linux/drivers/net/ethernet/3com/3c59x.c
<<
>>
Prefs
   1/* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
   2/*
   3        Written 1996-1999 by Donald Becker.
   4
   5        This software may be used and distributed according to the terms
   6        of the GNU General Public License, incorporated herein by reference.
   7
   8        This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
   9        Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
  10        and the EtherLink XL 3c900 and 3c905 cards.
  11
  12        Problem reports and questions should be directed to
  13        vortex@scyld.com
  14
  15        The author may be reached as becker@scyld.com, or C/O
  16        Scyld Computing Corporation
  17        410 Severn Ave., Suite 210
  18        Annapolis MD 21403
  19
  20*/
  21
  22/*
  23 * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
  24 * as well as other drivers
  25 *
  26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
  27 * due to dead code elimination.  There will be some performance benefits from this due to
  28 * elimination of all the tests and reduced cache footprint.
  29 */
  30
  31
  32#define DRV_NAME        "3c59x"
  33
  34
  35
  36/* A few values that may be tweaked. */
  37/* Keep the ring sizes a power of two for efficiency. */
  38#define TX_RING_SIZE    16
  39#define RX_RING_SIZE    32
  40#define PKT_BUF_SZ              1536                    /* Size of each temporary Rx buffer.*/
  41
  42/* "Knobs" that adjust features and parameters. */
  43/* Set the copy breakpoint for the copy-only-tiny-frames scheme.
  44   Setting to > 1512 effectively disables this feature. */
  45#ifndef __arm__
  46static int rx_copybreak = 200;
  47#else
  48/* ARM systems perform better by disregarding the bus-master
  49   transfer capability of these cards. -- rmk */
  50static int rx_copybreak = 1513;
  51#endif
  52/* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
  53static const int mtu = 1500;
  54/* Maximum events (Rx packets, etc.) to handle at each interrupt. */
  55static int max_interrupt_work = 32;
  56/* Tx timeout interval (millisecs) */
  57static int watchdog = 5000;
  58
  59/* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
  60 * of possible Tx stalls if the system is blocking interrupts
  61 * somewhere else.  Undefine this to disable.
  62 */
  63#define tx_interrupt_mitigation 1
  64
  65/* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
  66#define vortex_debug debug
  67#ifdef VORTEX_DEBUG
  68static int vortex_debug = VORTEX_DEBUG;
  69#else
  70static int vortex_debug = 1;
  71#endif
  72
  73#include <linux/module.h>
  74#include <linux/kernel.h>
  75#include <linux/string.h>
  76#include <linux/timer.h>
  77#include <linux/errno.h>
  78#include <linux/in.h>
  79#include <linux/ioport.h>
  80#include <linux/interrupt.h>
  81#include <linux/pci.h>
  82#include <linux/mii.h>
  83#include <linux/init.h>
  84#include <linux/netdevice.h>
  85#include <linux/etherdevice.h>
  86#include <linux/skbuff.h>
  87#include <linux/ethtool.h>
  88#include <linux/highmem.h>
  89#include <linux/eisa.h>
  90#include <linux/bitops.h>
  91#include <linux/jiffies.h>
  92#include <linux/gfp.h>
  93#include <asm/irq.h>                    /* For nr_irqs only. */
  94#include <asm/io.h>
  95#include <asm/uaccess.h>
  96
  97/* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
  98   This is only in the support-all-kernels source code. */
  99
 100#define RUN_AT(x) (jiffies + (x))
 101
 102#include <linux/delay.h>
 103
 104
 105static const char version[] =
 106        DRV_NAME ": Donald Becker and others.\n";
 107
 108MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
 109MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
 110MODULE_LICENSE("GPL");
 111
 112
 113/* Operational parameter that usually are not changed. */
 114
 115/* The Vortex size is twice that of the original EtherLinkIII series: the
 116   runtime register window, window 1, is now always mapped in.
 117   The Boomerang size is twice as large as the Vortex -- it has additional
 118   bus master control registers. */
 119#define VORTEX_TOTAL_SIZE 0x20
 120#define BOOMERANG_TOTAL_SIZE 0x40
 121
 122/* Set iff a MII transceiver on any interface requires mdio preamble.
 123   This only set with the original DP83840 on older 3c905 boards, so the extra
 124   code size of a per-interface flag is not worthwhile. */
 125static char mii_preamble_required;
 126
 127#define PFX DRV_NAME ": "
 128
 129
 130
 131/*
 132                                Theory of Operation
 133
 134I. Board Compatibility
 135
 136This device driver is designed for the 3Com FastEtherLink and FastEtherLink
 137XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
 138versions of the FastEtherLink cards.  The supported product IDs are
 139  3c590, 3c592, 3c595, 3c597, 3c900, 3c905
 140
 141The related ISA 3c515 is supported with a separate driver, 3c515.c, included
 142with the kernel source or available from
 143    cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
 144
 145II. Board-specific settings
 146
 147PCI bus devices are configured by the system at boot time, so no jumpers
 148need to be set on the board.  The system BIOS should be set to assign the
 149PCI INTA signal to an otherwise unused system IRQ line.
 150
 151The EEPROM settings for media type and forced-full-duplex are observed.
 152The EEPROM media type should be left at the default "autoselect" unless using
 15310base2 or AUI connections which cannot be reliably detected.
 154
 155III. Driver operation
 156
 157The 3c59x series use an interface that's very similar to the previous 3c5x9
 158series.  The primary interface is two programmed-I/O FIFOs, with an
 159alternate single-contiguous-region bus-master transfer (see next).
 160
 161The 3c900 "Boomerang" series uses a full-bus-master interface with separate
 162lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
 163DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
 164programmed-I/O interface that has been removed in 'B' and subsequent board
 165revisions.
 166
 167One extension that is advertised in a very large font is that the adapters
 168are capable of being bus masters.  On the Vortex chip this capability was
 169only for a single contiguous region making it far less useful than the full
 170bus master capability.  There is a significant performance impact of taking
 171an extra interrupt or polling for the completion of each transfer, as well
 172as difficulty sharing the single transfer engine between the transmit and
 173receive threads.  Using DMA transfers is a win only with large blocks or
 174with the flawed versions of the Intel Orion motherboard PCI controller.
 175
 176The Boomerang chip's full-bus-master interface is useful, and has the
 177currently-unused advantages over other similar chips that queued transmit
 178packets may be reordered and receive buffer groups are associated with a
 179single frame.
 180
 181With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
 182Rather than a fixed intermediate receive buffer, this scheme allocates
 183full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
 184the copying breakpoint: it is chosen to trade-off the memory wasted by
 185passing the full-sized skbuff to the queue layer for all frames vs. the
 186copying cost of copying a frame to a correctly-sized skbuff.
 187
 188IIIC. Synchronization
 189The driver runs as two independent, single-threaded flows of control.  One
 190is the send-packet routine, which enforces single-threaded use by the
 191dev->tbusy flag.  The other thread is the interrupt handler, which is single
 192threaded by the hardware and other software.
 193
 194IV. Notes
 195
 196Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
 1973c590, 3c595, and 3c900 boards.
 198The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
 199the EISA version is called "Demon".  According to Terry these names come
 200from rides at the local amusement park.
 201
 202The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
 203This driver only supports ethernet packets because of the skbuff allocation
 204limit of 4K.
 205*/
 206
 207/* This table drives the PCI probe routines.  It's mostly boilerplate in all
 208   of the drivers, and will likely be provided by some future kernel.
 209*/
 210enum pci_flags_bit {
 211        PCI_USES_MASTER=4,
 212};
 213
 214enum {  IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
 215        EEPROM_8BIT=0x10,       /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
 216        HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
 217        INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
 218        EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
 219        EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
 220
 221enum vortex_chips {
 222        CH_3C590 = 0,
 223        CH_3C592,
 224        CH_3C597,
 225        CH_3C595_1,
 226        CH_3C595_2,
 227
 228        CH_3C595_3,
 229        CH_3C900_1,
 230        CH_3C900_2,
 231        CH_3C900_3,
 232        CH_3C900_4,
 233
 234        CH_3C900_5,
 235        CH_3C900B_FL,
 236        CH_3C905_1,
 237        CH_3C905_2,
 238        CH_3C905B_TX,
 239        CH_3C905B_1,
 240
 241        CH_3C905B_2,
 242        CH_3C905B_FX,
 243        CH_3C905C,
 244        CH_3C9202,
 245        CH_3C980,
 246        CH_3C9805,
 247
 248        CH_3CSOHO100_TX,
 249        CH_3C555,
 250        CH_3C556,
 251        CH_3C556B,
 252        CH_3C575,
 253
 254        CH_3C575_1,
 255        CH_3CCFE575,
 256        CH_3CCFE575CT,
 257        CH_3CCFE656,
 258        CH_3CCFEM656,
 259
 260        CH_3CCFEM656_1,
 261        CH_3C450,
 262        CH_3C920,
 263        CH_3C982A,
 264        CH_3C982B,
 265
 266        CH_905BT4,
 267        CH_920B_EMB_WNM,
 268};
 269
 270
 271/* note: this array directly indexed by above enums, and MUST
 272 * be kept in sync with both the enums above, and the PCI device
 273 * table below
 274 */
 275static struct vortex_chip_info {
 276        const char *name;
 277        int flags;
 278        int drv_flags;
 279        int io_size;
 280} vortex_info_tbl[] = {
 281        {"3c590 Vortex 10Mbps",
 282         PCI_USES_MASTER, IS_VORTEX, 32, },
 283        {"3c592 EISA 10Mbps Demon/Vortex",                                      /* AKPM: from Don's 3c59x_cb.c 0.49H */
 284         PCI_USES_MASTER, IS_VORTEX, 32, },
 285        {"3c597 EISA Fast Demon/Vortex",                                        /* AKPM: from Don's 3c59x_cb.c 0.49H */
 286         PCI_USES_MASTER, IS_VORTEX, 32, },
 287        {"3c595 Vortex 100baseTx",
 288         PCI_USES_MASTER, IS_VORTEX, 32, },
 289        {"3c595 Vortex 100baseT4",
 290         PCI_USES_MASTER, IS_VORTEX, 32, },
 291
 292        {"3c595 Vortex 100base-MII",
 293         PCI_USES_MASTER, IS_VORTEX, 32, },
 294        {"3c900 Boomerang 10baseT",
 295         PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 296        {"3c900 Boomerang 10Mbps Combo",
 297         PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
 298        {"3c900 Cyclone 10Mbps TPO",                                            /* AKPM: from Don's 0.99M */
 299         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 300        {"3c900 Cyclone 10Mbps Combo",
 301         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 302
 303        {"3c900 Cyclone 10Mbps TPC",                                            /* AKPM: from Don's 0.99M */
 304         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 305        {"3c900B-FL Cyclone 10base-FL",
 306         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 307        {"3c905 Boomerang 100baseTx",
 308         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 309        {"3c905 Boomerang 100baseT4",
 310         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
 311        {"3C905B-TX Fast Etherlink XL PCI",
 312         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 313        {"3c905B Cyclone 100baseTx",
 314         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 315
 316        {"3c905B Cyclone 10/100/BNC",
 317         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 318        {"3c905B-FX Cyclone 100baseFx",
 319         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
 320        {"3c905C Tornado",
 321        PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 322        {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
 323         PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
 324        {"3c980 Cyclone",
 325         PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 326
 327        {"3c980C Python-T",
 328         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
 329        {"3cSOHO100-TX Hurricane",
 330         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 331        {"3c555 Laptop Hurricane",
 332         PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
 333        {"3c556 Laptop Tornado",
 334         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
 335                                                                        HAS_HWCKSM, 128, },
 336        {"3c556B Laptop Hurricane",
 337         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
 338                                        WNO_XCVR_PWR|HAS_HWCKSM, 128, },
 339
 340        {"3c575 [Megahertz] 10/100 LAN  CardBus",
 341        PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 342        {"3c575 Boomerang CardBus",
 343         PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
 344        {"3CCFE575BT Cyclone CardBus",
 345         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
 346                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 347        {"3CCFE575CT Tornado CardBus",
 348         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 349                                                                        MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 350        {"3CCFE656 Cyclone CardBus",
 351         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 352                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 353
 354        {"3CCFEM656B Cyclone+Winmodem CardBus",
 355         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 356                                                                        INVERT_LED_PWR|HAS_HWCKSM, 128, },
 357        {"3CXFEM656C Tornado+Winmodem CardBus",                 /* From pcmcia-cs-3.1.5 */
 358         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
 359                                                                        MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
 360        {"3c450 HomePNA Tornado",                                               /* AKPM: from Don's 0.99Q */
 361         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 362        {"3c920 Tornado",
 363         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 364        {"3c982 Hydra Dual Port A",
 365         PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 366
 367        {"3c982 Hydra Dual Port B",
 368         PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
 369        {"3c905B-T4",
 370         PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
 371        {"3c920B-EMB-WNM Tornado",
 372         PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
 373
 374        {NULL,}, /* NULL terminated list. */
 375};
 376
 377
 378static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
 379        { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
 380        { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
 381        { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
 382        { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
 383        { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
 384
 385        { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
 386        { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
 387        { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
 388        { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
 389        { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
 390
 391        { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
 392        { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
 393        { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
 394        { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
 395        { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
 396        { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
 397
 398        { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
 399        { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
 400        { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
 401        { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
 402        { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
 403        { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
 404
 405        { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
 406        { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
 407        { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
 408        { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
 409        { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
 410
 411        { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
 412        { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
 413        { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
 414        { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
 415        { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
 416
 417        { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
 418        { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
 419        { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
 420        { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
 421        { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
 422
 423        { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
 424        { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
 425
 426        {0,}                                            /* 0 terminated list. */
 427};
 428MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
 429
 430
 431/* Operational definitions.
 432   These are not used by other compilation units and thus are not
 433   exported in a ".h" file.
 434
 435   First the windows.  There are eight register windows, with the command
 436   and status registers available in each.
 437   */
 438#define EL3_CMD 0x0e
 439#define EL3_STATUS 0x0e
 440
 441/* The top five bits written to EL3_CMD are a command, the lower
 442   11 bits are the parameter, if applicable.
 443   Note that 11 parameters bits was fine for ethernet, but the new chip
 444   can handle FDDI length frames (~4500 octets) and now parameters count
 445   32-bit 'Dwords' rather than octets. */
 446
 447enum vortex_cmd {
 448        TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
 449        RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
 450        UpStall = 6<<11, UpUnstall = (6<<11)+1,
 451        DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
 452        RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
 453        FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
 454        SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
 455        SetTxThreshold = 18<<11, SetTxStart = 19<<11,
 456        StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
 457        StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
 458
 459/* The SetRxFilter command accepts the following classes: */
 460enum RxFilter {
 461        RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
 462
 463/* Bits in the general status register. */
 464enum vortex_status {
 465        IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
 466        TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
 467        IntReq = 0x0040, StatsFull = 0x0080,
 468        DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
 469        DMAInProgress = 1<<11,                  /* DMA controller is still busy.*/
 470        CmdInProgress = 1<<12,                  /* EL3_CMD is still busy.*/
 471};
 472
 473/* Register window 1 offsets, the window used in normal operation.
 474   On the Vortex this window is always mapped at offsets 0x10-0x1f. */
 475enum Window1 {
 476        TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
 477        RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
 478        TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
 479};
 480enum Window0 {
 481        Wn0EepromCmd = 10,              /* Window 0: EEPROM command register. */
 482        Wn0EepromData = 12,             /* Window 0: EEPROM results register. */
 483        IntrStatus=0x0E,                /* Valid in all windows. */
 484};
 485enum Win0_EEPROM_bits {
 486        EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
 487        EEPROM_EWENB = 0x30,            /* Enable erasing/writing for 10 msec. */
 488        EEPROM_EWDIS = 0x00,            /* Disable EWENB before 10 msec timeout. */
 489};
 490/* EEPROM locations. */
 491enum eeprom_offset {
 492        PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
 493        EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
 494        NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
 495        DriverTune=13, Checksum=15};
 496
 497enum Window2 {                  /* Window 2. */
 498        Wn2_ResetOptions=12,
 499};
 500enum Window3 {                  /* Window 3: MAC/config bits. */
 501        Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
 502};
 503
 504#define BFEXT(value, offset, bitcount)  \
 505    ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
 506
 507#define BFINS(lhs, rhs, offset, bitcount)                                       \
 508        (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |   \
 509        (((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
 510
 511#define RAM_SIZE(v)             BFEXT(v, 0, 3)
 512#define RAM_WIDTH(v)    BFEXT(v, 3, 1)
 513#define RAM_SPEED(v)    BFEXT(v, 4, 2)
 514#define ROM_SIZE(v)             BFEXT(v, 6, 2)
 515#define RAM_SPLIT(v)    BFEXT(v, 16, 2)
 516#define XCVR(v)                 BFEXT(v, 20, 4)
 517#define AUTOSELECT(v)   BFEXT(v, 24, 1)
 518
 519enum Window4 {          /* Window 4: Xcvr/media bits. */
 520        Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
 521};
 522enum Win4_Media_bits {
 523        Media_SQE = 0x0008,             /* Enable SQE error counting for AUI. */
 524        Media_10TP = 0x00C0,    /* Enable link beat and jabber for 10baseT. */
 525        Media_Lnk = 0x0080,             /* Enable just link beat for 100TX/100FX. */
 526        Media_LnkBeat = 0x0800,
 527};
 528enum Window7 {                                  /* Window 7: Bus Master control. */
 529        Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
 530        Wn7_MasterStatus = 12,
 531};
 532/* Boomerang bus master control registers. */
 533enum MasterCtrl {
 534        PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
 535        TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
 536};
 537
 538/* The Rx and Tx descriptor lists.
 539   Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
 540   alignment contraint on tx_ring[] and rx_ring[]. */
 541#define LAST_FRAG       0x80000000                      /* Last Addr/Len pair in descriptor. */
 542#define DN_COMPLETE     0x00010000                      /* This packet has been downloaded */
 543struct boom_rx_desc {
 544        __le32 next;                                    /* Last entry points to 0.   */
 545        __le32 status;
 546        __le32 addr;                                    /* Up to 63 addr/len pairs possible. */
 547        __le32 length;                                  /* Set LAST_FRAG to indicate last pair. */
 548};
 549/* Values for the Rx status entry. */
 550enum rx_desc_status {
 551        RxDComplete=0x00008000, RxDError=0x4000,
 552        /* See boomerang_rx() for actual error bits */
 553        IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
 554        IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
 555};
 556
 557#ifdef MAX_SKB_FRAGS
 558#define DO_ZEROCOPY 1
 559#else
 560#define DO_ZEROCOPY 0
 561#endif
 562
 563struct boom_tx_desc {
 564        __le32 next;                                    /* Last entry points to 0.   */
 565        __le32 status;                                  /* bits 0:12 length, others see below.  */
 566#if DO_ZEROCOPY
 567        struct {
 568                __le32 addr;
 569                __le32 length;
 570        } frag[1+MAX_SKB_FRAGS];
 571#else
 572                __le32 addr;
 573                __le32 length;
 574#endif
 575};
 576
 577/* Values for the Tx status entry. */
 578enum tx_desc_status {
 579        CRCDisable=0x2000, TxDComplete=0x8000,
 580        AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
 581        TxIntrUploaded=0x80000000,              /* IRQ when in FIFO, but maybe not sent. */
 582};
 583
 584/* Chip features we care about in vp->capabilities, read from the EEPROM. */
 585enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
 586
 587struct vortex_extra_stats {
 588        unsigned long tx_deferred;
 589        unsigned long tx_max_collisions;
 590        unsigned long tx_multiple_collisions;
 591        unsigned long tx_single_collisions;
 592        unsigned long rx_bad_ssd;
 593};
 594
 595struct vortex_private {
 596        /* The Rx and Tx rings should be quad-word-aligned. */
 597        struct boom_rx_desc* rx_ring;
 598        struct boom_tx_desc* tx_ring;
 599        dma_addr_t rx_ring_dma;
 600        dma_addr_t tx_ring_dma;
 601        /* The addresses of transmit- and receive-in-place skbuffs. */
 602        struct sk_buff* rx_skbuff[RX_RING_SIZE];
 603        struct sk_buff* tx_skbuff[TX_RING_SIZE];
 604        unsigned int cur_rx, cur_tx;            /* The next free ring entry */
 605        unsigned int dirty_rx, dirty_tx;        /* The ring entries to be free()ed. */
 606        struct vortex_extra_stats xstats;       /* NIC-specific extra stats */
 607        struct sk_buff *tx_skb;                         /* Packet being eaten by bus master ctrl.  */
 608        dma_addr_t tx_skb_dma;                          /* Allocated DMA address for bus master ctrl DMA.   */
 609
 610        /* PCI configuration space information. */
 611        struct device *gendev;
 612        void __iomem *ioaddr;                   /* IO address space */
 613        void __iomem *cb_fn_base;               /* CardBus function status addr space. */
 614
 615        /* Some values here only for performance evaluation and path-coverage */
 616        int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
 617        int card_idx;
 618
 619        /* The remainder are related to chip state, mostly media selection. */
 620        struct timer_list timer;                        /* Media selection timer. */
 621        struct timer_list rx_oom_timer;         /* Rx skb allocation retry timer */
 622        int options;                                            /* User-settable misc. driver options. */
 623        unsigned int media_override:4,          /* Passed-in media type. */
 624                default_media:4,                                /* Read from the EEPROM/Wn3_Config. */
 625                full_duplex:1, autoselect:1,
 626                bus_master:1,                                   /* Vortex can only do a fragment bus-m. */
 627                full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
 628                flow_ctrl:1,                                    /* Use 802.3x flow control (PAUSE only) */
 629                partner_flow_ctrl:1,                    /* Partner supports flow control */
 630                has_nway:1,
 631                enable_wol:1,                                   /* Wake-on-LAN is enabled */
 632                pm_state_valid:1,                               /* pci_dev->saved_config_space has sane contents */
 633                open:1,
 634                medialock:1,
 635                large_frames:1,                 /* accept large frames */
 636                handling_irq:1;                 /* private in_irq indicator */
 637        /* {get|set}_wol operations are already serialized by rtnl.
 638         * no additional locking is required for the enable_wol and acpi_set_WOL()
 639         */
 640        int drv_flags;
 641        u16 status_enable;
 642        u16 intr_enable;
 643        u16 available_media;                            /* From Wn3_Options. */
 644        u16 capabilities, info1, info2;         /* Various, from EEPROM. */
 645        u16 advertising;                                        /* NWay media advertisement */
 646        unsigned char phys[2];                          /* MII device addresses. */
 647        u16 deferred;                                           /* Resend these interrupts when we
 648                                                                                 * bale from the ISR */
 649        u16 io_size;                                            /* Size of PCI region (for release_region) */
 650
 651        /* Serialises access to hardware other than MII and variables below.
 652         * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
 653        spinlock_t lock;
 654
 655        spinlock_t mii_lock;            /* Serialises access to MII */
 656        struct mii_if_info mii;         /* MII lib hooks/info */
 657        spinlock_t window_lock;         /* Serialises access to windowed regs */
 658        int window;                     /* Register window */
 659};
 660
 661static void window_set(struct vortex_private *vp, int window)
 662{
 663        if (window != vp->window) {
 664                iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
 665                vp->window = window;
 666        }
 667}
 668
 669#define DEFINE_WINDOW_IO(size)                                          \
 670static u ## size                                                        \
 671window_read ## size(struct vortex_private *vp, int window, int addr)    \
 672{                                                                       \
 673        unsigned long flags;                                            \
 674        u ## size ret;                                                  \
 675        spin_lock_irqsave(&vp->window_lock, flags);                     \
 676        window_set(vp, window);                                         \
 677        ret = ioread ## size(vp->ioaddr + addr);                        \
 678        spin_unlock_irqrestore(&vp->window_lock, flags);                \
 679        return ret;                                                     \
 680}                                                                       \
 681static void                                                             \
 682window_write ## size(struct vortex_private *vp, u ## size value,        \
 683                     int window, int addr)                              \
 684{                                                                       \
 685        unsigned long flags;                                            \
 686        spin_lock_irqsave(&vp->window_lock, flags);                     \
 687        window_set(vp, window);                                         \
 688        iowrite ## size(value, vp->ioaddr + addr);                      \
 689        spin_unlock_irqrestore(&vp->window_lock, flags);                \
 690}
 691DEFINE_WINDOW_IO(8)
 692DEFINE_WINDOW_IO(16)
 693DEFINE_WINDOW_IO(32)
 694
 695#ifdef CONFIG_PCI
 696#define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
 697#else
 698#define DEVICE_PCI(dev) NULL
 699#endif
 700
 701#define VORTEX_PCI(vp)                                                  \
 702        ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
 703
 704#ifdef CONFIG_EISA
 705#define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
 706#else
 707#define DEVICE_EISA(dev) NULL
 708#endif
 709
 710#define VORTEX_EISA(vp)                                                 \
 711        ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
 712
 713/* The action to take with a media selection timer tick.
 714   Note that we deviate from the 3Com order by checking 10base2 before AUI.
 715 */
 716enum xcvr_types {
 717        XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
 718        XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
 719};
 720
 721static const struct media_table {
 722        char *name;
 723        unsigned int media_bits:16,             /* Bits to set in Wn4_Media register. */
 724                mask:8,                                         /* The transceiver-present bit in Wn3_Config.*/
 725                next:8;                                         /* The media type to try next. */
 726        int wait;                                               /* Time before we check media status. */
 727} media_tbl[] = {
 728  {     "10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
 729  { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
 730  { "undefined", 0,                     0x80, XCVR_10baseT, 10000},
 731  { "10base2",   0,                     0x10, XCVR_AUI,         (1*HZ)/10},
 732  { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
 733  { "100baseFX", Media_Lnk, 0x04, XCVR_MII,             (14*HZ)/10},
 734  { "MII",               0,                     0x41, XCVR_10baseT, 3*HZ },
 735  { "undefined", 0,                     0x01, XCVR_10baseT, 10000},
 736  { "Autonegotiate", 0,         0x41, XCVR_10baseT, 3*HZ},
 737  { "MII-External",      0,             0x41, XCVR_10baseT, 3*HZ },
 738  { "Default",   0,                     0xFF, XCVR_10baseT, 10000},
 739};
 740
 741static struct {
 742        const char str[ETH_GSTRING_LEN];
 743} ethtool_stats_keys[] = {
 744        { "tx_deferred" },
 745        { "tx_max_collisions" },
 746        { "tx_multiple_collisions" },
 747        { "tx_single_collisions" },
 748        { "rx_bad_ssd" },
 749};
 750
 751/* number of ETHTOOL_GSTATS u64's */
 752#define VORTEX_NUM_STATS    5
 753
 754static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
 755                                   int chip_idx, int card_idx);
 756static int vortex_up(struct net_device *dev);
 757static void vortex_down(struct net_device *dev, int final);
 758static int vortex_open(struct net_device *dev);
 759static void mdio_sync(struct vortex_private *vp, int bits);
 760static int mdio_read(struct net_device *dev, int phy_id, int location);
 761static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
 762static void vortex_timer(unsigned long arg);
 763static void rx_oom_timer(unsigned long arg);
 764static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
 765                                     struct net_device *dev);
 766static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
 767                                        struct net_device *dev);
 768static int vortex_rx(struct net_device *dev);
 769static int boomerang_rx(struct net_device *dev);
 770static irqreturn_t vortex_interrupt(int irq, void *dev_id);
 771static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
 772static int vortex_close(struct net_device *dev);
 773static void dump_tx_ring(struct net_device *dev);
 774static void update_stats(void __iomem *ioaddr, struct net_device *dev);
 775static struct net_device_stats *vortex_get_stats(struct net_device *dev);
 776static void set_rx_mode(struct net_device *dev);
 777#ifdef CONFIG_PCI
 778static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
 779#endif
 780static void vortex_tx_timeout(struct net_device *dev);
 781static void acpi_set_WOL(struct net_device *dev);
 782static const struct ethtool_ops vortex_ethtool_ops;
 783static void set_8021q_mode(struct net_device *dev, int enable);
 784
 785/* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
 786/* Option count limit only -- unlimited interfaces are supported. */
 787#define MAX_UNITS 8
 788static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
 789static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 790static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 791static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 792static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 793static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
 794static int global_options = -1;
 795static int global_full_duplex = -1;
 796static int global_enable_wol = -1;
 797static int global_use_mmio = -1;
 798
 799/* Variables to work-around the Compaq PCI BIOS32 problem. */
 800static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
 801static struct net_device *compaq_net_device;
 802
 803static int vortex_cards_found;
 804
 805module_param(debug, int, 0);
 806module_param(global_options, int, 0);
 807module_param_array(options, int, NULL, 0);
 808module_param(global_full_duplex, int, 0);
 809module_param_array(full_duplex, int, NULL, 0);
 810module_param_array(hw_checksums, int, NULL, 0);
 811module_param_array(flow_ctrl, int, NULL, 0);
 812module_param(global_enable_wol, int, 0);
 813module_param_array(enable_wol, int, NULL, 0);
 814module_param(rx_copybreak, int, 0);
 815module_param(max_interrupt_work, int, 0);
 816module_param(compaq_ioaddr, int, 0);
 817module_param(compaq_irq, int, 0);
 818module_param(compaq_device_id, int, 0);
 819module_param(watchdog, int, 0);
 820module_param(global_use_mmio, int, 0);
 821module_param_array(use_mmio, int, NULL, 0);
 822MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
 823MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
 824MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
 825MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
 826MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
 827MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
 828MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
 829MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
 830MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
 831MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
 832MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
 833MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
 834MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
 835MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
 836MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
 837MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
 838MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
 839
 840#ifdef CONFIG_NET_POLL_CONTROLLER
 841static void poll_vortex(struct net_device *dev)
 842{
 843        struct vortex_private *vp = netdev_priv(dev);
 844        unsigned long flags;
 845        local_irq_save(flags);
 846        (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
 847        local_irq_restore(flags);
 848}
 849#endif
 850
 851#ifdef CONFIG_PM
 852
 853static int vortex_suspend(struct device *dev)
 854{
 855        struct pci_dev *pdev = to_pci_dev(dev);
 856        struct net_device *ndev = pci_get_drvdata(pdev);
 857
 858        if (!ndev || !netif_running(ndev))
 859                return 0;
 860
 861        netif_device_detach(ndev);
 862        vortex_down(ndev, 1);
 863
 864        return 0;
 865}
 866
 867static int vortex_resume(struct device *dev)
 868{
 869        struct pci_dev *pdev = to_pci_dev(dev);
 870        struct net_device *ndev = pci_get_drvdata(pdev);
 871        int err;
 872
 873        if (!ndev || !netif_running(ndev))
 874                return 0;
 875
 876        err = vortex_up(ndev);
 877        if (err)
 878                return err;
 879
 880        netif_device_attach(ndev);
 881
 882        return 0;
 883}
 884
 885static const struct dev_pm_ops vortex_pm_ops = {
 886        .suspend = vortex_suspend,
 887        .resume = vortex_resume,
 888        .freeze = vortex_suspend,
 889        .thaw = vortex_resume,
 890        .poweroff = vortex_suspend,
 891        .restore = vortex_resume,
 892};
 893
 894#define VORTEX_PM_OPS (&vortex_pm_ops)
 895
 896#else /* !CONFIG_PM */
 897
 898#define VORTEX_PM_OPS NULL
 899
 900#endif /* !CONFIG_PM */
 901
 902#ifdef CONFIG_EISA
 903static struct eisa_device_id vortex_eisa_ids[] = {
 904        { "TCM5920", CH_3C592 },
 905        { "TCM5970", CH_3C597 },
 906        { "" }
 907};
 908MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
 909
 910static int __init vortex_eisa_probe(struct device *device)
 911{
 912        void __iomem *ioaddr;
 913        struct eisa_device *edev;
 914
 915        edev = to_eisa_device(device);
 916
 917        if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
 918                return -EBUSY;
 919
 920        ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
 921
 922        if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
 923                                          edev->id.driver_data, vortex_cards_found)) {
 924                release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 925                return -ENODEV;
 926        }
 927
 928        vortex_cards_found++;
 929
 930        return 0;
 931}
 932
 933static int vortex_eisa_remove(struct device *device)
 934{
 935        struct eisa_device *edev;
 936        struct net_device *dev;
 937        struct vortex_private *vp;
 938        void __iomem *ioaddr;
 939
 940        edev = to_eisa_device(device);
 941        dev = eisa_get_drvdata(edev);
 942
 943        if (!dev) {
 944                pr_err("vortex_eisa_remove called for Compaq device!\n");
 945                BUG();
 946        }
 947
 948        vp = netdev_priv(dev);
 949        ioaddr = vp->ioaddr;
 950
 951        unregister_netdev(dev);
 952        iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
 953        release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
 954
 955        free_netdev(dev);
 956        return 0;
 957}
 958
 959static struct eisa_driver vortex_eisa_driver = {
 960        .id_table = vortex_eisa_ids,
 961        .driver   = {
 962                .name    = "3c59x",
 963                .probe   = vortex_eisa_probe,
 964                .remove  = vortex_eisa_remove
 965        }
 966};
 967
 968#endif /* CONFIG_EISA */
 969
 970/* returns count found (>= 0), or negative on error */
 971static int __init vortex_eisa_init(void)
 972{
 973        int eisa_found = 0;
 974        int orig_cards_found = vortex_cards_found;
 975
 976#ifdef CONFIG_EISA
 977        int err;
 978
 979        err = eisa_driver_register (&vortex_eisa_driver);
 980        if (!err) {
 981                /*
 982                 * Because of the way EISA bus is probed, we cannot assume
 983                 * any device have been found when we exit from
 984                 * eisa_driver_register (the bus root driver may not be
 985                 * initialized yet). So we blindly assume something was
 986                 * found, and let the sysfs magic happened...
 987                 */
 988                eisa_found = 1;
 989        }
 990#endif
 991
 992        /* Special code to work-around the Compaq PCI BIOS32 problem. */
 993        if (compaq_ioaddr) {
 994                vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
 995                              compaq_irq, compaq_device_id, vortex_cards_found++);
 996        }
 997
 998        return vortex_cards_found - orig_cards_found + eisa_found;
 999}
1000
1001/* returns count (>= 0), or negative on error */
1002static int vortex_init_one(struct pci_dev *pdev,
1003                           const struct pci_device_id *ent)
1004{
1005        int rc, unit, pci_bar;
1006        struct vortex_chip_info *vci;
1007        void __iomem *ioaddr;
1008
1009        /* wake up and enable device */
1010        rc = pci_enable_device(pdev);
1011        if (rc < 0)
1012                goto out;
1013
1014        rc = pci_request_regions(pdev, DRV_NAME);
1015        if (rc < 0) {
1016                pci_disable_device(pdev);
1017                goto out;
1018        }
1019
1020        unit = vortex_cards_found;
1021
1022        if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1023                /* Determine the default if the user didn't override us */
1024                vci = &vortex_info_tbl[ent->driver_data];
1025                pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1026        } else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1027                pci_bar = use_mmio[unit] ? 1 : 0;
1028        else
1029                pci_bar = global_use_mmio ? 1 : 0;
1030
1031        ioaddr = pci_iomap(pdev, pci_bar, 0);
1032        if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1033                ioaddr = pci_iomap(pdev, 0, 0);
1034        if (!ioaddr) {
1035                pci_release_regions(pdev);
1036                pci_disable_device(pdev);
1037                rc = -ENOMEM;
1038                goto out;
1039        }
1040
1041        rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1042                           ent->driver_data, unit);
1043        if (rc < 0) {
1044                pci_iounmap(pdev, ioaddr);
1045                pci_release_regions(pdev);
1046                pci_disable_device(pdev);
1047                goto out;
1048        }
1049
1050        vortex_cards_found++;
1051
1052out:
1053        return rc;
1054}
1055
1056static const struct net_device_ops boomrang_netdev_ops = {
1057        .ndo_open               = vortex_open,
1058        .ndo_stop               = vortex_close,
1059        .ndo_start_xmit         = boomerang_start_xmit,
1060        .ndo_tx_timeout         = vortex_tx_timeout,
1061        .ndo_get_stats          = vortex_get_stats,
1062#ifdef CONFIG_PCI
1063        .ndo_do_ioctl           = vortex_ioctl,
1064#endif
1065        .ndo_set_rx_mode        = set_rx_mode,
1066        .ndo_change_mtu         = eth_change_mtu,
1067        .ndo_set_mac_address    = eth_mac_addr,
1068        .ndo_validate_addr      = eth_validate_addr,
1069#ifdef CONFIG_NET_POLL_CONTROLLER
1070        .ndo_poll_controller    = poll_vortex,
1071#endif
1072};
1073
1074static const struct net_device_ops vortex_netdev_ops = {
1075        .ndo_open               = vortex_open,
1076        .ndo_stop               = vortex_close,
1077        .ndo_start_xmit         = vortex_start_xmit,
1078        .ndo_tx_timeout         = vortex_tx_timeout,
1079        .ndo_get_stats          = vortex_get_stats,
1080#ifdef CONFIG_PCI
1081        .ndo_do_ioctl           = vortex_ioctl,
1082#endif
1083        .ndo_set_rx_mode        = set_rx_mode,
1084        .ndo_change_mtu         = eth_change_mtu,
1085        .ndo_set_mac_address    = eth_mac_addr,
1086        .ndo_validate_addr      = eth_validate_addr,
1087#ifdef CONFIG_NET_POLL_CONTROLLER
1088        .ndo_poll_controller    = poll_vortex,
1089#endif
1090};
1091
1092/*
1093 * Start up the PCI/EISA device which is described by *gendev.
1094 * Return 0 on success.
1095 *
1096 * NOTE: pdev can be NULL, for the case of a Compaq device
1097 */
1098static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1099                         int chip_idx, int card_idx)
1100{
1101        struct vortex_private *vp;
1102        int option;
1103        unsigned int eeprom[0x40], checksum = 0;                /* EEPROM contents */
1104        int i, step;
1105        struct net_device *dev;
1106        static int printed_version;
1107        int retval, print_info;
1108        struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1109        const char *print_name = "3c59x";
1110        struct pci_dev *pdev = NULL;
1111        struct eisa_device *edev = NULL;
1112
1113        if (!printed_version) {
1114                pr_info("%s", version);
1115                printed_version = 1;
1116        }
1117
1118        if (gendev) {
1119                if ((pdev = DEVICE_PCI(gendev))) {
1120                        print_name = pci_name(pdev);
1121                }
1122
1123                if ((edev = DEVICE_EISA(gendev))) {
1124                        print_name = dev_name(&edev->dev);
1125                }
1126        }
1127
1128        dev = alloc_etherdev(sizeof(*vp));
1129        retval = -ENOMEM;
1130        if (!dev)
1131                goto out;
1132
1133        SET_NETDEV_DEV(dev, gendev);
1134        vp = netdev_priv(dev);
1135
1136        option = global_options;
1137
1138        /* The lower four bits are the media type. */
1139        if (dev->mem_start) {
1140                /*
1141                 * The 'options' param is passed in as the third arg to the
1142                 * LILO 'ether=' argument for non-modular use
1143                 */
1144                option = dev->mem_start;
1145        }
1146        else if (card_idx < MAX_UNITS) {
1147                if (options[card_idx] >= 0)
1148                        option = options[card_idx];
1149        }
1150
1151        if (option > 0) {
1152                if (option & 0x8000)
1153                        vortex_debug = 7;
1154                if (option & 0x4000)
1155                        vortex_debug = 2;
1156                if (option & 0x0400)
1157                        vp->enable_wol = 1;
1158        }
1159
1160        print_info = (vortex_debug > 1);
1161        if (print_info)
1162                pr_info("See Documentation/networking/vortex.txt\n");
1163
1164        pr_info("%s: 3Com %s %s at %p.\n",
1165               print_name,
1166               pdev ? "PCI" : "EISA",
1167               vci->name,
1168               ioaddr);
1169
1170        dev->base_addr = (unsigned long)ioaddr;
1171        dev->irq = irq;
1172        dev->mtu = mtu;
1173        vp->ioaddr = ioaddr;
1174        vp->large_frames = mtu > 1500;
1175        vp->drv_flags = vci->drv_flags;
1176        vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1177        vp->io_size = vci->io_size;
1178        vp->card_idx = card_idx;
1179        vp->window = -1;
1180
1181        /* module list only for Compaq device */
1182        if (gendev == NULL) {
1183                compaq_net_device = dev;
1184        }
1185
1186        /* PCI-only startup logic */
1187        if (pdev) {
1188                /* enable bus-mastering if necessary */
1189                if (vci->flags & PCI_USES_MASTER)
1190                        pci_set_master(pdev);
1191
1192                if (vci->drv_flags & IS_VORTEX) {
1193                        u8 pci_latency;
1194                        u8 new_latency = 248;
1195
1196                        /* Check the PCI latency value.  On the 3c590 series the latency timer
1197                           must be set to the maximum value to avoid data corruption that occurs
1198                           when the timer expires during a transfer.  This bug exists the Vortex
1199                           chip only. */
1200                        pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1201                        if (pci_latency < new_latency) {
1202                                pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1203                                        print_name, pci_latency, new_latency);
1204                                pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1205                        }
1206                }
1207        }
1208
1209        spin_lock_init(&vp->lock);
1210        spin_lock_init(&vp->mii_lock);
1211        spin_lock_init(&vp->window_lock);
1212        vp->gendev = gendev;
1213        vp->mii.dev = dev;
1214        vp->mii.mdio_read = mdio_read;
1215        vp->mii.mdio_write = mdio_write;
1216        vp->mii.phy_id_mask = 0x1f;
1217        vp->mii.reg_num_mask = 0x1f;
1218
1219        /* Makes sure rings are at least 16 byte aligned. */
1220        vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1221                                           + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1222                                           &vp->rx_ring_dma);
1223        retval = -ENOMEM;
1224        if (!vp->rx_ring)
1225                goto free_device;
1226
1227        vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1228        vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1229
1230        /* if we are a PCI driver, we store info in pdev->driver_data
1231         * instead of a module list */
1232        if (pdev)
1233                pci_set_drvdata(pdev, dev);
1234        if (edev)
1235                eisa_set_drvdata(edev, dev);
1236
1237        vp->media_override = 7;
1238        if (option >= 0) {
1239                vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1240                if (vp->media_override != 7)
1241                        vp->medialock = 1;
1242                vp->full_duplex = (option & 0x200) ? 1 : 0;
1243                vp->bus_master = (option & 16) ? 1 : 0;
1244        }
1245
1246        if (global_full_duplex > 0)
1247                vp->full_duplex = 1;
1248        if (global_enable_wol > 0)
1249                vp->enable_wol = 1;
1250
1251        if (card_idx < MAX_UNITS) {
1252                if (full_duplex[card_idx] > 0)
1253                        vp->full_duplex = 1;
1254                if (flow_ctrl[card_idx] > 0)
1255                        vp->flow_ctrl = 1;
1256                if (enable_wol[card_idx] > 0)
1257                        vp->enable_wol = 1;
1258        }
1259
1260        vp->mii.force_media = vp->full_duplex;
1261        vp->options = option;
1262        /* Read the station address from the EEPROM. */
1263        {
1264                int base;
1265
1266                if (vci->drv_flags & EEPROM_8BIT)
1267                        base = 0x230;
1268                else if (vci->drv_flags & EEPROM_OFFSET)
1269                        base = EEPROM_Read + 0x30;
1270                else
1271                        base = EEPROM_Read;
1272
1273                for (i = 0; i < 0x40; i++) {
1274                        int timer;
1275                        window_write16(vp, base + i, 0, Wn0EepromCmd);
1276                        /* Pause for at least 162 us. for the read to take place. */
1277                        for (timer = 10; timer >= 0; timer--) {
1278                                udelay(162);
1279                                if ((window_read16(vp, 0, Wn0EepromCmd) &
1280                                     0x8000) == 0)
1281                                        break;
1282                        }
1283                        eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1284                }
1285        }
1286        for (i = 0; i < 0x18; i++)
1287                checksum ^= eeprom[i];
1288        checksum = (checksum ^ (checksum >> 8)) & 0xff;
1289        if (checksum != 0x00) {         /* Grrr, needless incompatible change 3Com. */
1290                while (i < 0x21)
1291                        checksum ^= eeprom[i++];
1292                checksum = (checksum ^ (checksum >> 8)) & 0xff;
1293        }
1294        if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1295                pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1296        for (i = 0; i < 3; i++)
1297                ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1298        if (print_info)
1299                pr_cont(" %pM", dev->dev_addr);
1300        /* Unfortunately an all zero eeprom passes the checksum and this
1301           gets found in the wild in failure cases. Crypto is hard 8) */
1302        if (!is_valid_ether_addr(dev->dev_addr)) {
1303                retval = -EINVAL;
1304                pr_err("*** EEPROM MAC address is invalid.\n");
1305                goto free_ring; /* With every pack */
1306        }
1307        for (i = 0; i < 6; i++)
1308                window_write8(vp, dev->dev_addr[i], 2, i);
1309
1310        if (print_info)
1311                pr_cont(", IRQ %d\n", dev->irq);
1312        /* Tell them about an invalid IRQ. */
1313        if (dev->irq <= 0 || dev->irq >= nr_irqs)
1314                pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1315                           dev->irq);
1316
1317        step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1318        if (print_info) {
1319                pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1320                        eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1321                        step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1322        }
1323
1324
1325        if (pdev && vci->drv_flags & HAS_CB_FNS) {
1326                unsigned short n;
1327
1328                vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1329                if (!vp->cb_fn_base) {
1330                        retval = -ENOMEM;
1331                        goto free_ring;
1332                }
1333
1334                if (print_info) {
1335                        pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1336                                print_name,
1337                                (unsigned long long)pci_resource_start(pdev, 2),
1338                                vp->cb_fn_base);
1339                }
1340
1341                n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1342                if (vp->drv_flags & INVERT_LED_PWR)
1343                        n |= 0x10;
1344                if (vp->drv_flags & INVERT_MII_PWR)
1345                        n |= 0x4000;
1346                window_write16(vp, n, 2, Wn2_ResetOptions);
1347                if (vp->drv_flags & WNO_XCVR_PWR) {
1348                        window_write16(vp, 0x0800, 0, 0);
1349                }
1350        }
1351
1352        /* Extract our information from the EEPROM data. */
1353        vp->info1 = eeprom[13];
1354        vp->info2 = eeprom[15];
1355        vp->capabilities = eeprom[16];
1356
1357        if (vp->info1 & 0x8000) {
1358                vp->full_duplex = 1;
1359                if (print_info)
1360                        pr_info("Full duplex capable\n");
1361        }
1362
1363        {
1364                static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1365                unsigned int config;
1366                vp->available_media = window_read16(vp, 3, Wn3_Options);
1367                if ((vp->available_media & 0xff) == 0)          /* Broken 3c916 */
1368                        vp->available_media = 0x40;
1369                config = window_read32(vp, 3, Wn3_Config);
1370                if (print_info) {
1371                        pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1372                                config, window_read16(vp, 3, Wn3_Options));
1373                        pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1374                                   8 << RAM_SIZE(config),
1375                                   RAM_WIDTH(config) ? "word" : "byte",
1376                                   ram_split[RAM_SPLIT(config)],
1377                                   AUTOSELECT(config) ? "autoselect/" : "",
1378                                   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1379                                   media_tbl[XCVR(config)].name);
1380                }
1381                vp->default_media = XCVR(config);
1382                if (vp->default_media == XCVR_NWAY)
1383                        vp->has_nway = 1;
1384                vp->autoselect = AUTOSELECT(config);
1385        }
1386
1387        if (vp->media_override != 7) {
1388                pr_info("%s:  Media override to transceiver type %d (%s).\n",
1389                                print_name, vp->media_override,
1390                                media_tbl[vp->media_override].name);
1391                dev->if_port = vp->media_override;
1392        } else
1393                dev->if_port = vp->default_media;
1394
1395        if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1396                dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1397                int phy, phy_idx = 0;
1398                mii_preamble_required++;
1399                if (vp->drv_flags & EXTRA_PREAMBLE)
1400                        mii_preamble_required++;
1401                mdio_sync(vp, 32);
1402                mdio_read(dev, 24, MII_BMSR);
1403                for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1404                        int mii_status, phyx;
1405
1406                        /*
1407                         * For the 3c905CX we look at index 24 first, because it bogusly
1408                         * reports an external PHY at all indices
1409                         */
1410                        if (phy == 0)
1411                                phyx = 24;
1412                        else if (phy <= 24)
1413                                phyx = phy - 1;
1414                        else
1415                                phyx = phy;
1416                        mii_status = mdio_read(dev, phyx, MII_BMSR);
1417                        if (mii_status  &&  mii_status != 0xffff) {
1418                                vp->phys[phy_idx++] = phyx;
1419                                if (print_info) {
1420                                        pr_info("  MII transceiver found at address %d, status %4x.\n",
1421                                                phyx, mii_status);
1422                                }
1423                                if ((mii_status & 0x0040) == 0)
1424                                        mii_preamble_required++;
1425                        }
1426                }
1427                mii_preamble_required--;
1428                if (phy_idx == 0) {
1429                        pr_warning("  ***WARNING*** No MII transceivers found!\n");
1430                        vp->phys[0] = 24;
1431                } else {
1432                        vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1433                        if (vp->full_duplex) {
1434                                /* Only advertise the FD media types. */
1435                                vp->advertising &= ~0x02A0;
1436                                mdio_write(dev, vp->phys[0], 4, vp->advertising);
1437                        }
1438                }
1439                vp->mii.phy_id = vp->phys[0];
1440        }
1441
1442        if (vp->capabilities & CapBusMaster) {
1443                vp->full_bus_master_tx = 1;
1444                if (print_info) {
1445                        pr_info("  Enabling bus-master transmits and %s receives.\n",
1446                        (vp->info2 & 1) ? "early" : "whole-frame" );
1447                }
1448                vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1449                vp->bus_master = 0;             /* AKPM: vortex only */
1450        }
1451
1452        /* The 3c59x-specific entries in the device structure. */
1453        if (vp->full_bus_master_tx) {
1454                dev->netdev_ops = &boomrang_netdev_ops;
1455                /* Actually, it still should work with iommu. */
1456                if (card_idx < MAX_UNITS &&
1457                    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1458                                hw_checksums[card_idx] == 1)) {
1459                        dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1460                }
1461        } else
1462                dev->netdev_ops =  &vortex_netdev_ops;
1463
1464        if (print_info) {
1465                pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1466                                print_name,
1467                                (dev->features & NETIF_F_SG) ? "en":"dis",
1468                                (dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1469        }
1470
1471        dev->ethtool_ops = &vortex_ethtool_ops;
1472        dev->watchdog_timeo = (watchdog * HZ) / 1000;
1473
1474        if (pdev) {
1475                vp->pm_state_valid = 1;
1476                pci_save_state(VORTEX_PCI(vp));
1477                acpi_set_WOL(dev);
1478        }
1479        retval = register_netdev(dev);
1480        if (retval == 0)
1481                return 0;
1482
1483free_ring:
1484        pci_free_consistent(pdev,
1485                                                sizeof(struct boom_rx_desc) * RX_RING_SIZE
1486                                                        + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1487                                                vp->rx_ring,
1488                                                vp->rx_ring_dma);
1489free_device:
1490        free_netdev(dev);
1491        pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1492out:
1493        return retval;
1494}
1495
1496static void
1497issue_and_wait(struct net_device *dev, int cmd)
1498{
1499        struct vortex_private *vp = netdev_priv(dev);
1500        void __iomem *ioaddr = vp->ioaddr;
1501        int i;
1502
1503        iowrite16(cmd, ioaddr + EL3_CMD);
1504        for (i = 0; i < 2000; i++) {
1505                if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1506                        return;
1507        }
1508
1509        /* OK, that didn't work.  Do it the slow way.  One second */
1510        for (i = 0; i < 100000; i++) {
1511                if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1512                        if (vortex_debug > 1)
1513                                pr_info("%s: command 0x%04x took %d usecs\n",
1514                                           dev->name, cmd, i * 10);
1515                        return;
1516                }
1517                udelay(10);
1518        }
1519        pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1520                           dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1521}
1522
1523static void
1524vortex_set_duplex(struct net_device *dev)
1525{
1526        struct vortex_private *vp = netdev_priv(dev);
1527
1528        pr_info("%s:  setting %s-duplex.\n",
1529                dev->name, (vp->full_duplex) ? "full" : "half");
1530
1531        /* Set the full-duplex bit. */
1532        window_write16(vp,
1533                       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1534                       (vp->large_frames ? 0x40 : 0) |
1535                       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1536                        0x100 : 0),
1537                       3, Wn3_MAC_Ctrl);
1538}
1539
1540static void vortex_check_media(struct net_device *dev, unsigned int init)
1541{
1542        struct vortex_private *vp = netdev_priv(dev);
1543        unsigned int ok_to_print = 0;
1544
1545        if (vortex_debug > 3)
1546                ok_to_print = 1;
1547
1548        if (mii_check_media(&vp->mii, ok_to_print, init)) {
1549                vp->full_duplex = vp->mii.full_duplex;
1550                vortex_set_duplex(dev);
1551        } else if (init) {
1552                vortex_set_duplex(dev);
1553        }
1554}
1555
1556static int
1557vortex_up(struct net_device *dev)
1558{
1559        struct vortex_private *vp = netdev_priv(dev);
1560        void __iomem *ioaddr = vp->ioaddr;
1561        unsigned int config;
1562        int i, mii_reg1, mii_reg5, err = 0;
1563
1564        if (VORTEX_PCI(vp)) {
1565                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);    /* Go active */
1566                if (vp->pm_state_valid)
1567                        pci_restore_state(VORTEX_PCI(vp));
1568                err = pci_enable_device(VORTEX_PCI(vp));
1569                if (err) {
1570                        pr_warning("%s: Could not enable device\n",
1571                                dev->name);
1572                        goto err_out;
1573                }
1574        }
1575
1576        /* Before initializing select the active media port. */
1577        config = window_read32(vp, 3, Wn3_Config);
1578
1579        if (vp->media_override != 7) {
1580                pr_info("%s: Media override to transceiver %d (%s).\n",
1581                           dev->name, vp->media_override,
1582                           media_tbl[vp->media_override].name);
1583                dev->if_port = vp->media_override;
1584        } else if (vp->autoselect) {
1585                if (vp->has_nway) {
1586                        if (vortex_debug > 1)
1587                                pr_info("%s: using NWAY device table, not %d\n",
1588                                                                dev->name, dev->if_port);
1589                        dev->if_port = XCVR_NWAY;
1590                } else {
1591                        /* Find first available media type, starting with 100baseTx. */
1592                        dev->if_port = XCVR_100baseTx;
1593                        while (! (vp->available_media & media_tbl[dev->if_port].mask))
1594                                dev->if_port = media_tbl[dev->if_port].next;
1595                        if (vortex_debug > 1)
1596                                pr_info("%s: first available media type: %s\n",
1597                                        dev->name, media_tbl[dev->if_port].name);
1598                }
1599        } else {
1600                dev->if_port = vp->default_media;
1601                if (vortex_debug > 1)
1602                        pr_info("%s: using default media %s\n",
1603                                dev->name, media_tbl[dev->if_port].name);
1604        }
1605
1606        init_timer(&vp->timer);
1607        vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1608        vp->timer.data = (unsigned long)dev;
1609        vp->timer.function = vortex_timer;              /* timer handler */
1610        add_timer(&vp->timer);
1611
1612        init_timer(&vp->rx_oom_timer);
1613        vp->rx_oom_timer.data = (unsigned long)dev;
1614        vp->rx_oom_timer.function = rx_oom_timer;
1615
1616        if (vortex_debug > 1)
1617                pr_debug("%s: Initial media type %s.\n",
1618                           dev->name, media_tbl[dev->if_port].name);
1619
1620        vp->full_duplex = vp->mii.force_media;
1621        config = BFINS(config, dev->if_port, 20, 4);
1622        if (vortex_debug > 6)
1623                pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1624        window_write32(vp, config, 3, Wn3_Config);
1625
1626        if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1627                mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1628                mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1629                vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1630                vp->mii.full_duplex = vp->full_duplex;
1631
1632                vortex_check_media(dev, 1);
1633        }
1634        else
1635                vortex_set_duplex(dev);
1636
1637        issue_and_wait(dev, TxReset);
1638        /*
1639         * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1640         */
1641        issue_and_wait(dev, RxReset|0x04);
1642
1643
1644        iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1645
1646        if (vortex_debug > 1) {
1647                pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1648                           dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1649        }
1650
1651        /* Set the station address and mask in window 2 each time opened. */
1652        for (i = 0; i < 6; i++)
1653                window_write8(vp, dev->dev_addr[i], 2, i);
1654        for (; i < 12; i+=2)
1655                window_write16(vp, 0, 2, i);
1656
1657        if (vp->cb_fn_base) {
1658                unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1659                if (vp->drv_flags & INVERT_LED_PWR)
1660                        n |= 0x10;
1661                if (vp->drv_flags & INVERT_MII_PWR)
1662                        n |= 0x4000;
1663                window_write16(vp, n, 2, Wn2_ResetOptions);
1664        }
1665
1666        if (dev->if_port == XCVR_10base2)
1667                /* Start the thinnet transceiver. We should really wait 50ms...*/
1668                iowrite16(StartCoax, ioaddr + EL3_CMD);
1669        if (dev->if_port != XCVR_NWAY) {
1670                window_write16(vp,
1671                               (window_read16(vp, 4, Wn4_Media) &
1672                                ~(Media_10TP|Media_SQE)) |
1673                               media_tbl[dev->if_port].media_bits,
1674                               4, Wn4_Media);
1675        }
1676
1677        /* Switch to the stats window, and clear all stats by reading. */
1678        iowrite16(StatsDisable, ioaddr + EL3_CMD);
1679        for (i = 0; i < 10; i++)
1680                window_read8(vp, 6, i);
1681        window_read16(vp, 6, 10);
1682        window_read16(vp, 6, 12);
1683        /* New: On the Vortex we must also clear the BadSSD counter. */
1684        window_read8(vp, 4, 12);
1685        /* ..and on the Boomerang we enable the extra statistics bits. */
1686        window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1687
1688        if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1689                vp->cur_rx = vp->dirty_rx = 0;
1690                /* Initialize the RxEarly register as recommended. */
1691                iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1692                iowrite32(0x0020, ioaddr + PktStatus);
1693                iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1694        }
1695        if (vp->full_bus_master_tx) {           /* Boomerang bus master Tx. */
1696                vp->cur_tx = vp->dirty_tx = 0;
1697                if (vp->drv_flags & IS_BOOMERANG)
1698                        iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1699                /* Clear the Rx, Tx rings. */
1700                for (i = 0; i < RX_RING_SIZE; i++)      /* AKPM: this is done in vortex_open, too */
1701                        vp->rx_ring[i].status = 0;
1702                for (i = 0; i < TX_RING_SIZE; i++)
1703                        vp->tx_skbuff[i] = NULL;
1704                iowrite32(0, ioaddr + DownListPtr);
1705        }
1706        /* Set receiver mode: presumably accept b-case and phys addr only. */
1707        set_rx_mode(dev);
1708        /* enable 802.1q tagged frames */
1709        set_8021q_mode(dev, 1);
1710        iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1711
1712        iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1713        iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1714        /* Allow status bits to be seen. */
1715        vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1716                (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1717                (vp->full_bus_master_rx ? UpComplete : RxComplete) |
1718                (vp->bus_master ? DMADone : 0);
1719        vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1720                (vp->full_bus_master_rx ? 0 : RxComplete) |
1721                StatsFull | HostError | TxComplete | IntReq
1722                | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1723        iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1724        /* Ack all pending events, and set active indicator mask. */
1725        iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1726                 ioaddr + EL3_CMD);
1727        iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1728        if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
1729                iowrite32(0x8000, vp->cb_fn_base + 4);
1730        netif_start_queue (dev);
1731err_out:
1732        return err;
1733}
1734
1735static int
1736vortex_open(struct net_device *dev)
1737{
1738        struct vortex_private *vp = netdev_priv(dev);
1739        int i;
1740        int retval;
1741
1742        /* Use the now-standard shared IRQ implementation. */
1743        if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1744                                boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1745                pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1746                goto err;
1747        }
1748
1749        if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1750                if (vortex_debug > 2)
1751                        pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1752                for (i = 0; i < RX_RING_SIZE; i++) {
1753                        struct sk_buff *skb;
1754                        vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1755                        vp->rx_ring[i].status = 0;      /* Clear complete bit. */
1756                        vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1757
1758                        skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1759                                                 GFP_KERNEL);
1760                        vp->rx_skbuff[i] = skb;
1761                        if (skb == NULL)
1762                                break;                  /* Bad news!  */
1763
1764                        skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */
1765                        vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1766                }
1767                if (i != RX_RING_SIZE) {
1768                        int j;
1769                        pr_emerg("%s: no memory for rx ring\n", dev->name);
1770                        for (j = 0; j < i; j++) {
1771                                if (vp->rx_skbuff[j]) {
1772                                        dev_kfree_skb(vp->rx_skbuff[j]);
1773                                        vp->rx_skbuff[j] = NULL;
1774                                }
1775                        }
1776                        retval = -ENOMEM;
1777                        goto err_free_irq;
1778                }
1779                /* Wrap the ring. */
1780                vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1781        }
1782
1783        retval = vortex_up(dev);
1784        if (!retval)
1785                goto out;
1786
1787err_free_irq:
1788        free_irq(dev->irq, dev);
1789err:
1790        if (vortex_debug > 1)
1791                pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1792out:
1793        return retval;
1794}
1795
1796static void
1797vortex_timer(unsigned long data)
1798{
1799        struct net_device *dev = (struct net_device *)data;
1800        struct vortex_private *vp = netdev_priv(dev);
1801        void __iomem *ioaddr = vp->ioaddr;
1802        int next_tick = 60*HZ;
1803        int ok = 0;
1804        int media_status;
1805
1806        if (vortex_debug > 2) {
1807                pr_debug("%s: Media selection timer tick happened, %s.\n",
1808                           dev->name, media_tbl[dev->if_port].name);
1809                pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1810        }
1811
1812        media_status = window_read16(vp, 4, Wn4_Media);
1813        switch (dev->if_port) {
1814        case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1815                if (media_status & Media_LnkBeat) {
1816                        netif_carrier_on(dev);
1817                        ok = 1;
1818                        if (vortex_debug > 1)
1819                                pr_debug("%s: Media %s has link beat, %x.\n",
1820                                           dev->name, media_tbl[dev->if_port].name, media_status);
1821                } else {
1822                        netif_carrier_off(dev);
1823                        if (vortex_debug > 1) {
1824                                pr_debug("%s: Media %s has no link beat, %x.\n",
1825                                           dev->name, media_tbl[dev->if_port].name, media_status);
1826                        }
1827                }
1828                break;
1829        case XCVR_MII: case XCVR_NWAY:
1830                {
1831                        ok = 1;
1832                        vortex_check_media(dev, 0);
1833                }
1834                break;
1835          default:                                      /* Other media types handled by Tx timeouts. */
1836                if (vortex_debug > 1)
1837                  pr_debug("%s: Media %s has no indication, %x.\n",
1838                                 dev->name, media_tbl[dev->if_port].name, media_status);
1839                ok = 1;
1840        }
1841
1842        if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1843                next_tick = 5*HZ;
1844
1845        if (vp->medialock)
1846                goto leave_media_alone;
1847
1848        if (!ok) {
1849                unsigned int config;
1850
1851                spin_lock_irq(&vp->lock);
1852
1853                do {
1854                        dev->if_port = media_tbl[dev->if_port].next;
1855                } while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1856                if (dev->if_port == XCVR_Default) { /* Go back to default. */
1857                  dev->if_port = vp->default_media;
1858                  if (vortex_debug > 1)
1859                        pr_debug("%s: Media selection failing, using default %s port.\n",
1860                                   dev->name, media_tbl[dev->if_port].name);
1861                } else {
1862                        if (vortex_debug > 1)
1863                                pr_debug("%s: Media selection failed, now trying %s port.\n",
1864                                           dev->name, media_tbl[dev->if_port].name);
1865                        next_tick = media_tbl[dev->if_port].wait;
1866                }
1867                window_write16(vp,
1868                               (media_status & ~(Media_10TP|Media_SQE)) |
1869                               media_tbl[dev->if_port].media_bits,
1870                               4, Wn4_Media);
1871
1872                config = window_read32(vp, 3, Wn3_Config);
1873                config = BFINS(config, dev->if_port, 20, 4);
1874                window_write32(vp, config, 3, Wn3_Config);
1875
1876                iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1877                         ioaddr + EL3_CMD);
1878                if (vortex_debug > 1)
1879                        pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1880                /* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1881
1882                spin_unlock_irq(&vp->lock);
1883        }
1884
1885leave_media_alone:
1886        if (vortex_debug > 2)
1887          pr_debug("%s: Media selection timer finished, %s.\n",
1888                         dev->name, media_tbl[dev->if_port].name);
1889
1890        mod_timer(&vp->timer, RUN_AT(next_tick));
1891        if (vp->deferred)
1892                iowrite16(FakeIntr, ioaddr + EL3_CMD);
1893}
1894
1895static void vortex_tx_timeout(struct net_device *dev)
1896{
1897        struct vortex_private *vp = netdev_priv(dev);
1898        void __iomem *ioaddr = vp->ioaddr;
1899
1900        pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1901                   dev->name, ioread8(ioaddr + TxStatus),
1902                   ioread16(ioaddr + EL3_STATUS));
1903        pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1904                        window_read16(vp, 4, Wn4_NetDiag),
1905                        window_read16(vp, 4, Wn4_Media),
1906                        ioread32(ioaddr + PktStatus),
1907                        window_read16(vp, 4, Wn4_FIFODiag));
1908        /* Slight code bloat to be user friendly. */
1909        if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1910                pr_err("%s: Transmitter encountered 16 collisions --"
1911                           " network cable problem?\n", dev->name);
1912        if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1913                pr_err("%s: Interrupt posted but not delivered --"
1914                           " IRQ blocked by another device?\n", dev->name);
1915                /* Bad idea here.. but we might as well handle a few events. */
1916                {
1917                        /*
1918                         * Block interrupts because vortex_interrupt does a bare spin_lock()
1919                         */
1920                        unsigned long flags;
1921                        local_irq_save(flags);
1922                        if (vp->full_bus_master_tx)
1923                                boomerang_interrupt(dev->irq, dev);
1924                        else
1925                                vortex_interrupt(dev->irq, dev);
1926                        local_irq_restore(flags);
1927                }
1928        }
1929
1930        if (vortex_debug > 0)
1931                dump_tx_ring(dev);
1932
1933        issue_and_wait(dev, TxReset);
1934
1935        dev->stats.tx_errors++;
1936        if (vp->full_bus_master_tx) {
1937                pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1938                if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1939                        iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1940                                 ioaddr + DownListPtr);
1941                if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1942                        netif_wake_queue (dev);
1943                if (vp->drv_flags & IS_BOOMERANG)
1944                        iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1945                iowrite16(DownUnstall, ioaddr + EL3_CMD);
1946        } else {
1947                dev->stats.tx_dropped++;
1948                netif_wake_queue(dev);
1949        }
1950
1951        /* Issue Tx Enable */
1952        iowrite16(TxEnable, ioaddr + EL3_CMD);
1953        dev->trans_start = jiffies; /* prevent tx timeout */
1954}
1955
1956/*
1957 * Handle uncommon interrupt sources.  This is a separate routine to minimize
1958 * the cache impact.
1959 */
1960static void
1961vortex_error(struct net_device *dev, int status)
1962{
1963        struct vortex_private *vp = netdev_priv(dev);
1964        void __iomem *ioaddr = vp->ioaddr;
1965        int do_tx_reset = 0, reset_mask = 0;
1966        unsigned char tx_status = 0;
1967
1968        if (vortex_debug > 2) {
1969                pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1970        }
1971
1972        if (status & TxComplete) {                      /* Really "TxError" for us. */
1973                tx_status = ioread8(ioaddr + TxStatus);
1974                /* Presumably a tx-timeout. We must merely re-enable. */
1975                if (vortex_debug > 2 ||
1976                    (tx_status != 0x88 && vortex_debug > 0)) {
1977                        pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1978                                   dev->name, tx_status);
1979                        if (tx_status == 0x82) {
1980                                pr_err("Probably a duplex mismatch.  See "
1981                                                "Documentation/networking/vortex.txt\n");
1982                        }
1983                        dump_tx_ring(dev);
1984                }
1985                if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1986                if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1987                if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1988                iowrite8(0, ioaddr + TxStatus);
1989                if (tx_status & 0x30) {                 /* txJabber or txUnderrun */
1990                        do_tx_reset = 1;
1991                } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {      /* maxCollisions */
1992                        do_tx_reset = 1;
1993                        reset_mask = 0x0108;            /* Reset interface logic, but not download logic */
1994                } else {                                /* Merely re-enable the transmitter. */
1995                        iowrite16(TxEnable, ioaddr + EL3_CMD);
1996                }
1997        }
1998
1999        if (status & RxEarly)                           /* Rx early is unused. */
2000                iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2001
2002        if (status & StatsFull) {                       /* Empty statistics. */
2003                static int DoneDidThat;
2004                if (vortex_debug > 4)
2005                        pr_debug("%s: Updating stats.\n", dev->name);
2006                update_stats(ioaddr, dev);
2007                /* HACK: Disable statistics as an interrupt source. */
2008                /* This occurs when we have the wrong media type! */
2009                if (DoneDidThat == 0  &&
2010                        ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2011                        pr_warning("%s: Updating statistics failed, disabling "
2012                                   "stats as an interrupt source.\n", dev->name);
2013                        iowrite16(SetIntrEnb |
2014                                  (window_read16(vp, 5, 10) & ~StatsFull),
2015                                  ioaddr + EL3_CMD);
2016                        vp->intr_enable &= ~StatsFull;
2017                        DoneDidThat++;
2018                }
2019        }
2020        if (status & IntReq) {          /* Restore all interrupt sources.  */
2021                iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2022                iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2023        }
2024        if (status & HostError) {
2025                u16 fifo_diag;
2026                fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2027                pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2028                           dev->name, fifo_diag);
2029                /* Adapter failure requires Tx/Rx reset and reinit. */
2030                if (vp->full_bus_master_tx) {
2031                        int bus_status = ioread32(ioaddr + PktStatus);
2032                        /* 0x80000000 PCI master abort. */
2033                        /* 0x40000000 PCI target abort. */
2034                        if (vortex_debug)
2035                                pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2036
2037                        /* In this case, blow the card away */
2038                        /* Must not enter D3 or we can't legally issue the reset! */
2039                        vortex_down(dev, 0);
2040                        issue_and_wait(dev, TotalReset | 0xff);
2041                        vortex_up(dev);         /* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2042                } else if (fifo_diag & 0x0400)
2043                        do_tx_reset = 1;
2044                if (fifo_diag & 0x3000) {
2045                        /* Reset Rx fifo and upload logic */
2046                        issue_and_wait(dev, RxReset|0x07);
2047                        /* Set the Rx filter to the current state. */
2048                        set_rx_mode(dev);
2049                        /* enable 802.1q VLAN tagged frames */
2050                        set_8021q_mode(dev, 1);
2051                        iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2052                        iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2053                }
2054        }
2055
2056        if (do_tx_reset) {
2057                issue_and_wait(dev, TxReset|reset_mask);
2058                iowrite16(TxEnable, ioaddr + EL3_CMD);
2059                if (!vp->full_bus_master_tx)
2060                        netif_wake_queue(dev);
2061        }
2062}
2063
2064static netdev_tx_t
2065vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2066{
2067        struct vortex_private *vp = netdev_priv(dev);
2068        void __iomem *ioaddr = vp->ioaddr;
2069
2070        /* Put out the doubleword header... */
2071        iowrite32(skb->len, ioaddr + TX_FIFO);
2072        if (vp->bus_master) {
2073                /* Set the bus-master controller to transfer the packet. */
2074                int len = (skb->len + 3) & ~3;
2075                vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2076                                                PCI_DMA_TODEVICE);
2077                spin_lock_irq(&vp->window_lock);
2078                window_set(vp, 7);
2079                iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2080                iowrite16(len, ioaddr + Wn7_MasterLen);
2081                spin_unlock_irq(&vp->window_lock);
2082                vp->tx_skb = skb;
2083                iowrite16(StartDMADown, ioaddr + EL3_CMD);
2084                /* netif_wake_queue() will be called at the DMADone interrupt. */
2085        } else {
2086                /* ... and the packet rounded to a doubleword. */
2087                iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2088                dev_kfree_skb (skb);
2089                if (ioread16(ioaddr + TxFree) > 1536) {
2090                        netif_start_queue (dev);        /* AKPM: redundant? */
2091                } else {
2092                        /* Interrupt us when the FIFO has room for max-sized packet. */
2093                        netif_stop_queue(dev);
2094                        iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2095                }
2096        }
2097
2098
2099        /* Clear the Tx status stack. */
2100        {
2101                int tx_status;
2102                int i = 32;
2103
2104                while (--i > 0  &&      (tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2105                        if (tx_status & 0x3C) {         /* A Tx-disabling error occurred.  */
2106                                if (vortex_debug > 2)
2107                                  pr_debug("%s: Tx error, status %2.2x.\n",
2108                                                 dev->name, tx_status);
2109                                if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2110                                if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2111                                if (tx_status & 0x30) {
2112                                        issue_and_wait(dev, TxReset);
2113                                }
2114                                iowrite16(TxEnable, ioaddr + EL3_CMD);
2115                        }
2116                        iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2117                }
2118        }
2119        return NETDEV_TX_OK;
2120}
2121
2122static netdev_tx_t
2123boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2124{
2125        struct vortex_private *vp = netdev_priv(dev);
2126        void __iomem *ioaddr = vp->ioaddr;
2127        /* Calculate the next Tx descriptor entry. */
2128        int entry = vp->cur_tx % TX_RING_SIZE;
2129        struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2130        unsigned long flags;
2131
2132        if (vortex_debug > 6) {
2133                pr_debug("boomerang_start_xmit()\n");
2134                pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2135                           dev->name, vp->cur_tx);
2136        }
2137
2138        /*
2139         * We can't allow a recursion from our interrupt handler back into the
2140         * tx routine, as they take the same spin lock, and that causes
2141         * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2142         * a bit
2143         */
2144        if (vp->handling_irq)
2145                return NETDEV_TX_BUSY;
2146
2147        if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2148                if (vortex_debug > 0)
2149                        pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2150                                   dev->name);
2151                netif_stop_queue(dev);
2152                return NETDEV_TX_BUSY;
2153        }
2154
2155        vp->tx_skbuff[entry] = skb;
2156
2157        vp->tx_ring[entry].next = 0;
2158#if DO_ZEROCOPY
2159        if (skb->ip_summed != CHECKSUM_PARTIAL)
2160                        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2161        else
2162                        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2163
2164        if (!skb_shinfo(skb)->nr_frags) {
2165                vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2166                                                                                skb->len, PCI_DMA_TODEVICE));
2167                vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2168        } else {
2169                int i;
2170
2171                vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2172                                                                                skb_headlen(skb), PCI_DMA_TODEVICE));
2173                vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2174
2175                for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2176                        skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2177
2178                        vp->tx_ring[entry].frag[i+1].addr =
2179                                        cpu_to_le32(pci_map_single(
2180                                                VORTEX_PCI(vp),
2181                                                (void *)skb_frag_address(frag),
2182                                                skb_frag_size(frag), PCI_DMA_TODEVICE));
2183
2184                        if (i == skb_shinfo(skb)->nr_frags-1)
2185                                        vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2186                        else
2187                                        vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2188                }
2189        }
2190#else
2191        vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2192        vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2193        vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2194#endif
2195
2196        spin_lock_irqsave(&vp->lock, flags);
2197        /* Wait for the stall to complete. */
2198        issue_and_wait(dev, DownStall);
2199        prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2200        if (ioread32(ioaddr + DownListPtr) == 0) {
2201                iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2202                vp->queued_packet++;
2203        }
2204
2205        vp->cur_tx++;
2206        if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2207                netif_stop_queue (dev);
2208        } else {                                        /* Clear previous interrupt enable. */
2209#if defined(tx_interrupt_mitigation)
2210                /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2211                 * were selected, this would corrupt DN_COMPLETE. No?
2212                 */
2213                prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2214#endif
2215        }
2216        iowrite16(DownUnstall, ioaddr + EL3_CMD);
2217        spin_unlock_irqrestore(&vp->lock, flags);
2218        return NETDEV_TX_OK;
2219}
2220
2221/* The interrupt handler does all of the Rx thread work and cleans up
2222   after the Tx thread. */
2223
2224/*
2225 * This is the ISR for the vortex series chips.
2226 * full_bus_master_tx == 0 && full_bus_master_rx == 0
2227 */
2228
2229static irqreturn_t
2230vortex_interrupt(int irq, void *dev_id)
2231{
2232        struct net_device *dev = dev_id;
2233        struct vortex_private *vp = netdev_priv(dev);
2234        void __iomem *ioaddr;
2235        int status;
2236        int work_done = max_interrupt_work;
2237        int handled = 0;
2238
2239        ioaddr = vp->ioaddr;
2240        spin_lock(&vp->lock);
2241
2242        status = ioread16(ioaddr + EL3_STATUS);
2243
2244        if (vortex_debug > 6)
2245                pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2246
2247        if ((status & IntLatch) == 0)
2248                goto handler_exit;              /* No interrupt: shared IRQs cause this */
2249        handled = 1;
2250
2251        if (status & IntReq) {
2252                status |= vp->deferred;
2253                vp->deferred = 0;
2254        }
2255
2256        if (status == 0xffff)           /* h/w no longer present (hotplug)? */
2257                goto handler_exit;
2258
2259        if (vortex_debug > 4)
2260                pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2261                           dev->name, status, ioread8(ioaddr + Timer));
2262
2263        spin_lock(&vp->window_lock);
2264        window_set(vp, 7);
2265
2266        do {
2267                if (vortex_debug > 5)
2268                                pr_debug("%s: In interrupt loop, status %4.4x.\n",
2269                                           dev->name, status);
2270                if (status & RxComplete)
2271                        vortex_rx(dev);
2272
2273                if (status & TxAvailable) {
2274                        if (vortex_debug > 5)
2275                                pr_debug("      TX room bit was handled.\n");
2276                        /* There's room in the FIFO for a full-sized packet. */
2277                        iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2278                        netif_wake_queue (dev);
2279                }
2280
2281                if (status & DMADone) {
2282                        if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2283                                iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2284                                pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2285                                dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2286                                if (ioread16(ioaddr + TxFree) > 1536) {
2287                                        /*
2288                                         * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2289                                         * insufficient FIFO room, the TxAvailable test will succeed and call
2290                                         * netif_wake_queue()
2291                                         */
2292                                        netif_wake_queue(dev);
2293                                } else { /* Interrupt when FIFO has room for max-sized packet. */
2294                                        iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2295                                        netif_stop_queue(dev);
2296                                }
2297                        }
2298                }
2299                /* Check for all uncommon interrupts at once. */
2300                if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2301                        if (status == 0xffff)
2302                                break;
2303                        if (status & RxEarly)
2304                                vortex_rx(dev);
2305                        spin_unlock(&vp->window_lock);
2306                        vortex_error(dev, status);
2307                        spin_lock(&vp->window_lock);
2308                        window_set(vp, 7);
2309                }
2310
2311                if (--work_done < 0) {
2312                        pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2313                                dev->name, status);
2314                        /* Disable all pending interrupts. */
2315                        do {
2316                                vp->deferred |= status;
2317                                iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2318                                         ioaddr + EL3_CMD);
2319                                iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2320                        } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2321                        /* The timer will reenable interrupts. */
2322                        mod_timer(&vp->timer, jiffies + 1*HZ);
2323                        break;
2324                }
2325                /* Acknowledge the IRQ. */
2326                iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2327        } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2328
2329        spin_unlock(&vp->window_lock);
2330
2331        if (vortex_debug > 4)
2332                pr_debug("%s: exiting interrupt, status %4.4x.\n",
2333                           dev->name, status);
2334handler_exit:
2335        spin_unlock(&vp->lock);
2336        return IRQ_RETVAL(handled);
2337}
2338
2339/*
2340 * This is the ISR for the boomerang series chips.
2341 * full_bus_master_tx == 1 && full_bus_master_rx == 1
2342 */
2343
2344static irqreturn_t
2345boomerang_interrupt(int irq, void *dev_id)
2346{
2347        struct net_device *dev = dev_id;
2348        struct vortex_private *vp = netdev_priv(dev);
2349        void __iomem *ioaddr;
2350        int status;
2351        int work_done = max_interrupt_work;
2352
2353        ioaddr = vp->ioaddr;
2354
2355
2356        /*
2357         * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2358         * and boomerang_start_xmit
2359         */
2360        spin_lock(&vp->lock);
2361        vp->handling_irq = 1;
2362
2363        status = ioread16(ioaddr + EL3_STATUS);
2364
2365        if (vortex_debug > 6)
2366                pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2367
2368        if ((status & IntLatch) == 0)
2369                goto handler_exit;              /* No interrupt: shared IRQs can cause this */
2370
2371        if (status == 0xffff) {         /* h/w no longer present (hotplug)? */
2372                if (vortex_debug > 1)
2373                        pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2374                goto handler_exit;
2375        }
2376
2377        if (status & IntReq) {
2378                status |= vp->deferred;
2379                vp->deferred = 0;
2380        }
2381
2382        if (vortex_debug > 4)
2383                pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2384                           dev->name, status, ioread8(ioaddr + Timer));
2385        do {
2386                if (vortex_debug > 5)
2387                                pr_debug("%s: In interrupt loop, status %4.4x.\n",
2388                                           dev->name, status);
2389                if (status & UpComplete) {
2390                        iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2391                        if (vortex_debug > 5)
2392                                pr_debug("boomerang_interrupt->boomerang_rx\n");
2393                        boomerang_rx(dev);
2394                }
2395
2396                if (status & DownComplete) {
2397                        unsigned int dirty_tx = vp->dirty_tx;
2398
2399                        iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2400                        while (vp->cur_tx - dirty_tx > 0) {
2401                                int entry = dirty_tx % TX_RING_SIZE;
2402#if 1   /* AKPM: the latter is faster, but cyclone-only */
2403                                if (ioread32(ioaddr + DownListPtr) ==
2404                                        vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2405                                        break;                  /* It still hasn't been processed. */
2406#else
2407                                if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2408                                        break;                  /* It still hasn't been processed. */
2409#endif
2410
2411                                if (vp->tx_skbuff[entry]) {
2412                                        struct sk_buff *skb = vp->tx_skbuff[entry];
2413#if DO_ZEROCOPY
2414                                        int i;
2415                                        for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2416                                                        pci_unmap_single(VORTEX_PCI(vp),
2417                                                                                         le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2418                                                                                         le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2419                                                                                         PCI_DMA_TODEVICE);
2420#else
2421                                        pci_unmap_single(VORTEX_PCI(vp),
2422                                                le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2423#endif
2424                                        dev_kfree_skb_irq(skb);
2425                                        vp->tx_skbuff[entry] = NULL;
2426                                } else {
2427                                        pr_debug("boomerang_interrupt: no skb!\n");
2428                                }
2429                                /* dev->stats.tx_packets++;  Counted below. */
2430                                dirty_tx++;
2431                        }
2432                        vp->dirty_tx = dirty_tx;
2433                        if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2434                                if (vortex_debug > 6)
2435                                        pr_debug("boomerang_interrupt: wake queue\n");
2436                                netif_wake_queue (dev);
2437                        }
2438                }
2439
2440                /* Check for all uncommon interrupts at once. */
2441                if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2442                        vortex_error(dev, status);
2443
2444                if (--work_done < 0) {
2445                        pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2446                                dev->name, status);
2447                        /* Disable all pending interrupts. */
2448                        do {
2449                                vp->deferred |= status;
2450                                iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2451                                         ioaddr + EL3_CMD);
2452                                iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2453                        } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2454                        /* The timer will reenable interrupts. */
2455                        mod_timer(&vp->timer, jiffies + 1*HZ);
2456                        break;
2457                }
2458                /* Acknowledge the IRQ. */
2459                iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2460                if (vp->cb_fn_base)                     /* The PCMCIA people are idiots.  */
2461                        iowrite32(0x8000, vp->cb_fn_base + 4);
2462
2463        } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2464
2465        if (vortex_debug > 4)
2466                pr_debug("%s: exiting interrupt, status %4.4x.\n",
2467                           dev->name, status);
2468handler_exit:
2469        vp->handling_irq = 0;
2470        spin_unlock(&vp->lock);
2471        return IRQ_HANDLED;
2472}
2473
2474static int vortex_rx(struct net_device *dev)
2475{
2476        struct vortex_private *vp = netdev_priv(dev);
2477        void __iomem *ioaddr = vp->ioaddr;
2478        int i;
2479        short rx_status;
2480
2481        if (vortex_debug > 5)
2482                pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2483                           ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2484        while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2485                if (rx_status & 0x4000) { /* Error, update stats. */
2486                        unsigned char rx_error = ioread8(ioaddr + RxErrors);
2487                        if (vortex_debug > 2)
2488                                pr_debug(" Rx error: status %2.2x.\n", rx_error);
2489                        dev->stats.rx_errors++;
2490                        if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2491                        if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2492                        if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2493                        if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2494                        if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2495                } else {
2496                        /* The packet length: up to 4.5K!. */
2497                        int pkt_len = rx_status & 0x1fff;
2498                        struct sk_buff *skb;
2499
2500                        skb = netdev_alloc_skb(dev, pkt_len + 5);
2501                        if (vortex_debug > 4)
2502                                pr_debug("Receiving packet size %d status %4.4x.\n",
2503                                           pkt_len, rx_status);
2504                        if (skb != NULL) {
2505                                skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2506                                /* 'skb_put()' points to the start of sk_buff data area. */
2507                                if (vp->bus_master &&
2508                                        ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2509                                        dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2510                                                                           pkt_len, PCI_DMA_FROMDEVICE);
2511                                        iowrite32(dma, ioaddr + Wn7_MasterAddr);
2512                                        iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2513                                        iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2514                                        while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2515                                                ;
2516                                        pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2517                                } else {
2518                                        ioread32_rep(ioaddr + RX_FIFO,
2519                                                     skb_put(skb, pkt_len),
2520                                                     (pkt_len + 3) >> 2);
2521                                }
2522                                iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2523                                skb->protocol = eth_type_trans(skb, dev);
2524                                netif_rx(skb);
2525                                dev->stats.rx_packets++;
2526                                /* Wait a limited time to go to next packet. */
2527                                for (i = 200; i >= 0; i--)
2528                                        if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2529                                                break;
2530                                continue;
2531                        } else if (vortex_debug > 0)
2532                                pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2533                                        dev->name, pkt_len);
2534                        dev->stats.rx_dropped++;
2535                }
2536                issue_and_wait(dev, RxDiscard);
2537        }
2538
2539        return 0;
2540}
2541
2542static int
2543boomerang_rx(struct net_device *dev)
2544{
2545        struct vortex_private *vp = netdev_priv(dev);
2546        int entry = vp->cur_rx % RX_RING_SIZE;
2547        void __iomem *ioaddr = vp->ioaddr;
2548        int rx_status;
2549        int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2550
2551        if (vortex_debug > 5)
2552                pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2553
2554        while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2555                if (--rx_work_limit < 0)
2556                        break;
2557                if (rx_status & RxDError) { /* Error, update stats. */
2558                        unsigned char rx_error = rx_status >> 16;
2559                        if (vortex_debug > 2)
2560                                pr_debug(" Rx error: status %2.2x.\n", rx_error);
2561                        dev->stats.rx_errors++;
2562                        if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2563                        if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2564                        if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2565                        if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2566                        if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2567                } else {
2568                        /* The packet length: up to 4.5K!. */
2569                        int pkt_len = rx_status & 0x1fff;
2570                        struct sk_buff *skb;
2571                        dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2572
2573                        if (vortex_debug > 4)
2574                                pr_debug("Receiving packet size %d status %4.4x.\n",
2575                                           pkt_len, rx_status);
2576
2577                        /* Check if the packet is long enough to just accept without
2578                           copying to a properly sized skbuff. */
2579                        if (pkt_len < rx_copybreak &&
2580                            (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2581                                skb_reserve(skb, 2);    /* Align IP on 16 byte boundaries */
2582                                pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2583                                /* 'skb_put()' points to the start of sk_buff data area. */
2584                                memcpy(skb_put(skb, pkt_len),
2585                                           vp->rx_skbuff[entry]->data,
2586                                           pkt_len);
2587                                pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2588                                vp->rx_copy++;
2589                        } else {
2590                                /* Pass up the skbuff already on the Rx ring. */
2591                                skb = vp->rx_skbuff[entry];
2592                                vp->rx_skbuff[entry] = NULL;
2593                                skb_put(skb, pkt_len);
2594                                pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2595                                vp->rx_nocopy++;
2596                        }
2597                        skb->protocol = eth_type_trans(skb, dev);
2598                        {                                       /* Use hardware checksum info. */
2599                                int csum_bits = rx_status & 0xee000000;
2600                                if (csum_bits &&
2601                                        (csum_bits == (IPChksumValid | TCPChksumValid) ||
2602                                         csum_bits == (IPChksumValid | UDPChksumValid))) {
2603                                        skb->ip_summed = CHECKSUM_UNNECESSARY;
2604                                        vp->rx_csumhits++;
2605                                }
2606                        }
2607                        netif_rx(skb);
2608                        dev->stats.rx_packets++;
2609                }
2610                entry = (++vp->cur_rx) % RX_RING_SIZE;
2611        }
2612        /* Refill the Rx ring buffers. */
2613        for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2614                struct sk_buff *skb;
2615                entry = vp->dirty_rx % RX_RING_SIZE;
2616                if (vp->rx_skbuff[entry] == NULL) {
2617                        skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2618                        if (skb == NULL) {
2619                                static unsigned long last_jif;
2620                                if (time_after(jiffies, last_jif + 10 * HZ)) {
2621                                        pr_warning("%s: memory shortage\n", dev->name);
2622                                        last_jif = jiffies;
2623                                }
2624                                if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2625                                        mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2626                                break;                  /* Bad news!  */
2627                        }
2628
2629                        vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2630                        vp->rx_skbuff[entry] = skb;
2631                }
2632                vp->rx_ring[entry].status = 0;  /* Clear complete bit. */
2633                iowrite16(UpUnstall, ioaddr + EL3_CMD);
2634        }
2635        return 0;
2636}
2637
2638/*
2639 * If we've hit a total OOM refilling the Rx ring we poll once a second
2640 * for some memory.  Otherwise there is no way to restart the rx process.
2641 */
2642static void
2643rx_oom_timer(unsigned long arg)
2644{
2645        struct net_device *dev = (struct net_device *)arg;
2646        struct vortex_private *vp = netdev_priv(dev);
2647
2648        spin_lock_irq(&vp->lock);
2649        if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)        /* This test is redundant, but makes me feel good */
2650                boomerang_rx(dev);
2651        if (vortex_debug > 1) {
2652                pr_debug("%s: rx_oom_timer %s\n", dev->name,
2653                        ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2654        }
2655        spin_unlock_irq(&vp->lock);
2656}
2657
2658static void
2659vortex_down(struct net_device *dev, int final_down)
2660{
2661        struct vortex_private *vp = netdev_priv(dev);
2662        void __iomem *ioaddr = vp->ioaddr;
2663
2664        netif_stop_queue (dev);
2665
2666        del_timer_sync(&vp->rx_oom_timer);
2667        del_timer_sync(&vp->timer);
2668
2669        /* Turn off statistics ASAP.  We update dev->stats below. */
2670        iowrite16(StatsDisable, ioaddr + EL3_CMD);
2671
2672        /* Disable the receiver and transmitter. */
2673        iowrite16(RxDisable, ioaddr + EL3_CMD);
2674        iowrite16(TxDisable, ioaddr + EL3_CMD);
2675
2676        /* Disable receiving 802.1q tagged frames */
2677        set_8021q_mode(dev, 0);
2678
2679        if (dev->if_port == XCVR_10base2)
2680                /* Turn off thinnet power.  Green! */
2681                iowrite16(StopCoax, ioaddr + EL3_CMD);
2682
2683        iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2684
2685        update_stats(ioaddr, dev);
2686        if (vp->full_bus_master_rx)
2687                iowrite32(0, ioaddr + UpListPtr);
2688        if (vp->full_bus_master_tx)
2689                iowrite32(0, ioaddr + DownListPtr);
2690
2691        if (final_down && VORTEX_PCI(vp)) {
2692                vp->pm_state_valid = 1;
2693                pci_save_state(VORTEX_PCI(vp));
2694                acpi_set_WOL(dev);
2695        }
2696}
2697
2698static int
2699vortex_close(struct net_device *dev)
2700{
2701        struct vortex_private *vp = netdev_priv(dev);
2702        void __iomem *ioaddr = vp->ioaddr;
2703        int i;
2704
2705        if (netif_device_present(dev))
2706                vortex_down(dev, 1);
2707
2708        if (vortex_debug > 1) {
2709                pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2710                           dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2711                pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2712                           " tx_queued %d Rx pre-checksummed %d.\n",
2713                           dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2714        }
2715
2716#if DO_ZEROCOPY
2717        if (vp->rx_csumhits &&
2718            (vp->drv_flags & HAS_HWCKSM) == 0 &&
2719            (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2720                pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2721        }
2722#endif
2723
2724        free_irq(dev->irq, dev);
2725
2726        if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2727                for (i = 0; i < RX_RING_SIZE; i++)
2728                        if (vp->rx_skbuff[i]) {
2729                                pci_unmap_single(       VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2730                                                                        PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2731                                dev_kfree_skb(vp->rx_skbuff[i]);
2732                                vp->rx_skbuff[i] = NULL;
2733                        }
2734        }
2735        if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2736                for (i = 0; i < TX_RING_SIZE; i++) {
2737                        if (vp->tx_skbuff[i]) {
2738                                struct sk_buff *skb = vp->tx_skbuff[i];
2739#if DO_ZEROCOPY
2740                                int k;
2741
2742                                for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2743                                                pci_unmap_single(VORTEX_PCI(vp),
2744                                                                                 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2745                                                                                 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2746                                                                                 PCI_DMA_TODEVICE);
2747#else
2748                                pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2749#endif
2750                                dev_kfree_skb(skb);
2751                                vp->tx_skbuff[i] = NULL;
2752                        }
2753                }
2754        }
2755
2756        return 0;
2757}
2758
2759static void
2760dump_tx_ring(struct net_device *dev)
2761{
2762        if (vortex_debug > 0) {
2763        struct vortex_private *vp = netdev_priv(dev);
2764                void __iomem *ioaddr = vp->ioaddr;
2765
2766                if (vp->full_bus_master_tx) {
2767                        int i;
2768                        int stalled = ioread32(ioaddr + PktStatus) & 0x04;      /* Possible racy. But it's only debug stuff */
2769
2770                        pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2771                                        vp->full_bus_master_tx,
2772                                        vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2773                                        vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2774                        pr_err("  Transmit list %8.8x vs. %p.\n",
2775                                   ioread32(ioaddr + DownListPtr),
2776                                   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2777                        issue_and_wait(dev, DownStall);
2778                        for (i = 0; i < TX_RING_SIZE; i++) {
2779                                unsigned int length;
2780
2781#if DO_ZEROCOPY
2782                                length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2783#else
2784                                length = le32_to_cpu(vp->tx_ring[i].length);
2785#endif
2786                                pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2787                                           i, &vp->tx_ring[i], length,
2788                                           le32_to_cpu(vp->tx_ring[i].status));
2789                        }
2790                        if (!stalled)
2791                                iowrite16(DownUnstall, ioaddr + EL3_CMD);
2792                }
2793        }
2794}
2795
2796static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2797{
2798        struct vortex_private *vp = netdev_priv(dev);
2799        void __iomem *ioaddr = vp->ioaddr;
2800        unsigned long flags;
2801
2802        if (netif_device_present(dev)) {        /* AKPM: Used to be netif_running */
2803                spin_lock_irqsave (&vp->lock, flags);
2804                update_stats(ioaddr, dev);
2805                spin_unlock_irqrestore (&vp->lock, flags);
2806        }
2807        return &dev->stats;
2808}
2809
2810/*  Update statistics.
2811        Unlike with the EL3 we need not worry about interrupts changing
2812        the window setting from underneath us, but we must still guard
2813        against a race condition with a StatsUpdate interrupt updating the
2814        table.  This is done by checking that the ASM (!) code generated uses
2815        atomic updates with '+='.
2816        */
2817static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2818{
2819        struct vortex_private *vp = netdev_priv(dev);
2820
2821        /* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2822        /* Switch to the stats window, and read everything. */
2823        dev->stats.tx_carrier_errors            += window_read8(vp, 6, 0);
2824        dev->stats.tx_heartbeat_errors          += window_read8(vp, 6, 1);
2825        dev->stats.tx_window_errors             += window_read8(vp, 6, 4);
2826        dev->stats.rx_fifo_errors               += window_read8(vp, 6, 5);
2827        dev->stats.tx_packets                   += window_read8(vp, 6, 6);
2828        dev->stats.tx_packets                   += (window_read8(vp, 6, 9) &
2829                                                    0x30) << 4;
2830        /* Rx packets   */                      window_read8(vp, 6, 7);   /* Must read to clear */
2831        /* Don't bother with register 9, an extension of registers 6&7.
2832           If we do use the 6&7 values the atomic update assumption above
2833           is invalid. */
2834        dev->stats.rx_bytes                     += window_read16(vp, 6, 10);
2835        dev->stats.tx_bytes                     += window_read16(vp, 6, 12);
2836        /* Extra stats for get_ethtool_stats() */
2837        vp->xstats.tx_multiple_collisions       += window_read8(vp, 6, 2);
2838        vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2839        vp->xstats.tx_deferred                  += window_read8(vp, 6, 8);
2840        vp->xstats.rx_bad_ssd                   += window_read8(vp, 4, 12);
2841
2842        dev->stats.collisions = vp->xstats.tx_multiple_collisions
2843                + vp->xstats.tx_single_collisions
2844                + vp->xstats.tx_max_collisions;
2845
2846        {
2847                u8 up = window_read8(vp, 4, 13);
2848                dev->stats.rx_bytes += (up & 0x0f) << 16;
2849                dev->stats.tx_bytes += (up & 0xf0) << 12;
2850        }
2851}
2852
2853static int vortex_nway_reset(struct net_device *dev)
2854{
2855        struct vortex_private *vp = netdev_priv(dev);
2856
2857        return mii_nway_restart(&vp->mii);
2858}
2859
2860static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2861{
2862        struct vortex_private *vp = netdev_priv(dev);
2863
2864        return mii_ethtool_gset(&vp->mii, cmd);
2865}
2866
2867static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2868{
2869        struct vortex_private *vp = netdev_priv(dev);
2870
2871        return mii_ethtool_sset(&vp->mii, cmd);
2872}
2873
2874static u32 vortex_get_msglevel(struct net_device *dev)
2875{
2876        return vortex_debug;
2877}
2878
2879static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2880{
2881        vortex_debug = dbg;
2882}
2883
2884static int vortex_get_sset_count(struct net_device *dev, int sset)
2885{
2886        switch (sset) {
2887        case ETH_SS_STATS:
2888                return VORTEX_NUM_STATS;
2889        default:
2890                return -EOPNOTSUPP;
2891        }
2892}
2893
2894static void vortex_get_ethtool_stats(struct net_device *dev,
2895        struct ethtool_stats *stats, u64 *data)
2896{
2897        struct vortex_private *vp = netdev_priv(dev);
2898        void __iomem *ioaddr = vp->ioaddr;
2899        unsigned long flags;
2900
2901        spin_lock_irqsave(&vp->lock, flags);
2902        update_stats(ioaddr, dev);
2903        spin_unlock_irqrestore(&vp->lock, flags);
2904
2905        data[0] = vp->xstats.tx_deferred;
2906        data[1] = vp->xstats.tx_max_collisions;
2907        data[2] = vp->xstats.tx_multiple_collisions;
2908        data[3] = vp->xstats.tx_single_collisions;
2909        data[4] = vp->xstats.rx_bad_ssd;
2910}
2911
2912
2913static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2914{
2915        switch (stringset) {
2916        case ETH_SS_STATS:
2917                memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2918                break;
2919        default:
2920                WARN_ON(1);
2921                break;
2922        }
2923}
2924
2925static void vortex_get_drvinfo(struct net_device *dev,
2926                                        struct ethtool_drvinfo *info)
2927{
2928        struct vortex_private *vp = netdev_priv(dev);
2929
2930        strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2931        if (VORTEX_PCI(vp)) {
2932                strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2933                        sizeof(info->bus_info));
2934        } else {
2935                if (VORTEX_EISA(vp))
2936                        strlcpy(info->bus_info, dev_name(vp->gendev),
2937                                sizeof(info->bus_info));
2938                else
2939                        snprintf(info->bus_info, sizeof(info->bus_info),
2940                                "EISA 0x%lx %d", dev->base_addr, dev->irq);
2941        }
2942}
2943
2944static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2945{
2946        struct vortex_private *vp = netdev_priv(dev);
2947
2948        if (!VORTEX_PCI(vp))
2949                return;
2950
2951        wol->supported = WAKE_MAGIC;
2952
2953        wol->wolopts = 0;
2954        if (vp->enable_wol)
2955                wol->wolopts |= WAKE_MAGIC;
2956}
2957
2958static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2959{
2960        struct vortex_private *vp = netdev_priv(dev);
2961
2962        if (!VORTEX_PCI(vp))
2963                return -EOPNOTSUPP;
2964
2965        if (wol->wolopts & ~WAKE_MAGIC)
2966                return -EINVAL;
2967
2968        if (wol->wolopts & WAKE_MAGIC)
2969                vp->enable_wol = 1;
2970        else
2971                vp->enable_wol = 0;
2972        acpi_set_WOL(dev);
2973
2974        return 0;
2975}
2976
2977static const struct ethtool_ops vortex_ethtool_ops = {
2978        .get_drvinfo            = vortex_get_drvinfo,
2979        .get_strings            = vortex_get_strings,
2980        .get_msglevel           = vortex_get_msglevel,
2981        .set_msglevel           = vortex_set_msglevel,
2982        .get_ethtool_stats      = vortex_get_ethtool_stats,
2983        .get_sset_count         = vortex_get_sset_count,
2984        .get_settings           = vortex_get_settings,
2985        .set_settings           = vortex_set_settings,
2986        .get_link               = ethtool_op_get_link,
2987        .nway_reset             = vortex_nway_reset,
2988        .get_wol                = vortex_get_wol,
2989        .set_wol                = vortex_set_wol,
2990};
2991
2992#ifdef CONFIG_PCI
2993/*
2994 *      Must power the device up to do MDIO operations
2995 */
2996static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2997{
2998        int err;
2999        struct vortex_private *vp = netdev_priv(dev);
3000        pci_power_t state = 0;
3001
3002        if(VORTEX_PCI(vp))
3003                state = VORTEX_PCI(vp)->current_state;
3004
3005        /* The kernel core really should have pci_get_power_state() */
3006
3007        if(state != 0)
3008                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3009        err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3010        if(state != 0)
3011                pci_set_power_state(VORTEX_PCI(vp), state);
3012
3013        return err;
3014}
3015#endif
3016
3017
3018/* Pre-Cyclone chips have no documented multicast filter, so the only
3019   multicast setting is to receive all multicast frames.  At least
3020   the chip has a very clean way to set the mode, unlike many others. */
3021static void set_rx_mode(struct net_device *dev)
3022{
3023        struct vortex_private *vp = netdev_priv(dev);
3024        void __iomem *ioaddr = vp->ioaddr;
3025        int new_mode;
3026
3027        if (dev->flags & IFF_PROMISC) {
3028                if (vortex_debug > 3)
3029                        pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3030                new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3031        } else  if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3032                new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3033        } else
3034                new_mode = SetRxFilter | RxStation | RxBroadcast;
3035
3036        iowrite16(new_mode, ioaddr + EL3_CMD);
3037}
3038
3039#if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3040/* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3041   Note that this must be done after each RxReset due to some backwards
3042   compatibility logic in the Cyclone and Tornado ASICs */
3043
3044/* The Ethernet Type used for 802.1q tagged frames */
3045#define VLAN_ETHER_TYPE 0x8100
3046
3047static void set_8021q_mode(struct net_device *dev, int enable)
3048{
3049        struct vortex_private *vp = netdev_priv(dev);
3050        int mac_ctrl;
3051
3052        if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3053                /* cyclone and tornado chipsets can recognize 802.1q
3054                 * tagged frames and treat them correctly */
3055
3056                int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */
3057                if (enable)
3058                        max_pkt_size += 4;      /* 802.1Q VLAN tag */
3059
3060                window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3061
3062                /* set VlanEtherType to let the hardware checksumming
3063                   treat tagged frames correctly */
3064                window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3065        } else {
3066                /* on older cards we have to enable large frames */
3067
3068                vp->large_frames = dev->mtu > 1500 || enable;
3069
3070                mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3071                if (vp->large_frames)
3072                        mac_ctrl |= 0x40;
3073                else
3074                        mac_ctrl &= ~0x40;
3075                window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3076        }
3077}
3078#else
3079
3080static void set_8021q_mode(struct net_device *dev, int enable)
3081{
3082}
3083
3084
3085#endif
3086
3087/* MII transceiver control section.
3088   Read and write the MII registers using software-generated serial
3089   MDIO protocol.  See the MII specifications or DP83840A data sheet
3090   for details. */
3091
3092/* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3093   met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3094   "overclocking" issues. */
3095static void mdio_delay(struct vortex_private *vp)
3096{
3097        window_read32(vp, 4, Wn4_PhysicalMgmt);
3098}
3099
3100#define MDIO_SHIFT_CLK  0x01
3101#define MDIO_DIR_WRITE  0x04
3102#define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3103#define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3104#define MDIO_DATA_READ  0x02
3105#define MDIO_ENB_IN             0x00
3106
3107/* Generate the preamble required for initial synchronization and
3108   a few older transceivers. */
3109static void mdio_sync(struct vortex_private *vp, int bits)
3110{
3111        /* Establish sync by sending at least 32 logic ones. */
3112        while (-- bits >= 0) {
3113                window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3114                mdio_delay(vp);
3115                window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3116                               4, Wn4_PhysicalMgmt);
3117                mdio_delay(vp);
3118        }
3119}
3120
3121static int mdio_read(struct net_device *dev, int phy_id, int location)
3122{
3123        int i;
3124        struct vortex_private *vp = netdev_priv(dev);
3125        int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3126        unsigned int retval = 0;
3127
3128        spin_lock_bh(&vp->mii_lock);
3129
3130        if (mii_preamble_required)
3131                mdio_sync(vp, 32);
3132
3133        /* Shift the read command bits out. */
3134        for (i = 14; i >= 0; i--) {
3135                int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3136                window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3137                mdio_delay(vp);
3138                window_write16(vp, dataval | MDIO_SHIFT_CLK,
3139                               4, Wn4_PhysicalMgmt);
3140                mdio_delay(vp);
3141        }
3142        /* Read the two transition, 16 data, and wire-idle bits. */
3143        for (i = 19; i > 0; i--) {
3144                window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3145                mdio_delay(vp);
3146                retval = (retval << 1) |
3147                        ((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3148                          MDIO_DATA_READ) ? 1 : 0);
3149                window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3150                               4, Wn4_PhysicalMgmt);
3151                mdio_delay(vp);
3152        }
3153
3154        spin_unlock_bh(&vp->mii_lock);
3155
3156        return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3157}
3158
3159static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3160{
3161        struct vortex_private *vp = netdev_priv(dev);
3162        int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3163        int i;
3164
3165        spin_lock_bh(&vp->mii_lock);
3166
3167        if (mii_preamble_required)
3168                mdio_sync(vp, 32);
3169
3170        /* Shift the command bits out. */
3171        for (i = 31; i >= 0; i--) {
3172                int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3173                window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3174                mdio_delay(vp);
3175                window_write16(vp, dataval | MDIO_SHIFT_CLK,
3176                               4, Wn4_PhysicalMgmt);
3177                mdio_delay(vp);
3178        }
3179        /* Leave the interface idle. */
3180        for (i = 1; i >= 0; i--) {
3181                window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3182                mdio_delay(vp);
3183                window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3184                               4, Wn4_PhysicalMgmt);
3185                mdio_delay(vp);
3186        }
3187
3188        spin_unlock_bh(&vp->mii_lock);
3189}
3190
3191/* ACPI: Advanced Configuration and Power Interface. */
3192/* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3193static void acpi_set_WOL(struct net_device *dev)
3194{
3195        struct vortex_private *vp = netdev_priv(dev);
3196        void __iomem *ioaddr = vp->ioaddr;
3197
3198        device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3199
3200        if (vp->enable_wol) {
3201                /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3202                window_write16(vp, 2, 7, 0x0c);
3203                /* The RxFilter must accept the WOL frames. */
3204                iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3205                iowrite16(RxEnable, ioaddr + EL3_CMD);
3206
3207                if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3208                        pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3209
3210                        vp->enable_wol = 0;
3211                        return;
3212                }
3213
3214                if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3215                        return;
3216
3217                /* Change the power state to D3; RxEnable doesn't take effect. */
3218                pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3219        }
3220}
3221
3222
3223static void vortex_remove_one(struct pci_dev *pdev)
3224{
3225        struct net_device *dev = pci_get_drvdata(pdev);
3226        struct vortex_private *vp;
3227
3228        if (!dev) {
3229                pr_err("vortex_remove_one called for Compaq device!\n");
3230                BUG();
3231        }
3232
3233        vp = netdev_priv(dev);
3234
3235        if (vp->cb_fn_base)
3236                pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3237
3238        unregister_netdev(dev);
3239
3240        if (VORTEX_PCI(vp)) {
3241                pci_set_power_state(VORTEX_PCI(vp), PCI_D0);    /* Go active */
3242                if (vp->pm_state_valid)
3243                        pci_restore_state(VORTEX_PCI(vp));
3244                pci_disable_device(VORTEX_PCI(vp));
3245        }
3246        /* Should really use issue_and_wait() here */
3247        iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3248             vp->ioaddr + EL3_CMD);
3249
3250        pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3251
3252        pci_free_consistent(pdev,
3253                                                sizeof(struct boom_rx_desc) * RX_RING_SIZE
3254                                                        + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3255                                                vp->rx_ring,
3256                                                vp->rx_ring_dma);
3257
3258        pci_release_regions(pdev);
3259
3260        free_netdev(dev);
3261}
3262
3263
3264static struct pci_driver vortex_driver = {
3265        .name           = "3c59x",
3266        .probe          = vortex_init_one,
3267        .remove         = vortex_remove_one,
3268        .id_table       = vortex_pci_tbl,
3269        .driver.pm      = VORTEX_PM_OPS,
3270};
3271
3272
3273static int vortex_have_pci;
3274static int vortex_have_eisa;
3275
3276
3277static int __init vortex_init(void)
3278{
3279        int pci_rc, eisa_rc;
3280
3281        pci_rc = pci_register_driver(&vortex_driver);
3282        eisa_rc = vortex_eisa_init();
3283
3284        if (pci_rc == 0)
3285                vortex_have_pci = 1;
3286        if (eisa_rc > 0)
3287                vortex_have_eisa = 1;
3288
3289        return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3290}
3291
3292
3293static void __exit vortex_eisa_cleanup(void)
3294{
3295        struct vortex_private *vp;
3296        void __iomem *ioaddr;
3297
3298#ifdef CONFIG_EISA
3299        /* Take care of the EISA devices */
3300        eisa_driver_unregister(&vortex_eisa_driver);
3301#endif
3302
3303        if (compaq_net_device) {
3304                vp = netdev_priv(compaq_net_device);
3305                ioaddr = ioport_map(compaq_net_device->base_addr,
3306                                    VORTEX_TOTAL_SIZE);
3307
3308                unregister_netdev(compaq_net_device);
3309                iowrite16(TotalReset, ioaddr + EL3_CMD);
3310                release_region(compaq_net_device->base_addr,
3311                               VORTEX_TOTAL_SIZE);
3312
3313                free_netdev(compaq_net_device);
3314        }
3315}
3316
3317
3318static void __exit vortex_cleanup(void)
3319{
3320        if (vortex_have_pci)
3321                pci_unregister_driver(&vortex_driver);
3322        if (vortex_have_eisa)
3323                vortex_eisa_cleanup();
3324}
3325
3326
3327module_init(vortex_init);
3328module_exit(vortex_cleanup);
3329