linux/drivers/misc/carma/carma-fpga.c
<<
>>
Prefs
   1/*
   2 * CARMA DATA-FPGA Access Driver
   3 *
   4 * Copyright (c) 2009-2011 Ira W. Snyder <iws@ovro.caltech.edu>
   5 *
   6 * This program is free software; you can redistribute it and/or modify it
   7 * under the terms of the GNU General Public License as published by the
   8 * Free Software Foundation; either version 2 of the License, or (at your
   9 * option) any later version.
  10 */
  11
  12/*
  13 * FPGA Memory Dump Format
  14 *
  15 * FPGA #0 control registers (32 x 32-bit words)
  16 * FPGA #1 control registers (32 x 32-bit words)
  17 * FPGA #2 control registers (32 x 32-bit words)
  18 * FPGA #3 control registers (32 x 32-bit words)
  19 * SYSFPGA control registers (32 x 32-bit words)
  20 * FPGA #0 correlation array (NUM_CORL0 correlation blocks)
  21 * FPGA #1 correlation array (NUM_CORL1 correlation blocks)
  22 * FPGA #2 correlation array (NUM_CORL2 correlation blocks)
  23 * FPGA #3 correlation array (NUM_CORL3 correlation blocks)
  24 *
  25 * Each correlation array consists of:
  26 *
  27 * Correlation Data      (2 x NUM_LAGSn x 32-bit words)
  28 * Pipeline Metadata     (2 x NUM_METAn x 32-bit words)
  29 * Quantization Counters (2 x NUM_QCNTn x 32-bit words)
  30 *
  31 * The NUM_CORLn, NUM_LAGSn, NUM_METAn, and NUM_QCNTn values come from
  32 * the FPGA configuration registers. They do not change once the FPGA's
  33 * have been programmed, they only change on re-programming.
  34 */
  35
  36/*
  37 * Basic Description:
  38 *
  39 * This driver is used to capture correlation spectra off of the four data
  40 * processing FPGAs. The FPGAs are often reprogrammed at runtime, therefore
  41 * this driver supports dynamic enable/disable of capture while the device
  42 * remains open.
  43 *
  44 * The nominal capture rate is 64Hz (every 15.625ms). To facilitate this fast
  45 * capture rate, all buffers are pre-allocated to avoid any potentially long
  46 * running memory allocations while capturing.
  47 *
  48 * There are two lists and one pointer which are used to keep track of the
  49 * different states of data buffers.
  50 *
  51 * 1) free list
  52 * This list holds all empty data buffers which are ready to receive data.
  53 *
  54 * 2) inflight pointer
  55 * This pointer holds the currently inflight data buffer. This buffer is having
  56 * data copied into it by the DMA engine.
  57 *
  58 * 3) used list
  59 * This list holds data buffers which have been filled, and are waiting to be
  60 * read by userspace.
  61 *
  62 * All buffers start life on the free list, then move successively to the
  63 * inflight pointer, and then to the used list. After they have been read by
  64 * userspace, they are moved back to the free list. The cycle repeats as long
  65 * as necessary.
  66 *
  67 * It should be noted that all buffers are mapped and ready for DMA when they
  68 * are on any of the three lists. They are only unmapped when they are in the
  69 * process of being read by userspace.
  70 */
  71
  72/*
  73 * Notes on the IRQ masking scheme:
  74 *
  75 * The IRQ masking scheme here is different than most other hardware. The only
  76 * way for the DATA-FPGAs to detect if the kernel has taken too long to copy
  77 * the data is if the status registers are not cleared before the next
  78 * correlation data dump is ready.
  79 *
  80 * The interrupt line is connected to the status registers, such that when they
  81 * are cleared, the interrupt is de-asserted. Therein lies our problem. We need
  82 * to schedule a long-running DMA operation and return from the interrupt
  83 * handler quickly, but we cannot clear the status registers.
  84 *
  85 * To handle this, the system controller FPGA has the capability to connect the
  86 * interrupt line to a user-controlled GPIO pin. This pin is driven high
  87 * (unasserted) and left that way. To mask the interrupt, we change the
  88 * interrupt source to the GPIO pin. Tada, we hid the interrupt. :)
  89 */
  90
  91#include <linux/of_platform.h>
  92#include <linux/dma-mapping.h>
  93#include <linux/miscdevice.h>
  94#include <linux/interrupt.h>
  95#include <linux/dmaengine.h>
  96#include <linux/seq_file.h>
  97#include <linux/highmem.h>
  98#include <linux/debugfs.h>
  99#include <linux/kernel.h>
 100#include <linux/module.h>
 101#include <linux/poll.h>
 102#include <linux/init.h>
 103#include <linux/slab.h>
 104#include <linux/kref.h>
 105#include <linux/io.h>
 106
 107#include <media/videobuf-dma-sg.h>
 108
 109/* system controller registers */
 110#define SYS_IRQ_SOURCE_CTL      0x24
 111#define SYS_IRQ_OUTPUT_EN       0x28
 112#define SYS_IRQ_OUTPUT_DATA     0x2C
 113#define SYS_IRQ_INPUT_DATA      0x30
 114#define SYS_FPGA_CONFIG_STATUS  0x44
 115
 116/* GPIO IRQ line assignment */
 117#define IRQ_CORL_DONE           0x10
 118
 119/* FPGA registers */
 120#define MMAP_REG_VERSION        0x00
 121#define MMAP_REG_CORL_CONF1     0x08
 122#define MMAP_REG_CORL_CONF2     0x0C
 123#define MMAP_REG_STATUS         0x48
 124
 125#define SYS_FPGA_BLOCK          0xF0000000
 126
 127#define DATA_FPGA_START         0x400000
 128#define DATA_FPGA_SIZE          0x80000
 129
 130static const char drv_name[] = "carma-fpga";
 131
 132#define NUM_FPGA        4
 133
 134#define MIN_DATA_BUFS   8
 135#define MAX_DATA_BUFS   64
 136
 137struct fpga_info {
 138        unsigned int num_lag_ram;
 139        unsigned int blk_size;
 140};
 141
 142struct data_buf {
 143        struct list_head entry;
 144        struct videobuf_dmabuf vb;
 145        size_t size;
 146};
 147
 148struct fpga_device {
 149        /* character device */
 150        struct miscdevice miscdev;
 151        struct device *dev;
 152        struct mutex mutex;
 153
 154        /* reference count */
 155        struct kref ref;
 156
 157        /* FPGA registers and information */
 158        struct fpga_info info[NUM_FPGA];
 159        void __iomem *regs;
 160        int irq;
 161
 162        /* FPGA Physical Address/Size Information */
 163        resource_size_t phys_addr;
 164        size_t phys_size;
 165
 166        /* DMA structures */
 167        struct sg_table corl_table;
 168        unsigned int corl_nents;
 169        struct dma_chan *chan;
 170
 171        /* Protection for all members below */
 172        spinlock_t lock;
 173
 174        /* Device enable/disable flag */
 175        bool enabled;
 176
 177        /* Correlation data buffers */
 178        wait_queue_head_t wait;
 179        struct list_head free;
 180        struct list_head used;
 181        struct data_buf *inflight;
 182
 183        /* Information about data buffers */
 184        unsigned int num_dropped;
 185        unsigned int num_buffers;
 186        size_t bufsize;
 187        struct dentry *dbg_entry;
 188};
 189
 190struct fpga_reader {
 191        struct fpga_device *priv;
 192        struct data_buf *buf;
 193        off_t buf_start;
 194};
 195
 196static void fpga_device_release(struct kref *ref)
 197{
 198        struct fpga_device *priv = container_of(ref, struct fpga_device, ref);
 199
 200        /* the last reader has exited, cleanup the last bits */
 201        mutex_destroy(&priv->mutex);
 202        kfree(priv);
 203}
 204
 205/*
 206 * Data Buffer Allocation Helpers
 207 */
 208
 209/**
 210 * data_free_buffer() - free a single data buffer and all allocated memory
 211 * @buf: the buffer to free
 212 *
 213 * This will free all of the pages allocated to the given data buffer, and
 214 * then free the structure itself
 215 */
 216static void data_free_buffer(struct data_buf *buf)
 217{
 218        /* It is ok to free a NULL buffer */
 219        if (!buf)
 220                return;
 221
 222        /* free all memory */
 223        videobuf_dma_free(&buf->vb);
 224        kfree(buf);
 225}
 226
 227/**
 228 * data_alloc_buffer() - allocate and fill a data buffer with pages
 229 * @bytes: the number of bytes required
 230 *
 231 * This allocates all space needed for a data buffer. It must be mapped before
 232 * use in a DMA transaction using videobuf_dma_map().
 233 *
 234 * Returns NULL on failure
 235 */
 236static struct data_buf *data_alloc_buffer(const size_t bytes)
 237{
 238        unsigned int nr_pages;
 239        struct data_buf *buf;
 240        int ret;
 241
 242        /* calculate the number of pages necessary */
 243        nr_pages = DIV_ROUND_UP(bytes, PAGE_SIZE);
 244
 245        /* allocate the buffer structure */
 246        buf = kzalloc(sizeof(*buf), GFP_KERNEL);
 247        if (!buf)
 248                goto out_return;
 249
 250        /* initialize internal fields */
 251        INIT_LIST_HEAD(&buf->entry);
 252        buf->size = bytes;
 253
 254        /* allocate the videobuf */
 255        videobuf_dma_init(&buf->vb);
 256        ret = videobuf_dma_init_kernel(&buf->vb, DMA_FROM_DEVICE, nr_pages);
 257        if (ret)
 258                goto out_free_buf;
 259
 260        return buf;
 261
 262out_free_buf:
 263        kfree(buf);
 264out_return:
 265        return NULL;
 266}
 267
 268/**
 269 * data_free_buffers() - free all allocated buffers
 270 * @priv: the driver's private data structure
 271 *
 272 * Free all buffers allocated by the driver (except those currently in the
 273 * process of being read by userspace).
 274 *
 275 * LOCKING: must hold dev->mutex
 276 * CONTEXT: user
 277 */
 278static void data_free_buffers(struct fpga_device *priv)
 279{
 280        struct data_buf *buf, *tmp;
 281
 282        /* the device should be stopped, no DMA in progress */
 283        BUG_ON(priv->inflight != NULL);
 284
 285        list_for_each_entry_safe(buf, tmp, &priv->free, entry) {
 286                list_del_init(&buf->entry);
 287                videobuf_dma_unmap(priv->dev, &buf->vb);
 288                data_free_buffer(buf);
 289        }
 290
 291        list_for_each_entry_safe(buf, tmp, &priv->used, entry) {
 292                list_del_init(&buf->entry);
 293                videobuf_dma_unmap(priv->dev, &buf->vb);
 294                data_free_buffer(buf);
 295        }
 296
 297        priv->num_buffers = 0;
 298        priv->bufsize = 0;
 299}
 300
 301/**
 302 * data_alloc_buffers() - allocate 1 seconds worth of data buffers
 303 * @priv: the driver's private data structure
 304 *
 305 * Allocate enough buffers for a whole second worth of data
 306 *
 307 * This routine will attempt to degrade nicely by succeeding even if a full
 308 * second worth of data buffers could not be allocated, as long as a minimum
 309 * number were allocated. In this case, it will print a message to the kernel
 310 * log.
 311 *
 312 * The device must not be modifying any lists when this is called.
 313 *
 314 * CONTEXT: user
 315 * LOCKING: must hold dev->mutex
 316 *
 317 * Returns 0 on success, -ERRNO otherwise
 318 */
 319static int data_alloc_buffers(struct fpga_device *priv)
 320{
 321        struct data_buf *buf;
 322        int i, ret;
 323
 324        for (i = 0; i < MAX_DATA_BUFS; i++) {
 325
 326                /* allocate a buffer */
 327                buf = data_alloc_buffer(priv->bufsize);
 328                if (!buf)
 329                        break;
 330
 331                /* map it for DMA */
 332                ret = videobuf_dma_map(priv->dev, &buf->vb);
 333                if (ret) {
 334                        data_free_buffer(buf);
 335                        break;
 336                }
 337
 338                /* add it to the list of free buffers */
 339                list_add_tail(&buf->entry, &priv->free);
 340                priv->num_buffers++;
 341        }
 342
 343        /* Make sure we allocated the minimum required number of buffers */
 344        if (priv->num_buffers < MIN_DATA_BUFS) {
 345                dev_err(priv->dev, "Unable to allocate enough data buffers\n");
 346                data_free_buffers(priv);
 347                return -ENOMEM;
 348        }
 349
 350        /* Warn if we are running in a degraded state, but do not fail */
 351        if (priv->num_buffers < MAX_DATA_BUFS) {
 352                dev_warn(priv->dev,
 353                         "Unable to allocate %d buffers, using %d buffers instead\n",
 354                         MAX_DATA_BUFS, i);
 355        }
 356
 357        return 0;
 358}
 359
 360/*
 361 * DMA Operations Helpers
 362 */
 363
 364/**
 365 * fpga_start_addr() - get the physical address a DATA-FPGA
 366 * @priv: the driver's private data structure
 367 * @fpga: the DATA-FPGA number (zero based)
 368 */
 369static dma_addr_t fpga_start_addr(struct fpga_device *priv, unsigned int fpga)
 370{
 371        return priv->phys_addr + 0x400000 + (0x80000 * fpga);
 372}
 373
 374/**
 375 * fpga_block_addr() - get the physical address of a correlation data block
 376 * @priv: the driver's private data structure
 377 * @fpga: the DATA-FPGA number (zero based)
 378 * @blknum: the correlation block number (zero based)
 379 */
 380static dma_addr_t fpga_block_addr(struct fpga_device *priv, unsigned int fpga,
 381                                  unsigned int blknum)
 382{
 383        return fpga_start_addr(priv, fpga) + (0x10000 * (1 + blknum));
 384}
 385
 386#define REG_BLOCK_SIZE  (32 * 4)
 387
 388/**
 389 * data_setup_corl_table() - create the scatterlist for correlation dumps
 390 * @priv: the driver's private data structure
 391 *
 392 * Create the scatterlist for transferring a correlation dump from the
 393 * DATA FPGAs. This structure will be reused for each buffer than needs
 394 * to be filled with correlation data.
 395 *
 396 * Returns 0 on success, -ERRNO otherwise
 397 */
 398static int data_setup_corl_table(struct fpga_device *priv)
 399{
 400        struct sg_table *table = &priv->corl_table;
 401        struct scatterlist *sg;
 402        struct fpga_info *info;
 403        int i, j, ret;
 404
 405        /* Calculate the number of entries needed */
 406        priv->corl_nents = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
 407        for (i = 0; i < NUM_FPGA; i++)
 408                priv->corl_nents += priv->info[i].num_lag_ram;
 409
 410        /* Allocate the scatterlist table */
 411        ret = sg_alloc_table(table, priv->corl_nents, GFP_KERNEL);
 412        if (ret) {
 413                dev_err(priv->dev, "unable to allocate DMA table\n");
 414                return ret;
 415        }
 416
 417        /* Add the DATA FPGA registers to the scatterlist */
 418        sg = table->sgl;
 419        for (i = 0; i < NUM_FPGA; i++) {
 420                sg_dma_address(sg) = fpga_start_addr(priv, i);
 421                sg_dma_len(sg) = REG_BLOCK_SIZE;
 422                sg = sg_next(sg);
 423        }
 424
 425        /* Add the SYS-FPGA registers to the scatterlist */
 426        sg_dma_address(sg) = SYS_FPGA_BLOCK;
 427        sg_dma_len(sg) = REG_BLOCK_SIZE;
 428        sg = sg_next(sg);
 429
 430        /* Add the FPGA correlation data blocks to the scatterlist */
 431        for (i = 0; i < NUM_FPGA; i++) {
 432                info = &priv->info[i];
 433                for (j = 0; j < info->num_lag_ram; j++) {
 434                        sg_dma_address(sg) = fpga_block_addr(priv, i, j);
 435                        sg_dma_len(sg) = info->blk_size;
 436                        sg = sg_next(sg);
 437                }
 438        }
 439
 440        /*
 441         * All physical addresses and lengths are present in the structure
 442         * now. It can be reused for every FPGA DATA interrupt
 443         */
 444        return 0;
 445}
 446
 447/*
 448 * FPGA Register Access Helpers
 449 */
 450
 451static void fpga_write_reg(struct fpga_device *priv, unsigned int fpga,
 452                           unsigned int reg, u32 val)
 453{
 454        const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
 455        iowrite32be(val, priv->regs + fpga_start + reg);
 456}
 457
 458static u32 fpga_read_reg(struct fpga_device *priv, unsigned int fpga,
 459                         unsigned int reg)
 460{
 461        const int fpga_start = DATA_FPGA_START + (fpga * DATA_FPGA_SIZE);
 462        return ioread32be(priv->regs + fpga_start + reg);
 463}
 464
 465/**
 466 * data_calculate_bufsize() - calculate the data buffer size required
 467 * @priv: the driver's private data structure
 468 *
 469 * Calculate the total buffer size needed to hold a single block
 470 * of correlation data
 471 *
 472 * CONTEXT: user
 473 *
 474 * Returns 0 on success, -ERRNO otherwise
 475 */
 476static int data_calculate_bufsize(struct fpga_device *priv)
 477{
 478        u32 num_corl, num_lags, num_meta, num_qcnt, num_pack;
 479        u32 conf1, conf2, version;
 480        u32 num_lag_ram, blk_size;
 481        int i;
 482
 483        /* Each buffer starts with the 5 FPGA register areas */
 484        priv->bufsize = (1 + NUM_FPGA) * REG_BLOCK_SIZE;
 485
 486        /* Read and store the configuration data for each FPGA */
 487        for (i = 0; i < NUM_FPGA; i++) {
 488                version = fpga_read_reg(priv, i, MMAP_REG_VERSION);
 489                conf1 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF1);
 490                conf2 = fpga_read_reg(priv, i, MMAP_REG_CORL_CONF2);
 491
 492                /* minor version 2 and later */
 493                if ((version & 0x000000FF) >= 2) {
 494                        num_corl = (conf1 & 0x000000F0) >> 4;
 495                        num_pack = (conf1 & 0x00000F00) >> 8;
 496                        num_lags = (conf1 & 0x00FFF000) >> 12;
 497                        num_meta = (conf1 & 0x7F000000) >> 24;
 498                        num_qcnt = (conf2 & 0x00000FFF) >> 0;
 499                } else {
 500                        num_corl = (conf1 & 0x000000F0) >> 4;
 501                        num_pack = 1; /* implied */
 502                        num_lags = (conf1 & 0x000FFF00) >> 8;
 503                        num_meta = (conf1 & 0x7FF00000) >> 20;
 504                        num_qcnt = (conf2 & 0x00000FFF) >> 0;
 505                }
 506
 507                num_lag_ram = (num_corl + num_pack - 1) / num_pack;
 508                blk_size = ((num_pack * num_lags) + num_meta + num_qcnt) * 8;
 509
 510                priv->info[i].num_lag_ram = num_lag_ram;
 511                priv->info[i].blk_size = blk_size;
 512                priv->bufsize += num_lag_ram * blk_size;
 513
 514                dev_dbg(priv->dev, "FPGA %d NUM_CORL: %d\n", i, num_corl);
 515                dev_dbg(priv->dev, "FPGA %d NUM_PACK: %d\n", i, num_pack);
 516                dev_dbg(priv->dev, "FPGA %d NUM_LAGS: %d\n", i, num_lags);
 517                dev_dbg(priv->dev, "FPGA %d NUM_META: %d\n", i, num_meta);
 518                dev_dbg(priv->dev, "FPGA %d NUM_QCNT: %d\n", i, num_qcnt);
 519                dev_dbg(priv->dev, "FPGA %d BLK_SIZE: %d\n", i, blk_size);
 520        }
 521
 522        dev_dbg(priv->dev, "TOTAL BUFFER SIZE: %zu bytes\n", priv->bufsize);
 523        return 0;
 524}
 525
 526/*
 527 * Interrupt Handling
 528 */
 529
 530/**
 531 * data_disable_interrupts() - stop the device from generating interrupts
 532 * @priv: the driver's private data structure
 533 *
 534 * Hide interrupts by switching to GPIO interrupt source
 535 *
 536 * LOCKING: must hold dev->lock
 537 */
 538static void data_disable_interrupts(struct fpga_device *priv)
 539{
 540        /* hide the interrupt by switching the IRQ driver to GPIO */
 541        iowrite32be(0x2F, priv->regs + SYS_IRQ_SOURCE_CTL);
 542}
 543
 544/**
 545 * data_enable_interrupts() - allow the device to generate interrupts
 546 * @priv: the driver's private data structure
 547 *
 548 * Unhide interrupts by switching to the FPGA interrupt source. At the
 549 * same time, clear the DATA-FPGA status registers.
 550 *
 551 * LOCKING: must hold dev->lock
 552 */
 553static void data_enable_interrupts(struct fpga_device *priv)
 554{
 555        /* clear the actual FPGA corl_done interrupt */
 556        fpga_write_reg(priv, 0, MMAP_REG_STATUS, 0x0);
 557        fpga_write_reg(priv, 1, MMAP_REG_STATUS, 0x0);
 558        fpga_write_reg(priv, 2, MMAP_REG_STATUS, 0x0);
 559        fpga_write_reg(priv, 3, MMAP_REG_STATUS, 0x0);
 560
 561        /* flush the writes */
 562        fpga_read_reg(priv, 0, MMAP_REG_STATUS);
 563        fpga_read_reg(priv, 1, MMAP_REG_STATUS);
 564        fpga_read_reg(priv, 2, MMAP_REG_STATUS);
 565        fpga_read_reg(priv, 3, MMAP_REG_STATUS);
 566
 567        /* switch back to the external interrupt source */
 568        iowrite32be(0x3F, priv->regs + SYS_IRQ_SOURCE_CTL);
 569}
 570
 571/**
 572 * data_dma_cb() - DMAEngine callback for DMA completion
 573 * @data: the driver's private data structure
 574 *
 575 * Complete a DMA transfer from the DATA-FPGA's
 576 *
 577 * This is called via the DMA callback mechanism, and will handle moving the
 578 * completed DMA transaction to the used list, and then wake any processes
 579 * waiting for new data
 580 *
 581 * CONTEXT: any, softirq expected
 582 */
 583static void data_dma_cb(void *data)
 584{
 585        struct fpga_device *priv = data;
 586        unsigned long flags;
 587
 588        spin_lock_irqsave(&priv->lock, flags);
 589
 590        /* If there is no inflight buffer, we've got a bug */
 591        BUG_ON(priv->inflight == NULL);
 592
 593        /* Move the inflight buffer onto the used list */
 594        list_move_tail(&priv->inflight->entry, &priv->used);
 595        priv->inflight = NULL;
 596
 597        /*
 598         * If data dumping is still enabled, then clear the FPGA
 599         * status registers and re-enable FPGA interrupts
 600         */
 601        if (priv->enabled)
 602                data_enable_interrupts(priv);
 603
 604        spin_unlock_irqrestore(&priv->lock, flags);
 605
 606        /*
 607         * We've changed both the inflight and used lists, so we need
 608         * to wake up any processes that are blocking for those events
 609         */
 610        wake_up(&priv->wait);
 611}
 612
 613/**
 614 * data_submit_dma() - prepare and submit the required DMA to fill a buffer
 615 * @priv: the driver's private data structure
 616 * @buf: the data buffer
 617 *
 618 * Prepare and submit the necessary DMA transactions to fill a correlation
 619 * data buffer.
 620 *
 621 * LOCKING: must hold dev->lock
 622 * CONTEXT: hardirq only
 623 *
 624 * Returns 0 on success, -ERRNO otherwise
 625 */
 626static int data_submit_dma(struct fpga_device *priv, struct data_buf *buf)
 627{
 628        struct scatterlist *dst_sg, *src_sg;
 629        unsigned int dst_nents, src_nents;
 630        struct dma_chan *chan = priv->chan;
 631        struct dma_async_tx_descriptor *tx;
 632        dma_cookie_t cookie;
 633        dma_addr_t dst, src;
 634        unsigned long dma_flags = DMA_COMPL_SKIP_DEST_UNMAP |
 635                                  DMA_COMPL_SKIP_SRC_UNMAP;
 636
 637        dst_sg = buf->vb.sglist;
 638        dst_nents = buf->vb.sglen;
 639
 640        src_sg = priv->corl_table.sgl;
 641        src_nents = priv->corl_nents;
 642
 643        /*
 644         * All buffers passed to this function should be ready and mapped
 645         * for DMA already. Therefore, we don't need to do anything except
 646         * submit it to the Freescale DMA Engine for processing
 647         */
 648
 649        /* setup the scatterlist to scatterlist transfer */
 650        tx = chan->device->device_prep_dma_sg(chan,
 651                                              dst_sg, dst_nents,
 652                                              src_sg, src_nents,
 653                                              0);
 654        if (!tx) {
 655                dev_err(priv->dev, "unable to prep scatterlist DMA\n");
 656                return -ENOMEM;
 657        }
 658
 659        /* submit the transaction to the DMA controller */
 660        cookie = tx->tx_submit(tx);
 661        if (dma_submit_error(cookie)) {
 662                dev_err(priv->dev, "unable to submit scatterlist DMA\n");
 663                return -ENOMEM;
 664        }
 665
 666        /* Prepare the re-read of the SYS-FPGA block */
 667        dst = sg_dma_address(dst_sg) + (NUM_FPGA * REG_BLOCK_SIZE);
 668        src = SYS_FPGA_BLOCK;
 669        tx = chan->device->device_prep_dma_memcpy(chan, dst, src,
 670                                                  REG_BLOCK_SIZE,
 671                                                  dma_flags);
 672        if (!tx) {
 673                dev_err(priv->dev, "unable to prep SYS-FPGA DMA\n");
 674                return -ENOMEM;
 675        }
 676
 677        /* Setup the callback */
 678        tx->callback = data_dma_cb;
 679        tx->callback_param = priv;
 680
 681        /* submit the transaction to the DMA controller */
 682        cookie = tx->tx_submit(tx);
 683        if (dma_submit_error(cookie)) {
 684                dev_err(priv->dev, "unable to submit SYS-FPGA DMA\n");
 685                return -ENOMEM;
 686        }
 687
 688        return 0;
 689}
 690
 691#define CORL_DONE       0x1
 692#define CORL_ERR        0x2
 693
 694static irqreturn_t data_irq(int irq, void *dev_id)
 695{
 696        struct fpga_device *priv = dev_id;
 697        bool submitted = false;
 698        struct data_buf *buf;
 699        u32 status;
 700        int i;
 701
 702        /* detect spurious interrupts via FPGA status */
 703        for (i = 0; i < 4; i++) {
 704                status = fpga_read_reg(priv, i, MMAP_REG_STATUS);
 705                if (!(status & (CORL_DONE | CORL_ERR))) {
 706                        dev_err(priv->dev, "spurious irq detected (FPGA)\n");
 707                        return IRQ_NONE;
 708                }
 709        }
 710
 711        /* detect spurious interrupts via raw IRQ pin readback */
 712        status = ioread32be(priv->regs + SYS_IRQ_INPUT_DATA);
 713        if (status & IRQ_CORL_DONE) {
 714                dev_err(priv->dev, "spurious irq detected (IRQ)\n");
 715                return IRQ_NONE;
 716        }
 717
 718        spin_lock(&priv->lock);
 719
 720        /*
 721         * This is an error case that should never happen.
 722         *
 723         * If this driver has a bug and manages to re-enable interrupts while
 724         * a DMA is in progress, then we will hit this statement and should
 725         * start paying attention immediately.
 726         */
 727        BUG_ON(priv->inflight != NULL);
 728
 729        /* hide the interrupt by switching the IRQ driver to GPIO */
 730        data_disable_interrupts(priv);
 731
 732        /* If there are no free buffers, drop this data */
 733        if (list_empty(&priv->free)) {
 734                priv->num_dropped++;
 735                goto out;
 736        }
 737
 738        buf = list_first_entry(&priv->free, struct data_buf, entry);
 739        list_del_init(&buf->entry);
 740        BUG_ON(buf->size != priv->bufsize);
 741
 742        /* Submit a DMA transfer to get the correlation data */
 743        if (data_submit_dma(priv, buf)) {
 744                dev_err(priv->dev, "Unable to setup DMA transfer\n");
 745                list_move_tail(&buf->entry, &priv->free);
 746                goto out;
 747        }
 748
 749        /* Save the buffer for the DMA callback */
 750        priv->inflight = buf;
 751        submitted = true;
 752
 753        /* Start the DMA Engine */
 754        dma_async_issue_pending(priv->chan);
 755
 756out:
 757        /* If no DMA was submitted, re-enable interrupts */
 758        if (!submitted)
 759                data_enable_interrupts(priv);
 760
 761        spin_unlock(&priv->lock);
 762        return IRQ_HANDLED;
 763}
 764
 765/*
 766 * Realtime Device Enable Helpers
 767 */
 768
 769/**
 770 * data_device_enable() - enable the device for buffered dumping
 771 * @priv: the driver's private data structure
 772 *
 773 * Enable the device for buffered dumping. Allocates buffers and hooks up
 774 * the interrupt handler. When this finishes, data will come pouring in.
 775 *
 776 * LOCKING: must hold dev->mutex
 777 * CONTEXT: user context only
 778 *
 779 * Returns 0 on success, -ERRNO otherwise
 780 */
 781static int data_device_enable(struct fpga_device *priv)
 782{
 783        bool enabled;
 784        u32 val;
 785        int ret;
 786
 787        /* multiple enables are safe: they do nothing */
 788        spin_lock_irq(&priv->lock);
 789        enabled = priv->enabled;
 790        spin_unlock_irq(&priv->lock);
 791        if (enabled)
 792                return 0;
 793
 794        /* check that the FPGAs are programmed */
 795        val = ioread32be(priv->regs + SYS_FPGA_CONFIG_STATUS);
 796        if (!(val & (1 << 18))) {
 797                dev_err(priv->dev, "DATA-FPGAs are not enabled\n");
 798                return -ENODATA;
 799        }
 800
 801        /* read the FPGAs to calculate the buffer size */
 802        ret = data_calculate_bufsize(priv);
 803        if (ret) {
 804                dev_err(priv->dev, "unable to calculate buffer size\n");
 805                goto out_error;
 806        }
 807
 808        /* allocate the correlation data buffers */
 809        ret = data_alloc_buffers(priv);
 810        if (ret) {
 811                dev_err(priv->dev, "unable to allocate buffers\n");
 812                goto out_error;
 813        }
 814
 815        /* setup the source scatterlist for dumping correlation data */
 816        ret = data_setup_corl_table(priv);
 817        if (ret) {
 818                dev_err(priv->dev, "unable to setup correlation DMA table\n");
 819                goto out_error;
 820        }
 821
 822        /* prevent the FPGAs from generating interrupts */
 823        data_disable_interrupts(priv);
 824
 825        /* hookup the irq handler */
 826        ret = request_irq(priv->irq, data_irq, IRQF_SHARED, drv_name, priv);
 827        if (ret) {
 828                dev_err(priv->dev, "unable to request IRQ handler\n");
 829                goto out_error;
 830        }
 831
 832        /* allow the DMA callback to re-enable FPGA interrupts */
 833        spin_lock_irq(&priv->lock);
 834        priv->enabled = true;
 835        spin_unlock_irq(&priv->lock);
 836
 837        /* allow the FPGAs to generate interrupts */
 838        data_enable_interrupts(priv);
 839        return 0;
 840
 841out_error:
 842        sg_free_table(&priv->corl_table);
 843        priv->corl_nents = 0;
 844
 845        data_free_buffers(priv);
 846        return ret;
 847}
 848
 849/**
 850 * data_device_disable() - disable the device for buffered dumping
 851 * @priv: the driver's private data structure
 852 *
 853 * Disable the device for buffered dumping. Stops new DMA transactions from
 854 * being generated, waits for all outstanding DMA to complete, and then frees
 855 * all buffers.
 856 *
 857 * LOCKING: must hold dev->mutex
 858 * CONTEXT: user only
 859 *
 860 * Returns 0 on success, -ERRNO otherwise
 861 */
 862static int data_device_disable(struct fpga_device *priv)
 863{
 864        spin_lock_irq(&priv->lock);
 865
 866        /* allow multiple disable */
 867        if (!priv->enabled) {
 868                spin_unlock_irq(&priv->lock);
 869                return 0;
 870        }
 871
 872        /*
 873         * Mark the device disabled
 874         *
 875         * This stops DMA callbacks from re-enabling interrupts
 876         */
 877        priv->enabled = false;
 878
 879        /* prevent the FPGAs from generating interrupts */
 880        data_disable_interrupts(priv);
 881
 882        /* wait until all ongoing DMA has finished */
 883        while (priv->inflight != NULL) {
 884                spin_unlock_irq(&priv->lock);
 885                wait_event(priv->wait, priv->inflight == NULL);
 886                spin_lock_irq(&priv->lock);
 887        }
 888
 889        spin_unlock_irq(&priv->lock);
 890
 891        /* unhook the irq handler */
 892        free_irq(priv->irq, priv);
 893
 894        /* free the correlation table */
 895        sg_free_table(&priv->corl_table);
 896        priv->corl_nents = 0;
 897
 898        /* free all buffers: the free and used lists are not being changed */
 899        data_free_buffers(priv);
 900        return 0;
 901}
 902
 903/*
 904 * DEBUGFS Interface
 905 */
 906#ifdef CONFIG_DEBUG_FS
 907
 908/*
 909 * Count the number of entries in the given list
 910 */
 911static unsigned int list_num_entries(struct list_head *list)
 912{
 913        struct list_head *entry;
 914        unsigned int ret = 0;
 915
 916        list_for_each(entry, list)
 917                ret++;
 918
 919        return ret;
 920}
 921
 922static int data_debug_show(struct seq_file *f, void *offset)
 923{
 924        struct fpga_device *priv = f->private;
 925
 926        spin_lock_irq(&priv->lock);
 927
 928        seq_printf(f, "enabled: %d\n", priv->enabled);
 929        seq_printf(f, "bufsize: %d\n", priv->bufsize);
 930        seq_printf(f, "num_buffers: %d\n", priv->num_buffers);
 931        seq_printf(f, "num_free: %d\n", list_num_entries(&priv->free));
 932        seq_printf(f, "inflight: %d\n", priv->inflight != NULL);
 933        seq_printf(f, "num_used: %d\n", list_num_entries(&priv->used));
 934        seq_printf(f, "num_dropped: %d\n", priv->num_dropped);
 935
 936        spin_unlock_irq(&priv->lock);
 937        return 0;
 938}
 939
 940static int data_debug_open(struct inode *inode, struct file *file)
 941{
 942        return single_open(file, data_debug_show, inode->i_private);
 943}
 944
 945static const struct file_operations data_debug_fops = {
 946        .owner          = THIS_MODULE,
 947        .open           = data_debug_open,
 948        .read           = seq_read,
 949        .llseek         = seq_lseek,
 950        .release        = single_release,
 951};
 952
 953static int data_debugfs_init(struct fpga_device *priv)
 954{
 955        priv->dbg_entry = debugfs_create_file(drv_name, S_IRUGO, NULL, priv,
 956                                              &data_debug_fops);
 957        if (IS_ERR(priv->dbg_entry))
 958                return PTR_ERR(priv->dbg_entry);
 959
 960        return 0;
 961}
 962
 963static void data_debugfs_exit(struct fpga_device *priv)
 964{
 965        debugfs_remove(priv->dbg_entry);
 966}
 967
 968#else
 969
 970static inline int data_debugfs_init(struct fpga_device *priv)
 971{
 972        return 0;
 973}
 974
 975static inline void data_debugfs_exit(struct fpga_device *priv)
 976{
 977}
 978
 979#endif  /* CONFIG_DEBUG_FS */
 980
 981/*
 982 * SYSFS Attributes
 983 */
 984
 985static ssize_t data_en_show(struct device *dev, struct device_attribute *attr,
 986                            char *buf)
 987{
 988        struct fpga_device *priv = dev_get_drvdata(dev);
 989        int ret;
 990
 991        spin_lock_irq(&priv->lock);
 992        ret = snprintf(buf, PAGE_SIZE, "%u\n", priv->enabled);
 993        spin_unlock_irq(&priv->lock);
 994
 995        return ret;
 996}
 997
 998static ssize_t data_en_set(struct device *dev, struct device_attribute *attr,
 999                           const char *buf, size_t count)
1000{
1001        struct fpga_device *priv = dev_get_drvdata(dev);
1002        unsigned long enable;
1003        int ret;
1004
1005        ret = strict_strtoul(buf, 0, &enable);
1006        if (ret) {
1007                dev_err(priv->dev, "unable to parse enable input\n");
1008                return -EINVAL;
1009        }
1010
1011        /* protect against concurrent enable/disable */
1012        ret = mutex_lock_interruptible(&priv->mutex);
1013        if (ret)
1014                return ret;
1015
1016        if (enable)
1017                ret = data_device_enable(priv);
1018        else
1019                ret = data_device_disable(priv);
1020
1021        if (ret) {
1022                dev_err(priv->dev, "device %s failed\n",
1023                        enable ? "enable" : "disable");
1024                count = ret;
1025                goto out_unlock;
1026        }
1027
1028out_unlock:
1029        mutex_unlock(&priv->mutex);
1030        return count;
1031}
1032
1033static DEVICE_ATTR(enable, S_IWUSR | S_IRUGO, data_en_show, data_en_set);
1034
1035static struct attribute *data_sysfs_attrs[] = {
1036        &dev_attr_enable.attr,
1037        NULL,
1038};
1039
1040static const struct attribute_group rt_sysfs_attr_group = {
1041        .attrs = data_sysfs_attrs,
1042};
1043
1044/*
1045 * FPGA Realtime Data Character Device
1046 */
1047
1048static int data_open(struct inode *inode, struct file *filp)
1049{
1050        /*
1051         * The miscdevice layer puts our struct miscdevice into the
1052         * filp->private_data field. We use this to find our private
1053         * data and then overwrite it with our own private structure.
1054         */
1055        struct fpga_device *priv = container_of(filp->private_data,
1056                                                struct fpga_device, miscdev);
1057        struct fpga_reader *reader;
1058        int ret;
1059
1060        /* allocate private data */
1061        reader = kzalloc(sizeof(*reader), GFP_KERNEL);
1062        if (!reader)
1063                return -ENOMEM;
1064
1065        reader->priv = priv;
1066        reader->buf = NULL;
1067
1068        filp->private_data = reader;
1069        ret = nonseekable_open(inode, filp);
1070        if (ret) {
1071                dev_err(priv->dev, "nonseekable-open failed\n");
1072                kfree(reader);
1073                return ret;
1074        }
1075
1076        /*
1077         * success, increase the reference count of the private data structure
1078         * so that it doesn't disappear if the device is unbound
1079         */
1080        kref_get(&priv->ref);
1081        return 0;
1082}
1083
1084static int data_release(struct inode *inode, struct file *filp)
1085{
1086        struct fpga_reader *reader = filp->private_data;
1087        struct fpga_device *priv = reader->priv;
1088
1089        /* free the per-reader structure */
1090        data_free_buffer(reader->buf);
1091        kfree(reader);
1092        filp->private_data = NULL;
1093
1094        /* decrement our reference count to the private data */
1095        kref_put(&priv->ref, fpga_device_release);
1096        return 0;
1097}
1098
1099static ssize_t data_read(struct file *filp, char __user *ubuf, size_t count,
1100                         loff_t *f_pos)
1101{
1102        struct fpga_reader *reader = filp->private_data;
1103        struct fpga_device *priv = reader->priv;
1104        struct list_head *used = &priv->used;
1105        bool drop_buffer = false;
1106        struct data_buf *dbuf;
1107        size_t avail;
1108        void *data;
1109        int ret;
1110
1111        /* check if we already have a partial buffer */
1112        if (reader->buf) {
1113                dbuf = reader->buf;
1114                goto have_buffer;
1115        }
1116
1117        spin_lock_irq(&priv->lock);
1118
1119        /* Block until there is at least one buffer on the used list */
1120        while (list_empty(used)) {
1121                spin_unlock_irq(&priv->lock);
1122
1123                if (filp->f_flags & O_NONBLOCK)
1124                        return -EAGAIN;
1125
1126                ret = wait_event_interruptible(priv->wait, !list_empty(used));
1127                if (ret)
1128                        return ret;
1129
1130                spin_lock_irq(&priv->lock);
1131        }
1132
1133        /* Grab the first buffer off of the used list */
1134        dbuf = list_first_entry(used, struct data_buf, entry);
1135        list_del_init(&dbuf->entry);
1136
1137        spin_unlock_irq(&priv->lock);
1138
1139        /* Buffers are always mapped: unmap it */
1140        videobuf_dma_unmap(priv->dev, &dbuf->vb);
1141
1142        /* save the buffer for later */
1143        reader->buf = dbuf;
1144        reader->buf_start = 0;
1145
1146have_buffer:
1147        /* Get the number of bytes available */
1148        avail = dbuf->size - reader->buf_start;
1149        data = dbuf->vb.vaddr + reader->buf_start;
1150
1151        /* Get the number of bytes we can transfer */
1152        count = min(count, avail);
1153
1154        /* Copy the data to the userspace buffer */
1155        if (copy_to_user(ubuf, data, count))
1156                return -EFAULT;
1157
1158        /* Update the amount of available space */
1159        avail -= count;
1160
1161        /*
1162         * If there is still some data available, save the buffer for the
1163         * next userspace call to read() and return
1164         */
1165        if (avail > 0) {
1166                reader->buf_start += count;
1167                reader->buf = dbuf;
1168                return count;
1169        }
1170
1171        /*
1172         * Get the buffer ready to be reused for DMA
1173         *
1174         * If it fails, we pretend that the read never happed and return
1175         * -EFAULT to userspace. The read will be retried.
1176         */
1177        ret = videobuf_dma_map(priv->dev, &dbuf->vb);
1178        if (ret) {
1179                dev_err(priv->dev, "unable to remap buffer for DMA\n");
1180                return -EFAULT;
1181        }
1182
1183        /* Lock against concurrent enable/disable */
1184        spin_lock_irq(&priv->lock);
1185
1186        /* the reader is finished with this buffer */
1187        reader->buf = NULL;
1188
1189        /*
1190         * One of two things has happened, the device is disabled, or the
1191         * device has been reconfigured underneath us. In either case, we
1192         * should just throw away the buffer.
1193         *
1194         * Lockdep complains if this is done under the spinlock, so we
1195         * handle it during the unlock path.
1196         */
1197        if (!priv->enabled || dbuf->size != priv->bufsize) {
1198                drop_buffer = true;
1199                goto out_unlock;
1200        }
1201
1202        /* The buffer is safe to reuse, so add it back to the free list */
1203        list_add_tail(&dbuf->entry, &priv->free);
1204
1205out_unlock:
1206        spin_unlock_irq(&priv->lock);
1207
1208        if (drop_buffer) {
1209                videobuf_dma_unmap(priv->dev, &dbuf->vb);
1210                data_free_buffer(dbuf);
1211        }
1212
1213        return count;
1214}
1215
1216static unsigned int data_poll(struct file *filp, struct poll_table_struct *tbl)
1217{
1218        struct fpga_reader *reader = filp->private_data;
1219        struct fpga_device *priv = reader->priv;
1220        unsigned int mask = 0;
1221
1222        poll_wait(filp, &priv->wait, tbl);
1223
1224        if (!list_empty(&priv->used))
1225                mask |= POLLIN | POLLRDNORM;
1226
1227        return mask;
1228}
1229
1230static int data_mmap(struct file *filp, struct vm_area_struct *vma)
1231{
1232        struct fpga_reader *reader = filp->private_data;
1233        struct fpga_device *priv = reader->priv;
1234        unsigned long offset, vsize, psize, addr;
1235
1236        /* VMA properties */
1237        offset = vma->vm_pgoff << PAGE_SHIFT;
1238        vsize = vma->vm_end - vma->vm_start;
1239        psize = priv->phys_size - offset;
1240        addr = (priv->phys_addr + offset) >> PAGE_SHIFT;
1241
1242        /* Check against the FPGA region's physical memory size */
1243        if (vsize > psize) {
1244                dev_err(priv->dev, "requested mmap mapping too large\n");
1245                return -EINVAL;
1246        }
1247
1248        vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1249
1250        return io_remap_pfn_range(vma, vma->vm_start, addr, vsize,
1251                                  vma->vm_page_prot);
1252}
1253
1254static const struct file_operations data_fops = {
1255        .owner          = THIS_MODULE,
1256        .open           = data_open,
1257        .release        = data_release,
1258        .read           = data_read,
1259        .poll           = data_poll,
1260        .mmap           = data_mmap,
1261        .llseek         = no_llseek,
1262};
1263
1264/*
1265 * OpenFirmware Device Subsystem
1266 */
1267
1268static bool dma_filter(struct dma_chan *chan, void *data)
1269{
1270        /*
1271         * DMA Channel #0 is used for the FPGA Programmer, so ignore it
1272         *
1273         * This probably won't survive an unload/load cycle of the Freescale
1274         * DMAEngine driver, but that won't be a problem
1275         */
1276        if (chan->chan_id == 0 && chan->device->dev_id == 0)
1277                return false;
1278
1279        return true;
1280}
1281
1282static int data_of_probe(struct platform_device *op)
1283{
1284        struct device_node *of_node = op->dev.of_node;
1285        struct device *this_device;
1286        struct fpga_device *priv;
1287        struct resource res;
1288        dma_cap_mask_t mask;
1289        int ret;
1290
1291        /* Allocate private data */
1292        priv = kzalloc(sizeof(*priv), GFP_KERNEL);
1293        if (!priv) {
1294                dev_err(&op->dev, "Unable to allocate device private data\n");
1295                ret = -ENOMEM;
1296                goto out_return;
1297        }
1298
1299        dev_set_drvdata(&op->dev, priv);
1300        priv->dev = &op->dev;
1301        kref_init(&priv->ref);
1302        mutex_init(&priv->mutex);
1303
1304        dev_set_drvdata(priv->dev, priv);
1305        spin_lock_init(&priv->lock);
1306        INIT_LIST_HEAD(&priv->free);
1307        INIT_LIST_HEAD(&priv->used);
1308        init_waitqueue_head(&priv->wait);
1309
1310        /* Setup the misc device */
1311        priv->miscdev.minor = MISC_DYNAMIC_MINOR;
1312        priv->miscdev.name = drv_name;
1313        priv->miscdev.fops = &data_fops;
1314
1315        /* Get the physical address of the FPGA registers */
1316        ret = of_address_to_resource(of_node, 0, &res);
1317        if (ret) {
1318                dev_err(&op->dev, "Unable to find FPGA physical address\n");
1319                ret = -ENODEV;
1320                goto out_free_priv;
1321        }
1322
1323        priv->phys_addr = res.start;
1324        priv->phys_size = resource_size(&res);
1325
1326        /* ioremap the registers for use */
1327        priv->regs = of_iomap(of_node, 0);
1328        if (!priv->regs) {
1329                dev_err(&op->dev, "Unable to ioremap registers\n");
1330                ret = -ENOMEM;
1331                goto out_free_priv;
1332        }
1333
1334        dma_cap_zero(mask);
1335        dma_cap_set(DMA_MEMCPY, mask);
1336        dma_cap_set(DMA_INTERRUPT, mask);
1337        dma_cap_set(DMA_SLAVE, mask);
1338        dma_cap_set(DMA_SG, mask);
1339
1340        /* Request a DMA channel */
1341        priv->chan = dma_request_channel(mask, dma_filter, NULL);
1342        if (!priv->chan) {
1343                dev_err(&op->dev, "Unable to request DMA channel\n");
1344                ret = -ENODEV;
1345                goto out_unmap_regs;
1346        }
1347
1348        /* Find the correct IRQ number */
1349        priv->irq = irq_of_parse_and_map(of_node, 0);
1350        if (priv->irq == NO_IRQ) {
1351                dev_err(&op->dev, "Unable to find IRQ line\n");
1352                ret = -ENODEV;
1353                goto out_release_dma;
1354        }
1355
1356        /* Drive the GPIO for FPGA IRQ high (no interrupt) */
1357        iowrite32be(IRQ_CORL_DONE, priv->regs + SYS_IRQ_OUTPUT_DATA);
1358
1359        /* Register the miscdevice */
1360        ret = misc_register(&priv->miscdev);
1361        if (ret) {
1362                dev_err(&op->dev, "Unable to register miscdevice\n");
1363                goto out_irq_dispose_mapping;
1364        }
1365
1366        /* Create the debugfs files */
1367        ret = data_debugfs_init(priv);
1368        if (ret) {
1369                dev_err(&op->dev, "Unable to create debugfs files\n");
1370                goto out_misc_deregister;
1371        }
1372
1373        /* Create the sysfs files */
1374        this_device = priv->miscdev.this_device;
1375        dev_set_drvdata(this_device, priv);
1376        ret = sysfs_create_group(&this_device->kobj, &rt_sysfs_attr_group);
1377        if (ret) {
1378                dev_err(&op->dev, "Unable to create sysfs files\n");
1379                goto out_data_debugfs_exit;
1380        }
1381
1382        dev_info(&op->dev, "CARMA FPGA Realtime Data Driver Loaded\n");
1383        return 0;
1384
1385out_data_debugfs_exit:
1386        data_debugfs_exit(priv);
1387out_misc_deregister:
1388        misc_deregister(&priv->miscdev);
1389out_irq_dispose_mapping:
1390        irq_dispose_mapping(priv->irq);
1391out_release_dma:
1392        dma_release_channel(priv->chan);
1393out_unmap_regs:
1394        iounmap(priv->regs);
1395out_free_priv:
1396        kref_put(&priv->ref, fpga_device_release);
1397out_return:
1398        return ret;
1399}
1400
1401static int data_of_remove(struct platform_device *op)
1402{
1403        struct fpga_device *priv = dev_get_drvdata(&op->dev);
1404        struct device *this_device = priv->miscdev.this_device;
1405
1406        /* remove all sysfs files, now the device cannot be re-enabled */
1407        sysfs_remove_group(&this_device->kobj, &rt_sysfs_attr_group);
1408
1409        /* remove all debugfs files */
1410        data_debugfs_exit(priv);
1411
1412        /* disable the device from generating data */
1413        data_device_disable(priv);
1414
1415        /* remove the character device to stop new readers from appearing */
1416        misc_deregister(&priv->miscdev);
1417
1418        /* cleanup everything not needed by readers */
1419        irq_dispose_mapping(priv->irq);
1420        dma_release_channel(priv->chan);
1421        iounmap(priv->regs);
1422
1423        /* release our reference */
1424        kref_put(&priv->ref, fpga_device_release);
1425        return 0;
1426}
1427
1428static struct of_device_id data_of_match[] = {
1429        { .compatible = "carma,carma-fpga", },
1430        {},
1431};
1432
1433static struct platform_driver data_of_driver = {
1434        .probe          = data_of_probe,
1435        .remove         = data_of_remove,
1436        .driver         = {
1437                .name           = drv_name,
1438                .of_match_table = data_of_match,
1439                .owner          = THIS_MODULE,
1440        },
1441};
1442
1443module_platform_driver(data_of_driver);
1444
1445MODULE_AUTHOR("Ira W. Snyder <iws@ovro.caltech.edu>");
1446MODULE_DESCRIPTION("CARMA DATA-FPGA Access Driver");
1447MODULE_LICENSE("GPL");
1448