if (amd_iommu_rlookup_table[devid] == NULL)
 262                return false;
 263
 264        return true;
 265}
 266
 267static struct pci_bus *find_hosted_bus(struct pci_bus *bus)
 268{
 269        while (!bus->self) {
 270                if (!pci_is_root_bus(bus))
 271                        bus = bus->parent;
 272                else
 273                        return ERR_PTR(-ENODEV);
 274        }
 275
 276        return bus;
 277}
 278
 279#define REQ_ACS_FLAGS   (PCI_ACS_SV | PCI_ACS_RR | PCI_ACS_CR | PCI_ACS_UF)
 280
 281static struct pci_dev *get_isolation_root(struct pci_dev *pdev)
 282{
 283        struct pci_dev *dma_pdev = pdev;
 284
 285        /* Account for quirked devices */
 286        swap_pci_ref(&dma_pdev, pci_get_dma_source(dma_pdev));
 287
 288        /*
 289         * If it's a multifunction device that does not support our
 290         * required ACS flags, add to the same group as function 0.
 291         */
 292        if (dma_pdev->multifunction &&
 293            !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS))
 294                swap_pci_ref(&dma_pdev,
 295                             pci_get_slot(dma_pdev->bus,
 296                                          PCI_DEVFN(PCI_SLOT(dma_pdev->devfn),
 297                                          0)));
 298
 299        /*
 300         * Devices on the root bus go through the iommu.  If that's not us,
 301         * find the next upstream device and test ACS up to the root bus.
 302         * Finding the next device may require skipping virtual buses.
 303         */
 304        while (!pci_is_root_bus(dma_pdev->bus)) {
 305                struct pci_bus *bus = find_hosted_bus(dma_pdev->bus);
 306                if (IS_ERR(bus))
 307                        break;
 308
 309                if (pci_acs_path_enabled(bus->self, NULL, REQ_ACS_FLAGS))
 310                        break;
 311
 312                swap_pci_ref(&dma_pdev, pci_dev_get(bus->self));
 313        }
 314
 315        return dma_pdev;
 316}
 317
 318static int use_pdev_iommu_group(struct pci_dev *pdev, struct device *dev)
 319{
 320        struct iommu_group *group = iommu_group_get(&pdev->dev);
 321        int ret;
 322
 323        if (!group) {
 324                group = iommu_group_alloc();
 325                if (IS_ERR(group))
 326                        return PTR_ERR(group);
 327
 328                WARN_ON(&pdev->dev != dev);
 329        }
 330
 331        ret = iommu_group_add_device(group, dev);
 332        iommu_group_put(group);
 333        return ret;
 334}
 335
 336static int use_dev_data_iommu_group(struct iommu_dev_data *dev_data,
 337                                    struct device *dev)
 338{
 339        if (!dev_data->group) {
 340                struct iommu_group *group = iommu_group_alloc();
 341                if (IS_ERR(group))
 342                        return PTR_ERR(group);
 343
 344                dev_data->group = group;
 345        }
 346
 347        return iommu_group_add_device(dev_data->group, dev);
 348}
 349
 350static int init_iommu_group(struct device *dev)
 351{
 352        struct iommu_dev_data *dev_data;
 353        struct iommu_group *group;
 354        struct pci_dev *dma_pdev;
 355        int ret;
 356
 357        group = iommu_group_get(dev);
 358        if (group) {
 359                iommu_group_put(group);
 360                return 0;
 361        }
 362
 363        dev_data = find_dev_data(get_device_id(dev));
 364        if (!dev_data)
 365                return -ENOMEM;
 366
 367        if (dev_data->alias_data) {
 368                u16 alias;
 369                struct pci_bus *bus;
 370
 371                if (dev_data->alias_data->group)
 372                        goto use_group;
 373
 374                /*
 375                 * If the alias device exists, it's effectively just a first
 376                 * level quirk for finding the DMA source.
 377                 */
 378                alias = amd_iommu_alias_table[dev_data->devid];
 379                dma_pdev = pci_get_bus_and_slot(alias >> 8, alias & 0xff);
 380                if (dma_pdev) {
 381                        dma_pdev = get_isolation_root(dma_pdev);
 382                        goto use_pdev;
 383                }
 384
 385                /*
 386                 * If the alias is virtual, try to find a parent device
 387                 * and test whether the IOMMU group is actualy rooted above
 388                 * the alias.  Be careful to also test the parent device if
 389                 * we think the alias is the root of the group.
 390                 */
 391                bus = pci_find_bus(0, alias >> 8);
 392                if (!bus)
 393                        goto use_group;
 394
 395                bus = find_hosted_bus(bus);
 396                if (IS_ERR(bus) || !bus->self)
 397                        goto use_group;
 398
 399                dma_pdev = get_isolation_root(pci_dev_get(bus->self));
 400                if (dma_pdev != bus->self || (dma_pdev->multifunction &&
 401                    !pci_acs_enabled(dma_pdev, REQ_ACS_FLAGS)))
 402                        goto use_pdev;
 403
 404                pci_dev_put(dma_pdev);
 405                goto use_group;
 406        }
 407
 408        dma_pdev = get_isolation_root(pci_dev_get(to_pci_dev(dev)));
 409use_pdev:
 410        ret = use_pdev_iommu_group(dma_pdev, dev);
 411        pci_dev_put(dma_pdev);
 412        return ret;
 413use_group:
 414        return use_dev_data_iommu_group(dev_data->alias_data, dev);
 415}
 416
 417static int iommu_init_device(struct device *dev)
 418{
 419        struct pci_dev *pdev = to_pci_dev(dev);
 420        struct iommu_dev_data *dev_data;
 421        u16 alias;
 422        int ret;
 423
 424        if (dev->archdata.iommu)
 425                return 0;
 426
 427        dev_data = find_dev_data(get_device_id(dev));
 428        if (!dev_data)
 429                return -ENOMEM;
 430
 431        alias = amd_iommu_alias_table[dev_data->devid];
 432        if (alias != dev_data->devid) {
 433                struct iommu_dev_data *alias_data;
 434
 435                alias_data = find_dev_data(alias);
 436                if (alias_data == NULL) {
 437                        pr_err("AMD-Vi: Warning: Unhandled device %s\n",
 438                                        dev_name(dev));
 439                        free_dev_data(dev_data);
 440                        return -ENOTSUPP;
 441                }
 442                dev_data->alias_data = alias_data;
 443        }
 444
 445        ret = init_iommu_group(dev);
 446        if (ret)
 447                return ret;
 448
 449        if (pci_iommuv2_capable(pdev)) {
 450                struct amd_iommu *iommu;
 451
 452                iommu              = amd_iommu_rlookup_table[dev_data->devid];
 453                dev_data->iommu_v2 = iommu->is_iommu_v2;
 454        }
 455
 456        dev->archdata.iommu = dev_data;
 457
 458        return 0;
 459}
 460
 461static void iommu_ignore_device(struct device *dev)
 462{
 463        u16 devid, alias;
 464
 465        devid = get_device_id(dev);
 466        alias = amd_iommu_alias_table[devid];
 467
 468        memset(&amd_iommu_dev_table[devid], 0, sizeof(struct dev_table_entry));
 469        memset(&amd_iommu_dev_table[alias], 0, sizeof(struct dev_table_entry));
 470
 471        amd_iommu_rlookup_table[devid] = NULL;
 472        amd_iommu_rlookup_table[alias] = NULL;
 473}
 474
 475static void iommu_uninit_device(struct device *dev)
 476{
 477        iommu_group_remove_device(dev);
 478
 479        /*
 480         * Nothing to do here - we keep dev_data around for unplugged devices
 481         * and reuse it when the device is re-plugged - not doing so would
 482         * introduce a ton of races.
 483         */
 484}
 485
 486void __init amd_iommu_uninit_devices(void)
 487{
 488        struct iommu_dev_data *dev_data, *n;
 489        struct pci_dev *pdev = NULL;
 490
 491        for_each_pci_dev(pdev) {
 492
 493                if (!check_device(&pdev->dev))
 494                        continue;
 495
 496                iommu_uninit_device(&pdev->dev);
 497        }
 498
 499        /* Free all of our dev_data structures */
 500        list_for_each_entry_safe(dev_data, n, &dev_data_list, dev_data_list)
 501                free_dev_data(dev_data);
 502}
 503
 504int __init amd_iommu_init_devices(void)
 505{
 506        struct pci_dev *pdev = NULL;
 507        int ret = 0;
 508
 509        for_each_pci_dev(pdev) {
 510
 511                if (!check_device(&pdev->dev))
 512                        continue;
 513
 514                ret = iommu_init_device(&pdev->dev);
 515                if (ret == -ENOTSUPP)
 516                        iommu_ignore_device(&pdev->dev);
 517                else if (ret)
 518                        goto out_free;
 519        }
 520
 521        return 0;
 522
 523out_free:
 524
 525        amd_iommu_uninit_devices();
 526
 527        return ret;
 528}
 529#ifdef CONFIG_AMD_IOMMU_STATS
 530
 531/*
 532 * Initialization code for statistics collection
 533 */
 534
 535DECLARE_STATS_COUNTER(compl_wait);
 536DECLARE_STATS_COUNTER(cnt_map_single);
 537DECLARE_STATS_COUNTER(cnt_unmap_single);
 538DECLARE_STATS_COUNTER(cnt_map_sg);
 539DECLARE_STATS_COUNTER(cnt_unmap_sg);
 540DECLARE_STATS_COUNTER(cnt_alloc_coherent);
 541DECLARE_STATS_COUNTER(cnt_free_coherent);
 542DECLARE_STATS_COUNTER(cross_page);
 543DECLARE_STATS_COUNTER(domain_flush_single);
 544DECLARE_STATS_COUNTER(domain_flush_all);
 545DECLARE_STATS_COUNTER(alloced_io_mem);
 546DECLARE_STATS_COUNTER(total_map_requests);
 547DECLARE_STATS_COUNTER(complete_ppr);
 548DECLARE_STATS_COUNTER(invalidate_iotlb);
 549DECLARE_STATS_COUNTER(invalidate_iotlb_all);
 550DECLARE_STATS_COUNTER(pri_requests);
 551
 552static struct dentry *stats_dir;
 553static struct dentry *de_fflush;
 554
 555static void amd_iommu_stats_add(struct __iommu_counter *cnt)
 556{
 557        if (stats_dir == NULL)
 558                return;
 559
 560        cnt->dent = debugfs_create_u64(cnt->name, 0444, stats_dir,
 561                                       &cnt->value);
 562}
 563
 564static void amd_iommu_stats_init(void)
 565{
 566        stats_dir = debugfs_create_dir("amd-iommu", NULL);
 567        if (stats_dir == NULL)
 568                return;
 569
 570        de_fflush  = debugfs_create_bool("fullflush", 0444, stats_dir,
 571                                         &amd_iommu_unmap_flush);
 572
 573        amd_iommu_stats_add(&compl_wait);
 574        amd_iommu_stats_add(&cnt_map_single);
 575        amd_iommu_stats_add(&cnt_unmap_single);
 576        amd_iommu_stats_add(&cnt_map_sg);
 577        amd_iommu_stats_add(&cnt_unmap_sg);
 578        amd_iommu_stats_add(&cnt_alloc_coherent);
 579        amd_iommu_stats_add(&cnt_free_coherent);
 580        amd_iommu_stats_add(&cross_page);
 581        amd_iommu_stats_add(&domain_flush_single);
 582        amd_iommu_stats_add(&domain_flush_all);
 583        amd_iommu_stats_add(&alloced_io_mem);
 584        amd_iommu_stats_add(&total_map_requests);
 585        amd_iommu_stats_add(&complete_ppr);
 586        amd_iommu_stats_add(&invalidate_iotlb);
 587        amd_iommu_stats_add(&invalidate_iotlb_all);
 588        amd_iommu_stats_add(&pri_requests);
 589}
 590
 591#endif
 592
 593/****************************************************************************
 594 *
 595 * Interrupt handling functions
 596 *
 597 ****************************************************************************/
 598
 599static void dump_dte_entry(u16 devid)
 600{
 601        int i;
 602
 603        for (i = 0; i < 4; ++i)
 604                pr_err("AMD-Vi: DTE[%d]: %016llx\n", i,
 605                        amd_iommu_dev_table[devid].data[i]);
 606}
 607
 608static void dump_command(unsigned long phys_addr)
 609{
 610        struct iommu_cmd *cmd = phys_to_virt(phys_addr);
 611        int i;
 612
 613        for (i = 0; i < 4; ++i)
 614                pr_err("AMD-Vi: CMD[%d]: %08x\n", i, cmd->data[i]);
 615}
 616
 617static void iommu_print_event(struct amd_iommu *iommu, void *__evt)
 618{
 619        int type, devid, domid, flags;
 620        volatile u32 *event = __evt;
 621        int count = 0;
 622        u64 address;
 623
 624retry:
 625        type    = (event[1] >> EVENT_TYPE_SHIFT)  & EVENT_TYPE_MASK;
 626        devid   = (event[0] >> EVENT_DEVID_SHIFT) & EVENT_DEVID_MASK;
 627        domid   = (event[1] >> EVENT_DOMID_SHIFT) & EVENT_DOMID_MASK;
 628        flags   = (event[1] >> EVENT_FLAGS_SHIFT) & EVENT_FLAGS_MASK;
 629        address = (u64)(((u64)event[3]) << 32) | event[2];
 630
 631        if (type == 0) {
 632                /* Did we hit the erratum? */
 633                if (++count == LOOP_TIMEOUT) {
 634                        pr_err("AMD-Vi: No event written to event log\n");
 635                        return;
 636                }
 637                udelay(1);
 638                goto retry;
 639        }
 640
 641        printk(KERN_ERR "AMD-Vi: Event logged [");
 642
 643        switch (type) {
 644        case EVENT_TYPE_ILL_DEV:
 645                printk("ILLEGAL_DEV_TABLE_ENTRY device=%02x:%02x.%x "
 646                       "address=0x%016llx flags=0x%04x]\n",
 647                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 648                       address, flags);
 649                dump_dte_entry(devid);
 650                break;
 651        case EVENT_TYPE_IO_FAULT:
 652                printk("IO_PAGE_FAULT device=%02x:%02x.%x "
 653                       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 654                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 655                       domid, address, flags);
 656                break;
 657        case EVENT_TYPE_DEV_TAB_ERR:
 658                printk("DEV_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 659                       "address=0x%016llx flags=0x%04x]\n",
 660                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 661                       address, flags);
 662                break;
 663        case EVENT_TYPE_PAGE_TAB_ERR:
 664                printk("PAGE_TAB_HARDWARE_ERROR device=%02x:%02x.%x "
 665                       "domain=0x%04x address=0x%016llx flags=0x%04x]\n",
 666                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 667                       domid, address, flags);
 668                break;
 669        case EVENT_TYPE_ILL_CMD:
 670                printk("ILLEGAL_COMMAND_ERROR address=0x%016llx]\n", address);
 671                dump_command(address);
 672                break;
 673        case EVENT_TYPE_CMD_HARD_ERR:
 674                printk("COMMAND_HARDWARE_ERROR address=0x%016llx "
 675                       "flags=0x%04x]\n", address, flags);
 676                break;
 677        case EVENT_TYPE_IOTLB_INV_TO:
 678                printk("IOTLB_INV_TIMEOUT device=%02x:%02x.%x "
 679                       "address=0x%016llx]\n",
 680                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 681                       address);
 682                break;
 683        case EVENT_TYPE_INV_DEV_REQ:
 684                printk("INVALID_DEVICE_REQUEST device=%02x:%02x.%x "
 685                       "address=0x%016llx flags=0x%04x]\n",
 686                       PCI_BUS_NUM(devid), PCI_SLOT(devid), PCI_FUNC(devid),
 687                       address, flags);
 688                break;
 689        default:
 690                printk(KERN_ERR "UNKNOWN type=0x%02x]\n", type);
 691        }
 692
 693        memset(__evt, 0, 4 * sizeof(u32));
 694}
 695
 696static void iommu_poll_events(struct amd_iommu *iommu)
 697{
 698        u32 head, tail;
 699
 700        head = readl(iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 701        tail = readl(iommu->mmio_base + MMIO_EVT_TAIL_OFFSET);
 702
 703        while (head != tail) {
 704                iommu_print_event(iommu, iommu->evt_buf + head);
 705                head = (head + EVENT_ENTRY_SIZE) % iommu->evt_buf_size;
 706        }
 707
 708        writel(head, iommu->mmio_base + MMIO_EVT_HEAD_OFFSET);
 709}
 710
 711static void iommu_handle_ppr_entry(struct amd_iommu *iommu, u64 *raw)
 712{
 713        struct amd_iommu_fault fault;
 714
 715        INC_STATS_COUNTER(pri_requests);
 716
 717        if (PPR_REQ_TYPE(raw[0]) != PPR_REQ_FAULT) {
 718                pr_err_ratelimited("AMD-Vi: Unknown PPR request received\n");
 719                return;
 720        }
 721
 722        fault.address   = raw[1];
 723        fault.pasid     = PPR_PASID(raw[0]);
 724        fault.device_id = PPR_DEVID(raw[0]);
 725        fault.tag       = PPR_TAG(raw[0]);
 726        fault.flags     = PPR_FLAGS(raw[0]);
 727
 728        atomic_notifier_call_chain(&ppr_notifier, 0, &fault);
 729}
 730
 731static void iommu_poll_ppr_log(struct amd_iommu *iommu)
 732{
 733        u32 head, tail;
 734
 735        if (iommu->ppr_log == NULL)
 736                return;
 737
 738        head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 739        tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 740
 741        while (head != tail) {
 742                volatile u64 *raw;
 743                u64 entry[2];
 744                int i;
 745
 746                raw = (u64 *)(iommu->ppr_log + head);
 747
 748                /*
 749                 * Hardware bug: Interrupt may arrive before the entry is
 750                 * written to memory. If this happens we need to wait for the
 751                 * entry to arrive.
 752                 */
 753                for (i = 0; i < LOOP_TIMEOUT; ++i) {
 754                        if (PPR_REQ_TYPE(raw[0]) != 0)
 755                                break;
 756                        udelay(1);
 757                }
 758
 759                /* Avoid memcpy function-call overhead */
 760                entry[0] = raw[0];
 761                entry[1] = raw[1];
 762
 763                /*
 764                 * To detect the hardware bug we need to clear the entry
 765                 * back to zero.
 766                 */
 767                raw[0] = raw[1] = 0UL;
 768
 769                /* Update head pointer of hardware ring-buffer */
 770                head = (head + PPR_ENTRY_SIZE) % PPR_LOG_SIZE;
 771                writel(head, iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 772
 773                /* Handle PPR entry */
 774                iommu_handle_ppr_entry(iommu, entry);
 775
 776                /* Refresh ring-buffer information */
 777                head = readl(iommu->mmio_base + MMIO_PPR_HEAD_OFFSET);
 778                tail = readl(iommu->mmio_base + MMIO_PPR_TAIL_OFFSET);
 779        }
 780}
 781
 782irqreturn_t amd_iommu_int_thread(int irq, void *data)
 783{
 784        struct amd_iommu *iommu = (struct amd_iommu *) data;
 785        u32 status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 786
 787        while (status & (MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK)) {
 788                /* Enable EVT and PPR interrupts again */
 789                writel((MMIO_STATUS_EVT_INT_MASK | MMIO_STATUS_PPR_INT_MASK),
 790                        iommu->mmio_base + MMIO_STATUS_OFFSET);
 791
 792                if (status & MMIO_STATUS_EVT_INT_MASK) {
 793                        pr_devel("AMD-Vi: Processing IOMMU Event Log\n");
 794                        iommu_poll_events(iommu);
 795                }
 796
 797                if (status & MMIO_STATUS_PPR_INT_MASK) {
 798                        pr_devel("AMD-Vi: Processing IOMMU PPR Log\n");
 799                        iommu_poll_ppr_log(iommu);
 800                }
 801
 802                /*
 803                 * Hardware bug: ERBT1312
 804                 * When re-enabling interrupt (by writing 1
 805                 * to clear the bit), the hardware might also try to set
 806                 * the interrupt bit in the event status register.
 807                 * In this scenario, the bit will be set, and disable
 808                 * subsequent interrupts.
 809                 *
 810                 * Workaround: The IOMMU driver should read back the
 811                 * status register and check if the interrupt bits are cleared.
 812                 * If not, driver will need to go through the interrupt handler
 813                 * again and re-clear the bits
 814                 */
 815                status = readl(iommu->mmio_base + MMIO_STATUS_OFFSET);
 816        }
 817        return IRQ_HANDLED;
 818}
 819
 820irqreturn_t amd_iommu_int_handler(int irq, void *data)
 821{
 822        return IRQ_WAKE_THREAD;
 823}
 824
 825/****************************************************************************
 826 *
 827 * IOMMU command queuing functions
 828 *
 829 ****************************************************************************/
 830
 831static int wait_on_sem(volatile u64 *sem)
 832{
 833        int i = 0;
 834
 835        while (*sem == 0 && i < LOOP_TIMEOUT) {
 836                udelay(1);
 837                i += 1;
 838        }
 839
 840        if (i == LOOP_TIMEOUT) {
 841                pr_alert("AMD-Vi: Completion-Wait loop timed out\n");
 842                return -EIO;
 843        }
 844
 845        return 0;
 846}
 847
 848static void copy_cmd_to_buffer(struct amd_iommu *iommu,
 849                               struct iommu_cmd *cmd,
 850                               u32 tail)
 851{
 852        u8 *target;
 853
 854        target = iommu->cmd_buf + tail;
 855        tail   = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
 856
 857        /* Copy command to buffer */
 858        memcpy(target, cmd, sizeof(*cmd));
 859
 860        /* Tell the IOMMU about it */
 861        writel(tail, iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
 862}
 863
 864static void build_completion_wait(struct iommu_cmd *cmd, u64 address)
 865{
 866        WARN_ON(address & 0x7ULL);
 867
 868        memset(cmd, 0, sizeof(*cmd));
 869        cmd->data[0] = lower_32_bits(__pa(address)) | CMD_COMPL_WAIT_STORE_MASK;
 870        cmd->data[1] = upper_32_bits(__pa(address));
 871        cmd->data[2] = 1;
 872        CMD_SET_TYPE(cmd, CMD_COMPL_WAIT);
 873}
 874
 875static void build_inv_dte(struct iommu_cmd *cmd, u16 devid)
 876{
 877        memset(cmd, 0, sizeof(*cmd));
 878        cmd->data[0] = devid;
 879        CMD_SET_TYPE(cmd, CMD_INV_DEV_ENTRY);
 880}
 881
 882static void build_inv_iommu_pages(struct iommu_cmd *cmd, u64 address,
 883                                  size_t size, u16 domid, int pde)
 884{
 885        u64 pages;
 886        int s;
 887
 888        pages = iommu_num_pages(address, size, PAGE_SIZE);
 889        s     = 0;
 890
 891        if (pages > 1) {
 892                /*
 893                 * If we have to flush more than one page, flush all
 894                 * TLB entries for this domain
 895                 */
 896                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 897                s = 1;
 898        }
 899
 900        address &= PAGE_MASK;
 901
 902        memset(cmd, 0, sizeof(*cmd));
 903        cmd->data[1] |= domid;
 904        cmd->data[2]  = lower_32_bits(address);
 905        cmd->data[3]  = upper_32_bits(address);
 906        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 907        if (s) /* size bit - we flush more than one 4kb page */
 908                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 909        if (pde) /* PDE bit - we want to flush everything, not only the PTEs */
 910                cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 911}
 912
 913static void build_inv_iotlb_pages(struct iommu_cmd *cmd, u16 devid, int qdep,
 914                                  u64 address, size_t size)
 915{
 916        u64 pages;
 917        int s;
 918
 919        pages = iommu_num_pages(address, size, PAGE_SIZE);
 920        s     = 0;
 921
 922        if (pages > 1) {
 923                /*
 924                 * If we have to flush more than one page, flush all
 925                 * TLB entries for this domain
 926                 */
 927                address = CMD_INV_IOMMU_ALL_PAGES_ADDRESS;
 928                s = 1;
 929        }
 930
 931        address &= PAGE_MASK;
 932
 933        memset(cmd, 0, sizeof(*cmd));
 934        cmd->data[0]  = devid;
 935        cmd->data[0] |= (qdep & 0xff) << 24;
 936        cmd->data[1]  = devid;
 937        cmd->data[2]  = lower_32_bits(address);
 938        cmd->data[3]  = upper_32_bits(address);
 939        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 940        if (s)
 941                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 942}
 943
 944static void build_inv_iommu_pasid(struct iommu_cmd *cmd, u16 domid, int pasid,
 945                                  u64 address, bool size)
 946{
 947        memset(cmd, 0, sizeof(*cmd));
 948
 949        address &= ~(0xfffULL);
 950
 951        cmd->data[0]  = pasid & PASID_MASK;
 952        cmd->data[1]  = domid;
 953        cmd->data[2]  = lower_32_bits(address);
 954        cmd->data[3]  = upper_32_bits(address);
 955        cmd->data[2] |= CMD_INV_IOMMU_PAGES_PDE_MASK;
 956        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 957        if (size)
 958                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 959        CMD_SET_TYPE(cmd, CMD_INV_IOMMU_PAGES);
 960}
 961
 962static void build_inv_iotlb_pasid(struct iommu_cmd *cmd, u16 devid, int pasid,
 963                                  int qdep, u64 address, bool size)
 964{
 965        memset(cmd, 0, sizeof(*cmd));
 966
 967        address &= ~(0xfffULL);
 968
 969        cmd->data[0]  = devid;
 970        cmd->data[0] |= (pasid & 0xff) << 16;
 971        cmd->data[0] |= (qdep  & 0xff) << 24;
 972        cmd->data[1]  = devid;
 973        cmd->data[1] |= ((pasid >> 8) & 0xfff) << 16;
 974        cmd->data[2]  = lower_32_bits(address);
 975        cmd->data[2] |= CMD_INV_IOMMU_PAGES_GN_MASK;
 976        cmd->data[3]  = upper_32_bits(address);
 977        if (size)
 978                cmd->data[2] |= CMD_INV_IOMMU_PAGES_SIZE_MASK;
 979        CMD_SET_TYPE(cmd, CMD_INV_IOTLB_PAGES);
 980}
 981
 982static void build_complete_ppr(struct iommu_cmd *cmd, u16 devid, int pasid,
 983                               int status, int tag, bool gn)
 984{
 985        memset(cmd, 0, sizeof(*cmd));
 986
 987        cmd->data[0]  = devid;
 988        if (gn) {
 989                cmd->data[1]  = pasid & PASID_MASK;
 990                cmd->data[2]  = CMD_INV_IOMMU_PAGES_GN_MASK;
 991        }
 992        cmd->data[3]  = tag & 0x1ff;
 993        cmd->data[3] |= (status & PPR_STATUS_MASK) << PPR_STATUS_SHIFT;
 994
 995        CMD_SET_TYPE(cmd, CMD_COMPLETE_PPR);
 996}
 997
 998static void build_inv_all(struct iommu_cmd *cmd)
 999{
1000        memset(cmd, 0, sizeof(*cmd));
1001        CMD_SET_TYPE(cmd, CMD_INV_ALL);
1002}
1003
1004static void build_inv_irt(struct iommu_cmd *cmd, u16 devid)
1005{
1006        memset(cmd, 0, sizeof(*cmd));
1007        cmd->data[0] = devid;
1008        CMD_SET_TYPE(cmd, CMD_INV_IRT);
1009}
1010
1011/*
1012 * Writes the command to the IOMMUs command buffer and informs the
1013 * hardware about the new command.
1014 */
1015static int iommu_queue_command_sync(struct amd_iommu *iommu,
1016                                    struct iommu_cmd *cmd,
1017                                    bool sync)
1018{
1019        u32 left, tail, head, next_tail;
1020        unsigned long flags;
1021
1022        WARN_ON(iommu->cmd_buf_size & CMD_BUFFER_UNINITIALIZED);
1023
1024again:
1025        spin_lock_irqsave(&iommu->lock, flags);
1026
1027        head      = readl(iommu->mmio_base + MMIO_CMD_HEAD_OFFSET);
1028        tail      = readl(iommu->mmio_base + MMIO_CMD_TAIL_OFFSET);
1029        next_tail = (tail + sizeof(*cmd)) % iommu->cmd_buf_size;
1030        left      = (head - next_tail) % iommu->cmd_buf_size;
1031
1032        if (left <= 2) {
1033                struct iommu_cmd sync_cmd;
1034                volatile u64 sem = 0;
1035                int ret;
1036
1037                build_completion_wait(&sync_cmd, (u64)&sem);
1038                copy_cmd_to_buffer(iommu, &sync_cmd, tail);
1039
1040                spin_unlock_irqrestore(&iommu->lock, flags);
1041
1042                if ((ret = wait_on_sem(&sem)) != 0)
1043                        return ret;
1044
1045                goto again;
1046        }
1047
1048        copy_cmd_to_buffer(iommu, cmd, tail);
1049
1050        /* We need to sync now to make sure all commands are processed */
1051        iommu->need_sync = sync;
1052
1053        spin_unlock_irqrestore(&iommu->lock, flags);
1054
1055        return 0;
1056}
1057
1058static int iommu_queue_command(struct amd_iommu *iommu, struct iommu_cmd *cmd)
1059{
1060        return iommu_queue_command_sync(iommu, cmd, true);
1061}
1062
1063/*
1064 * This function queues a completion wait command into the command
1065 * buffer of an IOMMU
1066 */
1067static int iommu_completion_wait(struct amd_iommu *iommu)
1068{
1069        struct iommu_cmd cmd;
1070        volatile u64 sem = 0;
1071        int ret;
1072
1073        if (!iommu->need_sync)
1074                return 0;
1075
1076        build_completion_wait(&cmd, (u64)&sem);
1077
1078        ret = iommu_queue_command_sync(iommu, &cmd, false);
1079        if (ret)
1080                return ret;
1081
1082        return wait_on_sem(&sem);
1083}
1084
1085static int iommu_flush_dte(struct amd_iommu *iommu, u16 devid)
1086{
1087        struct iommu_cmd cmd;
1088
1089        build_inv_dte(&cmd, devid);
1090
1091        return iommu_queue_command(iommu, &cmd);
1092}
1093
1094static void iommu_flush_dte_all(struct amd_iommu *iommu)
1095{
1096        u32 devid;
1097
1098        for (devid = 0; devid <= 0xffff; ++devid)
1099                iommu_flush_dte(iommu, devid);
1100
1101        iommu_completion_wait(iommu);
1102}
1103
1104/*
1105 * This function uses heavy locking and may disable irqs for some time. But
1106 * this is no issue because it is only called during resume.
1107 */
1108static void iommu_flush_tlb_all(struct amd_iommu *iommu)
1109{
1110        u32 dom_id;
1111
1112        for (dom_id = 0; dom_id <= 0xffff; ++dom_id) {
1113                struct iommu_cmd cmd;
1114                build_inv_iommu_pages(&cmd, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
1115                                      dom_id, 1);
1116                iommu_queue_command(iommu, &cmd);
1117        }
1118
1119        iommu_completion_wait(iommu);
1120}
1121
1122static void iommu_flush_all(struct amd_iommu *iommu)
1123{
1124        struct iommu_cmd cmd;
1125
1126        build_inv_all(&cmd);
1127
1128        iommu_queue_command(iommu, &cmd);
1129        iommu_completion_wait(iommu);
1130}
1131
1132static void iommu_flush_irt(struct amd_iommu *iommu, u16 devid)
1133{
1134        struct iommu_cmd cmd;
1135
1136        build_inv_irt(&cmd, devid);
1137
1138        iommu_queue_command(iommu, &cmd);
1139}
1140
1141static void iommu_flush_irt_all(struct amd_iommu *iommu)
1142{
1143        u32 devid;
1144
1145        for (devid = 0; devid <= MAX_DEV_TABLE_ENTRIES; devid++)
1146                iommu_flush_irt(iommu, devid);
1147
1148        iommu_completion_wait(iommu);
1149}
1150
1151void iommu_flush_all_caches(struct amd_iommu *iommu)
1152{
1153        if (iommu_feature(iommu, FEATURE_IA)) {
1154                iommu_flush_all(iommu);
1155        } else {
1156                iommu_flush_dte_all(iommu);
1157                iommu_flush_irt_all(iommu);
1158                iommu_flush_tlb_all(iommu);
1159        }
1160}
1161
1162/*
1163 * Command send function for flushing on-device TLB
1164 */
1165static int device_flush_iotlb(struct iommu_dev_data *dev_data,
1166                              u64 address, size_t size)
1167{
1168        struct amd_iommu *iommu;
1169        struct iommu_cmd cmd;
1170        int qdep;
1171
1172        qdep     = dev_data->ats.qdep;
1173        iommu    = amd_iommu_rlookup_table[dev_data->devid];
1174
1175        build_inv_iotlb_pages(&cmd, dev_data->devid, qdep, address, size);
1176
1177        return iommu_queue_command(iommu, &cmd);
1178}
1179
1180/*
1181 * Command send function for invalidating a device table entry
1182 */
1183static int device_flush_dte(struct iommu_dev_data *dev_data)
1184{
1185        struct amd_iommu *iommu;
1186        int ret;
1187
1188        iommu = amd_iommu_rlookup_table[dev_data->devid];
1189
1190        ret = iommu_flush_dte(iommu, dev_data->devid);
1191        if (ret)
1192                return ret;
1193
1194        if (dev_data->ats.enabled)
1195                ret = device_flush_iotlb(dev_data, 0, ~0UL);
1196
1197        return ret;
1198}
1199
1200/*
1201 * TLB invalidation function which is called from the mapping functions.
1202 * It invalidates a single PTE if the range to flush is within a single
1203 * page. Otherwise it flushes the whole TLB of the IOMMU.
1204 */
1205static void __domain_flush_pages(struct protection_domain *domain,
1206                                 u64 address, size_t size, int pde)
1207{
1208        struct iommu_dev_data *dev_data;
1209        struct iommu_cmd cmd;
1210        int ret = 0, i;
1211
1212        build_inv_iommu_pages(&cmd, address, size, domain->id, pde);
1213
1214        for (i = 0; i < amd_iommus_present; ++i) {
1215                if (!domain->dev_iommu[i])
1216                        continue;
1217
1218                /*
1219                 * Devices of this domain are behind this IOMMU
1220                 * We need a TLB flush
1221                 */
1222                ret |= iommu_queue_command(amd_iommus[i], &cmd);
1223        }
1224
1225        list_for_each_entry(dev_data, &domain->dev_list, list) {
1226
1227                if (!dev_data->ats.enabled)
1228                        continue;
1229
1230                ret |= device_flush_iotlb(dev_data, address, size);
1231        }
1232
1233        WARN_ON(ret);
1234}
1235
1236static void domain_flush_pages(struct protection_domain *domain,
1237                               u64 address, size_t size)
1238{
1239        __domain_flush_pages(domain, address, size, 0);
1240}
1241
1242/* Flush the whole IO/TLB for a given protection domain */
1243static void domain_flush_tlb(struct protection_domain *domain)
1244{
1245        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 0);
1246}
1247
1248/* Flush the whole IO/TLB for a given protection domain - including PDE */
1249static void domain_flush_tlb_pde(struct protection_domain *domain)
1250{
1251        __domain_flush_pages(domain, 0, CMD_INV_IOMMU_ALL_PAGES_ADDRESS, 1);
1252}
1253
1254static void domain_flush_complete(struct protection_domain *domain)
1255{
1256        int i;
1257
1258        for (i = 0; i < amd_iommus_present; ++i) {
1259                if (!domain->dev_iommu[i])
1260                        continue;
1261
1262                /*
1263                 * Devices of this domain are behind this IOMMU
1264                 * We need to wait for completion of all commands.
1265                 */
1266                iommu_completion_wait(amd_iommus[i]);
1267        }
1268}
1269
1270
1271/*
1272 * This function flushes the DTEs for all devices in domain
1273 */
1274static void domain_flush_devices(struct protection_domain *domain)
1275{
1276        struct iommu_dev_data *dev_data;
1277
1278        list_for_each_entry(dev_data, &domain->dev_list, list)
1279                device_flush_dte(dev_data);
1280}
1281
1282/****************************************************************************
1283 *
1284 * The functions below are used the create the page table mappings for
1285 * unity mapped regions.
1286 *
1287 ****************************************************************************/
1288
1289/*
1290 * This function is used to add another level to an IO page table. Adding
1291 * another level increases the size of the address space by 9 bits to a size up
1292 * to 64 bits.
1293 */
1294static bool increase_address_space(struct protection_domain *domain,
1295                                   gfp_t gfp)
1296{
1297        u64 *pte;
1298
1299        if (domain->mode == PAGE_MODE_6_LEVEL)
1300                /* address space already 64 bit large */
1301                return false;
1302
1303        pte = (void *)get_zeroed_page(gfp);
1304        if (!pte)
1305                return false;
1306
1307        *pte             = PM_LEVEL_PDE(domain->mode,
1308                                        virt_to_phys(domain->pt_root));
1309        domain->pt_root  = pte;
1310        domain->mode    += 1;
1311        domain->updated  = true;
1312
1313        return true;
1314}
1315
1316static u64 *alloc_pte(struct protection_domain *domain,
1317                      unsigned long address,
1318                      unsigned long page_size,
1319                      u64 **pte_page,
1320                      gfp_t gfp)
1321{
1322        int level, end_lvl;
1323        u64 *pte, *page;
1324
1325        BUG_ON(!is_power_of_2(page_size));
1326
1327        while (address > PM_LEVEL_SIZE(domain->mode))
1328                increase_address_space(domain, gfp);
1329
1330        level   = domain->mode - 1;
1331        pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1332        address = PAGE_SIZE_ALIGN(address, page_size);
1333        end_lvl = PAGE_SIZE_LEVEL(page_size);
1334
1335        while (level > end_lvl) {
1336                if (!IOMMU_PTE_PRESENT(*pte)) {
1337                        page = (u64 *)get_zeroed_page(gfp);
1338                        if (!page)
1339                                return NULL;
1340                        *pte = PM_LEVEL_PDE(level, virt_to_phys(page));
1341                }
1342
1343                /* No level skipping support yet */
1344                if (PM_PTE_LEVEL(*pte) != level)
1345                        return NULL;
1346
1347                level -= 1;
1348
1349                pte = IOMMU_PTE_PAGE(*pte);
1350
1351                if (pte_page && level == end_lvl)
1352                        *pte_page = pte;
1353
1354                pte = &pte[PM_LEVEL_INDEX(level, address)];
1355        }
1356
1357        return pte;
1358}
1359
1360/*
1361 * This function checks if there is a PTE for a given dma address. If
1362 * there is one, it returns the pointer to it.
1363 */
1364static u64 *fetch_pte(struct protection_domain *domain, unsigned long address)
1365{
1366        int level;
1367        u64 *pte;
1368
1369        if (address > PM_LEVEL_SIZE(domain->mode))
1370                return NULL;
1371
1372        level   =  domain->mode - 1;
1373        pte     = &domain->pt_root[PM_LEVEL_INDEX(level, address)];
1374
1375        while (level > 0) {
1376
1377                /* Not Present */
1378                if (!IOMMU_PTE_PRESENT(*pte))
1379                        return NULL;
1380
1381                /* Large PTE */
1382                if (PM_PTE_LEVEL(*pte) == 0x07) {
1383                        unsigned long pte_mask, __pte;
1384
1385                        /*
1386                         * If we have a series of large PTEs, make
1387                         * sure to return a pointer to the first one.
1388                         */
1389                        pte_mask = PTE_PAGE_SIZE(*pte);
1390                        pte_mask = ~((PAGE_SIZE_PTE_COUNT(pte_mask) << 3) - 1);
1391                        __pte    = ((unsigned long)pte) & pte_mask;
1392
1393                        return (u64 *)__pte;
1394                }
1395
1396                /* No level skipping support yet */
1397                if (PM_PTE_LEVEL(*pte) != level)
1398                        return NULL;
1399
1400                level -= 1;
1401
1402                /* Walk to the next level */
1403                pte = IOMMU_PTE_PAGE(*pte);
1404                pte = &pte[PM_LEVEL_INDEX(level, address)];
1405        }
1406
1407        return pte;
1408}
1409
1410/*
1411 * Generic mapping functions. It maps a physical address into a DMA
1412 * address space. It allocates the page table pages if necessary.
1413 * In the future it can be extended to a generic mapping function
1414 * supporting all features of AMD IOMMU page tables like level skipping
1415 * and full 64 bit address spaces.
1416 */
1417static int iommu_map_page(struct protection_domain *dom,
1418                          unsigned long bus_addr,
1419                          unsigned long phys_addr,
1420                          int prot,
1421                          unsigned long page_size)
1422{
1423        u64 __pte, *pte;
1424        int i, count;
1425
1426        if (!(prot & IOMMU_PROT_MASK))
1427                return -EINVAL;
1428
1429        bus_addr  = PAGE_ALIGN(bus_addr);
1430        phys_addr = PAGE_ALIGN(phys_addr);
1431        count     = PAGE_SIZE_PTE_COUNT(page_size);
1432        pte       = alloc_pte(dom, bus_addr, page_size, NULL, GFP_KERNEL);
1433
1434        for (i = 0; i < count; ++i)
1435                if (IOMMU_PTE_PRESENT(pte[i]))
1436                        return -EBUSY;
1437
1438        if (page_size > PAGE_SIZE) {
1439                __pte = PAGE_SIZE_PTE(phys_addr, page_size);
1440                __pte |= PM_LEVEL_ENC(7) | IOMMU_PTE_P | IOMMU_PTE_FC;
1441        } else
1442                __pte = phys_addr | IOMMU_PTE_P | IOMMU_PTE_FC;
1443
1444        if (prot & IOMMU_PROT_IR)
1445                __pte |= IOMMU_PTE_IR;
1446        if (prot & IOMMU_PROT_IW)
1447                __pte |= IOMMU_PTE_IW;
1448
1449        for (i = 0; i < count; ++i)
1450                pte[i] = __pte;
1451
1452        update_domain(dom);
1453
1454        return 0;
1455}
1456
1457static unsigned long iommu_unmap_page(struct protection_domain *dom,
1458                                      unsigned long bus_addr,
1459                                      unsigned long page_size)
1460{
1461        unsigned long long unmap_size, unmapped;
1462        u64 *pte;
1463
1464        BUG_ON(!is_power_of_2(page_size));
1465
1466        unmapped = 0;
1467
1468        while (unmapped < page_size) {
1469
1470                pte = fetch_pte(dom, bus_addr);
1471
1472                if (!pte) {
1473                        /*
1474                         * No PTE for this address
1475                         * move forward in 4kb steps
1476                         */
1477                        unmap_size = PAGE_SIZE;
1478                } else if (PM_PTE_LEVEL(*pte) == 0) {
1479                        /* 4kb PTE found for this address */
1480                        unmap_size = PAGE_SIZE;
1481                        *pte       = 0ULL;
1482                } else {
1483                        int count, i;
1484
1485                        /* Large PTE found which maps this address */
1486                        unmap_size = PTE_PAGE_SIZE(*pte);
1487                        count      = PAGE_SIZE_PTE_COUNT(unmap_size);
1488                        for (i = 0; i < count; i++)
1489                                pte[i] = 0ULL;
1490                }
1491
1492                bus_addr  = (bus_addr & ~(unmap_size - 1)) + unmap_size;
1493                unmapped += unmap_size;
1494        }
1495
1496        BUG_ON(!is_power_of_2(unmapped));
1497
1498        return unmapped;
1499}
1500
1501/*
1502 * This function checks if a specific unity mapping entry is needed for
1503 * this specific IOMMU.
1504 */
1505static int iommu_for_unity_map(struct amd_iommu *iommu,
1506                               struct unity_map_entry *entry)
1507{
1508        u16 bdf, i;
1509
1510        for (i = entry->devid_start; i <= entry->devid_end; ++i) {
1511                bdf = amd_iommu_alias_table[i];
1512                if (amd_iommu_rlookup_table[bdf] == iommu)
1513                        return 1;
1514        }
1515
1516        return 0;
1517}
1518
1519/*
1520 * This function actually applies the mapping to the page table of the
1521 * dma_ops domain.
1522 */
1523static int dma_ops_unity_map(struct dma_ops_domain *dma_dom,
1524                             struct unity_map_entry *e)
1525{
1526        u64 addr;
1527        int ret;
1528
1529        for (addr = e->address_start; addr < e->address_end;
1530             addr += PAGE_SIZE) {
1531                ret = iommu_map_page(&dma_dom->domain, addr, addr, e->prot,
1532                                     PAGE_SIZE);
1533                if (ret)
1534                        return ret;
1535                /*
1536                 * if unity mapping is in aperture range mark the page
1537                 * as allocated in the aperture
1538                 */
1539                if (addr < dma_dom->aperture_size)
1540                        __set_bit(addr >> PAGE_SHIFT,
1541                                  dma_dom->aperture[0]->bitmap);
1542        }
1543
1544        return 0;
1545}
1546
1547/*
1548 * Init the unity mappings for a specific IOMMU in the system
1549 *
1550 * Basically iterates over all unity mapping entries and applies them to
1551 * the default domain DMA of that IOMMU if necessary.
1552 */
1553static int iommu_init_unity_mappings(struct amd_iommu *iommu)
1554{
1555        struct unity_map_entry *entry;
1556        int ret;
1557
1558        list_for_each_entry(entry, &amd_iommu_unity_map, list) {
1559                if (!iommu_for_unity_map(iommu, entry))
1560                        continue;
1561                ret = dma_ops_unity_map(iommu->default_dom, entry);
1562                if (ret)
1563                        return ret;
1564        }
1565
1566        return 0;
1567}
1568
1569/*
1570 * Inits the unity mappings required for a specific device
1571 */
1572static int init_unity_mappings_for_device(struct dma_ops_domain *dma_dom,
1573                                          u16 devid)
1574{
1575        struct unity_map_entry *e;
1576        int ret;
1577
1578        list_for_each_entry(e, &amd_iommu_unity_map, list) {
1579                if (!(devid >= e->devid_start && devid <= e->devid_end))
1580                        continue;
1581                ret = dma_ops_unity_map(dma_dom, e);
1582                if (ret)
1583                        return ret;
1584        }
1585
1586        return 0;
1587}
1588
1589/****************************************************************************
1590 *
1591 * The next functions belong to the address allocator for the dma_ops
1592 * interface functions. They work like the allocators in the other IOMMU
1593 * drivers. Its basically a bitmap which marks the allocated pages in
1594 * the aperture. Maybe it could be enhanced in the future to a more
1595 * efficient allocator.
1596 *
1597 ****************************************************************************/
1598
1599/*
1600 * The address allocator core functions.
1601 *
1602 * called with domain->lock held
1603 */
1604
1605/*
1606 * Used to reserve address ranges in the aperture (e.g. for exclusion
1607 * ranges.
1608 */
1609static void dma_ops_reserve_addresses(struct dma_ops_domain *dom,
1610                                      unsigned long start_page,
1611                                      unsigned int pages)
1612{
1613        unsigned int i, last_page = dom->aperture_size >> PAGE_SHIFT;
1614
1615        if (start_page + pages > last_page)
1616                pages = last_page - start_page;
1617
1618        for (i = start_page; i < start_page + pages; ++i) {
1619                int index = i / APERTURE_RANGE_PAGES;
1620                int page  = i % APERTURE_RANGE_PAGES;
1621                __set_bit(page, dom->aperture[index]->bitmap);
1622        }
1623}
1624
1625/*
1626 * This function is used to add a new aperture range to an existing
1627 * aperture in case of dma_ops domain allocation or address allocation
1628 * failure.
1629 */
1630static int alloc_new_range(struct dma_ops_domain *dma_dom,
1631                           bool populate, gfp_t gfp)
1632{
1633        int index = dma_dom->aperture_size >> APERTURE_RANGE_SHIFT;
1634        struct amd_iommu *iommu;
1635        unsigned long i, old_size;
1636
1637#ifdef CONFIG_IOMMU_STRESS
1638        populate = false;
1639#endif
1640
1641        if (index >= APERTURE_MAX_RANGES)
1642                return -ENOMEM;
1643
1644        dma_dom->aperture[index] = kzalloc(sizeof(struct aperture_range), gfp);
1645        if (!dma_dom->aperture[index])
1646                return -ENOMEM;
1647
1648        dma_dom->aperture[index]->bitmap = (void *)get_zeroed_page(gfp);
1649        if (!dma_dom->aperture[index]->bitmap)
1650                goto out_free;
1651
1652        dma_dom->aperture[index]->offset = dma_dom->aperture_size;
1653
1654        if (populate) {
1655                unsigned long address = dma_dom->aperture_size;
1656                int i, num_ptes = APERTURE_RANGE_PAGES / 512;
1657                u64 *pte, *pte_page;
1658
1659                for (i = 0; i < num_ptes; ++i) {
1660                        pte = alloc_pte(&dma_dom->domain, address, PAGE_SIZE,
1661                                        &pte_page, gfp);
1662                        if (!pte)
1663                                goto out_free;
1664
1665                        dma_dom->aperture[index]->pte_pages[i] = pte_page;
1666
1667                        address += APERTURE_RANGE_SIZE / 64;
1668                }
1669        }
1670
1671        old_size                = dma_dom->aperture_size;
1672        dma_dom->aperture_size += APERTURE_RANGE_SIZE;
1673
1674        /* Reserve address range used for MSI messages */
1675        if (old_size < MSI_ADDR_BASE_LO &&
1676            dma_dom->aperture_size > MSI_ADDR_BASE_LO) {
1677                unsigned long spage;
1678                int pages;
1679
1680                pages = iommu_num_pages(MSI_ADDR_BASE_LO, 0x10000, PAGE_SIZE);
1681                spage = MSI_ADDR_BASE_LO >> PAGE_SHIFT;
1682
1683                dma_ops_reserve_addresses(dma_dom, spage, pages);
1684        }
1685
1686        /* Initialize the exclusion range if necessary */
1687        for_each_iommu(iommu) {
1688                if (iommu->exclusion_start &&
1689                    iommu->exclusion_start >= dma_dom->aperture[index]->offset
1690                    && iommu->exclusion_start < dma_dom->aperture_size) {
1691                        unsigned long startpage;
1692                        int pages = iommu_num_pages(iommu->exclusion_start,
1693                                                    iommu->exclusion_length,
1694                                                    PAGE_SIZE);
1695                        startpage = iommu->exclusion_start >> PAGE_SHIFT;
1696                        dma_ops_reserve_addresses(dma_dom, startpage, pages);
1697                }
1698        }
1699
1700        /*
1701         * Check for areas already mapped as present in the new aperture
1702         * range and mark those pages as reserved in the allocator. Such
1703         * mappings may already exist as a result of requested unity
1704         * mappings for devices.
1705         */
1706        for (i = dma_dom->aperture[index]->offset;
1707             i < dma_dom->aperture_size;
1708             i += PAGE_SIZE) {
1709                u64 *pte = fetch_pte(&dma_dom->domain, i);
1710                if (!pte || !IOMMU_PTE_PRESENT(*pte))
1711                        continue;
1712
1713                dma_ops_reserve_addresses(dma_dom, i >> PAGE_SHIFT, 1);
1714        }
1715
1716        update_domain(&dma_dom->domain);
1717
1718        return 0;
1719
1720out_free:
1721        update_domain(&dma_dom->domain);
1722
1723        free_page((unsigned long)dma_dom->aperture[index]->bitmap);
1724
1725        kfree(dma_dom->aperture[index]);
1726        dma_dom->aperture[index] = NULL;
1727
1728        return -ENOMEM;
1729}
1730
1731static unsigned long dma_ops_area_alloc(struct device *dev,
1732                                        struct dma_ops_domain *dom,
1733                                        unsigned int pages,
1734                                        unsigned long align_mask,
1735                                        u64 dma_mask,
1736                                        unsigned long start)
1737{
1738        unsigned long next_bit = dom->next_address % APERTURE_RANGE_SIZE;
1739        int max_index = dom->aperture_size >> APERTURE_RANGE_SHIFT;
1740        int i = start >> APERTURE_RANGE_SHIFT;
1741        unsigned long boundary_size;
1742        unsigned long address = -1;
1743        unsigned long limit;
1744
1745        next_bit >>= PAGE_SHIFT;
1746
1747        boundary_size = ALIGN(dma_get_seg_boundary(dev) + 1,
1748                        PAGE_SIZE) >> PAGE_SHIFT;
1749
1750        for (;i < max_index; ++i) {
1751                unsigned long offset = dom->aperture[i]->offset >> PAGE_SHIFT;
1752
1753                if (dom->aperture[i]->offset >= dma_mask)
1754                        break;
1755
1756                limit = iommu_device_max_index(APERTURE_RANGE_PAGES, offset,
1757                                               dma_mask >> PAGE_SHIFT);
1758
1759                address = iommu_area_alloc(dom->aperture[i]->bitmap,
1760                                           limit, next_bit, pages, 0,
1761                                            boundary_size, align_mask);
1762                if (address != -1) {
1763                        address = dom->aperture[i]->offset +
1764                                  (address << PAGE_SHIFT);
1765                        dom->next_address = address + (pages << PAGE_SHIFT);
1766                        break;
1767                }
1768
1769                next_bit = 0;
1770        }
1771
1772        return address;
1773}
1774
1775static unsigned long dma_ops_alloc_addresses(struct device *dev,
1776                                             struct dma_ops_domain *dom,
1777                                             unsigned int pages,
1778                                             unsigned long align_mask,
1779                                             u64 dma_mask)
1780{
1781        unsigned long address;
1782
1783#ifdef CONFIG_IOMMU_STRESS
1784        dom->next_address = 0;
1785        dom->need_flush = true;
1786#endif
1787
1788        address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1789                                     dma_mask, dom->next_address);
1790
1791        if (address == -1) {
1792                dom->next_address = 0;
1793                address = dma_ops_area_alloc(dev, dom, pages, align_mask,
1794                                             dma_mask, 0);
1795                dom->need_flush = true;
1796        }
1797
1798        if (unlikely(address == -1))
1799                address = DMA_ERROR_CODE;
1800
1801        WARN_ON((address + (PAGE_SIZE*pages)) > dom->aperture_size);
1802
1803        return address;
1804}
1805
1806/*
1807 * The address free function.
1808 *
1809 * called with domain->lock held
1810 */
1811static void dma_ops_free_addresses(struct dma_ops_domain *dom,
1812                                   unsigned long address,
1813                                   unsigned int pages)
1814{
1815        unsigned i = address >> APERTURE_RANGE_SHIFT;
1816        struct aperture_range *range = dom->aperture[i];
1817
1818        BUG_ON(i >= APERTURE_MAX_RANGES || range == NULL);
1819
1820#ifdef CONFIG_IOMMU_STRESS
1821        if (i < 4)
1822                return;
1823#endif
1824
1825        if (address >= dom->next_address)
1826                dom->need_flush = true;
1827
1828        address = (address % APERTURE_RANGE_SIZE) >> PAGE_SHIFT;
1829
1830        bitmap_clear(range->bitmap, address, pages);
1831
1832}
1833
1834/****************************************************************************
1835 *
1836 * The next functions belong to the domain allocation. A domain is
1837 * allocated for every IOMMU as the default domain. If device isolation
1838 * is enabled, every device get its own domain. The most important thing
1839 * about domains is the page table mapping the DMA address space they
1840 * contain.
1841 *
1842 ****************************************************************************/
1843
1844/*
1845 * This function adds a protection domain to the global protection domain list
1846 */
1847static void add_domain_to_list(struct protection_domain *domain)
1848{
1849        unsigned long flags;
1850
1851        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1852        list_add(&domain->list, &amd_iommu_pd_list);
1853        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1854}
1855
1856/*
1857 * This function removes a protection domain to the global
1858 * protection domain list
1859 */
1860static void del_domain_from_list(struct protection_domain *domain)
1861{
1862        unsigned long flags;
1863
1864        spin_lock_irqsave(&amd_iommu_pd_lock, flags);
1865        list_del(&domain->list);
1866        spin_unlock_irqrestore(&amd_iommu_pd_lock, flags);
1867}
1868
1869static u16 domain_id_alloc(void)
1870{
1871        unsigned long flags;
1872        int id;
1873
1874        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1875        id = find_first_zero_bit(amd_iommu_pd_alloc_bitmap, MAX_DOMAIN_ID);
1876        BUG_ON(id == 0);
1877        if (id > 0 && id < MAX_DOMAIN_ID)
1878                __set_bit(id, amd_iommu_pd_alloc_bitmap);
1879        else
1880                id = 0;
1881        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1882
1883        return id;
1884}
1885
1886static void domain_id_free(int id)
1887{
1888        unsigned long flags;
1889
1890        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
1891        if (id > 0 && id < MAX_DOMAIN_ID)
1892                __clear_bit(id, amd_iommu_pd_alloc_bitmap);
1893        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
1894}
1895
1896static void free_pagetable(struct protection_domain *domain)
1897{
1898        int i, j;
1899        u64 *p1, *p2, *p3;
1900
1901        p1 = domain->pt_root;
1902
1903        if (!p1)
1904                return;
1905
1906        for (i = 0; i < 512; ++i) {
1907                if (!IOMMU_PTE_PRESENT(p1[i]))
1908                        continue;
1909
1910                p2 = IOMMU_PTE_PAGE(p1[i]);
1911                for (j = 0; j < 512; ++j) {
1912                        if (!IOMMU_PTE_PRESENT(p2[j]))
1913                                continue;
1914                        p3 = IOMMU_PTE_PAGE(p2[j]);
1915                        free_page((unsigned long)p3);
1916                }
1917
1918                free_page((unsigned long)p2);
1919        }
1920
1921        free_page((unsigned long)p1);
1922
1923        domain->pt_root = NULL;
1924}
1925
1926static void free_gcr3_tbl_level1(u64 *tbl)
1927{
1928        u64 *ptr;
1929        int i;
1930
1931        for (i = 0; i < 512; ++i) {
1932                if (!(tbl[i] & GCR3_VALID))
1933                        continue;
1934
1935                ptr = __va(tbl[i] & PAGE_MASK);
1936
1937                free_page((unsigned long)ptr);
1938        }
1939}
1940
1941static void free_gcr3_tbl_level2(u64 *tbl)
1942{
1943        u64 *ptr;
1944        int i;
1945
1946        for (i = 0; i < 512; ++i) {
1947                if (!(tbl[i] & GCR3_VALID))
1948                        continue;
1949
1950                ptr = __va(tbl[i] & PAGE_MASK);
1951
1952                free_gcr3_tbl_level1(ptr);
1953        }
1954}
1955
1956static void free_gcr3_table(struct protection_domain *domain)
1957{
1958        if (domain->glx == 2)
1959                free_gcr3_tbl_level2(domain->gcr3_tbl);
1960        else if (domain->glx == 1)
1961                free_gcr3_tbl_level1(domain->gcr3_tbl);
1962        else if (domain->glx != 0)
1963                BUG();
1964
1965        free_page((unsigned long)domain->gcr3_tbl);
1966}
1967
1968/*
1969 * Free a domain, only used if something went wrong in the
1970 * allocation path and we need to free an already allocated page table
1971 */
1972static void dma_ops_domain_free(struct dma_ops_domain *dom)
1973{
1974        int i;
1975
1976        if (!dom)
1977                return;
1978
1979        del_domain_from_list(&dom->domain);
1980
1981        free_pagetable(&dom->domain);
1982
1983        for (i = 0; i < APERTURE_MAX_RANGES; ++i) {
1984                if (!dom->aperture[i])
1985                        continue;
1986                free_page((unsigned long)dom->aperture[i]->bitmap);
1987                kfree(dom->aperture[i]);
1988        }
1989
1990        kfree(dom);
1991}
1992
1993/*
1994 * Allocates a new protection domain usable for the dma_ops functions.
1995 * It also initializes the page table and the address allocator data
1996 * structures required for the dma_ops interface
1997 */
1998static struct dma_ops_domain *dma_ops_domain_alloc(void)
1999{
2000        struct dma_ops_domain *dma_dom;
2001
2002        dma_dom = kzalloc(sizeof(struct dma_ops_domain), GFP_KERNEL);
2003        if (!dma_dom)
2004                return NULL;
2005
2006        spin_lock_init(&dma_dom->domain.lock);
2007
2008        dma_dom->domain.id = domain_id_alloc();
2009        if (dma_dom->domain.id == 0)
2010                goto free_dma_dom;
2011        INIT_LIST_HEAD(&dma_dom->domain.dev_list);
2012        dma_dom->domain.mode = PAGE_MODE_2_LEVEL;
2013        dma_dom->domain.pt_root = (void *)get_zeroed_page(GFP_KERNEL);
2014        dma_dom->domain.flags = PD_DMA_OPS_MASK;
2015        dma_dom->domain.priv = dma_dom;
2016        if (!dma_dom->domain.pt_root)
2017                goto free_dma_dom;
2018
2019        dma_dom->need_flush = false;
2020        dma_dom->target_dev = 0xffff;
2021
2022        add_domain_to_list(&dma_dom->domain);
2023
2024        if (alloc_new_range(dma_dom, true, GFP_KERNEL))
2025                goto free_dma_dom;
2026
2027        /*
2028         * mark the first page as allocated so we never return 0 as
2029         * a valid dma-address. So we can use 0 as error value
2030         */
2031        dma_dom->aperture[0]->bitmap[0] = 1;
2032        dma_dom->next_address = 0;
2033
2034
2035        return dma_dom;
2036
2037free_dma_dom:
2038        dma_ops_domain_free(dma_dom);
2039
2040        return NULL;
2041}
2042
2043/*
2044 * little helper function to check whether a given protection domain is a
2045 * dma_ops domain
2046 */
2047static bool dma_ops_domain(struct protection_domain *domain)
2048{
2049        return domain->flags & PD_DMA_OPS_MASK;
2050}
2051
2052static void set_dte_entry(u16 devid, struct protection_domain *domain, bool ats)
2053{
2054        u64 pte_root = 0;
2055        u64 flags = 0;
2056
2057        if (domain->mode != PAGE_MODE_NONE)
2058                pte_root = virt_to_phys(domain->pt_root);
2059
2060        pte_root |= (domain->mode & DEV_ENTRY_MODE_MASK)
2061                    << DEV_ENTRY_MODE_SHIFT;
2062        pte_root |= IOMMU_PTE_IR | IOMMU_PTE_IW | IOMMU_PTE_P | IOMMU_PTE_TV;
2063
2064        flags = amd_iommu_dev_table[devid].data[1];
2065
2066        if (ats)
2067                flags |= DTE_FLAG_IOTLB;
2068
2069        if (domain->flags & PD_IOMMUV2_MASK) {
2070                u64 gcr3 = __pa(domain->gcr3_tbl);
2071                u64 glx  = domain->glx;
2072                u64 tmp;
2073
2074                pte_root |= DTE_FLAG_GV;
2075                pte_root |= (glx & DTE_GLX_MASK) << DTE_GLX_SHIFT;
2076
2077                /* First mask out possible old values for GCR3 table */
2078                tmp = DTE_GCR3_VAL_B(~0ULL) << DTE_GCR3_SHIFT_B;
2079                flags    &= ~tmp;
2080
2081                tmp = DTE_GCR3_VAL_C(~0ULL) << DTE_GCR3_SHIFT_C;
2082                flags    &= ~tmp;
2083
2084                /* Encode GCR3 table into DTE */
2085                tmp = DTE_GCR3_VAL_A(gcr3) << DTE_GCR3_SHIFT_A;
2086                pte_root |= tmp;
2087
2088                tmp = DTE_GCR3_VAL_B(gcr3) << DTE_GCR3_SHIFT_B;
2089                flags    |= tmp;
2090
2091                tmp = DTE_GCR3_VAL_C(gcr3) << DTE_GCR3_SHIFT_C;
2092                flags    |= tmp;
2093        }
2094
2095        flags &= ~(0xffffUL);
2096        flags |= domain->id;
2097
2098        amd_iommu_dev_table[devid].data[1]  = flags;
2099        amd_iommu_dev_table[devid].data[0]  = pte_root;
2100}
2101
2102static void clear_dte_entry(u16 devid)
2103{
2104        /* remove entry from the device table seen by the hardware */
2105        amd_iommu_dev_table[devid].data[0] = IOMMU_PTE_P | IOMMU_PTE_TV;
2106        amd_iommu_dev_table[devid].data[1] = 0;
2107
2108        amd_iommu_apply_erratum_63(devid);
2109}
2110
2111static void do_attach(struct iommu_dev_data *dev_data,
2112                      struct protection_domain *domain)
2113{
2114        struct amd_iommu *iommu;
2115        bool ats;
2116
2117        iommu = amd_iommu_rlookup_table[dev_data->devid];
2118        ats   = dev_data->ats.enabled;
2119
2120        /* Update data structures */
2121        dev_data->domain = domain;
2122        list_add(&dev_data->list, &domain->dev_list);
2123        set_dte_entry(dev_data->devid, domain, ats);
2124
2125        /* Do reference counting */
2126        domain->dev_iommu[iommu->index] += 1;
2127        domain->dev_cnt                 += 1;
2128
2129        /* Flush the DTE entry */
2130        device_flush_dte(dev_data);
2131}
2132
2133static void do_detach(struct iommu_dev_data *dev_data)
2134{
2135        struct amd_iommu *iommu;
2136
2137        iommu = amd_iommu_rlookup_table[dev_data->devid];
2138
2139        /* decrease reference counters */
2140        dev_data->domain->dev_iommu[iommu->index] -= 1;
2141        dev_data->domain->dev_cnt                 -= 1;
2142
2143        /* Update data structures */
2144        dev_data->domain = NULL;
2145        list_del(&dev_data->list);
2146        clear_dte_entry(dev_data->devid);
2147
2148        /* Flush the DTE entry */
2149        device_flush_dte(dev_data);
2150}
2151
2152/*
2153 * If a device is not yet associated with a domain, this function does
2154 * assigns it visible for the hardware
2155 */
2156static int __attach_device(struct iommu_dev_data *dev_data,
2157                           struct protection_domain *domain)
2158{
2159        int ret;
2160
2161        /* lock domain */
2162        spin_lock(&domain->lock);
2163
2164        if (dev_data->alias_data != NULL) {
2165                struct iommu_dev_data *alias_data = dev_data->alias_data;
2166
2167                /* Some sanity checks */
2168                ret = -EBUSY;
2169                if (alias_data->domain != NULL &&
2170                                alias_data->domain != domain)
2171                        goto out_unlock;
2172
2173                if (dev_data->domain != NULL &&
2174                                dev_data->domain != domain)
2175                        goto out_unlock;
2176
2177                /* Do real assignment */
2178                if (alias_data->domain == NULL)
2179                        do_attach(alias_data, domain);
2180
2181                atomic_inc(&alias_data->bind);
2182        }
2183
2184        if (dev_data->domain == NULL)
2185                do_attach(dev_data, domain);
2186
2187        atomic_inc(&dev_data->bind);
2188
2189        ret = 0;
2190
2191out_unlock:
2192
2193        /* ready */
2194        spin_unlock(&domain->lock);
2195
2196        return ret;
2197}
2198
2199
2200static void pdev_iommuv2_disable(struct pci_dev *pdev)
2201{
2202        pci_disable_ats(pdev);
2203        pci_disable_pri(pdev);
2204        pci_disable_pasid(pdev);
2205}
2206
2207/* FIXME: Change generic reset-function to do the same */
2208static int pri_reset_while_enabled(struct pci_dev *pdev)
2209{
2210        u16 control;
2211        int pos;
2212
2213        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2214        if (!pos)
2215                return -EINVAL;
2216
2217        pci_read_config_word(pdev, pos + PCI_PRI_CTRL, &control);
2218        control |= PCI_PRI_CTRL_RESET;
2219        pci_write_config_word(pdev, pos + PCI_PRI_CTRL, control);
2220
2221        return 0;
2222}
2223
2224static int pdev_iommuv2_enable(struct pci_dev *pdev)
2225{
2226        bool reset_enable;
2227        int reqs, ret;
2228
2229        /* FIXME: Hardcode number of outstanding requests for now */
2230        reqs = 32;
2231        if (pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_LIMIT_REQ_ONE))
2232                reqs = 1;
2233        reset_enable = pdev_pri_erratum(pdev, AMD_PRI_DEV_ERRATUM_ENABLE_RESET);
2234
2235        /* Only allow access to user-accessible pages */
2236        ret = pci_enable_pasid(pdev, 0);
2237        if (ret)
2238                goto out_err;
2239
2240        /* First reset the PRI state of the device */
2241        ret = pci_reset_pri(pdev);
2242        if (ret)
2243                goto out_err;
2244
2245        /* Enable PRI */
2246        ret = pci_enable_pri(pdev, reqs);
2247        if (ret)
2248                goto out_err;
2249
2250        if (reset_enable) {
2251                ret = pri_reset_while_enabled(pdev);
2252                if (ret)
2253                        goto out_err;
2254        }
2255
2256        ret = pci_enable_ats(pdev, PAGE_SHIFT);
2257        if (ret)
2258                goto out_err;
2259
2260        return 0;
2261
2262out_err:
2263        pci_disable_pri(pdev);
2264        pci_disable_pasid(pdev);
2265
2266        return ret;
2267}
2268
2269/* FIXME: Move this to PCI code */
2270#define PCI_PRI_TLP_OFF         (1 << 15)
2271
2272static bool pci_pri_tlp_required(struct pci_dev *pdev)
2273{
2274        u16 status;
2275        int pos;
2276
2277        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
2278        if (!pos)
2279                return false;
2280
2281        pci_read_config_word(pdev, pos + PCI_PRI_STATUS, &status);
2282
2283        return (status & PCI_PRI_TLP_OFF) ? true : false;
2284}
2285
2286/*
2287 * If a device is not yet associated with a domain, this function
2288 * assigns it visible for the hardware
2289 */
2290static int attach_device(struct device *dev,
2291                         struct protection_domain *domain)
2292{
2293        struct pci_dev *pdev = to_pci_dev(dev);
2294        struct iommu_dev_data *dev_data;
2295        unsigned long flags;
2296        int ret;
2297
2298        dev_data = get_dev_data(dev);
2299
2300        if (domain->flags & PD_IOMMUV2_MASK) {
2301                if (!dev_data->iommu_v2 || !dev_data->passthrough)
2302                        return -EINVAL;
2303
2304                if (pdev_iommuv2_enable(pdev) != 0)
2305                        return -EINVAL;
2306
2307                dev_data->ats.enabled = true;
2308                dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2309                dev_data->pri_tlp     = pci_pri_tlp_required(pdev);
2310        } else if (amd_iommu_iotlb_sup &&
2311                   pci_enable_ats(pdev, PAGE_SHIFT) == 0) {
2312                dev_data->ats.enabled = true;
2313                dev_data->ats.qdep    = pci_ats_queue_depth(pdev);
2314        }
2315
2316        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2317        ret = __attach_device(dev_data, domain);
2318        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2319
2320        /*
2321         * We might boot into a crash-kernel here. The crashed kernel
2322         * left the caches in the IOMMU dirty. So we have to flush
2323         * here to evict all dirty stuff.
2324         */
2325        domain_flush_tlb_pde(domain);
2326
2327        return ret;
2328}
2329
2330/*
2331 * Removes a device from a protection domain (unlocked)
2332 */
2333static void __detach_device(struct iommu_dev_data *dev_data)
2334{
2335        struct protection_domain *domain;
2336        unsigned long flags;
2337
2338        BUG_ON(!dev_data->domain);
2339
2340        domain = dev_data->domain;
2341
2342        spin_lock_irqsave(&domain->lock, flags);
2343
2344        if (dev_data->alias_data != NULL) {
2345                struct iommu_dev_data *alias_data = dev_data->alias_data;
2346
2347                if (atomic_dec_and_test(&alias_data->bind))
2348                        do_detach(alias_data);
2349        }
2350
2351        if (atomic_dec_and_test(&dev_data->bind))
2352                do_detach(dev_data);
2353
2354        spin_unlock_irqrestore(&domain->lock, flags);
2355
2356        /*
2357         * If we run in passthrough mode the device must be assigned to the
2358         * passthrough domain if it is detached from any other domain.
2359         * Make sure we can deassign from the pt_domain itself.
2360         */
2361        if (dev_data->passthrough &&
2362            (dev_data->domain == NULL && domain != pt_domain))
2363                __attach_device(dev_data, pt_domain);
2364}
2365
2366/*
2367 * Removes a device from a protection domain (with devtable_lock held)
2368 */
2369static void detach_device(struct device *dev)
2370{
2371        struct protection_domain *domain;
2372        struct iommu_dev_data *dev_data;
2373        unsigned long flags;
2374
2375        dev_data = get_dev_data(dev);
2376        domain   = dev_data->domain;
2377
2378        /* lock device table */
2379        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
2380        __detach_device(dev_data);
2381        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2382
2383        if (domain->flags & PD_IOMMUV2_MASK)
2384                pdev_iommuv2_disable(to_pci_dev(dev));
2385        else if (dev_data->ats.enabled)
2386                pci_disable_ats(to_pci_dev(dev));
2387
2388        dev_data->ats.enabled = false;
2389}
2390
2391/*
2392 * Find out the protection domain structure for a given PCI device. This
2393 * will give us the pointer to the page table root for example.
2394 */
2395static struct protection_domain *domain_for_device(struct device *dev)
2396{
2397        struct iommu_dev_data *dev_data;
2398        struct protection_domain *dom = NULL;
2399        unsigned long flags;
2400
2401        dev_data   = get_dev_data(dev);
2402
2403        if (dev_data->domain)
2404                return dev_data->domain;
2405
2406        if (dev_data->alias_data != NULL) {
2407                struct iommu_dev_data *alias_data = dev_data->alias_data;
2408
2409                read_lock_irqsave(&amd_iommu_devtable_lock, flags);
2410                if (alias_data->domain != NULL) {
2411                        __attach_device(dev_data, alias_data->domain);
2412                        dom = alias_data->domain;
2413                }
2414                read_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
2415        }
2416
2417        return dom;
2418}
2419
2420static int device_change_notifier(struct notifier_block *nb,
2421                                  unsigned long action, void *data)
2422{
2423        struct dma_ops_domain *dma_domain;
2424        struct protection_domain *domain;
2425        struct iommu_dev_data *dev_data;
2426        struct device *dev = data;
2427        struct amd_iommu *iommu;
2428        unsigned long flags;
2429        u16 devid;
2430
2431        if (!check_device(dev))
2432                return 0;
2433
2434        devid    = get_device_id(dev);
2435        iommu    = amd_iommu_rlookup_table[devid];
2436        dev_data = get_dev_data(dev);
2437
2438        switch (action) {
2439        case BUS_NOTIFY_UNBOUND_DRIVER:
2440
2441                domain = domain_for_device(dev);
2442
2443                if (!domain)
2444                        goto out;
2445                if (dev_data->passthrough)
2446                        break;
2447                detach_device(dev);
2448                break;
2449        case BUS_NOTIFY_ADD_DEVICE:
2450
2451                iommu_init_device(dev);
2452
2453                /*
2454                 * dev_data is still NULL and
2455                 * got initialized in iommu_init_device
2456                 */
2457                dev_data = get_dev_data(dev);
2458
2459                if (iommu_pass_through || dev_data->iommu_v2) {
2460                        dev_data->passthrough = true;
2461                        attach_device(dev, pt_domain);
2462                        break;
2463                }
2464
2465                domain = domain_for_device(dev);
2466
2467                /* allocate a protection domain if a device is added */
2468                dma_domain = find_protection_domain(devid);
2469                if (!dma_domain) {
2470                        dma_domain = dma_ops_domain_alloc();
2471                        if (!dma_domain)
2472                                goto out;
2473                        dma_domain->target_dev = devid;
2474
2475                        spin_lock_irqsave(&iommu_pd_list_lock, flags);
2476                        list_add_tail(&dma_domain->list, &iommu_pd_list);
2477                        spin_unlock_irqrestore(&iommu_pd_list_lock, flags);
2478                }
2479
2480                dev->archdata.dma_ops = &amd_iommu_dma_ops;
2481
2482                break;
2483        case BUS_NOTIFY_DEL_DEVICE:
2484
2485                iommu_uninit_device(dev);
2486
2487        default:
2488                goto out;
2489        }
2490
2491        iommu_completion_wait(iommu);
2492
2493out:
2494        return 0;
2495}
2496
2497static struct notifier_block device_nb = {
2498        .notifier_call = device_change_notifier,
2499};
2500
2501void amd_iommu_init_notifier(void)
2502{
2503        bus_register_notifier(&pci_bus_type, &device_nb);
2504}
2505
2506/*****************************************************************************
2507 *
2508 * The next functions belong to the dma_ops mapping/unmapping code.
2509 *
2510 *****************************************************************************/
2511
2512/*
2513 * In the dma_ops path we only have the struct device. This function
2514 * finds the corresponding IOMMU, the protection domain and the
2515 * requestor id for a given device.
2516 * If the device is not yet associated with a domain this is also done
2517 * in this function.
2518 */
2519static struct protection_domain *get_domain(struct device *dev)
2520{
2521        struct protection_domain *domain;
2522        struct dma_ops_domain *dma_dom;
2523        u16 devid = get_device_id(dev);
2524
2525        if (!check_device(dev))
2526                return ERR_PTR(-EINVAL);
2527
2528        domain = domain_for_device(dev);
2529        if (domain != NULL && !dma_ops_domain(domain))
2530                return ERR_PTR(-EBUSY);
2531
2532        if (domain != NULL)
2533                return domain;
2534
2535        /* Device not bound yet - bind it */
2536        dma_dom = find_protection_domain(devid);
2537        if (!dma_dom)
2538                dma_dom = amd_iommu_rlookup_table[devid]->default_dom;
2539        attach_device(dev, &dma_dom->domain);
2540        DUMP_printk("Using protection domain %d for device %s\n",
2541                    dma_dom->domain.id, dev_name(dev));
2542
2543        return &dma_dom->domain;
2544}
2545
2546static void update_device_table(struct protection_domain *domain)
2547{
2548        struct iommu_dev_data *dev_data;
2549
2550        list_for_each_entry(dev_data, &domain->dev_list, list)
2551                set_dte_entry(dev_data->devid, domain, dev_data->ats.enabled);
2552}
2553
2554static void update_domain(struct protection_domain *domain)
2555{
2556        if (!domain->updated)
2557                return;
2558
2559        update_device_table(domain);
2560
2561        domain_flush_devices(domain);
2562        domain_flush_tlb_pde(domain);
2563
2564        domain->updated = false;
2565}
2566
2567/*
2568 * This function fetches the PTE for a given address in the aperture
2569 */
2570static u64* dma_ops_get_pte(struct dma_ops_domain *dom,
2571                            unsigned long address)
2572{
2573        struct aperture_range *aperture;
2574        u64 *pte, *pte_page;
2575
2576        aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2577        if (!aperture)
2578                return NULL;
2579
2580        pte = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2581        if (!pte) {
2582                pte = alloc_pte(&dom->domain, address, PAGE_SIZE, &pte_page,
2583                                GFP_ATOMIC);
2584                aperture->pte_pages[APERTURE_PAGE_INDEX(address)] = pte_page;
2585        } else
2586                pte += PM_LEVEL_INDEX(0, address);
2587
2588        update_domain(&dom->domain);
2589
2590        return pte;
2591}
2592
2593/*
2594 * This is the generic map function. It maps one 4kb page at paddr to
2595 * the given address in the DMA address space for the domain.
2596 */
2597static dma_addr_t dma_ops_domain_map(struct dma_ops_domain *dom,
2598                                     unsigned long address,
2599                                     phys_addr_t paddr,
2600                                     int direction)
2601{
2602        u64 *pte, __pte;
2603
2604        WARN_ON(address > dom->aperture_size);
2605
2606        paddr &= PAGE_MASK;
2607
2608        pte  = dma_ops_get_pte(dom, address);
2609        if (!pte)
2610                return DMA_ERROR_CODE;
2611
2612        __pte = paddr | IOMMU_PTE_P | IOMMU_PTE_FC;
2613
2614        if (direction == DMA_TO_DEVICE)
2615                __pte |= IOMMU_PTE_IR;
2616        else if (direction == DMA_FROM_DEVICE)
2617                __pte |= IOMMU_PTE_IW;
2618        else if (direction == DMA_BIDIRECTIONAL)
2619                __pte |= IOMMU_PTE_IR | IOMMU_PTE_IW;
2620
2621        WARN_ON(*pte);
2622
2623        *pte = __pte;
2624
2625        return (dma_addr_t)address;
2626}
2627
2628/*
2629 * The generic unmapping function for on page in the DMA address space.
2630 */
2631static void dma_ops_domain_unmap(struct dma_ops_domain *dom,
2632                                 unsigned long address)
2633{
2634        struct aperture_range *aperture;
2635        u64 *pte;
2636
2637        if (address >= dom->aperture_size)
2638                return;
2639
2640        aperture = dom->aperture[APERTURE_RANGE_INDEX(address)];
2641        if (!aperture)
2642                return;
2643
2644        pte  = aperture->pte_pages[APERTURE_PAGE_INDEX(address)];
2645        if (!pte)
2646                return;
2647
2648        pte += PM_LEVEL_INDEX(0, address);
2649
2650        WARN_ON(!*pte);
2651
2652        *pte = 0ULL;
2653}
2654
2655/*
2656 * This function contains common code for mapping of a physically
2657 * contiguous memory region into DMA address space. It is used by all
2658 * mapping functions provided with this IOMMU driver.
2659 * Must be called with the domain lock held.
2660 */
2661static dma_addr_t __map_single(struct device *dev,
2662                               struct dma_ops_domain *dma_dom,
2663                               phys_addr_t paddr,
2664                               size_t size,
2665                               int dir,
2666                               bool align,
2667                               u64 dma_mask)
2668{
2669        dma_addr_t offset = paddr & ~PAGE_MASK;
2670        dma_addr_t address, start, ret;
2671        unsigned int pages;
2672        unsigned long align_mask = 0;
2673        int i;
2674
2675        pages = iommu_num_pages(paddr, size, PAGE_SIZE);
2676        paddr &= PAGE_MASK;
2677
2678        INC_STATS_COUNTER(total_map_requests);
2679
2680        if (pages > 1)
2681                INC_STATS_COUNTER(cross_page);
2682
2683        if (align)
2684                align_mask = (1UL << get_order(size)) - 1;
2685
2686retry:
2687        address = dma_ops_alloc_addresses(dev, dma_dom, pages, align_mask,
2688                                          dma_mask);
2689        if (unlikely(address == DMA_ERROR_CODE)) {
2690                /*
2691                 * setting next_address here will let the address
2692                 * allocator only scan the new allocated range in the
2693                 * first run. This is a small optimization.
2694                 */
2695                dma_dom->next_address = dma_dom->aperture_size;
2696
2697                if (alloc_new_range(dma_dom, false, GFP_ATOMIC))
2698                        goto out;
2699
2700                /*
2701                 * aperture was successfully enlarged by 128 MB, try
2702                 * allocation again
2703                 */
2704                goto retry;
2705        }
2706
2707        start = address;
2708        for (i = 0; i < pages; ++i) {
2709                ret = dma_ops_domain_map(dma_dom, start, paddr, dir);
2710                if (ret == DMA_ERROR_CODE)
2711                        goto out_unmap;
2712
2713                paddr += PAGE_SIZE;
2714                start += PAGE_SIZE;
2715        }
2716        address += offset;
2717
2718        ADD_STATS_COUNTER(alloced_io_mem, size);
2719
2720        if (unlikely(dma_dom->need_flush && !amd_iommu_unmap_flush)) {
2721                domain_flush_tlb(&dma_dom->domain);
2722                dma_dom->need_flush = false;
2723        } else if (unlikely(amd_iommu_np_cache))
2724                domain_flush_pages(&dma_dom->domain, address, size);
2725
2726out:
2727        return address;
2728
2729out_unmap:
2730
2731        for (--i; i >= 0; --i) {
2732                start -= PAGE_SIZE;
2733                dma_ops_domain_unmap(dma_dom, start);
2734        }
2735
2736        dma_ops_free_addresses(dma_dom, address, pages);
2737
2738        return DMA_ERROR_CODE;
2739}
2740
2741/*
2742 * Does the reverse of the __map_single function. Must be called with
2743 * the domain lock held too
2744 */
2745static void __unmap_single(struct dma_ops_domain *dma_dom,
2746                           dma_addr_t dma_addr,
2747                           size_t size,
2748                           int dir)
2749{
2750        dma_addr_t flush_addr;
2751        dma_addr_t i, start;
2752        unsigned int pages;
2753
2754        if ((dma_addr == DMA_ERROR_CODE) ||
2755            (dma_addr + size > dma_dom->aperture_size))
2756                return;
2757
2758        flush_addr = dma_addr;
2759        pages = iommu_num_pages(dma_addr, size, PAGE_SIZE);
2760        dma_addr &= PAGE_MASK;
2761        start = dma_addr;
2762
2763        for (i = 0; i < pages; ++i) {
2764                dma_ops_domain_unmap(dma_dom, start);
2765                start += PAGE_SIZE;
2766        }
2767
2768        SUB_STATS_COUNTER(alloced_io_mem, size);
2769
2770        dma_ops_free_addresses(dma_dom, dma_addr, pages);
2771
2772        if (amd_iommu_unmap_flush || dma_dom->need_flush) {
2773                domain_flush_pages(&dma_dom->domain, flush_addr, size);
2774                dma_dom->need_flush = false;
2775        }
2776}
2777
2778/*
2779 * The exported map_single function for dma_ops.
2780 */
2781static dma_addr_t map_page(struct device *dev, struct page *page,
2782                           unsigned long offset, size_t size,
2783                           enum dma_data_direction dir,
2784                           struct dma_attrs *attrs)
2785{
2786        unsigned long flags;
2787        struct protection_domain *domain;
2788        dma_addr_t addr;
2789        u64 dma_mask;
2790        phys_addr_t paddr = page_to_phys(page) + offset;
2791
2792        INC_STATS_COUNTER(cnt_map_single);
2793
2794        domain = get_domain(dev);
2795        if (PTR_ERR(domain) == -EINVAL)
2796                return (dma_addr_t)paddr;
2797        else if (IS_ERR(domain))
2798                return DMA_ERROR_CODE;
2799
2800        dma_mask = *dev->dma_mask;
2801
2802        spin_lock_irqsave(&domain->lock, flags);
2803
2804        addr = __map_single(dev, domain->priv, paddr, size, dir, false,
2805                            dma_mask);
2806        if (addr == DMA_ERROR_CODE)
2807                goto out;
2808
2809        domain_flush_complete(domain);
2810
2811out:
2812        spin_unlock_irqrestore(&domain->lock, flags);
2813
2814        return addr;
2815}
2816
2817/*
2818 * The exported unmap_single function for dma_ops.
2819 */
2820static void unmap_page(struct device *dev, dma_addr_t dma_addr, size_t size,
2821                       enum dma_data_direction dir, struct dma_attrs *attrs)
2822{
2823        unsigned long flags;
2824        struct protection_domain *domain;
2825
2826        INC_STATS_COUNTER(cnt_unmap_single);
2827
2828        domain = get_domain(dev);
2829        if (IS_ERR(domain))
2830                return;
2831
2832        spin_lock_irqsave(&domain->lock, flags);
2833
2834        __unmap_single(domain->priv, dma_addr, size, dir);
2835
2836        domain_flush_complete(domain);
2837
2838        spin_unlock_irqrestore(&domain->lock, flags);
2839}
2840
2841/*
2842 * The exported map_sg function for dma_ops (handles scatter-gather
2843 * lists).
2844 */
2845static int map_sg(struct device *dev, struct scatterlist *sglist,
2846                  int nelems, enum dma_data_direction dir,
2847                  struct dma_attrs *attrs)
2848{
2849        unsigned long flags;
2850        struct protection_domain *domain;
2851        int i;
2852        struct scatterlist *s;
2853        phys_addr_t paddr;
2854        int mapped_elems = 0;
2855        u64 dma_mask;
2856
2857        INC_STATS_COUNTER(cnt_map_sg);
2858
2859        domain = get_domain(dev);
2860        if (IS_ERR(domain))
2861                return 0;
2862
2863        dma_mask = *dev->dma_mask;
2864
2865        spin_lock_irqsave(&domain->lock, flags);
2866
2867        for_each_sg(sglist, s, nelems, i) {
2868                paddr = sg_phys(s);
2869
2870                s->dma_address = __map_single(dev, domain->priv,
2871                                              paddr, s->length, dir, false,
2872                                              dma_mask);
2873
2874                if (s->dma_address) {
2875                        s->dma_length = s->length;
2876                        mapped_elems++;
2877                } else
2878                        goto unmap;
2879        }
2880
2881        domain_flush_complete(domain);
2882
2883out:
2884        spin_unlock_irqrestore(&domain->lock, flags);
2885
2886        return mapped_elems;
2887unmap:
2888        for_each_sg(sglist, s, mapped_elems, i) {
2889                if (s->dma_address)
2890                        __unmap_single(domain->priv, s->dma_address,
2891                                       s->dma_length, dir);
2892                s->dma_address = s->dma_length = 0;
2893        }
2894
2895        mapped_elems = 0;
2896
2897        goto out;
2898}
2899
2900/*
2901 * The exported map_sg function for dma_ops (handles scatter-gather
2902 * lists).
2903 */
2904static void unmap_sg(struct device *dev, struct scatterlist *sglist,
2905                     int nelems, enum dma_data_direction dir,
2906                     struct dma_attrs *attrs)
2907{
2908        unsigned long flags;
2909        struct protection_domain *domain;
2910        struct scatterlist *s;
2911        int i;
2912
2913        INC_STATS_COUNTER(cnt_unmap_sg);
2914
2915        domain = get_domain(dev);
2916        if (IS_ERR(domain))
2917                return;
2918
2919        spin_lock_irqsave(&domain->lock, flags);
2920
2921        for_each_sg(sglist, s, nelems, i) {
2922                __unmap_single(domain->priv, s->dma_address,
2923                               s->dma_length, dir);
2924                s->dma_address = s->dma_length = 0;
2925        }
2926
2927        domain_flush_complete(domain);
2928
2929        spin_unlock_irqrestore(&domain->lock, flags);
2930}
2931
2932/*
2933 * The exported alloc_coherent function for dma_ops.
2934 */
2935static void *alloc_coherent(struct device *dev, size_t size,
2936                            dma_addr_t *dma_addr, gfp_t flag,
2937                            struct dma_attrs *attrs)
2938{
2939        unsigned long flags;
2940        void *virt_addr;
2941        struct protection_domain *domain;
2942        phys_addr_t paddr;
2943        u64 dma_mask = dev->coherent_dma_mask;
2944
2945        INC_STATS_COUNTER(cnt_alloc_coherent);
2946
2947        domain = get_domain(dev);
2948        if (PTR_ERR(domain) == -EINVAL) {
2949                virt_addr = (void *)__get_free_pages(flag, get_order(size));
2950                *dma_addr = __pa(virt_addr);
2951                return virt_addr;
2952        } else if (IS_ERR(domain))
2953                return NULL;
2954
2955        dma_mask  = dev->coherent_dma_mask;
2956        flag     &= ~(__GFP_DMA | __GFP_HIGHMEM | __GFP_DMA32);
2957        flag     |= __GFP_ZERO;
2958
2959        virt_addr = (void *)__get_free_pages(flag, get_order(size));
2960        if (!virt_addr)
2961                return NULL;
2962
2963        paddr = virt_to_phys(virt_addr);
2964
2965        if (!dma_mask)
2966                dma_mask = *dev->dma_mask;
2967
2968        spin_lock_irqsave(&domain->lock, flags);
2969
2970        *dma_addr = __map_single(dev, domain->priv, paddr,
2971                                 size, DMA_BIDIRECTIONAL, true, dma_mask);
2972
2973        if (*dma_addr == DMA_ERROR_CODE) {
2974                spin_unlock_irqrestore(&domain->lock, flags);
2975                goto out_free;
2976        }
2977
2978        domain_flush_complete(domain);
2979
2980        spin_unlock_irqrestore(&domain->lock, flags);
2981
2982        return virt_addr;
2983
2984out_free:
2985
2986        free_pages((unsigned long)virt_addr, get_order(size));
2987
2988        return NULL;
2989}
2990
2991/*
2992 * The exported free_coherent function for dma_ops.
2993 */
2994static void free_coherent(struct device *dev, size_t size,
2995                          void *virt_addr, dma_addr_t dma_addr,
2996                          struct dma_attrs *attrs)
2997{
2998        unsigned long flags;
2999        struct protection_domain *domain;
3000
3001        INC_STATS_COUNTER(cnt_free_coherent);
3002
3003        domain = get_domain(dev);
3004        if (IS_ERR(domain))
3005                goto free_mem;
3006
3007        spin_lock_irqsave(&domain->lock, flags);
3008
3009        __unmap_single(domain->priv, dma_addr, size, DMA_BIDIRECTIONAL);
3010
3011        domain_flush_complete(domain);
3012
3013        spin_unlock_irqrestore(&domain->lock, flags);
3014
3015free_mem:
3016        free_pages((unsigned long)virt_addr, get_order(size));
3017}
3018
3019/*
3020 * This function is called by the DMA layer to find out if we can handle a
3021 * particular device. It is part of the dma_ops.
3022 */
3023static int amd_iommu_dma_supported(struct device *dev, u64 mask)
3024{
3025        return check_device(dev);
3026}
3027
3028/*
3029 * The function for pre-allocating protection domains.
3030 *
3031 * If the driver core informs the DMA layer if a driver grabs a device
3032 * we don't need to preallocate the protection domains anymore.
3033 * For now we have to.
3034 */
3035static void __init prealloc_protection_domains(void)
3036{
3037        struct iommu_dev_data *dev_data;
3038        struct dma_ops_domain *dma_dom;
3039        struct pci_dev *dev = NULL;
3040        u16 devid;
3041
3042        for_each_pci_dev(dev) {
3043
3044                /* Do we handle this device? */
3045                if (!check_device(&dev->dev))
3046                        continue;
3047
3048                dev_data = get_dev_data(&dev->dev);
3049                if (!amd_iommu_force_isolation && dev_data->iommu_v2) {
3050                        /* Make sure passthrough domain is allocated */
3051                        alloc_passthrough_domain();
3052                        dev_data->passthrough = true;
3053                        attach_device(&dev->dev, pt_domain);
3054                        pr_info("AMD-Vi: Using passthrough domain for device %s\n",
3055                                dev_name(&dev->dev));
3056                }
3057
3058                /* Is there already any domain for it? */
3059                if (domain_for_device(&dev->dev))
3060                        continue;
3061
3062                devid = get_device_id(&dev->dev);
3063
3064                dma_dom = dma_ops_domain_alloc();
3065                if (!dma_dom)
3066                        continue;
3067                init_unity_mappings_for_device(dma_dom, devid);
3068                dma_dom->target_dev = devid;
3069
3070                attach_device(&dev->dev, &dma_dom->domain);
3071
3072                list_add_tail(&dma_dom->list, &iommu_pd_list);
3073        }
3074}
3075
3076static struct dma_map_ops amd_iommu_dma_ops = {
3077        .alloc = alloc_coherent,
3078        .free = free_coherent,
3079        .map_page = map_page,
3080        .unmap_page = unmap_page,
3081        .map_sg = map_sg,
3082        .unmap_sg = unmap_sg,
3083        .dma_supported = amd_iommu_dma_supported,
3084};
3085
3086static unsigned device_dma_ops_init(void)
3087{
3088        struct iommu_dev_data *dev_data;
3089        struct pci_dev *pdev = NULL;
3090        unsigned unhandled = 0;
3091
3092        for_each_pci_dev(pdev) {
3093                if (!check_device(&pdev->dev)) {
3094
3095                        iommu_ignore_device(&pdev->dev);
3096
3097                        unhandled += 1;
3098                        continue;
3099                }
3100
3101                dev_data = get_dev_data(&pdev->dev);
3102
3103                if (!dev_data->passthrough)
3104                        pdev->dev.archdata.dma_ops = &amd_iommu_dma_ops;
3105                else
3106                        pdev->dev.archdata.dma_ops = &nommu_dma_ops;
3107        }
3108
3109        return unhandled;
3110}
3111
3112/*
3113 * The function which clues the AMD IOMMU driver into dma_ops.
3114 */
3115
3116void __init amd_iommu_init_api(void)
3117{
3118        bus_set_iommu(&pci_bus_type, &amd_iommu_ops);
3119}
3120
3121int __init amd_iommu_init_dma_ops(void)
3122{
3123        struct amd_iommu *iommu;
3124        int ret, unhandled;
3125
3126        /*
3127         * first allocate a default protection domain for every IOMMU we
3128         * found in the system. Devices not assigned to any other
3129         * protection domain will be assigned to the default one.
3130         */
3131        for_each_iommu(iommu) {
3132                iommu->default_dom = dma_ops_domain_alloc();
3133                if (iommu->default_dom == NULL)
3134                        return -ENOMEM;
3135                iommu->default_dom->domain.flags |= PD_DEFAULT_MASK;
3136                ret = iommu_init_unity_mappings(iommu);
3137                if (ret)
3138                        goto free_domains;
3139        }
3140
3141        /*
3142         * Pre-allocate the protection domains for each device.
3143         */
3144        prealloc_protection_domains();
3145
3146        iommu_detected = 1;
3147        swiotlb = 0;
3148
3149        /* Make the driver finally visible to the drivers */
3150        unhandled = device_dma_ops_init();
3151        if (unhandled && max_pfn > MAX_DMA32_PFN) {
3152                /* There are unhandled devices - initialize swiotlb for them */
3153                swiotlb = 1;
3154        }
3155
3156        amd_iommu_stats_init();
3157
3158        if (amd_iommu_unmap_flush)
3159                pr_info("AMD-Vi: IO/TLB flush on unmap enabled\n");
3160        else
3161                pr_info("AMD-Vi: Lazy IO/TLB flushing enabled\n");
3162
3163        return 0;
3164
3165free_domains:
3166
3167        for_each_iommu(iommu) {
3168                dma_ops_domain_free(iommu->default_dom);
3169        }
3170
3171        return ret;
3172}
3173
3174/*****************************************************************************
3175 *
3176 * The following functions belong to the exported interface of AMD IOMMU
3177 *
3178 * This interface allows access to lower level functions of the IOMMU
3179 * like protection domain handling and assignement of devices to domains
3180 * which is not possible with the dma_ops interface.
3181 *
3182 *****************************************************************************/
3183
3184static void cleanup_domain(struct protection_domain *domain)
3185{
3186        struct iommu_dev_data *dev_data, *next;
3187        unsigned long flags;
3188
3189        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3190
3191        list_for_each_entry_safe(dev_data, next, &domain->dev_list, list) {
3192                __detach_device(dev_data);
3193                atomic_set(&dev_data->bind, 0);
3194        }
3195
3196        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3197}
3198
3199static void protection_domain_free(struct protection_domain *domain)
3200{
3201        if (!domain)
3202                return;
3203
3204        del_domain_from_list(domain);
3205
3206        if (domain->id)
3207                domain_id_free(domain->id);
3208
3209        kfree(domain);
3210}
3211
3212static struct protection_domain *protection_domain_alloc(void)
3213{
3214        struct protection_domain *domain;
3215
3216        domain = kzalloc(sizeof(*domain), GFP_KERNEL);
3217        if (!domain)
3218                return NULL;
3219
3220        spin_lock_init(&domain->lock);
3221        mutex_init(&domain->api_lock);
3222        domain->id = domain_id_alloc();
3223        if (!domain->id)
3224                goto out_err;
3225        INIT_LIST_HEAD(&domain->dev_list);
3226
3227        add_domain_to_list(domain);
3228
3229        return domain;
3230
3231out_err:
3232        kfree(domain);
3233
3234        return NULL;
3235}
3236
3237static int __init alloc_passthrough_domain(void)
3238{
3239        if (pt_domain != NULL)
3240                return 0;
3241
3242        /* allocate passthrough domain */
3243        pt_domain = protection_domain_alloc();
3244        if (!pt_domain)
3245                return -ENOMEM;
3246
3247        pt_domain->mode = PAGE_MODE_NONE;
3248
3249        return 0;
3250}
3251static int amd_iommu_domain_init(struct iommu_domain *dom)
3252{
3253        struct protection_domain *domain;
3254
3255        domain = protection_domain_alloc();
3256        if (!domain)
3257                goto out_free;
3258
3259        domain->mode    = PAGE_MODE_3_LEVEL;
3260        domain->pt_root = (void *)get_zeroed_page(GFP_KERNEL);
3261        if (!domain->pt_root)
3262                goto out_free;
3263
3264        domain->iommu_domain = dom;
3265
3266        dom->priv = domain;
3267
3268        dom->geometry.aperture_start = 0;
3269        dom->geometry.aperture_end   = ~0ULL;
3270        dom->geometry.force_aperture = true;
3271
3272        return 0;
3273
3274out_free:
3275        protection_domain_free(domain);
3276
3277        return -ENOMEM;
3278}
3279
3280static void amd_iommu_domain_destroy(struct iommu_domain *dom)
3281{
3282        struct protection_domain *domain = dom->priv;
3283
3284        if (!domain)
3285                return;
3286
3287        if (domain->dev_cnt > 0)
3288                cleanup_domain(domain);
3289
3290        BUG_ON(domain->dev_cnt != 0);
3291
3292        if (domain->mode != PAGE_MODE_NONE)
3293                free_pagetable(domain);
3294
3295        if (domain->flags & PD_IOMMUV2_MASK)
3296                free_gcr3_table(domain);
3297
3298        protection_domain_free(domain);
3299
3300        dom->priv = NULL;
3301}
3302
3303static void amd_iommu_detach_device(struct iommu_domain *dom,
3304                                    struct device *dev)
3305{
3306        struct iommu_dev_data *dev_data = dev->archdata.iommu;
3307        struct amd_iommu *iommu;
3308        u16 devid;
3309
3310        if (!check_device(dev))
3311                return;
3312
3313        devid = get_device_id(dev);
3314
3315        if (dev_data->domain != NULL)
3316                detach_device(dev);
3317
3318        iommu = amd_iommu_rlookup_table[devid];
3319        if (!iommu)
3320                return;
3321
3322        iommu_completion_wait(iommu);
3323}
3324
3325static int amd_iommu_attach_device(struct iommu_domain *dom,
3326                                   struct device *dev)
3327{
3328        struct protection_domain *domain = dom->priv;
3329        struct iommu_dev_data *dev_data;
3330        struct amd_iommu *iommu;
3331        int ret;
3332
3333        if (!check_device(dev))
3334                return -EINVAL;
3335
3336        dev_data = dev->archdata.iommu;
3337
3338        iommu = amd_iommu_rlookup_table[dev_data->devid];
3339        if (!iommu)
3340                return -EINVAL;
3341
3342        if (dev_data->domain)
3343                detach_device(dev);
3344
3345        ret = attach_device(dev, domain);
3346
3347        iommu_completion_wait(iommu);
3348
3349        return ret;
3350}
3351
3352static int amd_iommu_map(struct iommu_domain *dom, unsigned long iova,
3353                         phys_addr_t paddr, size_t page_size, int iommu_prot)
3354{
3355        struct protection_domain *domain = dom->priv;
3356        int prot = 0;
3357        int ret;
3358
3359        if (domain->mode == PAGE_MODE_NONE)
3360                return -EINVAL;
3361
3362        if (iommu_prot & IOMMU_READ)
3363                prot |= IOMMU_PROT_IR;
3364        if (iommu_prot & IOMMU_WRITE)
3365                prot |= IOMMU_PROT_IW;
3366
3367        mutex_lock(&domain->api_lock);
3368        ret = iommu_map_page(domain, iova, paddr, prot, page_size);
3369        mutex_unlock(&domain->api_lock);
3370
3371        return ret;
3372}
3373
3374static size_t amd_iommu_unmap(struct iommu_domain *dom, unsigned long iova,
3375                           size_t page_size)
3376{
3377        struct protection_domain *domain = dom->priv;
3378        size_t unmap_size;
3379
3380        if (domain->mode == PAGE_MODE_NONE)
3381                return -EINVAL;
3382
3383        mutex_lock(&domain->api_lock);
3384        unmap_size = iommu_unmap_page(domain, iova, page_size);
3385        mutex_unlock(&domain->api_lock);
3386
3387        domain_flush_tlb_pde(domain);
3388
3389        return unmap_size;
3390}
3391
3392static phys_addr_t amd_iommu_iova_to_phys(struct iommu_domain *dom,
3393                                          dma_addr_t iova)
3394{
3395        struct protection_domain *domain = dom->priv;
3396        unsigned long offset_mask;
3397        phys_addr_t paddr;
3398        u64 *pte, __pte;
3399
3400        if (domain->mode == PAGE_MODE_NONE)
3401                return iova;
3402
3403        pte = fetch_pte(domain, iova);
3404
3405        if (!pte || !IOMMU_PTE_PRESENT(*pte))
3406                return 0;
3407
3408        if (PM_PTE_LEVEL(*pte) == 0)
3409                offset_mask = PAGE_SIZE - 1;
3410        else
3411                offset_mask = PTE_PAGE_SIZE(*pte) - 1;
3412
3413        __pte = *pte & PM_ADDR_MASK;
3414        paddr = (__pte & ~offset_mask) | (iova & offset_mask);
3415
3416        return paddr;
3417}
3418
3419static int amd_iommu_domain_has_cap(struct iommu_domain *domain,
3420                                    unsigned long cap)
3421{
3422        switch (cap) {
3423        case IOMMU_CAP_CACHE_COHERENCY:
3424                return 1;
3425        case IOMMU_CAP_INTR_REMAP:
3426                return irq_remapping_enabled;
3427        }
3428
3429        return 0;
3430}
3431
3432static struct iommu_ops amd_iommu_ops = {
3433        .domain_init = amd_iommu_domain_init,
3434        .domain_destroy = amd_iommu_domain_destroy,
3435        .attach_dev = amd_iommu_attach_device,
3436        .detach_dev = amd_iommu_detach_device,
3437        .map = amd_iommu_map,
3438        .unmap = amd_iommu_unmap,
3439        .iova_to_phys = amd_iommu_iova_to_phys,
3440        .domain_has_cap = amd_iommu_domain_has_cap,
3441        .pgsize_bitmap  = AMD_IOMMU_PGSIZES,
3442};
3443
3444/*****************************************************************************
3445 *
3446 * The next functions do a basic initialization of IOMMU for pass through
3447 * mode
3448 *
3449 * In passthrough mode the IOMMU is initialized and enabled but not used for
3450 * DMA-API translation.
3451 *
3452 *****************************************************************************/
3453
3454int __init amd_iommu_init_passthrough(void)
3455{
3456        struct iommu_dev_data *dev_data;
3457        struct pci_dev *dev = NULL;
3458        struct amd_iommu *iommu;
3459        u16 devid;
3460        int ret;
3461
3462        ret = alloc_passthrough_domain();
3463        if (ret)
3464                return ret;
3465
3466        for_each_pci_dev(dev) {
3467                if (!check_device(&dev->dev))
3468                        continue;
3469
3470                dev_data = get_dev_data(&dev->dev);
3471                dev_data->passthrough = true;
3472
3473                devid = get_device_id(&dev->dev);
3474
3475                iommu = amd_iommu_rlookup_table[devid];
3476                if (!iommu)
3477                        continue;
3478
3479                attach_device(&dev->dev, pt_domain);
3480        }
3481
3482        amd_iommu_stats_init();
3483
3484        pr_info("AMD-Vi: Initialized for Passthrough Mode\n");
3485
3486        return 0;
3487}
3488
3489/* IOMMUv2 specific functions */
3490int amd_iommu_register_ppr_notifier(struct notifier_block *nb)
3491{
3492        return atomic_notifier_chain_register(&ppr_notifier, nb);
3493}
3494EXPORT_SYMBOL(amd_iommu_register_ppr_notifier);
3495
3496int amd_iommu_unregister_ppr_notifier(struct notifier_block *nb)
3497{
3498        return atomic_notifier_chain_unregister(&ppr_notifier, nb);
3499}
3500EXPORT_SYMBOL(amd_iommu_unregister_ppr_notifier);
3501
3502void amd_iommu_domain_direct_map(struct iommu_domain *dom)
3503{
3504        struct protection_domain *domain = dom->priv;
3505        unsigned long flags;
3506
3507        spin_lock_irqsave(&domain->lock, flags);
3508
3509        /* Update data structure */
3510        domain->mode    = PAGE_MODE_NONE;
3511        domain->updated = true;
3512
3513        /* Make changes visible to IOMMUs */
3514        update_domain(domain);
3515
3516        /* Page-table is not visible to IOMMU anymore, so free it */
3517        free_pagetable(domain);
3518
3519        spin_unlock_irqrestore(&domain->lock, flags);
3520}
3521EXPORT_SYMBOL(amd_iommu_domain_direct_map);
3522
3523int amd_iommu_domain_enable_v2(struct iommu_domain *dom, int pasids)
3524{
3525        struct protection_domain *domain = dom->priv;
3526        unsigned long flags;
3527        int levels, ret;
3528
3529        if (pasids <= 0 || pasids > (PASID_MASK + 1))
3530                return -EINVAL;
3531
3532        /* Number of GCR3 table levels required */
3533        for (levels = 0; (pasids - 1) & ~0x1ff; pasids >>= 9)
3534                levels += 1;
3535
3536        if (levels > amd_iommu_max_glx_val)
3537                return -EINVAL;
3538
3539        spin_lock_irqsave(&domain->lock, flags);
3540
3541        /*
3542         * Save us all sanity checks whether devices already in the
3543         * domain support IOMMUv2. Just force that the domain has no
3544         * devices attached when it is switched into IOMMUv2 mode.
3545         */
3546        ret = -EBUSY;
3547        if (domain->dev_cnt > 0 || domain->flags & PD_IOMMUV2_MASK)
3548                goto out;
3549
3550        ret = -ENOMEM;
3551        domain->gcr3_tbl = (void *)get_zeroed_page(GFP_ATOMIC);
3552        if (domain->gcr3_tbl == NULL)
3553                goto out;
3554
3555        domain->glx      = levels;
3556        domain->flags   |= PD_IOMMUV2_MASK;
3557        domain->updated  = true;
3558
3559        update_domain(domain);
3560
3561        ret = 0;
3562
3563out:
3564        spin_unlock_irqrestore(&domain->lock, flags);
3565
3566        return ret;
3567}
3568EXPORT_SYMBOL(amd_iommu_domain_enable_v2);
3569
3570static int __flush_pasid(struct protection_domain *domain, int pasid,
3571                         u64 address, bool size)
3572{
3573        struct iommu_dev_data *dev_data;
3574        struct iommu_cmd cmd;
3575        int i, ret;
3576
3577        if (!(domain->flags & PD_IOMMUV2_MASK))
3578                return -EINVAL;
3579
3580        build_inv_iommu_pasid(&cmd, domain->id, pasid, address, size);
3581
3582        /*
3583         * IOMMU TLB needs to be flushed before Device TLB to
3584         * prevent device TLB refill from IOMMU TLB
3585         */
3586        for (i = 0; i < amd_iommus_present; ++i) {
3587                if (domain->dev_iommu[i] == 0)
3588                        continue;
3589
3590                ret = iommu_queue_command(amd_iommus[i], &cmd);
3591                if (ret != 0)
3592                        goto out;
3593        }
3594
3595        /* Wait until IOMMU TLB flushes are complete */
3596        domain_flush_complete(domain);
3597
3598        /* Now flush device TLBs */
3599        list_for_each_entry(dev_data, &domain->dev_list, list) {
3600                struct amd_iommu *iommu;
3601                int qdep;
3602
3603                BUG_ON(!dev_data->ats.enabled);
3604
3605                qdep  = dev_data->ats.qdep;
3606                iommu = amd_iommu_rlookup_table[dev_data->devid];
3607
3608                build_inv_iotlb_pasid(&cmd, dev_data->devid, pasid,
3609                                      qdep, address, size);
3610
3611                ret = iommu_queue_command(iommu, &cmd);
3612                if (ret != 0)
3613                        goto out;
3614        }
3615
3616        /* Wait until all device TLBs are flushed */
3617        domain_flush_complete(domain);
3618
3619        ret = 0;
3620
3621out:
3622
3623        return ret;
3624}
3625
3626static int __amd_iommu_flush_page(struct protection_domain *domain, int pasid,
3627                                  u64 address)
3628{
3629        INC_STATS_COUNTER(invalidate_iotlb);
3630
3631        return __flush_pasid(domain, pasid, address, false);
3632}
3633
3634int amd_iommu_flush_page(struct iommu_domain *dom, int pasid,
3635                         u64 address)
3636{
3637        struct protection_domain *domain = dom->priv;
3638        unsigned long flags;
3639        int ret;
3640
3641        spin_lock_irqsave(&domain->lock, flags);
3642        ret = __amd_iommu_flush_page(domain, pasid, address);
3643        spin_unlock_irqrestore(&domain->lock, flags);
3644
3645        return ret;
3646}
3647EXPORT_SYMBOL(amd_iommu_flush_page);
3648
3649static int __amd_iommu_flush_tlb(struct protection_domain *domain, int pasid)
3650{
3651        INC_STATS_COUNTER(invalidate_iotlb_all);
3652
3653        return __flush_pasid(domain, pasid, CMD_INV_IOMMU_ALL_PAGES_ADDRESS,
3654                             true);
3655}
3656
3657int amd_iommu_flush_tlb(struct iommu_domain *dom, int pasid)
3658{
3659        struct protection_domain *domain = dom->priv;
3660        unsigned long flags;
3661        int ret;
3662
3663        spin_lock_irqsave(&domain->lock, flags);
3664        ret = __amd_iommu_flush_tlb(domain, pasid);
3665        spin_unlock_irqrestore(&domain->lock, flags);
3666
3667        return ret;
3668}
3669EXPORT_SYMBOL(amd_iommu_flush_tlb);
3670
3671static u64 *__get_gcr3_pte(u64 *root, int level, int pasid, bool alloc)
3672{
3673        int index;
3674        u64 *pte;
3675
3676        while (true) {
3677
3678                index = (pasid >> (9 * level)) & 0x1ff;
3679                pte   = &root[index];
3680
3681                if (level == 0)
3682                        break;
3683
3684                if (!(*pte & GCR3_VALID)) {
3685                        if (!alloc)
3686                                return NULL;
3687
3688                        root = (void *)get_zeroed_page(GFP_ATOMIC);
3689                        if (root == NULL)
3690                                return NULL;
3691
3692                        *pte = __pa(root) | GCR3_VALID;
3693                }
3694
3695                root = __va(*pte & PAGE_MASK);
3696
3697                level -= 1;
3698        }
3699
3700        return pte;
3701}
3702
3703static int __set_gcr3(struct protection_domain *domain, int pasid,
3704                      unsigned long cr3)
3705{
3706        u64 *pte;
3707
3708        if (domain->mode != PAGE_MODE_NONE)
3709                return -EINVAL;
3710
3711        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, true);
3712        if (pte == NULL)
3713                return -ENOMEM;
3714
3715        *pte = (cr3 & PAGE_MASK) | GCR3_VALID;
3716
3717        return __amd_iommu_flush_tlb(domain, pasid);
3718}
3719
3720static int __clear_gcr3(struct protection_domain *domain, int pasid)
3721{
3722        u64 *pte;
3723
3724        if (domain->mode != PAGE_MODE_NONE)
3725                return -EINVAL;
3726
3727        pte = __get_gcr3_pte(domain->gcr3_tbl, domain->glx, pasid, false);
3728        if (pte == NULL)
3729                return 0;
3730
3731        *pte = 0;
3732
3733        return __amd_iommu_flush_tlb(domain, pasid);
3734}
3735
3736int amd_iommu_domain_set_gcr3(struct iommu_domain *dom, int pasid,
3737                              unsigned long cr3)
3738{
3739        struct protection_domain *domain = dom->priv;
3740        unsigned long flags;
3741        int ret;
3742
3743        spin_lock_irqsave(&domain->lock, flags);
3744        ret = __set_gcr3(domain, pasid, cr3);
3745        spin_unlock_irqrestore(&domain->lock, flags);
3746
3747        return ret;
3748}
3749EXPORT_SYMBOL(amd_iommu_domain_set_gcr3);
3750
3751int amd_iommu_domain_clear_gcr3(struct iommu_domain *dom, int pasid)
3752{
3753        struct protection_domain *domain = dom->priv;
3754        unsigned long flags;
3755        int ret;
3756
3757        spin_lock_irqsave(&domain->lock, flags);
3758        ret = __clear_gcr3(domain, pasid);
3759        spin_unlock_irqrestore(&domain->lock, flags);
3760
3761        return ret;
3762}
3763EXPORT_SYMBOL(amd_iommu_domain_clear_gcr3);
3764
3765int amd_iommu_complete_ppr(struct pci_dev *pdev, int pasid,
3766                           int status, int tag)
3767{
3768        struct iommu_dev_data *dev_data;
3769        struct amd_iommu *iommu;
3770        struct iommu_cmd cmd;
3771
3772        INC_STATS_COUNTER(complete_ppr);
3773
3774        dev_data = get_dev_data(&pdev->dev);
3775        iommu    = amd_iommu_rlookup_table[dev_data->devid];
3776
3777        build_complete_ppr(&cmd, dev_data->devid, pasid, status,
3778                           tag, dev_data->pri_tlp);
3779
3780        return iommu_queue_command(iommu, &cmd);
3781}
3782EXPORT_SYMBOL(amd_iommu_complete_ppr);
3783
3784struct iommu_domain *amd_iommu_get_v2_domain(struct pci_dev *pdev)
3785{
3786        struct protection_domain *domain;
3787
3788        domain = get_domain(&pdev->dev);
3789        if (IS_ERR(domain))
3790                return NULL;
3791
3792        /* Only return IOMMUv2 domains */
3793        if (!(domain->flags & PD_IOMMUV2_MASK))
3794                return NULL;
3795
3796        return domain->iommu_domain;
3797}
3798EXPORT_SYMBOL(amd_iommu_get_v2_domain);
3799
3800void amd_iommu_enable_device_erratum(struct pci_dev *pdev, u32 erratum)
3801{
3802        struct iommu_dev_data *dev_data;
3803
3804        if (!amd_iommu_v2_supported())
3805                return;
3806
3807        dev_data = get_dev_data(&pdev->dev);
3808        dev_data->errata |= (1 << erratum);
3809}
3810EXPORT_SYMBOL(amd_iommu_enable_device_erratum);
3811
3812int amd_iommu_device_info(struct pci_dev *pdev,
3813                          struct amd_iommu_device_info *info)
3814{
3815        int max_pasids;
3816        int pos;
3817
3818        if (pdev == NULL || info == NULL)
3819                return -EINVAL;
3820
3821        if (!amd_iommu_v2_supported())
3822                return -EINVAL;
3823
3824        memset(info, 0, sizeof(*info));
3825
3826        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_ATS);
3827        if (pos)
3828                info->flags |= AMD_IOMMU_DEVICE_FLAG_ATS_SUP;
3829
3830        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PRI);
3831        if (pos)
3832                info->flags |= AMD_IOMMU_DEVICE_FLAG_PRI_SUP;
3833
3834        pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_PASID);
3835        if (pos) {
3836                int features;
3837
3838                max_pasids = 1 << (9 * (amd_iommu_max_glx_val + 1));
3839                max_pasids = min(max_pasids, (1 << 20));
3840
3841                info->flags |= AMD_IOMMU_DEVICE_FLAG_PASID_SUP;
3842                info->max_pasids = min(pci_max_pasids(pdev), max_pasids);
3843
3844                features = pci_pasid_features(pdev);
3845                if (features & PCI_PASID_CAP_EXEC)
3846                        info->flags |= AMD_IOMMU_DEVICE_FLAG_EXEC_SUP;
3847                if (features & PCI_PASID_CAP_PRIV)
3848                        info->flags |= AMD_IOMMU_DEVICE_FLAG_PRIV_SUP;
3849        }
3850
3851        return 0;
3852}
3853EXPORT_SYMBOL(amd_iommu_device_info);
3854
3855#ifdef CONFIG_IRQ_REMAP
3856
3857/*****************************************************************************
3858 *
3859 * Interrupt Remapping Implementation
3860 *
3861 *****************************************************************************/
3862
3863union irte {
3864        u32 val;
3865        struct {
3866                u32 valid       : 1,
3867                    no_fault    : 1,
3868                    int_type    : 3,
3869                    rq_eoi      : 1,
3870                    dm          : 1,
3871                    rsvd_1      : 1,
3872                    destination : 8,
3873                    vector      : 8,
3874                    rsvd_2      : 8;
3875        } fields;
3876};
3877
3878#define DTE_IRQ_PHYS_ADDR_MASK  (((1ULL << 45)-1) << 6)
3879#define DTE_IRQ_REMAP_INTCTL    (2ULL << 60)
3880#define DTE_IRQ_TABLE_LEN       (8ULL << 1)
3881#define DTE_IRQ_REMAP_ENABLE    1ULL
3882
3883static void set_dte_irq_entry(u16 devid, struct irq_remap_table *table)
3884{
3885        u64 dte;
3886
3887        dte     = amd_iommu_dev_table[devid].data[2];
3888        dte     &= ~DTE_IRQ_PHYS_ADDR_MASK;
3889        dte     |= virt_to_phys(table->table);
3890        dte     |= DTE_IRQ_REMAP_INTCTL;
3891        dte     |= DTE_IRQ_TABLE_LEN;
3892        dte     |= DTE_IRQ_REMAP_ENABLE;
3893
3894        amd_iommu_dev_table[devid].data[2] = dte;
3895}
3896
3897#define IRTE_ALLOCATED (~1U)
3898
3899static struct irq_remap_table *get_irq_table(u16 devid, bool ioapic)
3900{
3901        struct irq_remap_table *table = NULL;
3902        struct amd_iommu *iommu;
3903        unsigned long flags;
3904        u16 alias;
3905
3906        write_lock_irqsave(&amd_iommu_devtable_lock, flags);
3907
3908        iommu = amd_iommu_rlookup_table[devid];
3909        if (!iommu)
3910                goto out_unlock;
3911
3912        table = irq_lookup_table[devid];
3913        if (table)
3914                goto out;
3915
3916        alias = amd_iommu_alias_table[devid];
3917        table = irq_lookup_table[alias];
3918        if (table) {
3919                irq_lookup_table[devid] = table;
3920                set_dte_irq_entry(devid, table);
3921                iommu_flush_dte(iommu, devid);
3922                goto out;
3923        }
3924
3925        /* Nothing there yet, allocate new irq remapping table */
3926        table = kzalloc(sizeof(*table), GFP_ATOMIC);
3927        if (!table)
3928                goto out;
3929
3930        /* Initialize table spin-lock */
3931        spin_lock_init(&table->lock);
3932
3933        if (ioapic)
3934                /* Keep the first 32 indexes free for IOAPIC interrupts */
3935                table->min_index = 32;
3936
3937        table->table = kmem_cache_alloc(amd_iommu_irq_cache, GFP_ATOMIC);
3938        if (!table->table) {
3939                kfree(table);
3940                table = NULL;
3941                goto out;
3942        }
3943
3944        memset(table->table, 0, MAX_IRQS_PER_TABLE * sizeof(u32));
3945
3946        if (ioapic) {
3947                int i;
3948
3949                for (i = 0; i < 32; ++i)
3950                        table->table[i] = IRTE_ALLOCATED;
3951        }
3952
3953        irq_lookup_table[devid] = table;
3954        set_dte_irq_entry(devid, table);
3955        iommu_flush_dte(iommu, devid);
3956        if (devid != alias) {
3957                irq_lookup_table[alias] = table;
3958                set_dte_irq_entry(devid, table);
3959                iommu_flush_dte(iommu, alias);
3960        }
3961
3962out:
3963        iommu_completion_wait(iommu);
3964
3965out_unlock:
3966        write_unlock_irqrestore(&amd_iommu_devtable_lock, flags);
3967
3968        return table;
3969}
3970
3971static int alloc_irq_index(struct irq_cfg *cfg, u16 devid, int count)
3972{
3973        struct irq_remap_table *table;
3974        unsigned long flags;
3975        int index, c;
3976
3977        table = get_irq_table(devid, false);
3978        if (!table)
3979                return -ENODEV;
3980
3981        spin_lock_irqsave(&table->lock, flags);
3982
3983        /* Scan table for free entries */
3984        for (c = 0, index = table->min_index;
3985             index < MAX_IRQS_PER_TABLE;
3986             ++index) {
3987                if (table->table[index] == 0)
3988                        c += 1;
3989                else
3990                        c = 0;
3991
3992                if (c == count) {
3993                        struct irq_2_irte *irte_info;
3994
3995                        for (; c != 0; --c)
3996                                table->table[index - c + 1] = IRTE_ALLOCATED;
3997
3998                        index -= count - 1;
3999
4000                        cfg->remapped         = 1;
4001                        irte_info             = &cfg->irq_2_irte;
4002                        irte_info->devid      = devid;
4003                        irte_info->index      = index;
4004
4005                        goto out;
4006                }
4007        }
4008
4009        index = -ENOSPC;
4010
4011out:
4012        spin_unlock_irqrestore(&table->lock, flags);
4013
4014        return index;
4015}
4016
4017static int get_irte(u16 devid, int index, union irte *irte)
4018{
4019        struct irq_remap_table *table;
4020        unsigned long flags;
4021
4022        table = get_irq_table(devid, false);
4023        if (!table)
4024                return -ENOMEM;
4025
4026        spin_lock_irqsave(&table->lock, flags);
4027        irte->val = table->table[index];
4028        spin_unlock_irqrestore(&table->lock, flags);
4029
4030        return 0;
4031}
4032
4033static int modify_irte(u16 devid, int index, union irte irte)
4034{
4035        struct irq_remap_table *table;
4036        struct amd_iommu *iommu;
4037        unsigned long flags;
4038
4039        iommu = amd_iommu_rlookup_table[devid];
4040        if (iommu == NULL)
4041                return -EINVAL;
4042
4043        table = get_irq_table(devid, false);
4044        if (!table)
4045                return -ENOMEM;
4046
4047        spin_lock_irqsave(&table->lock, flags);
4048        table->table[index] = irte.val;
4049        spin_unlock_irqrestore(&table->lock, flags);
4050
4051        iommu_flush_irt(iommu, devid);
4052        iommu_completion_wait(iommu);
4053
4054        return 0;
4055}
4056
4057static void free_irte(u16 devid, int index)
4058{
4059        struct irq_remap_table *table;
4060        struct amd_iommu *iommu;
4061        unsigned long flags;
4062
4063        iommu = amd_iommu_rlookup_table[devid];
4064        if (iommu == NULL)
4065                return;
4066
4067        table = get_irq_table(devid, false);
4068        if (!table)
4069                return;
4070
4071        spin_lock_irqsave(&table->lock, flags);
4072        table->table[index] = 0;
4073        spin_unlock_irqrestore(&table->lock, flags);
4074
4075        iommu_flush_irt(iommu, devid);
4076        iommu_completion_wait(iommu);
4077}
4078
4079static int setup_ioapic_entry(int irq, struct IO_APIC_route_entry *entry,
4080                              unsigned int destination, int vector,
4081                              struct io_apic_irq_attr *attr)
4082{
4083        struct irq_remap_table *table;
4084        struct irq_2_irte *irte_info;
4085        struct irq_cfg *cfg;
4086        union irte irte;
4087        int ioapic_id;
4088        int index;
4089        int devid;
4090        int ret;
4091
4092        cfg = irq_get_chip_data(irq);
4093        if (!cfg)
4094                return -EINVAL;
4095
4096        irte_info = &cfg->irq_2_irte;
4097        ioapic_id = mpc_ioapic_id(attr->ioapic);
4098        devid     = get_ioapic_devid(ioapic_id);
4099
4100        if (devid < 0)
4101                return devid;
4102
4103        table = get_irq_table(devid, true);
4104        if (table == NULL)
4105                return -ENOMEM;
4106
4107        index = attr->ioapic_pin;
4108
4109        /* Setup IRQ remapping info */
4110        cfg->remapped         = 1;
4111        irte_info->devid      = devid;
4112        irte_info->index      = index;
4113
4114        /* Setup IRTE for IOMMU */
4115        irte.val                = 0;
4116        irte.fields.vector      = vector;
4117        irte.fields.int_type    = apic->irq_delivery_mode;
4118        irte.fields.destination = destination;
4119        irte.fields.dm          = apic->irq_dest_mode;
4120        irte.fields.valid       = 1;
4121
4122        ret = modify_irte(devid, index, irte);
4123        if (ret)
4124                return ret;
4125
4126        /* Setup IOAPIC entry */
4127        memset(entry, 0, sizeof(*entry));
4128
4129        entry->vector        = index;
4130        entry->mask          = 0;
4131        entry->trigger       = attr->trigger;
4132        entry->polarity      = attr->polarity;
4133
4134        /*
4135         * Mask level triggered irqs.
4136         */
4137        if (attr->trigger)
4138                entry->mask = 1;
4139
4140        return 0;
4141}
4142
4143static int set_affinity(struct irq_data *data, const struct cpumask *mask,
4144                        bool force)
4145{
4146        struct irq_2_irte *irte_info;
4147        unsigned int dest, irq;
4148        struct irq_cfg *cfg;
4149        union irte irte;
4150        int err;
4151
4152        if (!config_enabled(CONFIG_SMP))
4153                return -1;
4154
4155        cfg       = data->chip_data;
4156        irq       = data->irq;
4157        irte_info = &cfg->irq_2_irte;
4158
4159        if (!cpumask_intersects(mask, cpu_online_mask))
4160                return -EINVAL;
4161
4162        if (get_irte(irte_info->devid, irte_info->index, &irte))
4163                return -EBUSY;
4164
4165        if (assign_irq_vector(irq, cfg, mask))
4166                return -EBUSY;
4167
4168        err = apic->cpu_mask_to_apicid_and(cfg->domain, mask, &dest);
4169        if (err) {
4170                if (assign_irq_vector(irq, cfg, data->affinity))
4171                        pr_err("AMD-Vi: Failed to recover vector for irq %d\n", irq);
4172                return err;
4173        }
4174
4175        irte.fields.vector      = cfg->vector;
4176        irte.fields.destination = dest;
4177
4178        modify_irte(irte_info->devid, irte_info->index, irte);
4179
4180        if (cfg->move_in_progress)
4181                send_cleanup_vector(cfg);
4182
4183        cpumask_copy(data->affinity, mask);
4184
4185        return 0;
4186}
4187
4188static int free_irq(int irq)
4189{
4190        struct irq_2_irte *irte_info;
4191        struct irq_cfg *cfg;
4192
4193        cfg = irq_get_chip_data(irq);
4194        if (!cfg)
4195                return -EINVAL;
4196
4197        irte_info = &cfg->irq_2_irte;
4198
4199        free_irte(irte_info->devid, irte_info->index);
4200
4201        return 0;
4202}
4203
4204static void compose_msi_msg(struct pci_dev *pdev,
4205                            unsigned int irq, unsigned int dest,
4206                            struct msi_msg *msg, u8 hpet_id)
4207{
4208        struct irq_2_irte *irte_info;
4209        struct irq_cfg *cfg;
4210        union irte irte;
4211
4212        cfg = irq_get_chip_data(irq);
4213        if (!cfg)
4214                return;
4215
4216        irte_info = &cfg->irq_2_irte;
4217
4218        irte.val                = 0;
4219        irte.fields.vector      = cfg->vector;
4220        irte.fields.int_type    = apic->irq_delivery_mode;
4221        irte.fields.destination = dest;
4222        irte.fields.dm          = apic->irq_dest_mode;
4223        irte.fields.valid       = 1;
4224
4225        modify_irte(irte_info->devid, irte_info->index, irte);
4226
4227        msg->address_hi = MSI_ADDR_BASE_HI;
4228        msg->address_lo = MSI_ADDR_BASE_LO;
4229        msg->data       = irte_info->index;
4230}
4231
4232static int msi_alloc_irq(struct pci_dev *pdev, int irq, int nvec)
4233{
4234        struct irq_cfg *cfg;
4235        int index;
4236        u16 devid;
4237
4238        if (!pdev)
4239                return -EINVAL;
4240
4241        cfg = irq_get_chip_data(irq);
4242        if (!cfg)
4243                return -EINVAL;
4244
4245        devid = get_device_id(&pdev->dev);
4246        index = alloc_irq_index(cfg, devid, nvec);
4247
4248        return index < 0 ? MAX_IRQS_PER_TABLE : index;
4249}
4250
4251static int msi_setup_irq(struct pci_dev *pdev, unsigned int irq,
4252                         int index, int offset)
4253{
4254        struct irq_2_irte *irte_info;
4255        struct irq_cfg *cfg;
4256        u16 devid;
4257
4258        if (!pdev)
4259                return -EINVAL;
4260
4261        cfg = irq_get_chip_data(irq);
4262        if (!cfg)
4263                return -EINVAL;
4264
4265        if (index >= MAX_IRQS_PER_TABLE)
4266                return 0;
4267
4268        devid           = get_device_id(&pdev->dev);
4269        irte_info       = &cfg->irq_2_irte;
4270
4271        cfg->remapped         = 1;
4272        irte_info->devid      = devid;
4273        irte_info->index      = index + offset;
4274
4275        return 0;
4276}
4277
4278static int setup_hpet_msi(unsigned int irq, unsigned int id)
4279{
4280        struct irq_2_irte *irte_info;
4281        struct irq_cfg *cfg;
4282        int index, devid;
4283
4284        cfg = irq_get_chip_data(irq);
4285        if (!cfg)
4286                return -EINVAL;
4287
4288        irte_info = &cfg->irq_2_irte;
4289        devid     = get_hpet_devid(id);
4290        if (devid < 0)
4291                return devid;
4292
4293        index = alloc_irq_index(cfg, devid, 1);
4294        if (index < 0)
4295                return index;
4296
4297        cfg->remapped         = 1;
4298        irte_info->devid      = devid;
4299        irte_info->index      = index;
4300
4301        return 0;
4302}
4303
4304struct irq_remap_ops amd_iommu_irq_ops = {
4305        .supported              = amd_iommu_supported,
4306        .prepare                = amd_iommu_prepare,
4307        .enable                 = amd_iommu_enable,
4308        .disable                = amd_iommu_disable,
4309        .reenable               = amd_iommu_reenable,
4310        .enable_faulting        = amd_iommu_enable_faulting,
4311        .setup_ioapic_entry     = setup_ioapic_entry,
4312        .set_affinity           = set_affinity,
4313        .free_irq               = free_irq,
4314        .compose_msi_msg        = compose_msi_msg,
4315        .msi_alloc_irq          = msi_alloc_irq,
4316        .msi_setup_irq          = msi_setup_irq,
4317        .setup_hpet_msi         = setup_hpet_msi,
4318};
4319#endif
4320