linux/drivers/mtd/ubi/attach.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) International Business Machines Corp., 2006
   3 *
   4 * This program is free software; you can redistribute it and/or modify
   5 * it under the terms of the GNU General Public License as published by
   6 * the Free Software Foundation; either version 2 of the License, or
   7 * (at your option) any later version.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See
  12 * the GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program; if not, write to the Free Software
  16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
  17 *
  18 * Author: Artem Bityutskiy (Битюцкий Артём)
  19 */
  20
  21/*
  22 * UBI attaching sub-system.
  23 *
  24 * This sub-system is responsible for attaching MTD devices and it also
  25 * implements flash media scanning.
  26 *
  27 * The attaching information is represented by a &struct ubi_attach_info'
  28 * object. Information about volumes is represented by &struct ubi_ainf_volume
  29 * objects which are kept in volume RB-tree with root at the @volumes field.
  30 * The RB-tree is indexed by the volume ID.
  31 *
  32 * Logical eraseblocks are represented by &struct ubi_ainf_peb objects. These
  33 * objects are kept in per-volume RB-trees with the root at the corresponding
  34 * &struct ubi_ainf_volume object. To put it differently, we keep an RB-tree of
  35 * per-volume objects and each of these objects is the root of RB-tree of
  36 * per-LEB objects.
  37 *
  38 * Corrupted physical eraseblocks are put to the @corr list, free physical
  39 * eraseblocks are put to the @free list and the physical eraseblock to be
  40 * erased are put to the @erase list.
  41 *
  42 * About corruptions
  43 * ~~~~~~~~~~~~~~~~~
  44 *
  45 * UBI protects EC and VID headers with CRC-32 checksums, so it can detect
  46 * whether the headers are corrupted or not. Sometimes UBI also protects the
  47 * data with CRC-32, e.g., when it executes the atomic LEB change operation, or
  48 * when it moves the contents of a PEB for wear-leveling purposes.
  49 *
  50 * UBI tries to distinguish between 2 types of corruptions.
  51 *
  52 * 1. Corruptions caused by power cuts. These are expected corruptions and UBI
  53 * tries to handle them gracefully, without printing too many warnings and
  54 * error messages. The idea is that we do not lose important data in these
  55 * cases - we may lose only the data which were being written to the media just
  56 * before the power cut happened, and the upper layers (e.g., UBIFS) are
  57 * supposed to handle such data losses (e.g., by using the FS journal).
  58 *
  59 * When UBI detects a corruption (CRC-32 mismatch) in a PEB, and it looks like
  60 * the reason is a power cut, UBI puts this PEB to the @erase list, and all
  61 * PEBs in the @erase list are scheduled for erasure later.
  62 *
  63 * 2. Unexpected corruptions which are not caused by power cuts. During
  64 * attaching, such PEBs are put to the @corr list and UBI preserves them.
  65 * Obviously, this lessens the amount of available PEBs, and if at some  point
  66 * UBI runs out of free PEBs, it switches to R/O mode. UBI also loudly informs
  67 * about such PEBs every time the MTD device is attached.
  68 *
  69 * However, it is difficult to reliably distinguish between these types of
  70 * corruptions and UBI's strategy is as follows (in case of attaching by
  71 * scanning). UBI assumes corruption type 2 if the VID header is corrupted and
  72 * the data area does not contain all 0xFFs, and there were no bit-flips or
  73 * integrity errors (e.g., ECC errors in case of NAND) while reading the data
  74 * area.  Otherwise UBI assumes corruption type 1. So the decision criteria
  75 * are as follows.
  76 *   o If the data area contains only 0xFFs, there are no data, and it is safe
  77 *     to just erase this PEB - this is corruption type 1.
  78 *   o If the data area has bit-flips or data integrity errors (ECC errors on
  79 *     NAND), it is probably a PEB which was being erased when power cut
  80 *     happened, so this is corruption type 1. However, this is just a guess,
  81 *     which might be wrong.
  82 *   o Otherwise this is corruption type 2.
  83 */
  84
  85#include <linux/err.h>
  86#include <linux/slab.h>
  87#include <linux/crc32.h>
  88#include <linux/math64.h>
  89#include <linux/random.h>
  90#include "ubi.h"
  91
  92static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai);
  93
  94/* Temporary variables used during scanning */
  95static struct ubi_ec_hdr *ech;
  96static struct ubi_vid_hdr *vidh;
  97
  98/**
  99 * add_to_list - add physical eraseblock to a list.
 100 * @ai: attaching information
 101 * @pnum: physical eraseblock number to add
 102 * @vol_id: the last used volume id for the PEB
 103 * @lnum: the last used LEB number for the PEB
 104 * @ec: erase counter of the physical eraseblock
 105 * @to_head: if not zero, add to the head of the list
 106 * @list: the list to add to
 107 *
 108 * This function allocates a 'struct ubi_ainf_peb' object for physical
 109 * eraseblock @pnum and adds it to the "free", "erase", or "alien" lists.
 110 * It stores the @lnum and @vol_id alongside, which can both be
 111 * %UBI_UNKNOWN if they are not available, not readable, or not assigned.
 112 * If @to_head is not zero, PEB will be added to the head of the list, which
 113 * basically means it will be processed first later. E.g., we add corrupted
 114 * PEBs (corrupted due to power cuts) to the head of the erase list to make
 115 * sure we erase them first and get rid of corruptions ASAP. This function
 116 * returns zero in case of success and a negative error code in case of
 117 * failure.
 118 */
 119static int add_to_list(struct ubi_attach_info *ai, int pnum, int vol_id,
 120                       int lnum, int ec, int to_head, struct list_head *list)
 121{
 122        struct ubi_ainf_peb *aeb;
 123
 124        if (list == &ai->free) {
 125                dbg_bld("add to free: PEB %d, EC %d", pnum, ec);
 126        } else if (list == &ai->erase) {
 127                dbg_bld("add to erase: PEB %d, EC %d", pnum, ec);
 128        } else if (list == &ai->alien) {
 129                dbg_bld("add to alien: PEB %d, EC %d", pnum, ec);
 130                ai->alien_peb_count += 1;
 131        } else
 132                BUG();
 133
 134        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 135        if (!aeb)
 136                return -ENOMEM;
 137
 138        aeb->pnum = pnum;
 139        aeb->vol_id = vol_id;
 140        aeb->lnum = lnum;
 141        aeb->ec = ec;
 142        if (to_head)
 143                list_add(&aeb->u.list, list);
 144        else
 145                list_add_tail(&aeb->u.list, list);
 146        return 0;
 147}
 148
 149/**
 150 * add_corrupted - add a corrupted physical eraseblock.
 151 * @ai: attaching information
 152 * @pnum: physical eraseblock number to add
 153 * @ec: erase counter of the physical eraseblock
 154 *
 155 * This function allocates a 'struct ubi_ainf_peb' object for a corrupted
 156 * physical eraseblock @pnum and adds it to the 'corr' list.  The corruption
 157 * was presumably not caused by a power cut. Returns zero in case of success
 158 * and a negative error code in case of failure.
 159 */
 160static int add_corrupted(struct ubi_attach_info *ai, int pnum, int ec)
 161{
 162        struct ubi_ainf_peb *aeb;
 163
 164        dbg_bld("add to corrupted: PEB %d, EC %d", pnum, ec);
 165
 166        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 167        if (!aeb)
 168                return -ENOMEM;
 169
 170        ai->corr_peb_count += 1;
 171        aeb->pnum = pnum;
 172        aeb->ec = ec;
 173        list_add(&aeb->u.list, &ai->corr);
 174        return 0;
 175}
 176
 177/**
 178 * validate_vid_hdr - check volume identifier header.
 179 * @vid_hdr: the volume identifier header to check
 180 * @av: information about the volume this logical eraseblock belongs to
 181 * @pnum: physical eraseblock number the VID header came from
 182 *
 183 * This function checks that data stored in @vid_hdr is consistent. Returns
 184 * non-zero if an inconsistency was found and zero if not.
 185 *
 186 * Note, UBI does sanity check of everything it reads from the flash media.
 187 * Most of the checks are done in the I/O sub-system. Here we check that the
 188 * information in the VID header is consistent to the information in other VID
 189 * headers of the same volume.
 190 */
 191static int validate_vid_hdr(const struct ubi_vid_hdr *vid_hdr,
 192                            const struct ubi_ainf_volume *av, int pnum)
 193{
 194        int vol_type = vid_hdr->vol_type;
 195        int vol_id = be32_to_cpu(vid_hdr->vol_id);
 196        int used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 197        int data_pad = be32_to_cpu(vid_hdr->data_pad);
 198
 199        if (av->leb_count != 0) {
 200                int av_vol_type;
 201
 202                /*
 203                 * This is not the first logical eraseblock belonging to this
 204                 * volume. Ensure that the data in its VID header is consistent
 205                 * to the data in previous logical eraseblock headers.
 206                 */
 207
 208                if (vol_id != av->vol_id) {
 209                        ubi_err("inconsistent vol_id");
 210                        goto bad;
 211                }
 212
 213                if (av->vol_type == UBI_STATIC_VOLUME)
 214                        av_vol_type = UBI_VID_STATIC;
 215                else
 216                        av_vol_type = UBI_VID_DYNAMIC;
 217
 218                if (vol_type != av_vol_type) {
 219                        ubi_err("inconsistent vol_type");
 220                        goto bad;
 221                }
 222
 223                if (used_ebs != av->used_ebs) {
 224                        ubi_err("inconsistent used_ebs");
 225                        goto bad;
 226                }
 227
 228                if (data_pad != av->data_pad) {
 229                        ubi_err("inconsistent data_pad");
 230                        goto bad;
 231                }
 232        }
 233
 234        return 0;
 235
 236bad:
 237        ubi_err("inconsistent VID header at PEB %d", pnum);
 238        ubi_dump_vid_hdr(vid_hdr);
 239        ubi_dump_av(av);
 240        return -EINVAL;
 241}
 242
 243/**
 244 * add_volume - add volume to the attaching information.
 245 * @ai: attaching information
 246 * @vol_id: ID of the volume to add
 247 * @pnum: physical eraseblock number
 248 * @vid_hdr: volume identifier header
 249 *
 250 * If the volume corresponding to the @vid_hdr logical eraseblock is already
 251 * present in the attaching information, this function does nothing. Otherwise
 252 * it adds corresponding volume to the attaching information. Returns a pointer
 253 * to the allocated "av" object in case of success and a negative error code in
 254 * case of failure.
 255 */
 256static struct ubi_ainf_volume *add_volume(struct ubi_attach_info *ai,
 257                                          int vol_id, int pnum,
 258                                          const struct ubi_vid_hdr *vid_hdr)
 259{
 260        struct ubi_ainf_volume *av;
 261        struct rb_node **p = &ai->volumes.rb_node, *parent = NULL;
 262
 263        ubi_assert(vol_id == be32_to_cpu(vid_hdr->vol_id));
 264
 265        /* Walk the volume RB-tree to look if this volume is already present */
 266        while (*p) {
 267                parent = *p;
 268                av = rb_entry(parent, struct ubi_ainf_volume, rb);
 269
 270                if (vol_id == av->vol_id)
 271                        return av;
 272
 273                if (vol_id > av->vol_id)
 274                        p = &(*p)->rb_left;
 275                else
 276                        p = &(*p)->rb_right;
 277        }
 278
 279        /* The volume is absent - add it */
 280        av = kmalloc(sizeof(struct ubi_ainf_volume), GFP_KERNEL);
 281        if (!av)
 282                return ERR_PTR(-ENOMEM);
 283
 284        av->highest_lnum = av->leb_count = 0;
 285        av->vol_id = vol_id;
 286        av->root = RB_ROOT;
 287        av->used_ebs = be32_to_cpu(vid_hdr->used_ebs);
 288        av->data_pad = be32_to_cpu(vid_hdr->data_pad);
 289        av->compat = vid_hdr->compat;
 290        av->vol_type = vid_hdr->vol_type == UBI_VID_DYNAMIC ? UBI_DYNAMIC_VOLUME
 291                                                            : UBI_STATIC_VOLUME;
 292        if (vol_id > ai->highest_vol_id)
 293                ai->highest_vol_id = vol_id;
 294
 295        rb_link_node(&av->rb, parent, p);
 296        rb_insert_color(&av->rb, &ai->volumes);
 297        ai->vols_found += 1;
 298        dbg_bld("added volume %d", vol_id);
 299        return av;
 300}
 301
 302/**
 303 * ubi_compare_lebs - find out which logical eraseblock is newer.
 304 * @ubi: UBI device description object
 305 * @aeb: first logical eraseblock to compare
 306 * @pnum: physical eraseblock number of the second logical eraseblock to
 307 * compare
 308 * @vid_hdr: volume identifier header of the second logical eraseblock
 309 *
 310 * This function compares 2 copies of a LEB and informs which one is newer. In
 311 * case of success this function returns a positive value, in case of failure, a
 312 * negative error code is returned. The success return codes use the following
 313 * bits:
 314 *     o bit 0 is cleared: the first PEB (described by @aeb) is newer than the
 315 *       second PEB (described by @pnum and @vid_hdr);
 316 *     o bit 0 is set: the second PEB is newer;
 317 *     o bit 1 is cleared: no bit-flips were detected in the newer LEB;
 318 *     o bit 1 is set: bit-flips were detected in the newer LEB;
 319 *     o bit 2 is cleared: the older LEB is not corrupted;
 320 *     o bit 2 is set: the older LEB is corrupted.
 321 */
 322int ubi_compare_lebs(struct ubi_device *ubi, const struct ubi_ainf_peb *aeb,
 323                        int pnum, const struct ubi_vid_hdr *vid_hdr)
 324{
 325        int len, err, second_is_newer, bitflips = 0, corrupted = 0;
 326        uint32_t data_crc, crc;
 327        struct ubi_vid_hdr *vh = NULL;
 328        unsigned long long sqnum2 = be64_to_cpu(vid_hdr->sqnum);
 329
 330        if (sqnum2 == aeb->sqnum) {
 331                /*
 332                 * This must be a really ancient UBI image which has been
 333                 * created before sequence numbers support has been added. At
 334                 * that times we used 32-bit LEB versions stored in logical
 335                 * eraseblocks. That was before UBI got into mainline. We do not
 336                 * support these images anymore. Well, those images still work,
 337                 * but only if no unclean reboots happened.
 338                 */
 339                ubi_err("unsupported on-flash UBI format");
 340                return -EINVAL;
 341        }
 342
 343        /* Obviously the LEB with lower sequence counter is older */
 344        second_is_newer = (sqnum2 > aeb->sqnum);
 345
 346        /*
 347         * Now we know which copy is newer. If the copy flag of the PEB with
 348         * newer version is not set, then we just return, otherwise we have to
 349         * check data CRC. For the second PEB we already have the VID header,
 350         * for the first one - we'll need to re-read it from flash.
 351         *
 352         * Note: this may be optimized so that we wouldn't read twice.
 353         */
 354
 355        if (second_is_newer) {
 356                if (!vid_hdr->copy_flag) {
 357                        /* It is not a copy, so it is newer */
 358                        dbg_bld("second PEB %d is newer, copy_flag is unset",
 359                                pnum);
 360                        return 1;
 361                }
 362        } else {
 363                if (!aeb->copy_flag) {
 364                        /* It is not a copy, so it is newer */
 365                        dbg_bld("first PEB %d is newer, copy_flag is unset",
 366                                pnum);
 367                        return bitflips << 1;
 368                }
 369
 370                vh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
 371                if (!vh)
 372                        return -ENOMEM;
 373
 374                pnum = aeb->pnum;
 375                err = ubi_io_read_vid_hdr(ubi, pnum, vh, 0);
 376                if (err) {
 377                        if (err == UBI_IO_BITFLIPS)
 378                                bitflips = 1;
 379                        else {
 380                                ubi_err("VID of PEB %d header is bad, but it was OK earlier, err %d",
 381                                        pnum, err);
 382                                if (err > 0)
 383                                        err = -EIO;
 384
 385                                goto out_free_vidh;
 386                        }
 387                }
 388
 389                vid_hdr = vh;
 390        }
 391
 392        /* Read the data of the copy and check the CRC */
 393
 394        len = be32_to_cpu(vid_hdr->data_size);
 395
 396        mutex_lock(&ubi->buf_mutex);
 397        err = ubi_io_read_data(ubi, ubi->peb_buf, pnum, 0, len);
 398        if (err && err != UBI_IO_BITFLIPS && !mtd_is_eccerr(err))
 399                goto out_unlock;
 400
 401        data_crc = be32_to_cpu(vid_hdr->data_crc);
 402        crc = crc32(UBI_CRC32_INIT, ubi->peb_buf, len);
 403        if (crc != data_crc) {
 404                dbg_bld("PEB %d CRC error: calculated %#08x, must be %#08x",
 405                        pnum, crc, data_crc);
 406                corrupted = 1;
 407                bitflips = 0;
 408                second_is_newer = !second_is_newer;
 409        } else {
 410                dbg_bld("PEB %d CRC is OK", pnum);
 411                bitflips = !!err;
 412        }
 413        mutex_unlock(&ubi->buf_mutex);
 414
 415        ubi_free_vid_hdr(ubi, vh);
 416
 417        if (second_is_newer)
 418                dbg_bld("second PEB %d is newer, copy_flag is set", pnum);
 419        else
 420                dbg_bld("first PEB %d is newer, copy_flag is set", pnum);
 421
 422        return second_is_newer | (bitflips << 1) | (corrupted << 2);
 423
 424out_unlock:
 425        mutex_unlock(&ubi->buf_mutex);
 426out_free_vidh:
 427        ubi_free_vid_hdr(ubi, vh);
 428        return err;
 429}
 430
 431/**
 432 * ubi_add_to_av - add used physical eraseblock to the attaching information.
 433 * @ubi: UBI device description object
 434 * @ai: attaching information
 435 * @pnum: the physical eraseblock number
 436 * @ec: erase counter
 437 * @vid_hdr: the volume identifier header
 438 * @bitflips: if bit-flips were detected when this physical eraseblock was read
 439 *
 440 * This function adds information about a used physical eraseblock to the
 441 * 'used' tree of the corresponding volume. The function is rather complex
 442 * because it has to handle cases when this is not the first physical
 443 * eraseblock belonging to the same logical eraseblock, and the newer one has
 444 * to be picked, while the older one has to be dropped. This function returns
 445 * zero in case of success and a negative error code in case of failure.
 446 */
 447int ubi_add_to_av(struct ubi_device *ubi, struct ubi_attach_info *ai, int pnum,
 448                  int ec, const struct ubi_vid_hdr *vid_hdr, int bitflips)
 449{
 450        int err, vol_id, lnum;
 451        unsigned long long sqnum;
 452        struct ubi_ainf_volume *av;
 453        struct ubi_ainf_peb *aeb;
 454        struct rb_node **p, *parent = NULL;
 455
 456        vol_id = be32_to_cpu(vid_hdr->vol_id);
 457        lnum = be32_to_cpu(vid_hdr->lnum);
 458        sqnum = be64_to_cpu(vid_hdr->sqnum);
 459
 460        dbg_bld("PEB %d, LEB %d:%d, EC %d, sqnum %llu, bitflips %d",
 461                pnum, vol_id, lnum, ec, sqnum, bitflips);
 462
 463        av = add_volume(ai, vol_id, pnum, vid_hdr);
 464        if (IS_ERR(av))
 465                return PTR_ERR(av);
 466
 467        if (ai->max_sqnum < sqnum)
 468                ai->max_sqnum = sqnum;
 469
 470        /*
 471         * Walk the RB-tree of logical eraseblocks of volume @vol_id to look
 472         * if this is the first instance of this logical eraseblock or not.
 473         */
 474        p = &av->root.rb_node;
 475        while (*p) {
 476                int cmp_res;
 477
 478                parent = *p;
 479                aeb = rb_entry(parent, struct ubi_ainf_peb, u.rb);
 480                if (lnum != aeb->lnum) {
 481                        if (lnum < aeb->lnum)
 482                                p = &(*p)->rb_left;
 483                        else
 484                                p = &(*p)->rb_right;
 485                        continue;
 486                }
 487
 488                /*
 489                 * There is already a physical eraseblock describing the same
 490                 * logical eraseblock present.
 491                 */
 492
 493                dbg_bld("this LEB already exists: PEB %d, sqnum %llu, EC %d",
 494                        aeb->pnum, aeb->sqnum, aeb->ec);
 495
 496                /*
 497                 * Make sure that the logical eraseblocks have different
 498                 * sequence numbers. Otherwise the image is bad.
 499                 *
 500                 * However, if the sequence number is zero, we assume it must
 501                 * be an ancient UBI image from the era when UBI did not have
 502                 * sequence numbers. We still can attach these images, unless
 503                 * there is a need to distinguish between old and new
 504                 * eraseblocks, in which case we'll refuse the image in
 505                 * 'ubi_compare_lebs()'. In other words, we attach old clean
 506                 * images, but refuse attaching old images with duplicated
 507                 * logical eraseblocks because there was an unclean reboot.
 508                 */
 509                if (aeb->sqnum == sqnum && sqnum != 0) {
 510                        ubi_err("two LEBs with same sequence number %llu",
 511                                sqnum);
 512                        ubi_dump_aeb(aeb, 0);
 513                        ubi_dump_vid_hdr(vid_hdr);
 514                        return -EINVAL;
 515                }
 516
 517                /*
 518                 * Now we have to drop the older one and preserve the newer
 519                 * one.
 520                 */
 521                cmp_res = ubi_compare_lebs(ubi, aeb, pnum, vid_hdr);
 522                if (cmp_res < 0)
 523                        return cmp_res;
 524
 525                if (cmp_res & 1) {
 526                        /*
 527                         * This logical eraseblock is newer than the one
 528                         * found earlier.
 529                         */
 530                        err = validate_vid_hdr(vid_hdr, av, pnum);
 531                        if (err)
 532                                return err;
 533
 534                        err = add_to_list(ai, aeb->pnum, aeb->vol_id,
 535                                          aeb->lnum, aeb->ec, cmp_res & 4,
 536                                          &ai->erase);
 537                        if (err)
 538                                return err;
 539
 540                        aeb->ec = ec;
 541                        aeb->pnum = pnum;
 542                        aeb->vol_id = vol_id;
 543                        aeb->lnum = lnum;
 544                        aeb->scrub = ((cmp_res & 2) || bitflips);
 545                        aeb->copy_flag = vid_hdr->copy_flag;
 546                        aeb->sqnum = sqnum;
 547
 548                        if (av->highest_lnum == lnum)
 549                                av->last_data_size =
 550                                        be32_to_cpu(vid_hdr->data_size);
 551
 552                        return 0;
 553                } else {
 554                        /*
 555                         * This logical eraseblock is older than the one found
 556                         * previously.
 557                         */
 558                        return add_to_list(ai, pnum, vol_id, lnum, ec,
 559                                           cmp_res & 4, &ai->erase);
 560                }
 561        }
 562
 563        /*
 564         * We've met this logical eraseblock for the first time, add it to the
 565         * attaching information.
 566         */
 567
 568        err = validate_vid_hdr(vid_hdr, av, pnum);
 569        if (err)
 570                return err;
 571
 572        aeb = kmem_cache_alloc(ai->aeb_slab_cache, GFP_KERNEL);
 573        if (!aeb)
 574                return -ENOMEM;
 575
 576        aeb->ec = ec;
 577        aeb->pnum = pnum;
 578        aeb->vol_id = vol_id;
 579        aeb->lnum = lnum;
 580        aeb->scrub = bitflips;
 581        aeb->copy_flag = vid_hdr->copy_flag;
 582        aeb->sqnum = sqnum;
 583
 584        if (av->highest_lnum <= lnum) {
 585                av->highest_lnum = lnum;
 586                av->last_data_size = be32_to_cpu(vid_hdr->data_size);
 587        }
 588
 589        av->leb_count += 1;
 590        rb_link_node(&aeb->u.rb, parent, p);
 591        rb_insert_color(&aeb->u.rb, &av->root);
 592        return 0;
 593}
 594
 595/**
 596 * ubi_find_av - find volume in the attaching information.
 597 * @ai: attaching information
 598 * @vol_id: the requested volume ID
 599 *
 600 * This function returns a pointer to the volume description or %NULL if there
 601 * are no data about this volume in the attaching information.
 602 */
 603struct ubi_ainf_volume *ubi_find_av(const struct ubi_attach_info *ai,
 604                                    int vol_id)
 605{
 606        struct ubi_ainf_volume *av;
 607        struct rb_node *p = ai->volumes.rb_node;
 608
 609        while (p) {
 610                av = rb_entry(p, struct ubi_ainf_volume, rb);
 611
 612                if (vol_id == av->vol_id)
 613                        return av;
 614
 615                if (vol_id > av->vol_id)
 616                        p = p->rb_left;
 617                else
 618                        p = p->rb_right;
 619        }
 620
 621        return NULL;
 622}
 623
 624/**
 625 * ubi_remove_av - delete attaching information about a volume.
 626 * @ai: attaching information
 627 * @av: the volume attaching information to delete
 628 */
 629void ubi_remove_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
 630{
 631        struct rb_node *rb;
 632        struct ubi_ainf_peb *aeb;
 633
 634        dbg_bld("remove attaching information about volume %d", av->vol_id);
 635
 636        while ((rb = rb_first(&av->root))) {
 637                aeb = rb_entry(rb, struct ubi_ainf_peb, u.rb);
 638                rb_erase(&aeb->u.rb, &av->root);
 639                list_add_tail(&aeb->u.list, &ai->erase);
 640        }
 641
 642        rb_erase(&av->rb, &ai->volumes);
 643        kfree(av);
 644        ai->vols_found -= 1;
 645}
 646
 647/**
 648 * early_erase_peb - erase a physical eraseblock.
 649 * @ubi: UBI device description object
 650 * @ai: attaching information
 651 * @pnum: physical eraseblock number to erase;
 652 * @ec: erase counter value to write (%UBI_UNKNOWN if it is unknown)
 653 *
 654 * This function erases physical eraseblock 'pnum', and writes the erase
 655 * counter header to it. This function should only be used on UBI device
 656 * initialization stages, when the EBA sub-system had not been yet initialized.
 657 * This function returns zero in case of success and a negative error code in
 658 * case of failure.
 659 */
 660static int early_erase_peb(struct ubi_device *ubi,
 661                           const struct ubi_attach_info *ai, int pnum, int ec)
 662{
 663        int err;
 664        struct ubi_ec_hdr *ec_hdr;
 665
 666        if ((long long)ec >= UBI_MAX_ERASECOUNTER) {
 667                /*
 668                 * Erase counter overflow. Upgrade UBI and use 64-bit
 669                 * erase counters internally.
 670                 */
 671                ubi_err("erase counter overflow at PEB %d, EC %d", pnum, ec);
 672                return -EINVAL;
 673        }
 674
 675        ec_hdr = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
 676        if (!ec_hdr)
 677                return -ENOMEM;
 678
 679        ec_hdr->ec = cpu_to_be64(ec);
 680
 681        err = ubi_io_sync_erase(ubi, pnum, 0);
 682        if (err < 0)
 683                goto out_free;
 684
 685        err = ubi_io_write_ec_hdr(ubi, pnum, ec_hdr);
 686
 687out_free:
 688        kfree(ec_hdr);
 689        return err;
 690}
 691
 692/**
 693 * ubi_early_get_peb - get a free physical eraseblock.
 694 * @ubi: UBI device description object
 695 * @ai: attaching information
 696 *
 697 * This function returns a free physical eraseblock. It is supposed to be
 698 * called on the UBI initialization stages when the wear-leveling sub-system is
 699 * not initialized yet. This function picks a physical eraseblocks from one of
 700 * the lists, writes the EC header if it is needed, and removes it from the
 701 * list.
 702 *
 703 * This function returns a pointer to the "aeb" of the found free PEB in case
 704 * of success and an error code in case of failure.
 705 */
 706struct ubi_ainf_peb *ubi_early_get_peb(struct ubi_device *ubi,
 707                                       struct ubi_attach_info *ai)
 708{
 709        int err = 0;
 710        struct ubi_ainf_peb *aeb, *tmp_aeb;
 711
 712        if (!list_empty(&ai->free)) {
 713                aeb = list_entry(ai->free.next, struct ubi_ainf_peb, u.list);
 714                list_del(&aeb->u.list);
 715                dbg_bld("return free PEB %d, EC %d", aeb->pnum, aeb->ec);
 716                return aeb;
 717        }
 718
 719        /*
 720         * We try to erase the first physical eraseblock from the erase list
 721         * and pick it if we succeed, or try to erase the next one if not. And
 722         * so forth. We don't want to take care about bad eraseblocks here -
 723         * they'll be handled later.
 724         */
 725        list_for_each_entry_safe(aeb, tmp_aeb, &ai->erase, u.list) {
 726                if (aeb->ec == UBI_UNKNOWN)
 727                        aeb->ec = ai->mean_ec;
 728
 729                err = early_erase_peb(ubi, ai, aeb->pnum, aeb->ec+1);
 730                if (err)
 731                        continue;
 732
 733                aeb->ec += 1;
 734                list_del(&aeb->u.list);
 735                dbg_bld("return PEB %d, EC %d", aeb->pnum, aeb->ec);
 736                return aeb;
 737        }
 738
 739        ubi_err("no free eraseblocks");
 740        return ERR_PTR(-ENOSPC);
 741}
 742
 743/**
 744 * check_corruption - check the data area of PEB.
 745 * @ubi: UBI device description object
 746 * @vid_hdr: the (corrupted) VID header of this PEB
 747 * @pnum: the physical eraseblock number to check
 748 *
 749 * This is a helper function which is used to distinguish between VID header
 750 * corruptions caused by power cuts and other reasons. If the PEB contains only
 751 * 0xFF bytes in the data area, the VID header is most probably corrupted
 752 * because of a power cut (%0 is returned in this case). Otherwise, it was
 753 * probably corrupted for some other reasons (%1 is returned in this case). A
 754 * negative error code is returned if a read error occurred.
 755 *
 756 * If the corruption reason was a power cut, UBI can safely erase this PEB.
 757 * Otherwise, it should preserve it to avoid possibly destroying important
 758 * information.
 759 */
 760static int check_corruption(struct ubi_device *ubi, struct ubi_vid_hdr *vid_hdr,
 761                            int pnum)
 762{
 763        int err;
 764
 765        mutex_lock(&ubi->buf_mutex);
 766        memset(ubi->peb_buf, 0x00, ubi->leb_size);
 767
 768        err = ubi_io_read(ubi, ubi->peb_buf, pnum, ubi->leb_start,
 769                          ubi->leb_size);
 770        if (err == UBI_IO_BITFLIPS || mtd_is_eccerr(err)) {
 771                /*
 772                 * Bit-flips or integrity errors while reading the data area.
 773                 * It is difficult to say for sure what type of corruption is
 774                 * this, but presumably a power cut happened while this PEB was
 775                 * erased, so it became unstable and corrupted, and should be
 776                 * erased.
 777                 */
 778                err = 0;
 779                goto out_unlock;
 780        }
 781
 782        if (err)
 783                goto out_unlock;
 784
 785        if (ubi_check_pattern(ubi->peb_buf, 0xFF, ubi->leb_size))
 786                goto out_unlock;
 787
 788        ubi_err("PEB %d contains corrupted VID header, and the data does not contain all 0xFF",
 789                pnum);
 790        ubi_err("this may be a non-UBI PEB or a severe VID header corruption which requires manual inspection");
 791        ubi_dump_vid_hdr(vid_hdr);
 792        pr_err("hexdump of PEB %d offset %d, length %d",
 793               pnum, ubi->leb_start, ubi->leb_size);
 794        ubi_dbg_print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
 795                               ubi->peb_buf, ubi->leb_size, 1);
 796        err = 1;
 797
 798out_unlock:
 799        mutex_unlock(&ubi->buf_mutex);
 800        return err;
 801}
 802
 803/**
 804 * scan_peb - scan and process UBI headers of a PEB.
 805 * @ubi: UBI device description object
 806 * @ai: attaching information
 807 * @pnum: the physical eraseblock number
 808 * @vid: The volume ID of the found volume will be stored in this pointer
 809 * @sqnum: The sqnum of the found volume will be stored in this pointer
 810 *
 811 * This function reads UBI headers of PEB @pnum, checks them, and adds
 812 * information about this PEB to the corresponding list or RB-tree in the
 813 * "attaching info" structure. Returns zero if the physical eraseblock was
 814 * successfully handled and a negative error code in case of failure.
 815 */
 816static int scan_peb(struct ubi_device *ubi, struct ubi_attach_info *ai,
 817                    int pnum, int *vid, unsigned long long *sqnum)
 818{
 819        long long uninitialized_var(ec);
 820        int err, bitflips = 0, vol_id = -1, ec_err = 0;
 821
 822        dbg_bld("scan PEB %d", pnum);
 823
 824        /* Skip bad physical eraseblocks */
 825        err = ubi_io_is_bad(ubi, pnum);
 826        if (err < 0)
 827                return err;
 828        else if (err) {
 829                ai->bad_peb_count += 1;
 830                return 0;
 831        }
 832
 833        err = ubi_io_read_ec_hdr(ubi, pnum, ech, 0);
 834        if (err < 0)
 835                return err;
 836        switch (err) {
 837        case 0:
 838                break;
 839        case UBI_IO_BITFLIPS:
 840                bitflips = 1;
 841                break;
 842        case UBI_IO_FF:
 843                ai->empty_peb_count += 1;
 844                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 845                                   UBI_UNKNOWN, 0, &ai->erase);
 846        case UBI_IO_FF_BITFLIPS:
 847                ai->empty_peb_count += 1;
 848                return add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 849                                   UBI_UNKNOWN, 1, &ai->erase);
 850        case UBI_IO_BAD_HDR_EBADMSG:
 851        case UBI_IO_BAD_HDR:
 852                /*
 853                 * We have to also look at the VID header, possibly it is not
 854                 * corrupted. Set %bitflips flag in order to make this PEB be
 855                 * moved and EC be re-created.
 856                 */
 857                ec_err = err;
 858                ec = UBI_UNKNOWN;
 859                bitflips = 1;
 860                break;
 861        default:
 862                ubi_err("'ubi_io_read_ec_hdr()' returned unknown code %d", err);
 863                return -EINVAL;
 864        }
 865
 866        if (!ec_err) {
 867                int image_seq;
 868
 869                /* Make sure UBI version is OK */
 870                if (ech->version != UBI_VERSION) {
 871                        ubi_err("this UBI version is %d, image version is %d",
 872                                UBI_VERSION, (int)ech->version);
 873                        return -EINVAL;
 874                }
 875
 876                ec = be64_to_cpu(ech->ec);
 877                if (ec > UBI_MAX_ERASECOUNTER) {
 878                        /*
 879                         * Erase counter overflow. The EC headers have 64 bits
 880                         * reserved, but we anyway make use of only 31 bit
 881                         * values, as this seems to be enough for any existing
 882                         * flash. Upgrade UBI and use 64-bit erase counters
 883                         * internally.
 884                         */
 885                        ubi_err("erase counter overflow, max is %d",
 886                                UBI_MAX_ERASECOUNTER);
 887                        ubi_dump_ec_hdr(ech);
 888                        return -EINVAL;
 889                }
 890
 891                /*
 892                 * Make sure that all PEBs have the same image sequence number.
 893                 * This allows us to detect situations when users flash UBI
 894                 * images incorrectly, so that the flash has the new UBI image
 895                 * and leftovers from the old one. This feature was added
 896                 * relatively recently, and the sequence number was always
 897                 * zero, because old UBI implementations always set it to zero.
 898                 * For this reasons, we do not panic if some PEBs have zero
 899                 * sequence number, while other PEBs have non-zero sequence
 900                 * number.
 901                 */
 902                image_seq = be32_to_cpu(ech->image_seq);
 903                if (!ubi->image_seq && image_seq)
 904                        ubi->image_seq = image_seq;
 905                if (ubi->image_seq && image_seq &&
 906                    ubi->image_seq != image_seq) {
 907                        ubi_err("bad image sequence number %d in PEB %d, expected %d",
 908                                image_seq, pnum, ubi->image_seq);
 909                        ubi_dump_ec_hdr(ech);
 910                        return -EINVAL;
 911                }
 912        }
 913
 914        /* OK, we've done with the EC header, let's look at the VID header */
 915
 916        err = ubi_io_read_vid_hdr(ubi, pnum, vidh, 0);
 917        if (err < 0)
 918                return err;
 919        switch (err) {
 920        case 0:
 921                break;
 922        case UBI_IO_BITFLIPS:
 923                bitflips = 1;
 924                break;
 925        case UBI_IO_BAD_HDR_EBADMSG:
 926                if (ec_err == UBI_IO_BAD_HDR_EBADMSG)
 927                        /*
 928                         * Both EC and VID headers are corrupted and were read
 929                         * with data integrity error, probably this is a bad
 930                         * PEB, bit it is not marked as bad yet. This may also
 931                         * be a result of power cut during erasure.
 932                         */
 933                        ai->maybe_bad_peb_count += 1;
 934        case UBI_IO_BAD_HDR:
 935                if (ec_err)
 936                        /*
 937                         * Both headers are corrupted. There is a possibility
 938                         * that this a valid UBI PEB which has corresponding
 939                         * LEB, but the headers are corrupted. However, it is
 940                         * impossible to distinguish it from a PEB which just
 941                         * contains garbage because of a power cut during erase
 942                         * operation. So we just schedule this PEB for erasure.
 943                         *
 944                         * Besides, in case of NOR flash, we deliberately
 945                         * corrupt both headers because NOR flash erasure is
 946                         * slow and can start from the end.
 947                         */
 948                        err = 0;
 949                else
 950                        /*
 951                         * The EC was OK, but the VID header is corrupted. We
 952                         * have to check what is in the data area.
 953                         */
 954                        err = check_corruption(ubi, vidh, pnum);
 955
 956                if (err < 0)
 957                        return err;
 958                else if (!err)
 959                        /* This corruption is caused by a power cut */
 960                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 961                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 962                else
 963                        /* This is an unexpected corruption */
 964                        err = add_corrupted(ai, pnum, ec);
 965                if (err)
 966                        return err;
 967                goto adjust_mean_ec;
 968        case UBI_IO_FF_BITFLIPS:
 969                err = add_to_list(ai, pnum, UBI_UNKNOWN, UBI_UNKNOWN,
 970                                  ec, 1, &ai->erase);
 971                if (err)
 972                        return err;
 973                goto adjust_mean_ec;
 974        case UBI_IO_FF:
 975                if (ec_err || bitflips)
 976                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 977                                          UBI_UNKNOWN, ec, 1, &ai->erase);
 978                else
 979                        err = add_to_list(ai, pnum, UBI_UNKNOWN,
 980                                          UBI_UNKNOWN, ec, 0, &ai->free);
 981                if (err)
 982                        return err;
 983                goto adjust_mean_ec;
 984        default:
 985                ubi_err("'ubi_io_read_vid_hdr()' returned unknown code %d",
 986                        err);
 987                return -EINVAL;
 988        }
 989
 990        vol_id = be32_to_cpu(vidh->vol_id);
 991        if (vid)
 992                *vid = vol_id;
 993        if (sqnum)
 994                *sqnum = be64_to_cpu(vidh->sqnum);
 995        if (vol_id > UBI_MAX_VOLUMES && vol_id != UBI_LAYOUT_VOLUME_ID) {
 996                int lnum = be32_to_cpu(vidh->lnum);
 997
 998                /* Unsupported internal volume */
 999                switch (vidh->compat) {
1000                case UBI_COMPAT_DELETE:
1001                        if (vol_id != UBI_FM_SB_VOLUME_ID
1002                            && vol_id != UBI_FM_DATA_VOLUME_ID) {
1003                                ubi_msg("\"delete\" compatible internal volume %d:%d found, will remove it",
1004                                        vol_id, lnum);
1005                        }
1006                        err = add_to_list(ai, pnum, vol_id, lnum,
1007                                          ec, 1, &ai->erase);
1008                        if (err)
1009                                return err;
1010                        return 0;
1011
1012                case UBI_COMPAT_RO:
1013                        ubi_msg("read-only compatible internal volume %d:%d found, switch to read-only mode",
1014                                vol_id, lnum);
1015                        ubi->ro_mode = 1;
1016                        break;
1017
1018                case UBI_COMPAT_PRESERVE:
1019                        ubi_msg("\"preserve\" compatible internal volume %d:%d found",
1020                                vol_id, lnum);
1021                        err = add_to_list(ai, pnum, vol_id, lnum,
1022                                          ec, 0, &ai->alien);
1023                        if (err)
1024                                return err;
1025                        return 0;
1026
1027                case UBI_COMPAT_REJECT:
1028                        ubi_err("incompatible internal volume %d:%d found",
1029                                vol_id, lnum);
1030                        return -EINVAL;
1031                }
1032        }
1033
1034        if (ec_err)
1035                ubi_warn("valid VID header but corrupted EC header at PEB %d",
1036                         pnum);
1037        err = ubi_add_to_av(ubi, ai, pnum, ec, vidh, bitflips);
1038        if (err)
1039                return err;
1040
1041adjust_mean_ec:
1042        if (!ec_err) {
1043                ai->ec_sum += ec;
1044                ai->ec_count += 1;
1045                if (ec > ai->max_ec)
1046                        ai->max_ec = ec;
1047                if (ec < ai->min_ec)
1048                        ai->min_ec = ec;
1049        }
1050
1051        return 0;
1052}
1053
1054/**
1055 * late_analysis - analyze the overall situation with PEB.
1056 * @ubi: UBI device description object
1057 * @ai: attaching information
1058 *
1059 * This is a helper function which takes a look what PEBs we have after we
1060 * gather information about all of them ("ai" is compete). It decides whether
1061 * the flash is empty and should be formatted of whether there are too many
1062 * corrupted PEBs and we should not attach this MTD device. Returns zero if we
1063 * should proceed with attaching the MTD device, and %-EINVAL if we should not.
1064 */
1065static int late_analysis(struct ubi_device *ubi, struct ubi_attach_info *ai)
1066{
1067        struct ubi_ainf_peb *aeb;
1068        int max_corr, peb_count;
1069
1070        peb_count = ubi->peb_count - ai->bad_peb_count - ai->alien_peb_count;
1071        max_corr = peb_count / 20 ?: 8;
1072
1073        /*
1074         * Few corrupted PEBs is not a problem and may be just a result of
1075         * unclean reboots. However, many of them may indicate some problems
1076         * with the flash HW or driver.
1077         */
1078        if (ai->corr_peb_count) {
1079                ubi_err("%d PEBs are corrupted and preserved",
1080                        ai->corr_peb_count);
1081                pr_err("Corrupted PEBs are:");
1082                list_for_each_entry(aeb, &ai->corr, u.list)
1083                        pr_cont(" %d", aeb->pnum);
1084                pr_cont("\n");
1085
1086                /*
1087                 * If too many PEBs are corrupted, we refuse attaching,
1088                 * otherwise, only print a warning.
1089                 */
1090                if (ai->corr_peb_count >= max_corr) {
1091                        ubi_err("too many corrupted PEBs, refusing");
1092                        return -EINVAL;
1093                }
1094        }
1095
1096        if (ai->empty_peb_count + ai->maybe_bad_peb_count == peb_count) {
1097                /*
1098                 * All PEBs are empty, or almost all - a couple PEBs look like
1099                 * they may be bad PEBs which were not marked as bad yet.
1100                 *
1101                 * This piece of code basically tries to distinguish between
1102                 * the following situations:
1103                 *
1104                 * 1. Flash is empty, but there are few bad PEBs, which are not
1105                 *    marked as bad so far, and which were read with error. We
1106                 *    want to go ahead and format this flash. While formatting,
1107                 *    the faulty PEBs will probably be marked as bad.
1108                 *
1109                 * 2. Flash contains non-UBI data and we do not want to format
1110                 *    it and destroy possibly important information.
1111                 */
1112                if (ai->maybe_bad_peb_count <= 2) {
1113                        ai->is_empty = 1;
1114                        ubi_msg("empty MTD device detected");
1115                        get_random_bytes(&ubi->image_seq,
1116                                         sizeof(ubi->image_seq));
1117                } else {
1118                        ubi_err("MTD device is not UBI-formatted and possibly contains non-UBI data - refusing it");
1119                        return -EINVAL;
1120                }
1121
1122        }
1123
1124        return 0;
1125}
1126
1127/**
1128 * destroy_av - free volume attaching information.
1129 * @av: volume attaching information
1130 * @ai: attaching information
1131 *
1132 * This function destroys the volume attaching information.
1133 */
1134static void destroy_av(struct ubi_attach_info *ai, struct ubi_ainf_volume *av)
1135{
1136        struct ubi_ainf_peb *aeb;
1137        struct rb_node *this = av->root.rb_node;
1138
1139        while (this) {
1140                if (this->rb_left)
1141                        this = this->rb_left;
1142                else if (this->rb_right)
1143                        this = this->rb_right;
1144                else {
1145                        aeb = rb_entry(this, struct ubi_ainf_peb, u.rb);
1146                        this = rb_parent(this);
1147                        if (this) {
1148                                if (this->rb_left == &aeb->u.rb)
1149                                        this->rb_left = NULL;
1150                                else
1151                                        this->rb_right = NULL;
1152                        }
1153
1154                        kmem_cache_free(ai->aeb_slab_cache, aeb);
1155                }
1156        }
1157        kfree(av);
1158}
1159
1160/**
1161 * destroy_ai - destroy attaching information.
1162 * @ai: attaching information
1163 */
1164static void destroy_ai(struct ubi_attach_info *ai)
1165{
1166        struct ubi_ainf_peb *aeb, *aeb_tmp;
1167        struct ubi_ainf_volume *av;
1168        struct rb_node *rb;
1169
1170        list_for_each_entry_safe(aeb, aeb_tmp, &ai->alien, u.list) {
1171                list_del(&aeb->u.list);
1172                kmem_cache_free(ai->aeb_slab_cache, aeb);
1173        }
1174        list_for_each_entry_safe(aeb, aeb_tmp, &ai->erase, u.list) {
1175                list_del(&aeb->u.list);
1176                kmem_cache_free(ai->aeb_slab_cache, aeb);
1177        }
1178        list_for_each_entry_safe(aeb, aeb_tmp, &ai->corr, u.list) {
1179                list_del(&aeb->u.list);
1180                kmem_cache_free(ai->aeb_slab_cache, aeb);
1181        }
1182        list_for_each_entry_safe(aeb, aeb_tmp, &ai->free, u.list) {
1183                list_del(&aeb->u.list);
1184                kmem_cache_free(ai->aeb_slab_cache, aeb);
1185        }
1186
1187        /* Destroy the volume RB-tree */
1188        rb = ai->volumes.rb_node;
1189        while (rb) {
1190                if (rb->rb_left)
1191                        rb = rb->rb_left;
1192                else if (rb->rb_right)
1193                        rb = rb->rb_right;
1194                else {
1195                        av = rb_entry(rb, struct ubi_ainf_volume, rb);
1196
1197                        rb = rb_parent(rb);
1198                        if (rb) {
1199                                if (rb->rb_left == &av->rb)
1200                                        rb->rb_left = NULL;
1201                                else
1202                                        rb->rb_right = NULL;
1203                        }
1204
1205                        destroy_av(ai, av);
1206                }
1207        }
1208
1209        if (ai->aeb_slab_cache)
1210                kmem_cache_destroy(ai->aeb_slab_cache);
1211
1212        kfree(ai);
1213}
1214
1215/**
1216 * scan_all - scan entire MTD device.
1217 * @ubi: UBI device description object
1218 * @ai: attach info object
1219 * @start: start scanning at this PEB
1220 *
1221 * This function does full scanning of an MTD device and returns complete
1222 * information about it in form of a "struct ubi_attach_info" object. In case
1223 * of failure, an error code is returned.
1224 */
1225static int scan_all(struct ubi_device *ubi, struct ubi_attach_info *ai,
1226                    int start)
1227{
1228        int err, pnum;
1229        struct rb_node *rb1, *rb2;
1230        struct ubi_ainf_volume *av;
1231        struct ubi_ainf_peb *aeb;
1232
1233        err = -ENOMEM;
1234
1235        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1236        if (!ech)
1237                return err;
1238
1239        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1240        if (!vidh)
1241                goto out_ech;
1242
1243        for (pnum = start; pnum < ubi->peb_count; pnum++) {
1244                cond_resched();
1245
1246                dbg_gen("process PEB %d", pnum);
1247                err = scan_peb(ubi, ai, pnum, NULL, NULL);
1248                if (err < 0)
1249                        goto out_vidh;
1250        }
1251
1252        ubi_msg("scanning is finished");
1253
1254        /* Calculate mean erase counter */
1255        if (ai->ec_count)
1256                ai->mean_ec = div_u64(ai->ec_sum, ai->ec_count);
1257
1258        err = late_analysis(ubi, ai);
1259        if (err)
1260                goto out_vidh;
1261
1262        /*
1263         * In case of unknown erase counter we use the mean erase counter
1264         * value.
1265         */
1266        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1267                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1268                        if (aeb->ec == UBI_UNKNOWN)
1269                                aeb->ec = ai->mean_ec;
1270        }
1271
1272        list_for_each_entry(aeb, &ai->free, u.list) {
1273                if (aeb->ec == UBI_UNKNOWN)
1274                        aeb->ec = ai->mean_ec;
1275        }
1276
1277        list_for_each_entry(aeb, &ai->corr, u.list)
1278                if (aeb->ec == UBI_UNKNOWN)
1279                        aeb->ec = ai->mean_ec;
1280
1281        list_for_each_entry(aeb, &ai->erase, u.list)
1282                if (aeb->ec == UBI_UNKNOWN)
1283                        aeb->ec = ai->mean_ec;
1284
1285        err = self_check_ai(ubi, ai);
1286        if (err)
1287                goto out_vidh;
1288
1289        ubi_free_vid_hdr(ubi, vidh);
1290        kfree(ech);
1291
1292        return 0;
1293
1294out_vidh:
1295        ubi_free_vid_hdr(ubi, vidh);
1296out_ech:
1297        kfree(ech);
1298        return err;
1299}
1300
1301#ifdef CONFIG_MTD_UBI_FASTMAP
1302
1303/**
1304 * scan_fastmap - try to find a fastmap and attach from it.
1305 * @ubi: UBI device description object
1306 * @ai: attach info object
1307 *
1308 * Returns 0 on success, negative return values indicate an internal
1309 * error.
1310 * UBI_NO_FASTMAP denotes that no fastmap was found.
1311 * UBI_BAD_FASTMAP denotes that the found fastmap was invalid.
1312 */
1313static int scan_fast(struct ubi_device *ubi, struct ubi_attach_info *ai)
1314{
1315        int err, pnum, fm_anchor = -1;
1316        unsigned long long max_sqnum = 0;
1317
1318        err = -ENOMEM;
1319
1320        ech = kzalloc(ubi->ec_hdr_alsize, GFP_KERNEL);
1321        if (!ech)
1322                goto out;
1323
1324        vidh = ubi_zalloc_vid_hdr(ubi, GFP_KERNEL);
1325        if (!vidh)
1326                goto out_ech;
1327
1328        for (pnum = 0; pnum < UBI_FM_MAX_START; pnum++) {
1329                int vol_id = -1;
1330                unsigned long long sqnum = -1;
1331                cond_resched();
1332
1333                dbg_gen("process PEB %d", pnum);
1334                err = scan_peb(ubi, ai, pnum, &vol_id, &sqnum);
1335                if (err < 0)
1336                        goto out_vidh;
1337
1338                if (vol_id == UBI_FM_SB_VOLUME_ID && sqnum > max_sqnum) {
1339                        max_sqnum = sqnum;
1340                        fm_anchor = pnum;
1341                }
1342        }
1343
1344        ubi_free_vid_hdr(ubi, vidh);
1345        kfree(ech);
1346
1347        if (fm_anchor < 0)
1348                return UBI_NO_FASTMAP;
1349
1350        return ubi_scan_fastmap(ubi, ai, fm_anchor);
1351
1352out_vidh:
1353        ubi_free_vid_hdr(ubi, vidh);
1354out_ech:
1355        kfree(ech);
1356out:
1357        return err;
1358}
1359
1360#endif
1361
1362static struct ubi_attach_info *alloc_ai(const char *slab_name)
1363{
1364        struct ubi_attach_info *ai;
1365
1366        ai = kzalloc(sizeof(struct ubi_attach_info), GFP_KERNEL);
1367        if (!ai)
1368                return ai;
1369
1370        INIT_LIST_HEAD(&ai->corr);
1371        INIT_LIST_HEAD(&ai->free);
1372        INIT_LIST_HEAD(&ai->erase);
1373        INIT_LIST_HEAD(&ai->alien);
1374        ai->volumes = RB_ROOT;
1375        ai->aeb_slab_cache = kmem_cache_create(slab_name,
1376                                               sizeof(struct ubi_ainf_peb),
1377                                               0, 0, NULL);
1378        if (!ai->aeb_slab_cache) {
1379                kfree(ai);
1380                ai = NULL;
1381        }
1382
1383        return ai;
1384}
1385
1386/**
1387 * ubi_attach - attach an MTD device.
1388 * @ubi: UBI device descriptor
1389 * @force_scan: if set to non-zero attach by scanning
1390 *
1391 * This function returns zero in case of success and a negative error code in
1392 * case of failure.
1393 */
1394int ubi_attach(struct ubi_device *ubi, int force_scan)
1395{
1396        int err;
1397        struct ubi_attach_info *ai;
1398
1399        ai = alloc_ai("ubi_aeb_slab_cache");
1400        if (!ai)
1401                return -ENOMEM;
1402
1403#ifdef CONFIG_MTD_UBI_FASTMAP
1404        /* On small flash devices we disable fastmap in any case. */
1405        if ((int)mtd_div_by_eb(ubi->mtd->size, ubi->mtd) <= UBI_FM_MAX_START) {
1406                ubi->fm_disabled = 1;
1407                force_scan = 1;
1408        }
1409
1410        if (force_scan)
1411                err = scan_all(ubi, ai, 0);
1412        else {
1413                err = scan_fast(ubi, ai);
1414                if (err > 0) {
1415                        if (err != UBI_NO_FASTMAP) {
1416                                destroy_ai(ai);
1417                                ai = alloc_ai("ubi_aeb_slab_cache2");
1418                                if (!ai)
1419                                        return -ENOMEM;
1420                        }
1421
1422                        err = scan_all(ubi, ai, UBI_FM_MAX_START);
1423                }
1424        }
1425#else
1426        err = scan_all(ubi, ai, 0);
1427#endif
1428        if (err)
1429                goto out_ai;
1430
1431        ubi->bad_peb_count = ai->bad_peb_count;
1432        ubi->good_peb_count = ubi->peb_count - ubi->bad_peb_count;
1433        ubi->corr_peb_count = ai->corr_peb_count;
1434        ubi->max_ec = ai->max_ec;
1435        ubi->mean_ec = ai->mean_ec;
1436        dbg_gen("max. sequence number:       %llu", ai->max_sqnum);
1437
1438        err = ubi_read_volume_table(ubi, ai);
1439        if (err)
1440                goto out_ai;
1441
1442        err = ubi_wl_init(ubi, ai);
1443        if (err)
1444                goto out_vtbl;
1445
1446        err = ubi_eba_init(ubi, ai);
1447        if (err)
1448                goto out_wl;
1449
1450#ifdef CONFIG_MTD_UBI_FASTMAP
1451        if (ubi->fm && ubi_dbg_chk_gen(ubi)) {
1452                struct ubi_attach_info *scan_ai;
1453
1454                scan_ai = alloc_ai("ubi_ckh_aeb_slab_cache");
1455                if (!scan_ai)
1456                        goto out_wl;
1457
1458                err = scan_all(ubi, scan_ai, 0);
1459                if (err) {
1460                        destroy_ai(scan_ai);
1461                        goto out_wl;
1462                }
1463
1464                err = self_check_eba(ubi, ai, scan_ai);
1465                destroy_ai(scan_ai);
1466
1467                if (err)
1468                        goto out_wl;
1469        }
1470#endif
1471
1472        destroy_ai(ai);
1473        return 0;
1474
1475out_wl:
1476        ubi_wl_close(ubi);
1477out_vtbl:
1478        ubi_free_internal_volumes(ubi);
1479        vfree(ubi->vtbl);
1480out_ai:
1481        destroy_ai(ai);
1482        return err;
1483}
1484
1485/**
1486 * self_check_ai - check the attaching information.
1487 * @ubi: UBI device description object
1488 * @ai: attaching information
1489 *
1490 * This function returns zero if the attaching information is all right, and a
1491 * negative error code if not or if an error occurred.
1492 */
1493static int self_check_ai(struct ubi_device *ubi, struct ubi_attach_info *ai)
1494{
1495        int pnum, err, vols_found = 0;
1496        struct rb_node *rb1, *rb2;
1497        struct ubi_ainf_volume *av;
1498        struct ubi_ainf_peb *aeb, *last_aeb;
1499        uint8_t *buf;
1500
1501        if (!ubi_dbg_chk_gen(ubi))
1502                return 0;
1503
1504        /*
1505         * At first, check that attaching information is OK.
1506         */
1507        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1508                int leb_count = 0;
1509
1510                cond_resched();
1511
1512                vols_found += 1;
1513
1514                if (ai->is_empty) {
1515                        ubi_err("bad is_empty flag");
1516                        goto bad_av;
1517                }
1518
1519                if (av->vol_id < 0 || av->highest_lnum < 0 ||
1520                    av->leb_count < 0 || av->vol_type < 0 || av->used_ebs < 0 ||
1521                    av->data_pad < 0 || av->last_data_size < 0) {
1522                        ubi_err("negative values");
1523                        goto bad_av;
1524                }
1525
1526                if (av->vol_id >= UBI_MAX_VOLUMES &&
1527                    av->vol_id < UBI_INTERNAL_VOL_START) {
1528                        ubi_err("bad vol_id");
1529                        goto bad_av;
1530                }
1531
1532                if (av->vol_id > ai->highest_vol_id) {
1533                        ubi_err("highest_vol_id is %d, but vol_id %d is there",
1534                                ai->highest_vol_id, av->vol_id);
1535                        goto out;
1536                }
1537
1538                if (av->vol_type != UBI_DYNAMIC_VOLUME &&
1539                    av->vol_type != UBI_STATIC_VOLUME) {
1540                        ubi_err("bad vol_type");
1541                        goto bad_av;
1542                }
1543
1544                if (av->data_pad > ubi->leb_size / 2) {
1545                        ubi_err("bad data_pad");
1546                        goto bad_av;
1547                }
1548
1549                last_aeb = NULL;
1550                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1551                        cond_resched();
1552
1553                        last_aeb = aeb;
1554                        leb_count += 1;
1555
1556                        if (aeb->pnum < 0 || aeb->ec < 0) {
1557                                ubi_err("negative values");
1558                                goto bad_aeb;
1559                        }
1560
1561                        if (aeb->ec < ai->min_ec) {
1562                                ubi_err("bad ai->min_ec (%d), %d found",
1563                                        ai->min_ec, aeb->ec);
1564                                goto bad_aeb;
1565                        }
1566
1567                        if (aeb->ec > ai->max_ec) {
1568                                ubi_err("bad ai->max_ec (%d), %d found",
1569                                        ai->max_ec, aeb->ec);
1570                                goto bad_aeb;
1571                        }
1572
1573                        if (aeb->pnum >= ubi->peb_count) {
1574                                ubi_err("too high PEB number %d, total PEBs %d",
1575                                        aeb->pnum, ubi->peb_count);
1576                                goto bad_aeb;
1577                        }
1578
1579                        if (av->vol_type == UBI_STATIC_VOLUME) {
1580                                if (aeb->lnum >= av->used_ebs) {
1581                                        ubi_err("bad lnum or used_ebs");
1582                                        goto bad_aeb;
1583                                }
1584                        } else {
1585                                if (av->used_ebs != 0) {
1586                                        ubi_err("non-zero used_ebs");
1587                                        goto bad_aeb;
1588                                }
1589                        }
1590
1591                        if (aeb->lnum > av->highest_lnum) {
1592                                ubi_err("incorrect highest_lnum or lnum");
1593                                goto bad_aeb;
1594                        }
1595                }
1596
1597                if (av->leb_count != leb_count) {
1598                        ubi_err("bad leb_count, %d objects in the tree",
1599                                leb_count);
1600                        goto bad_av;
1601                }
1602
1603                if (!last_aeb)
1604                        continue;
1605
1606                aeb = last_aeb;
1607
1608                if (aeb->lnum != av->highest_lnum) {
1609                        ubi_err("bad highest_lnum");
1610                        goto bad_aeb;
1611                }
1612        }
1613
1614        if (vols_found != ai->vols_found) {
1615                ubi_err("bad ai->vols_found %d, should be %d",
1616                        ai->vols_found, vols_found);
1617                goto out;
1618        }
1619
1620        /* Check that attaching information is correct */
1621        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb) {
1622                last_aeb = NULL;
1623                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb) {
1624                        int vol_type;
1625
1626                        cond_resched();
1627
1628                        last_aeb = aeb;
1629
1630                        err = ubi_io_read_vid_hdr(ubi, aeb->pnum, vidh, 1);
1631                        if (err && err != UBI_IO_BITFLIPS) {
1632                                ubi_err("VID header is not OK (%d)", err);
1633                                if (err > 0)
1634                                        err = -EIO;
1635                                return err;
1636                        }
1637
1638                        vol_type = vidh->vol_type == UBI_VID_DYNAMIC ?
1639                                   UBI_DYNAMIC_VOLUME : UBI_STATIC_VOLUME;
1640                        if (av->vol_type != vol_type) {
1641                                ubi_err("bad vol_type");
1642                                goto bad_vid_hdr;
1643                        }
1644
1645                        if (aeb->sqnum != be64_to_cpu(vidh->sqnum)) {
1646                                ubi_err("bad sqnum %llu", aeb->sqnum);
1647                                goto bad_vid_hdr;
1648                        }
1649
1650                        if (av->vol_id != be32_to_cpu(vidh->vol_id)) {
1651                                ubi_err("bad vol_id %d", av->vol_id);
1652                                goto bad_vid_hdr;
1653                        }
1654
1655                        if (av->compat != vidh->compat) {
1656                                ubi_err("bad compat %d", vidh->compat);
1657                                goto bad_vid_hdr;
1658                        }
1659
1660                        if (aeb->lnum != be32_to_cpu(vidh->lnum)) {
1661                                ubi_err("bad lnum %d", aeb->lnum);
1662                                goto bad_vid_hdr;
1663                        }
1664
1665                        if (av->used_ebs != be32_to_cpu(vidh->used_ebs)) {
1666                                ubi_err("bad used_ebs %d", av->used_ebs);
1667                                goto bad_vid_hdr;
1668                        }
1669
1670                        if (av->data_pad != be32_to_cpu(vidh->data_pad)) {
1671                                ubi_err("bad data_pad %d", av->data_pad);
1672                                goto bad_vid_hdr;
1673                        }
1674                }
1675
1676                if (!last_aeb)
1677                        continue;
1678
1679                if (av->highest_lnum != be32_to_cpu(vidh->lnum)) {
1680                        ubi_err("bad highest_lnum %d", av->highest_lnum);
1681                        goto bad_vid_hdr;
1682                }
1683
1684                if (av->last_data_size != be32_to_cpu(vidh->data_size)) {
1685                        ubi_err("bad last_data_size %d", av->last_data_size);
1686                        goto bad_vid_hdr;
1687                }
1688        }
1689
1690        /*
1691         * Make sure that all the physical eraseblocks are in one of the lists
1692         * or trees.
1693         */
1694        buf = kzalloc(ubi->peb_count, GFP_KERNEL);
1695        if (!buf)
1696                return -ENOMEM;
1697
1698        for (pnum = 0; pnum < ubi->peb_count; pnum++) {
1699                err = ubi_io_is_bad(ubi, pnum);
1700                if (err < 0) {
1701                        kfree(buf);
1702                        return err;
1703                } else if (err)
1704                        buf[pnum] = 1;
1705        }
1706
1707        ubi_rb_for_each_entry(rb1, av, &ai->volumes, rb)
1708                ubi_rb_for_each_entry(rb2, aeb, &av->root, u.rb)
1709                        buf[aeb->pnum] = 1;
1710
1711        list_for_each_entry(aeb, &ai->free, u.list)
1712                buf[aeb->pnum] = 1;
1713
1714        list_for_each_entry(aeb, &ai->corr, u.list)
1715                buf[aeb->pnum] = 1;
1716
1717        list_for_each_entry(aeb, &ai->erase, u.list)
1718                buf[aeb->pnum] = 1;
1719
1720        list_for_each_entry(aeb, &ai->alien, u.list)
1721                buf[aeb->pnum] = 1;
1722
1723        err = 0;
1724        for (pnum = 0; pnum < ubi->peb_count; pnum++)
1725                if (!buf[pnum]) {
1726                        ubi_err("PEB %d is not referred", pnum);
1727                        err = 1;
1728                }
1729
1730        kfree(buf);
1731        if (err)
1732                goto out;
1733        return 0;
1734
1735bad_aeb:
1736        ubi_err("bad attaching information about LEB %d", aeb->lnum);
1737        ubi_dump_aeb(aeb, 0);
1738        ubi_dump_av(av);
1739        goto out;
1740
1741bad_av:
1742        ubi_err("bad attaching information about volume %d", av->vol_id);
1743        ubi_dump_av(av);
1744        goto out;
1745
1746bad_vid_hdr:
1747        ubi_err("bad attaching information about volume %d", av->vol_id);
1748        ubi_dump_av(av);
1749        ubi_dump_vid_hdr(vidh);
1750
1751out:
1752        dump_stack();
1753        return -EINVAL;
1754}
1755