linux/drivers/net/ethernet/intel/e1000/e1000_ethtool.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel PRO/1000 Linux driver
   4  Copyright(c) 1999 - 2006 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  Linux NICS <linux.nics@intel.com>
  24  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  25  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  26
  27*******************************************************************************/
  28
  29/* ethtool support for e1000 */
  30
  31#include "e1000.h"
  32#include <asm/uaccess.h>
  33
  34enum {NETDEV_STATS, E1000_STATS};
  35
  36struct e1000_stats {
  37        char stat_string[ETH_GSTRING_LEN];
  38        int type;
  39        int sizeof_stat;
  40        int stat_offset;
  41};
  42
  43#define E1000_STAT(m)           E1000_STATS, \
  44                                sizeof(((struct e1000_adapter *)0)->m), \
  45                                offsetof(struct e1000_adapter, m)
  46#define E1000_NETDEV_STAT(m)    NETDEV_STATS, \
  47                                sizeof(((struct net_device *)0)->m), \
  48                                offsetof(struct net_device, m)
  49
  50static const struct e1000_stats e1000_gstrings_stats[] = {
  51        { "rx_packets", E1000_STAT(stats.gprc) },
  52        { "tx_packets", E1000_STAT(stats.gptc) },
  53        { "rx_bytes", E1000_STAT(stats.gorcl) },
  54        { "tx_bytes", E1000_STAT(stats.gotcl) },
  55        { "rx_broadcast", E1000_STAT(stats.bprc) },
  56        { "tx_broadcast", E1000_STAT(stats.bptc) },
  57        { "rx_multicast", E1000_STAT(stats.mprc) },
  58        { "tx_multicast", E1000_STAT(stats.mptc) },
  59        { "rx_errors", E1000_STAT(stats.rxerrc) },
  60        { "tx_errors", E1000_STAT(stats.txerrc) },
  61        { "tx_dropped", E1000_NETDEV_STAT(stats.tx_dropped) },
  62        { "multicast", E1000_STAT(stats.mprc) },
  63        { "collisions", E1000_STAT(stats.colc) },
  64        { "rx_length_errors", E1000_STAT(stats.rlerrc) },
  65        { "rx_over_errors", E1000_NETDEV_STAT(stats.rx_over_errors) },
  66        { "rx_crc_errors", E1000_STAT(stats.crcerrs) },
  67        { "rx_frame_errors", E1000_NETDEV_STAT(stats.rx_frame_errors) },
  68        { "rx_no_buffer_count", E1000_STAT(stats.rnbc) },
  69        { "rx_missed_errors", E1000_STAT(stats.mpc) },
  70        { "tx_aborted_errors", E1000_STAT(stats.ecol) },
  71        { "tx_carrier_errors", E1000_STAT(stats.tncrs) },
  72        { "tx_fifo_errors", E1000_NETDEV_STAT(stats.tx_fifo_errors) },
  73        { "tx_heartbeat_errors", E1000_NETDEV_STAT(stats.tx_heartbeat_errors) },
  74        { "tx_window_errors", E1000_STAT(stats.latecol) },
  75        { "tx_abort_late_coll", E1000_STAT(stats.latecol) },
  76        { "tx_deferred_ok", E1000_STAT(stats.dc) },
  77        { "tx_single_coll_ok", E1000_STAT(stats.scc) },
  78        { "tx_multi_coll_ok", E1000_STAT(stats.mcc) },
  79        { "tx_timeout_count", E1000_STAT(tx_timeout_count) },
  80        { "tx_restart_queue", E1000_STAT(restart_queue) },
  81        { "rx_long_length_errors", E1000_STAT(stats.roc) },
  82        { "rx_short_length_errors", E1000_STAT(stats.ruc) },
  83        { "rx_align_errors", E1000_STAT(stats.algnerrc) },
  84        { "tx_tcp_seg_good", E1000_STAT(stats.tsctc) },
  85        { "tx_tcp_seg_failed", E1000_STAT(stats.tsctfc) },
  86        { "rx_flow_control_xon", E1000_STAT(stats.xonrxc) },
  87        { "rx_flow_control_xoff", E1000_STAT(stats.xoffrxc) },
  88        { "tx_flow_control_xon", E1000_STAT(stats.xontxc) },
  89        { "tx_flow_control_xoff", E1000_STAT(stats.xofftxc) },
  90        { "rx_long_byte_count", E1000_STAT(stats.gorcl) },
  91        { "rx_csum_offload_good", E1000_STAT(hw_csum_good) },
  92        { "rx_csum_offload_errors", E1000_STAT(hw_csum_err) },
  93        { "alloc_rx_buff_failed", E1000_STAT(alloc_rx_buff_failed) },
  94        { "tx_smbus", E1000_STAT(stats.mgptc) },
  95        { "rx_smbus", E1000_STAT(stats.mgprc) },
  96        { "dropped_smbus", E1000_STAT(stats.mgpdc) },
  97};
  98
  99#define E1000_QUEUE_STATS_LEN 0
 100#define E1000_GLOBAL_STATS_LEN ARRAY_SIZE(e1000_gstrings_stats)
 101#define E1000_STATS_LEN (E1000_GLOBAL_STATS_LEN + E1000_QUEUE_STATS_LEN)
 102static const char e1000_gstrings_test[][ETH_GSTRING_LEN] = {
 103        "Register test  (offline)", "Eeprom test    (offline)",
 104        "Interrupt test (offline)", "Loopback test  (offline)",
 105        "Link test   (on/offline)"
 106};
 107#define E1000_TEST_LEN  ARRAY_SIZE(e1000_gstrings_test)
 108
 109static int e1000_get_settings(struct net_device *netdev,
 110                              struct ethtool_cmd *ecmd)
 111{
 112        struct e1000_adapter *adapter = netdev_priv(netdev);
 113        struct e1000_hw *hw = &adapter->hw;
 114
 115        if (hw->media_type == e1000_media_type_copper) {
 116
 117                ecmd->supported = (SUPPORTED_10baseT_Half |
 118                                   SUPPORTED_10baseT_Full |
 119                                   SUPPORTED_100baseT_Half |
 120                                   SUPPORTED_100baseT_Full |
 121                                   SUPPORTED_1000baseT_Full|
 122                                   SUPPORTED_Autoneg |
 123                                   SUPPORTED_TP);
 124                ecmd->advertising = ADVERTISED_TP;
 125
 126                if (hw->autoneg == 1) {
 127                        ecmd->advertising |= ADVERTISED_Autoneg;
 128                        /* the e1000 autoneg seems to match ethtool nicely */
 129                        ecmd->advertising |= hw->autoneg_advertised;
 130                }
 131
 132                ecmd->port = PORT_TP;
 133                ecmd->phy_address = hw->phy_addr;
 134
 135                if (hw->mac_type == e1000_82543)
 136                        ecmd->transceiver = XCVR_EXTERNAL;
 137                else
 138                        ecmd->transceiver = XCVR_INTERNAL;
 139
 140        } else {
 141                ecmd->supported   = (SUPPORTED_1000baseT_Full |
 142                                     SUPPORTED_FIBRE |
 143                                     SUPPORTED_Autoneg);
 144
 145                ecmd->advertising = (ADVERTISED_1000baseT_Full |
 146                                     ADVERTISED_FIBRE |
 147                                     ADVERTISED_Autoneg);
 148
 149                ecmd->port = PORT_FIBRE;
 150
 151                if (hw->mac_type >= e1000_82545)
 152                        ecmd->transceiver = XCVR_INTERNAL;
 153                else
 154                        ecmd->transceiver = XCVR_EXTERNAL;
 155        }
 156
 157        if (er32(STATUS) & E1000_STATUS_LU) {
 158
 159                e1000_get_speed_and_duplex(hw, &adapter->link_speed,
 160                                                   &adapter->link_duplex);
 161                ethtool_cmd_speed_set(ecmd, adapter->link_speed);
 162
 163                /* unfortunately FULL_DUPLEX != DUPLEX_FULL
 164                 * and HALF_DUPLEX != DUPLEX_HALF
 165                 */
 166                if (adapter->link_duplex == FULL_DUPLEX)
 167                        ecmd->duplex = DUPLEX_FULL;
 168                else
 169                        ecmd->duplex = DUPLEX_HALF;
 170        } else {
 171                ethtool_cmd_speed_set(ecmd, -1);
 172                ecmd->duplex = -1;
 173        }
 174
 175        ecmd->autoneg = ((hw->media_type == e1000_media_type_fiber) ||
 176                         hw->autoneg) ? AUTONEG_ENABLE : AUTONEG_DISABLE;
 177
 178        /* MDI-X => 1; MDI => 0 */
 179        if ((hw->media_type == e1000_media_type_copper) &&
 180            netif_carrier_ok(netdev))
 181                ecmd->eth_tp_mdix = (!!adapter->phy_info.mdix_mode ?
 182                                     ETH_TP_MDI_X : ETH_TP_MDI);
 183        else
 184                ecmd->eth_tp_mdix = ETH_TP_MDI_INVALID;
 185
 186        if (hw->mdix == AUTO_ALL_MODES)
 187                ecmd->eth_tp_mdix_ctrl = ETH_TP_MDI_AUTO;
 188        else
 189                ecmd->eth_tp_mdix_ctrl = hw->mdix;
 190        return 0;
 191}
 192
 193static int e1000_set_settings(struct net_device *netdev,
 194                              struct ethtool_cmd *ecmd)
 195{
 196        struct e1000_adapter *adapter = netdev_priv(netdev);
 197        struct e1000_hw *hw = &adapter->hw;
 198
 199        /* MDI setting is only allowed when autoneg enabled because
 200         * some hardware doesn't allow MDI setting when speed or
 201         * duplex is forced.
 202         */
 203        if (ecmd->eth_tp_mdix_ctrl) {
 204                if (hw->media_type != e1000_media_type_copper)
 205                        return -EOPNOTSUPP;
 206
 207                if ((ecmd->eth_tp_mdix_ctrl != ETH_TP_MDI_AUTO) &&
 208                    (ecmd->autoneg != AUTONEG_ENABLE)) {
 209                        e_err(drv, "forcing MDI/MDI-X state is not supported when link speed and/or duplex are forced\n");
 210                        return -EINVAL;
 211                }
 212        }
 213
 214        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 215                msleep(1);
 216
 217        if (ecmd->autoneg == AUTONEG_ENABLE) {
 218                hw->autoneg = 1;
 219                if (hw->media_type == e1000_media_type_fiber)
 220                        hw->autoneg_advertised = ADVERTISED_1000baseT_Full |
 221                                     ADVERTISED_FIBRE |
 222                                     ADVERTISED_Autoneg;
 223                else
 224                        hw->autoneg_advertised = ecmd->advertising |
 225                                                 ADVERTISED_TP |
 226                                                 ADVERTISED_Autoneg;
 227                ecmd->advertising = hw->autoneg_advertised;
 228        } else {
 229                u32 speed = ethtool_cmd_speed(ecmd);
 230                /* calling this overrides forced MDI setting */
 231                if (e1000_set_spd_dplx(adapter, speed, ecmd->duplex)) {
 232                        clear_bit(__E1000_RESETTING, &adapter->flags);
 233                        return -EINVAL;
 234                }
 235        }
 236
 237        /* MDI-X => 2; MDI => 1; Auto => 3 */
 238        if (ecmd->eth_tp_mdix_ctrl) {
 239                if (ecmd->eth_tp_mdix_ctrl == ETH_TP_MDI_AUTO)
 240                        hw->mdix = AUTO_ALL_MODES;
 241                else
 242                        hw->mdix = ecmd->eth_tp_mdix_ctrl;
 243        }
 244
 245        /* reset the link */
 246
 247        if (netif_running(adapter->netdev)) {
 248                e1000_down(adapter);
 249                e1000_up(adapter);
 250        } else
 251                e1000_reset(adapter);
 252
 253        clear_bit(__E1000_RESETTING, &adapter->flags);
 254        return 0;
 255}
 256
 257static u32 e1000_get_link(struct net_device *netdev)
 258{
 259        struct e1000_adapter *adapter = netdev_priv(netdev);
 260
 261        /* If the link is not reported up to netdev, interrupts are disabled,
 262         * and so the physical link state may have changed since we last
 263         * looked. Set get_link_status to make sure that the true link
 264         * state is interrogated, rather than pulling a cached and possibly
 265         * stale link state from the driver.
 266         */
 267        if (!netif_carrier_ok(netdev))
 268                adapter->hw.get_link_status = 1;
 269
 270        return e1000_has_link(adapter);
 271}
 272
 273static void e1000_get_pauseparam(struct net_device *netdev,
 274                                 struct ethtool_pauseparam *pause)
 275{
 276        struct e1000_adapter *adapter = netdev_priv(netdev);
 277        struct e1000_hw *hw = &adapter->hw;
 278
 279        pause->autoneg =
 280                (adapter->fc_autoneg ? AUTONEG_ENABLE : AUTONEG_DISABLE);
 281
 282        if (hw->fc == E1000_FC_RX_PAUSE)
 283                pause->rx_pause = 1;
 284        else if (hw->fc == E1000_FC_TX_PAUSE)
 285                pause->tx_pause = 1;
 286        else if (hw->fc == E1000_FC_FULL) {
 287                pause->rx_pause = 1;
 288                pause->tx_pause = 1;
 289        }
 290}
 291
 292static int e1000_set_pauseparam(struct net_device *netdev,
 293                                struct ethtool_pauseparam *pause)
 294{
 295        struct e1000_adapter *adapter = netdev_priv(netdev);
 296        struct e1000_hw *hw = &adapter->hw;
 297        int retval = 0;
 298
 299        adapter->fc_autoneg = pause->autoneg;
 300
 301        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 302                msleep(1);
 303
 304        if (pause->rx_pause && pause->tx_pause)
 305                hw->fc = E1000_FC_FULL;
 306        else if (pause->rx_pause && !pause->tx_pause)
 307                hw->fc = E1000_FC_RX_PAUSE;
 308        else if (!pause->rx_pause && pause->tx_pause)
 309                hw->fc = E1000_FC_TX_PAUSE;
 310        else if (!pause->rx_pause && !pause->tx_pause)
 311                hw->fc = E1000_FC_NONE;
 312
 313        hw->original_fc = hw->fc;
 314
 315        if (adapter->fc_autoneg == AUTONEG_ENABLE) {
 316                if (netif_running(adapter->netdev)) {
 317                        e1000_down(adapter);
 318                        e1000_up(adapter);
 319                } else
 320                        e1000_reset(adapter);
 321        } else
 322                retval = ((hw->media_type == e1000_media_type_fiber) ?
 323                          e1000_setup_link(hw) : e1000_force_mac_fc(hw));
 324
 325        clear_bit(__E1000_RESETTING, &adapter->flags);
 326        return retval;
 327}
 328
 329static u32 e1000_get_msglevel(struct net_device *netdev)
 330{
 331        struct e1000_adapter *adapter = netdev_priv(netdev);
 332        return adapter->msg_enable;
 333}
 334
 335static void e1000_set_msglevel(struct net_device *netdev, u32 data)
 336{
 337        struct e1000_adapter *adapter = netdev_priv(netdev);
 338        adapter->msg_enable = data;
 339}
 340
 341static int e1000_get_regs_len(struct net_device *netdev)
 342{
 343#define E1000_REGS_LEN 32
 344        return E1000_REGS_LEN * sizeof(u32);
 345}
 346
 347static void e1000_get_regs(struct net_device *netdev, struct ethtool_regs *regs,
 348                           void *p)
 349{
 350        struct e1000_adapter *adapter = netdev_priv(netdev);
 351        struct e1000_hw *hw = &adapter->hw;
 352        u32 *regs_buff = p;
 353        u16 phy_data;
 354
 355        memset(p, 0, E1000_REGS_LEN * sizeof(u32));
 356
 357        regs->version = (1 << 24) | (hw->revision_id << 16) | hw->device_id;
 358
 359        regs_buff[0]  = er32(CTRL);
 360        regs_buff[1]  = er32(STATUS);
 361
 362        regs_buff[2]  = er32(RCTL);
 363        regs_buff[3]  = er32(RDLEN);
 364        regs_buff[4]  = er32(RDH);
 365        regs_buff[5]  = er32(RDT);
 366        regs_buff[6]  = er32(RDTR);
 367
 368        regs_buff[7]  = er32(TCTL);
 369        regs_buff[8]  = er32(TDLEN);
 370        regs_buff[9]  = er32(TDH);
 371        regs_buff[10] = er32(TDT);
 372        regs_buff[11] = er32(TIDV);
 373
 374        regs_buff[12] = hw->phy_type;  /* PHY type (IGP=1, M88=0) */
 375        if (hw->phy_type == e1000_phy_igp) {
 376                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 377                                    IGP01E1000_PHY_AGC_A);
 378                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_A &
 379                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 380                regs_buff[13] = (u32)phy_data; /* cable length */
 381                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 382                                    IGP01E1000_PHY_AGC_B);
 383                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_B &
 384                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 385                regs_buff[14] = (u32)phy_data; /* cable length */
 386                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 387                                    IGP01E1000_PHY_AGC_C);
 388                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_C &
 389                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 390                regs_buff[15] = (u32)phy_data; /* cable length */
 391                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 392                                    IGP01E1000_PHY_AGC_D);
 393                e1000_read_phy_reg(hw, IGP01E1000_PHY_AGC_D &
 394                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 395                regs_buff[16] = (u32)phy_data; /* cable length */
 396                regs_buff[17] = 0; /* extended 10bt distance (not needed) */
 397                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 398                e1000_read_phy_reg(hw, IGP01E1000_PHY_PORT_STATUS &
 399                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 400                regs_buff[18] = (u32)phy_data; /* cable polarity */
 401                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT,
 402                                    IGP01E1000_PHY_PCS_INIT_REG);
 403                e1000_read_phy_reg(hw, IGP01E1000_PHY_PCS_INIT_REG &
 404                                   IGP01E1000_PHY_PAGE_SELECT, &phy_data);
 405                regs_buff[19] = (u32)phy_data; /* cable polarity */
 406                regs_buff[20] = 0; /* polarity correction enabled (always) */
 407                regs_buff[22] = 0; /* phy receive errors (unavailable) */
 408                regs_buff[23] = regs_buff[18]; /* mdix mode */
 409                e1000_write_phy_reg(hw, IGP01E1000_PHY_PAGE_SELECT, 0x0);
 410        } else {
 411                e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_STATUS, &phy_data);
 412                regs_buff[13] = (u32)phy_data; /* cable length */
 413                regs_buff[14] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 414                regs_buff[15] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 415                regs_buff[16] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 416                e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_data);
 417                regs_buff[17] = (u32)phy_data; /* extended 10bt distance */
 418                regs_buff[18] = regs_buff[13]; /* cable polarity */
 419                regs_buff[19] = 0;  /* Dummy (to align w/ IGP phy reg dump) */
 420                regs_buff[20] = regs_buff[17]; /* polarity correction */
 421                /* phy receive errors */
 422                regs_buff[22] = adapter->phy_stats.receive_errors;
 423                regs_buff[23] = regs_buff[13]; /* mdix mode */
 424        }
 425        regs_buff[21] = adapter->phy_stats.idle_errors;  /* phy idle errors */
 426        e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_data);
 427        regs_buff[24] = (u32)phy_data;  /* phy local receiver status */
 428        regs_buff[25] = regs_buff[24];  /* phy remote receiver status */
 429        if (hw->mac_type >= e1000_82540 &&
 430            hw->media_type == e1000_media_type_copper) {
 431                regs_buff[26] = er32(MANC);
 432        }
 433}
 434
 435static int e1000_get_eeprom_len(struct net_device *netdev)
 436{
 437        struct e1000_adapter *adapter = netdev_priv(netdev);
 438        struct e1000_hw *hw = &adapter->hw;
 439
 440        return hw->eeprom.word_size * 2;
 441}
 442
 443static int e1000_get_eeprom(struct net_device *netdev,
 444                            struct ethtool_eeprom *eeprom, u8 *bytes)
 445{
 446        struct e1000_adapter *adapter = netdev_priv(netdev);
 447        struct e1000_hw *hw = &adapter->hw;
 448        u16 *eeprom_buff;
 449        int first_word, last_word;
 450        int ret_val = 0;
 451        u16 i;
 452
 453        if (eeprom->len == 0)
 454                return -EINVAL;
 455
 456        eeprom->magic = hw->vendor_id | (hw->device_id << 16);
 457
 458        first_word = eeprom->offset >> 1;
 459        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 460
 461        eeprom_buff = kmalloc(sizeof(u16) *
 462                        (last_word - first_word + 1), GFP_KERNEL);
 463        if (!eeprom_buff)
 464                return -ENOMEM;
 465
 466        if (hw->eeprom.type == e1000_eeprom_spi)
 467                ret_val = e1000_read_eeprom(hw, first_word,
 468                                            last_word - first_word + 1,
 469                                            eeprom_buff);
 470        else {
 471                for (i = 0; i < last_word - first_word + 1; i++) {
 472                        ret_val = e1000_read_eeprom(hw, first_word + i, 1,
 473                                                    &eeprom_buff[i]);
 474                        if (ret_val)
 475                                break;
 476                }
 477        }
 478
 479        /* Device's eeprom is always little-endian, word addressable */
 480        for (i = 0; i < last_word - first_word + 1; i++)
 481                le16_to_cpus(&eeprom_buff[i]);
 482
 483        memcpy(bytes, (u8 *)eeprom_buff + (eeprom->offset & 1),
 484               eeprom->len);
 485        kfree(eeprom_buff);
 486
 487        return ret_val;
 488}
 489
 490static int e1000_set_eeprom(struct net_device *netdev,
 491                            struct ethtool_eeprom *eeprom, u8 *bytes)
 492{
 493        struct e1000_adapter *adapter = netdev_priv(netdev);
 494        struct e1000_hw *hw = &adapter->hw;
 495        u16 *eeprom_buff;
 496        void *ptr;
 497        int max_len, first_word, last_word, ret_val = 0;
 498        u16 i;
 499
 500        if (eeprom->len == 0)
 501                return -EOPNOTSUPP;
 502
 503        if (eeprom->magic != (hw->vendor_id | (hw->device_id << 16)))
 504                return -EFAULT;
 505
 506        max_len = hw->eeprom.word_size * 2;
 507
 508        first_word = eeprom->offset >> 1;
 509        last_word = (eeprom->offset + eeprom->len - 1) >> 1;
 510        eeprom_buff = kmalloc(max_len, GFP_KERNEL);
 511        if (!eeprom_buff)
 512                return -ENOMEM;
 513
 514        ptr = (void *)eeprom_buff;
 515
 516        if (eeprom->offset & 1) {
 517                /* need read/modify/write of first changed EEPROM word
 518                 * only the second byte of the word is being modified
 519                 */
 520                ret_val = e1000_read_eeprom(hw, first_word, 1,
 521                                            &eeprom_buff[0]);
 522                ptr++;
 523        }
 524        if (((eeprom->offset + eeprom->len) & 1) && (ret_val == 0)) {
 525                /* need read/modify/write of last changed EEPROM word
 526                 * only the first byte of the word is being modified
 527                 */
 528                ret_val = e1000_read_eeprom(hw, last_word, 1,
 529                                  &eeprom_buff[last_word - first_word]);
 530        }
 531
 532        /* Device's eeprom is always little-endian, word addressable */
 533        for (i = 0; i < last_word - first_word + 1; i++)
 534                le16_to_cpus(&eeprom_buff[i]);
 535
 536        memcpy(ptr, bytes, eeprom->len);
 537
 538        for (i = 0; i < last_word - first_word + 1; i++)
 539                eeprom_buff[i] = cpu_to_le16(eeprom_buff[i]);
 540
 541        ret_val = e1000_write_eeprom(hw, first_word,
 542                                     last_word - first_word + 1, eeprom_buff);
 543
 544        /* Update the checksum over the first part of the EEPROM if needed */
 545        if ((ret_val == 0) && (first_word <= EEPROM_CHECKSUM_REG))
 546                e1000_update_eeprom_checksum(hw);
 547
 548        kfree(eeprom_buff);
 549        return ret_val;
 550}
 551
 552static void e1000_get_drvinfo(struct net_device *netdev,
 553                              struct ethtool_drvinfo *drvinfo)
 554{
 555        struct e1000_adapter *adapter = netdev_priv(netdev);
 556
 557        strlcpy(drvinfo->driver,  e1000_driver_name,
 558                sizeof(drvinfo->driver));
 559        strlcpy(drvinfo->version, e1000_driver_version,
 560                sizeof(drvinfo->version));
 561
 562        strlcpy(drvinfo->bus_info, pci_name(adapter->pdev),
 563                sizeof(drvinfo->bus_info));
 564        drvinfo->regdump_len = e1000_get_regs_len(netdev);
 565        drvinfo->eedump_len = e1000_get_eeprom_len(netdev);
 566}
 567
 568static void e1000_get_ringparam(struct net_device *netdev,
 569                                struct ethtool_ringparam *ring)
 570{
 571        struct e1000_adapter *adapter = netdev_priv(netdev);
 572        struct e1000_hw *hw = &adapter->hw;
 573        e1000_mac_type mac_type = hw->mac_type;
 574        struct e1000_tx_ring *txdr = adapter->tx_ring;
 575        struct e1000_rx_ring *rxdr = adapter->rx_ring;
 576
 577        ring->rx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_RXD :
 578                E1000_MAX_82544_RXD;
 579        ring->tx_max_pending = (mac_type < e1000_82544) ? E1000_MAX_TXD :
 580                E1000_MAX_82544_TXD;
 581        ring->rx_pending = rxdr->count;
 582        ring->tx_pending = txdr->count;
 583}
 584
 585static int e1000_set_ringparam(struct net_device *netdev,
 586                               struct ethtool_ringparam *ring)
 587{
 588        struct e1000_adapter *adapter = netdev_priv(netdev);
 589        struct e1000_hw *hw = &adapter->hw;
 590        e1000_mac_type mac_type = hw->mac_type;
 591        struct e1000_tx_ring *txdr, *tx_old;
 592        struct e1000_rx_ring *rxdr, *rx_old;
 593        int i, err;
 594
 595        if ((ring->rx_mini_pending) || (ring->rx_jumbo_pending))
 596                return -EINVAL;
 597
 598        while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
 599                msleep(1);
 600
 601        if (netif_running(adapter->netdev))
 602                e1000_down(adapter);
 603
 604        tx_old = adapter->tx_ring;
 605        rx_old = adapter->rx_ring;
 606
 607        err = -ENOMEM;
 608        txdr = kcalloc(adapter->num_tx_queues, sizeof(struct e1000_tx_ring),
 609                       GFP_KERNEL);
 610        if (!txdr)
 611                goto err_alloc_tx;
 612
 613        rxdr = kcalloc(adapter->num_rx_queues, sizeof(struct e1000_rx_ring),
 614                       GFP_KERNEL);
 615        if (!rxdr)
 616                goto err_alloc_rx;
 617
 618        adapter->tx_ring = txdr;
 619        adapter->rx_ring = rxdr;
 620
 621        rxdr->count = max(ring->rx_pending,(u32)E1000_MIN_RXD);
 622        rxdr->count = min(rxdr->count,(u32)(mac_type < e1000_82544 ?
 623                          E1000_MAX_RXD : E1000_MAX_82544_RXD));
 624        rxdr->count = ALIGN(rxdr->count, REQ_RX_DESCRIPTOR_MULTIPLE);
 625
 626        txdr->count = max(ring->tx_pending,(u32)E1000_MIN_TXD);
 627        txdr->count = min(txdr->count,(u32)(mac_type < e1000_82544 ?
 628                          E1000_MAX_TXD : E1000_MAX_82544_TXD));
 629        txdr->count = ALIGN(txdr->count, REQ_TX_DESCRIPTOR_MULTIPLE);
 630
 631        for (i = 0; i < adapter->num_tx_queues; i++)
 632                txdr[i].count = txdr->count;
 633        for (i = 0; i < adapter->num_rx_queues; i++)
 634                rxdr[i].count = rxdr->count;
 635
 636        if (netif_running(adapter->netdev)) {
 637                /* Try to get new resources before deleting old */
 638                err = e1000_setup_all_rx_resources(adapter);
 639                if (err)
 640                        goto err_setup_rx;
 641                err = e1000_setup_all_tx_resources(adapter);
 642                if (err)
 643                        goto err_setup_tx;
 644
 645                /* save the new, restore the old in order to free it,
 646                 * then restore the new back again
 647                 */
 648
 649                adapter->rx_ring = rx_old;
 650                adapter->tx_ring = tx_old;
 651                e1000_free_all_rx_resources(adapter);
 652                e1000_free_all_tx_resources(adapter);
 653                kfree(tx_old);
 654                kfree(rx_old);
 655                adapter->rx_ring = rxdr;
 656                adapter->tx_ring = txdr;
 657                err = e1000_up(adapter);
 658                if (err)
 659                        goto err_setup;
 660        }
 661
 662        clear_bit(__E1000_RESETTING, &adapter->flags);
 663        return 0;
 664err_setup_tx:
 665        e1000_free_all_rx_resources(adapter);
 666err_setup_rx:
 667        adapter->rx_ring = rx_old;
 668        adapter->tx_ring = tx_old;
 669        kfree(rxdr);
 670err_alloc_rx:
 671        kfree(txdr);
 672err_alloc_tx:
 673        e1000_up(adapter);
 674err_setup:
 675        clear_bit(__E1000_RESETTING, &adapter->flags);
 676        return err;
 677}
 678
 679static bool reg_pattern_test(struct e1000_adapter *adapter, u64 *data, int reg,
 680                             u32 mask, u32 write)
 681{
 682        struct e1000_hw *hw = &adapter->hw;
 683        static const u32 test[] =
 684                {0x5A5A5A5A, 0xA5A5A5A5, 0x00000000, 0xFFFFFFFF};
 685        u8 __iomem *address = hw->hw_addr + reg;
 686        u32 read;
 687        int i;
 688
 689        for (i = 0; i < ARRAY_SIZE(test); i++) {
 690                writel(write & test[i], address);
 691                read = readl(address);
 692                if (read != (write & test[i] & mask)) {
 693                        e_err(drv, "pattern test reg %04X failed: "
 694                              "got 0x%08X expected 0x%08X\n",
 695                              reg, read, (write & test[i] & mask));
 696                        *data = reg;
 697                        return true;
 698                }
 699        }
 700        return false;
 701}
 702
 703static bool reg_set_and_check(struct e1000_adapter *adapter, u64 *data, int reg,
 704                              u32 mask, u32 write)
 705{
 706        struct e1000_hw *hw = &adapter->hw;
 707        u8 __iomem *address = hw->hw_addr + reg;
 708        u32 read;
 709
 710        writel(write & mask, address);
 711        read = readl(address);
 712        if ((read & mask) != (write & mask)) {
 713                e_err(drv, "set/check reg %04X test failed: "
 714                      "got 0x%08X expected 0x%08X\n",
 715                      reg, (read & mask), (write & mask));
 716                *data = reg;
 717                return true;
 718        }
 719        return false;
 720}
 721
 722#define REG_PATTERN_TEST(reg, mask, write)                           \
 723        do {                                                         \
 724                if (reg_pattern_test(adapter, data,                  \
 725                             (hw->mac_type >= e1000_82543)   \
 726                             ? E1000_##reg : E1000_82542_##reg,      \
 727                             mask, write))                           \
 728                        return 1;                                    \
 729        } while (0)
 730
 731#define REG_SET_AND_CHECK(reg, mask, write)                          \
 732        do {                                                         \
 733                if (reg_set_and_check(adapter, data,                 \
 734                              (hw->mac_type >= e1000_82543)  \
 735                              ? E1000_##reg : E1000_82542_##reg,     \
 736                              mask, write))                          \
 737                        return 1;                                    \
 738        } while (0)
 739
 740static int e1000_reg_test(struct e1000_adapter *adapter, u64 *data)
 741{
 742        u32 value, before, after;
 743        u32 i, toggle;
 744        struct e1000_hw *hw = &adapter->hw;
 745
 746        /* The status register is Read Only, so a write should fail.
 747         * Some bits that get toggled are ignored.
 748         */
 749
 750        /* there are several bits on newer hardware that are r/w */
 751        toggle = 0xFFFFF833;
 752
 753        before = er32(STATUS);
 754        value = (er32(STATUS) & toggle);
 755        ew32(STATUS, toggle);
 756        after = er32(STATUS) & toggle;
 757        if (value != after) {
 758                e_err(drv, "failed STATUS register test got: "
 759                      "0x%08X expected: 0x%08X\n", after, value);
 760                *data = 1;
 761                return 1;
 762        }
 763        /* restore previous status */
 764        ew32(STATUS, before);
 765
 766        REG_PATTERN_TEST(FCAL, 0xFFFFFFFF, 0xFFFFFFFF);
 767        REG_PATTERN_TEST(FCAH, 0x0000FFFF, 0xFFFFFFFF);
 768        REG_PATTERN_TEST(FCT, 0x0000FFFF, 0xFFFFFFFF);
 769        REG_PATTERN_TEST(VET, 0x0000FFFF, 0xFFFFFFFF);
 770
 771        REG_PATTERN_TEST(RDTR, 0x0000FFFF, 0xFFFFFFFF);
 772        REG_PATTERN_TEST(RDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 773        REG_PATTERN_TEST(RDLEN, 0x000FFF80, 0x000FFFFF);
 774        REG_PATTERN_TEST(RDH, 0x0000FFFF, 0x0000FFFF);
 775        REG_PATTERN_TEST(RDT, 0x0000FFFF, 0x0000FFFF);
 776        REG_PATTERN_TEST(FCRTH, 0x0000FFF8, 0x0000FFF8);
 777        REG_PATTERN_TEST(FCTTV, 0x0000FFFF, 0x0000FFFF);
 778        REG_PATTERN_TEST(TIPG, 0x3FFFFFFF, 0x3FFFFFFF);
 779        REG_PATTERN_TEST(TDBAH, 0xFFFFFFFF, 0xFFFFFFFF);
 780        REG_PATTERN_TEST(TDLEN, 0x000FFF80, 0x000FFFFF);
 781
 782        REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x00000000);
 783
 784        before = 0x06DFB3FE;
 785        REG_SET_AND_CHECK(RCTL, before, 0x003FFFFB);
 786        REG_SET_AND_CHECK(TCTL, 0xFFFFFFFF, 0x00000000);
 787
 788        if (hw->mac_type >= e1000_82543) {
 789                REG_SET_AND_CHECK(RCTL, before, 0xFFFFFFFF);
 790                REG_PATTERN_TEST(RDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 791                REG_PATTERN_TEST(TXCW, 0xC000FFFF, 0x0000FFFF);
 792                REG_PATTERN_TEST(TDBAL, 0xFFFFFFF0, 0xFFFFFFFF);
 793                REG_PATTERN_TEST(TIDV, 0x0000FFFF, 0x0000FFFF);
 794                value = E1000_RAR_ENTRIES;
 795                for (i = 0; i < value; i++) {
 796                        REG_PATTERN_TEST(RA + (((i << 1) + 1) << 2), 0x8003FFFF,
 797                                         0xFFFFFFFF);
 798                }
 799        } else {
 800                REG_SET_AND_CHECK(RCTL, 0xFFFFFFFF, 0x01FFFFFF);
 801                REG_PATTERN_TEST(RDBAL, 0xFFFFF000, 0xFFFFFFFF);
 802                REG_PATTERN_TEST(TXCW, 0x0000FFFF, 0x0000FFFF);
 803                REG_PATTERN_TEST(TDBAL, 0xFFFFF000, 0xFFFFFFFF);
 804        }
 805
 806        value = E1000_MC_TBL_SIZE;
 807        for (i = 0; i < value; i++)
 808                REG_PATTERN_TEST(MTA + (i << 2), 0xFFFFFFFF, 0xFFFFFFFF);
 809
 810        *data = 0;
 811        return 0;
 812}
 813
 814static int e1000_eeprom_test(struct e1000_adapter *adapter, u64 *data)
 815{
 816        struct e1000_hw *hw = &adapter->hw;
 817        u16 temp;
 818        u16 checksum = 0;
 819        u16 i;
 820
 821        *data = 0;
 822        /* Read and add up the contents of the EEPROM */
 823        for (i = 0; i < (EEPROM_CHECKSUM_REG + 1); i++) {
 824                if ((e1000_read_eeprom(hw, i, 1, &temp)) < 0) {
 825                        *data = 1;
 826                        break;
 827                }
 828                checksum += temp;
 829        }
 830
 831        /* If Checksum is not Correct return error else test passed */
 832        if ((checksum != (u16)EEPROM_SUM) && !(*data))
 833                *data = 2;
 834
 835        return *data;
 836}
 837
 838static irqreturn_t e1000_test_intr(int irq, void *data)
 839{
 840        struct net_device *netdev = (struct net_device *)data;
 841        struct e1000_adapter *adapter = netdev_priv(netdev);
 842        struct e1000_hw *hw = &adapter->hw;
 843
 844        adapter->test_icr |= er32(ICR);
 845
 846        return IRQ_HANDLED;
 847}
 848
 849static int e1000_intr_test(struct e1000_adapter *adapter, u64 *data)
 850{
 851        struct net_device *netdev = adapter->netdev;
 852        u32 mask, i = 0;
 853        bool shared_int = true;
 854        u32 irq = adapter->pdev->irq;
 855        struct e1000_hw *hw = &adapter->hw;
 856
 857        *data = 0;
 858
 859        /* NOTE: we don't test MSI interrupts here, yet
 860         * Hook up test interrupt handler just for this test
 861         */
 862        if (!request_irq(irq, e1000_test_intr, IRQF_PROBE_SHARED, netdev->name,
 863                         netdev))
 864                shared_int = false;
 865        else if (request_irq(irq, e1000_test_intr, IRQF_SHARED,
 866                             netdev->name, netdev)) {
 867                *data = 1;
 868                return -1;
 869        }
 870        e_info(hw, "testing %s interrupt\n", (shared_int ?
 871               "shared" : "unshared"));
 872
 873        /* Disable all the interrupts */
 874        ew32(IMC, 0xFFFFFFFF);
 875        E1000_WRITE_FLUSH();
 876        msleep(10);
 877
 878        /* Test each interrupt */
 879        for (; i < 10; i++) {
 880
 881                /* Interrupt to test */
 882                mask = 1 << i;
 883
 884                if (!shared_int) {
 885                        /* Disable the interrupt to be reported in
 886                         * the cause register and then force the same
 887                         * interrupt and see if one gets posted.  If
 888                         * an interrupt was posted to the bus, the
 889                         * test failed.
 890                         */
 891                        adapter->test_icr = 0;
 892                        ew32(IMC, mask);
 893                        ew32(ICS, mask);
 894                        E1000_WRITE_FLUSH();
 895                        msleep(10);
 896
 897                        if (adapter->test_icr & mask) {
 898                                *data = 3;
 899                                break;
 900                        }
 901                }
 902
 903                /* Enable the interrupt to be reported in
 904                 * the cause register and then force the same
 905                 * interrupt and see if one gets posted.  If
 906                 * an interrupt was not posted to the bus, the
 907                 * test failed.
 908                 */
 909                adapter->test_icr = 0;
 910                ew32(IMS, mask);
 911                ew32(ICS, mask);
 912                E1000_WRITE_FLUSH();
 913                msleep(10);
 914
 915                if (!(adapter->test_icr & mask)) {
 916                        *data = 4;
 917                        break;
 918                }
 919
 920                if (!shared_int) {
 921                        /* Disable the other interrupts to be reported in
 922                         * the cause register and then force the other
 923                         * interrupts and see if any get posted.  If
 924                         * an interrupt was posted to the bus, the
 925                         * test failed.
 926                         */
 927                        adapter->test_icr = 0;
 928                        ew32(IMC, ~mask & 0x00007FFF);
 929                        ew32(ICS, ~mask & 0x00007FFF);
 930                        E1000_WRITE_FLUSH();
 931                        msleep(10);
 932
 933                        if (adapter->test_icr) {
 934                                *data = 5;
 935                                break;
 936                        }
 937                }
 938        }
 939
 940        /* Disable all the interrupts */
 941        ew32(IMC, 0xFFFFFFFF);
 942        E1000_WRITE_FLUSH();
 943        msleep(10);
 944
 945        /* Unhook test interrupt handler */
 946        free_irq(irq, netdev);
 947
 948        return *data;
 949}
 950
 951static void e1000_free_desc_rings(struct e1000_adapter *adapter)
 952{
 953        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
 954        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
 955        struct pci_dev *pdev = adapter->pdev;
 956        int i;
 957
 958        if (txdr->desc && txdr->buffer_info) {
 959                for (i = 0; i < txdr->count; i++) {
 960                        if (txdr->buffer_info[i].dma)
 961                                dma_unmap_single(&pdev->dev,
 962                                                 txdr->buffer_info[i].dma,
 963                                                 txdr->buffer_info[i].length,
 964                                                 DMA_TO_DEVICE);
 965                        if (txdr->buffer_info[i].skb)
 966                                dev_kfree_skb(txdr->buffer_info[i].skb);
 967                }
 968        }
 969
 970        if (rxdr->desc && rxdr->buffer_info) {
 971                for (i = 0; i < rxdr->count; i++) {
 972                        if (rxdr->buffer_info[i].dma)
 973                                dma_unmap_single(&pdev->dev,
 974                                                 rxdr->buffer_info[i].dma,
 975                                                 rxdr->buffer_info[i].length,
 976                                                 DMA_FROM_DEVICE);
 977                        if (rxdr->buffer_info[i].skb)
 978                                dev_kfree_skb(rxdr->buffer_info[i].skb);
 979                }
 980        }
 981
 982        if (txdr->desc) {
 983                dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
 984                                  txdr->dma);
 985                txdr->desc = NULL;
 986        }
 987        if (rxdr->desc) {
 988                dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
 989                                  rxdr->dma);
 990                rxdr->desc = NULL;
 991        }
 992
 993        kfree(txdr->buffer_info);
 994        txdr->buffer_info = NULL;
 995        kfree(rxdr->buffer_info);
 996        rxdr->buffer_info = NULL;
 997}
 998
 999static int e1000_setup_desc_rings(struct e1000_adapter *adapter)
1000{
1001        struct e1000_hw *hw = &adapter->hw;
1002        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1003        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1004        struct pci_dev *pdev = adapter->pdev;
1005        u32 rctl;
1006        int i, ret_val;
1007
1008        /* Setup Tx descriptor ring and Tx buffers */
1009
1010        if (!txdr->count)
1011                txdr->count = E1000_DEFAULT_TXD;
1012
1013        txdr->buffer_info = kcalloc(txdr->count, sizeof(struct e1000_buffer),
1014                                    GFP_KERNEL);
1015        if (!txdr->buffer_info) {
1016                ret_val = 1;
1017                goto err_nomem;
1018        }
1019
1020        txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
1021        txdr->size = ALIGN(txdr->size, 4096);
1022        txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1023                                        GFP_KERNEL | __GFP_ZERO);
1024        if (!txdr->desc) {
1025                ret_val = 2;
1026                goto err_nomem;
1027        }
1028        txdr->next_to_use = txdr->next_to_clean = 0;
1029
1030        ew32(TDBAL, ((u64)txdr->dma & 0x00000000FFFFFFFF));
1031        ew32(TDBAH, ((u64)txdr->dma >> 32));
1032        ew32(TDLEN, txdr->count * sizeof(struct e1000_tx_desc));
1033        ew32(TDH, 0);
1034        ew32(TDT, 0);
1035        ew32(TCTL, E1000_TCTL_PSP | E1000_TCTL_EN |
1036             E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT |
1037             E1000_FDX_COLLISION_DISTANCE << E1000_COLD_SHIFT);
1038
1039        for (i = 0; i < txdr->count; i++) {
1040                struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*txdr, i);
1041                struct sk_buff *skb;
1042                unsigned int size = 1024;
1043
1044                skb = alloc_skb(size, GFP_KERNEL);
1045                if (!skb) {
1046                        ret_val = 3;
1047                        goto err_nomem;
1048                }
1049                skb_put(skb, size);
1050                txdr->buffer_info[i].skb = skb;
1051                txdr->buffer_info[i].length = skb->len;
1052                txdr->buffer_info[i].dma =
1053                        dma_map_single(&pdev->dev, skb->data, skb->len,
1054                                       DMA_TO_DEVICE);
1055                if (dma_mapping_error(&pdev->dev, txdr->buffer_info[i].dma)) {
1056                        ret_val = 4;
1057                        goto err_nomem;
1058                }
1059                tx_desc->buffer_addr = cpu_to_le64(txdr->buffer_info[i].dma);
1060                tx_desc->lower.data = cpu_to_le32(skb->len);
1061                tx_desc->lower.data |= cpu_to_le32(E1000_TXD_CMD_EOP |
1062                                                   E1000_TXD_CMD_IFCS |
1063                                                   E1000_TXD_CMD_RPS);
1064                tx_desc->upper.data = 0;
1065        }
1066
1067        /* Setup Rx descriptor ring and Rx buffers */
1068
1069        if (!rxdr->count)
1070                rxdr->count = E1000_DEFAULT_RXD;
1071
1072        rxdr->buffer_info = kcalloc(rxdr->count, sizeof(struct e1000_buffer),
1073                                    GFP_KERNEL);
1074        if (!rxdr->buffer_info) {
1075                ret_val = 5;
1076                goto err_nomem;
1077        }
1078
1079        rxdr->size = rxdr->count * sizeof(struct e1000_rx_desc);
1080        rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1081                                        GFP_KERNEL | __GFP_ZERO);
1082        if (!rxdr->desc) {
1083                ret_val = 6;
1084                goto err_nomem;
1085        }
1086        rxdr->next_to_use = rxdr->next_to_clean = 0;
1087
1088        rctl = er32(RCTL);
1089        ew32(RCTL, rctl & ~E1000_RCTL_EN);
1090        ew32(RDBAL, ((u64)rxdr->dma & 0xFFFFFFFF));
1091        ew32(RDBAH, ((u64)rxdr->dma >> 32));
1092        ew32(RDLEN, rxdr->size);
1093        ew32(RDH, 0);
1094        ew32(RDT, 0);
1095        rctl = E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_SZ_2048 |
1096                E1000_RCTL_LBM_NO | E1000_RCTL_RDMTS_HALF |
1097                (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1098        ew32(RCTL, rctl);
1099
1100        for (i = 0; i < rxdr->count; i++) {
1101                struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rxdr, i);
1102                struct sk_buff *skb;
1103
1104                skb = alloc_skb(E1000_RXBUFFER_2048 + NET_IP_ALIGN, GFP_KERNEL);
1105                if (!skb) {
1106                        ret_val = 7;
1107                        goto err_nomem;
1108                }
1109                skb_reserve(skb, NET_IP_ALIGN);
1110                rxdr->buffer_info[i].skb = skb;
1111                rxdr->buffer_info[i].length = E1000_RXBUFFER_2048;
1112                rxdr->buffer_info[i].dma =
1113                        dma_map_single(&pdev->dev, skb->data,
1114                                       E1000_RXBUFFER_2048, DMA_FROM_DEVICE);
1115                if (dma_mapping_error(&pdev->dev, rxdr->buffer_info[i].dma)) {
1116                        ret_val = 8;
1117                        goto err_nomem;
1118                }
1119                rx_desc->buffer_addr = cpu_to_le64(rxdr->buffer_info[i].dma);
1120                memset(skb->data, 0x00, skb->len);
1121        }
1122
1123        return 0;
1124
1125err_nomem:
1126        e1000_free_desc_rings(adapter);
1127        return ret_val;
1128}
1129
1130static void e1000_phy_disable_receiver(struct e1000_adapter *adapter)
1131{
1132        struct e1000_hw *hw = &adapter->hw;
1133
1134        /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1135        e1000_write_phy_reg(hw, 29, 0x001F);
1136        e1000_write_phy_reg(hw, 30, 0x8FFC);
1137        e1000_write_phy_reg(hw, 29, 0x001A);
1138        e1000_write_phy_reg(hw, 30, 0x8FF0);
1139}
1140
1141static void e1000_phy_reset_clk_and_crs(struct e1000_adapter *adapter)
1142{
1143        struct e1000_hw *hw = &adapter->hw;
1144        u16 phy_reg;
1145
1146        /* Because we reset the PHY above, we need to re-force TX_CLK in the
1147         * Extended PHY Specific Control Register to 25MHz clock.  This
1148         * value defaults back to a 2.5MHz clock when the PHY is reset.
1149         */
1150        e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1151        phy_reg |= M88E1000_EPSCR_TX_CLK_25;
1152        e1000_write_phy_reg(hw,
1153                M88E1000_EXT_PHY_SPEC_CTRL, phy_reg);
1154
1155        /* In addition, because of the s/w reset above, we need to enable
1156         * CRS on TX.  This must be set for both full and half duplex
1157         * operation.
1158         */
1159        e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1160        phy_reg |= M88E1000_PSCR_ASSERT_CRS_ON_TX;
1161        e1000_write_phy_reg(hw,
1162                M88E1000_PHY_SPEC_CTRL, phy_reg);
1163}
1164
1165static int e1000_nonintegrated_phy_loopback(struct e1000_adapter *adapter)
1166{
1167        struct e1000_hw *hw = &adapter->hw;
1168        u32 ctrl_reg;
1169        u16 phy_reg;
1170
1171        /* Setup the Device Control Register for PHY loopback test. */
1172
1173        ctrl_reg = er32(CTRL);
1174        ctrl_reg |= (E1000_CTRL_ILOS |          /* Invert Loss-Of-Signal */
1175                     E1000_CTRL_FRCSPD |        /* Set the Force Speed Bit */
1176                     E1000_CTRL_FRCDPX |        /* Set the Force Duplex Bit */
1177                     E1000_CTRL_SPD_1000 |      /* Force Speed to 1000 */
1178                     E1000_CTRL_FD);            /* Force Duplex to FULL */
1179
1180        ew32(CTRL, ctrl_reg);
1181
1182        /* Read the PHY Specific Control Register (0x10) */
1183        e1000_read_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, &phy_reg);
1184
1185        /* Clear Auto-Crossover bits in PHY Specific Control Register
1186         * (bits 6:5).
1187         */
1188        phy_reg &= ~M88E1000_PSCR_AUTO_X_MODE;
1189        e1000_write_phy_reg(hw, M88E1000_PHY_SPEC_CTRL, phy_reg);
1190
1191        /* Perform software reset on the PHY */
1192        e1000_phy_reset(hw);
1193
1194        /* Have to setup TX_CLK and TX_CRS after software reset */
1195        e1000_phy_reset_clk_and_crs(adapter);
1196
1197        e1000_write_phy_reg(hw, PHY_CTRL, 0x8100);
1198
1199        /* Wait for reset to complete. */
1200        udelay(500);
1201
1202        /* Have to setup TX_CLK and TX_CRS after software reset */
1203        e1000_phy_reset_clk_and_crs(adapter);
1204
1205        /* Write out to PHY registers 29 and 30 to disable the Receiver. */
1206        e1000_phy_disable_receiver(adapter);
1207
1208        /* Set the loopback bit in the PHY control register. */
1209        e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1210        phy_reg |= MII_CR_LOOPBACK;
1211        e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1212
1213        /* Setup TX_CLK and TX_CRS one more time. */
1214        e1000_phy_reset_clk_and_crs(adapter);
1215
1216        /* Check Phy Configuration */
1217        e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1218        if (phy_reg != 0x4100)
1219                 return 9;
1220
1221        e1000_read_phy_reg(hw, M88E1000_EXT_PHY_SPEC_CTRL, &phy_reg);
1222        if (phy_reg != 0x0070)
1223                return 10;
1224
1225        e1000_read_phy_reg(hw, 29, &phy_reg);
1226        if (phy_reg != 0x001A)
1227                return 11;
1228
1229        return 0;
1230}
1231
1232static int e1000_integrated_phy_loopback(struct e1000_adapter *adapter)
1233{
1234        struct e1000_hw *hw = &adapter->hw;
1235        u32 ctrl_reg = 0;
1236        u32 stat_reg = 0;
1237
1238        hw->autoneg = false;
1239
1240        if (hw->phy_type == e1000_phy_m88) {
1241                /* Auto-MDI/MDIX Off */
1242                e1000_write_phy_reg(hw,
1243                                    M88E1000_PHY_SPEC_CTRL, 0x0808);
1244                /* reset to update Auto-MDI/MDIX */
1245                e1000_write_phy_reg(hw, PHY_CTRL, 0x9140);
1246                /* autoneg off */
1247                e1000_write_phy_reg(hw, PHY_CTRL, 0x8140);
1248        }
1249
1250        ctrl_reg = er32(CTRL);
1251
1252        /* force 1000, set loopback */
1253        e1000_write_phy_reg(hw, PHY_CTRL, 0x4140);
1254
1255        /* Now set up the MAC to the same speed/duplex as the PHY. */
1256        ctrl_reg = er32(CTRL);
1257        ctrl_reg &= ~E1000_CTRL_SPD_SEL; /* Clear the speed sel bits */
1258        ctrl_reg |= (E1000_CTRL_FRCSPD | /* Set the Force Speed Bit */
1259                        E1000_CTRL_FRCDPX | /* Set the Force Duplex Bit */
1260                        E1000_CTRL_SPD_1000 |/* Force Speed to 1000 */
1261                        E1000_CTRL_FD); /* Force Duplex to FULL */
1262
1263        if (hw->media_type == e1000_media_type_copper &&
1264           hw->phy_type == e1000_phy_m88)
1265                ctrl_reg |= E1000_CTRL_ILOS; /* Invert Loss of Signal */
1266        else {
1267                /* Set the ILOS bit on the fiber Nic is half
1268                 * duplex link is detected.
1269                 */
1270                stat_reg = er32(STATUS);
1271                if ((stat_reg & E1000_STATUS_FD) == 0)
1272                        ctrl_reg |= (E1000_CTRL_ILOS | E1000_CTRL_SLU);
1273        }
1274
1275        ew32(CTRL, ctrl_reg);
1276
1277        /* Disable the receiver on the PHY so when a cable is plugged in, the
1278         * PHY does not begin to autoneg when a cable is reconnected to the NIC.
1279         */
1280        if (hw->phy_type == e1000_phy_m88)
1281                e1000_phy_disable_receiver(adapter);
1282
1283        udelay(500);
1284
1285        return 0;
1286}
1287
1288static int e1000_set_phy_loopback(struct e1000_adapter *adapter)
1289{
1290        struct e1000_hw *hw = &adapter->hw;
1291        u16 phy_reg = 0;
1292        u16 count = 0;
1293
1294        switch (hw->mac_type) {
1295        case e1000_82543:
1296                if (hw->media_type == e1000_media_type_copper) {
1297                        /* Attempt to setup Loopback mode on Non-integrated PHY.
1298                         * Some PHY registers get corrupted at random, so
1299                         * attempt this 10 times.
1300                         */
1301                        while (e1000_nonintegrated_phy_loopback(adapter) &&
1302                              count++ < 10);
1303                        if (count < 11)
1304                                return 0;
1305                }
1306                break;
1307
1308        case e1000_82544:
1309        case e1000_82540:
1310        case e1000_82545:
1311        case e1000_82545_rev_3:
1312        case e1000_82546:
1313        case e1000_82546_rev_3:
1314        case e1000_82541:
1315        case e1000_82541_rev_2:
1316        case e1000_82547:
1317        case e1000_82547_rev_2:
1318                return e1000_integrated_phy_loopback(adapter);
1319                break;
1320        default:
1321                /* Default PHY loopback work is to read the MII
1322                 * control register and assert bit 14 (loopback mode).
1323                 */
1324                e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1325                phy_reg |= MII_CR_LOOPBACK;
1326                e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1327                return 0;
1328                break;
1329        }
1330
1331        return 8;
1332}
1333
1334static int e1000_setup_loopback_test(struct e1000_adapter *adapter)
1335{
1336        struct e1000_hw *hw = &adapter->hw;
1337        u32 rctl;
1338
1339        if (hw->media_type == e1000_media_type_fiber ||
1340            hw->media_type == e1000_media_type_internal_serdes) {
1341                switch (hw->mac_type) {
1342                case e1000_82545:
1343                case e1000_82546:
1344                case e1000_82545_rev_3:
1345                case e1000_82546_rev_3:
1346                        return e1000_set_phy_loopback(adapter);
1347                        break;
1348                default:
1349                        rctl = er32(RCTL);
1350                        rctl |= E1000_RCTL_LBM_TCVR;
1351                        ew32(RCTL, rctl);
1352                        return 0;
1353                }
1354        } else if (hw->media_type == e1000_media_type_copper)
1355                return e1000_set_phy_loopback(adapter);
1356
1357        return 7;
1358}
1359
1360static void e1000_loopback_cleanup(struct e1000_adapter *adapter)
1361{
1362        struct e1000_hw *hw = &adapter->hw;
1363        u32 rctl;
1364        u16 phy_reg;
1365
1366        rctl = er32(RCTL);
1367        rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
1368        ew32(RCTL, rctl);
1369
1370        switch (hw->mac_type) {
1371        case e1000_82545:
1372        case e1000_82546:
1373        case e1000_82545_rev_3:
1374        case e1000_82546_rev_3:
1375        default:
1376                hw->autoneg = true;
1377                e1000_read_phy_reg(hw, PHY_CTRL, &phy_reg);
1378                if (phy_reg & MII_CR_LOOPBACK) {
1379                        phy_reg &= ~MII_CR_LOOPBACK;
1380                        e1000_write_phy_reg(hw, PHY_CTRL, phy_reg);
1381                        e1000_phy_reset(hw);
1382                }
1383                break;
1384        }
1385}
1386
1387static void e1000_create_lbtest_frame(struct sk_buff *skb,
1388                                      unsigned int frame_size)
1389{
1390        memset(skb->data, 0xFF, frame_size);
1391        frame_size &= ~1;
1392        memset(&skb->data[frame_size / 2], 0xAA, frame_size / 2 - 1);
1393        memset(&skb->data[frame_size / 2 + 10], 0xBE, 1);
1394        memset(&skb->data[frame_size / 2 + 12], 0xAF, 1);
1395}
1396
1397static int e1000_check_lbtest_frame(struct sk_buff *skb,
1398                                    unsigned int frame_size)
1399{
1400        frame_size &= ~1;
1401        if (*(skb->data + 3) == 0xFF) {
1402                if ((*(skb->data + frame_size / 2 + 10) == 0xBE) &&
1403                   (*(skb->data + frame_size / 2 + 12) == 0xAF)) {
1404                        return 0;
1405                }
1406        }
1407        return 13;
1408}
1409
1410static int e1000_run_loopback_test(struct e1000_adapter *adapter)
1411{
1412        struct e1000_hw *hw = &adapter->hw;
1413        struct e1000_tx_ring *txdr = &adapter->test_tx_ring;
1414        struct e1000_rx_ring *rxdr = &adapter->test_rx_ring;
1415        struct pci_dev *pdev = adapter->pdev;
1416        int i, j, k, l, lc, good_cnt, ret_val=0;
1417        unsigned long time;
1418
1419        ew32(RDT, rxdr->count - 1);
1420
1421        /* Calculate the loop count based on the largest descriptor ring
1422         * The idea is to wrap the largest ring a number of times using 64
1423         * send/receive pairs during each loop
1424         */
1425
1426        if (rxdr->count <= txdr->count)
1427                lc = ((txdr->count / 64) * 2) + 1;
1428        else
1429                lc = ((rxdr->count / 64) * 2) + 1;
1430
1431        k = l = 0;
1432        for (j = 0; j <= lc; j++) { /* loop count loop */
1433                for (i = 0; i < 64; i++) { /* send the packets */
1434                        e1000_create_lbtest_frame(txdr->buffer_info[i].skb,
1435                                        1024);
1436                        dma_sync_single_for_device(&pdev->dev,
1437                                                   txdr->buffer_info[k].dma,
1438                                                   txdr->buffer_info[k].length,
1439                                                   DMA_TO_DEVICE);
1440                        if (unlikely(++k == txdr->count)) k = 0;
1441                }
1442                ew32(TDT, k);
1443                E1000_WRITE_FLUSH();
1444                msleep(200);
1445                time = jiffies; /* set the start time for the receive */
1446                good_cnt = 0;
1447                do { /* receive the sent packets */
1448                        dma_sync_single_for_cpu(&pdev->dev,
1449                                                rxdr->buffer_info[l].dma,
1450                                                rxdr->buffer_info[l].length,
1451                                                DMA_FROM_DEVICE);
1452
1453                        ret_val = e1000_check_lbtest_frame(
1454                                        rxdr->buffer_info[l].skb,
1455                                        1024);
1456                        if (!ret_val)
1457                                good_cnt++;
1458                        if (unlikely(++l == rxdr->count)) l = 0;
1459                        /* time + 20 msecs (200 msecs on 2.4) is more than
1460                         * enough time to complete the receives, if it's
1461                         * exceeded, break and error off
1462                         */
1463                } while (good_cnt < 64 && jiffies < (time + 20));
1464                if (good_cnt != 64) {
1465                        ret_val = 13; /* ret_val is the same as mis-compare */
1466                        break;
1467                }
1468                if (jiffies >= (time + 2)) {
1469                        ret_val = 14; /* error code for time out error */
1470                        break;
1471                }
1472        } /* end loop count loop */
1473        return ret_val;
1474}
1475
1476static int e1000_loopback_test(struct e1000_adapter *adapter, u64 *data)
1477{
1478        *data = e1000_setup_desc_rings(adapter);
1479        if (*data)
1480                goto out;
1481        *data = e1000_setup_loopback_test(adapter);
1482        if (*data)
1483                goto err_loopback;
1484        *data = e1000_run_loopback_test(adapter);
1485        e1000_loopback_cleanup(adapter);
1486
1487err_loopback:
1488        e1000_free_desc_rings(adapter);
1489out:
1490        return *data;
1491}
1492
1493static int e1000_link_test(struct e1000_adapter *adapter, u64 *data)
1494{
1495        struct e1000_hw *hw = &adapter->hw;
1496        *data = 0;
1497        if (hw->media_type == e1000_media_type_internal_serdes) {
1498                int i = 0;
1499                hw->serdes_has_link = false;
1500
1501                /* On some blade server designs, link establishment
1502                 * could take as long as 2-3 minutes
1503                 */
1504                do {
1505                        e1000_check_for_link(hw);
1506                        if (hw->serdes_has_link)
1507                                return *data;
1508                        msleep(20);
1509                } while (i++ < 3750);
1510
1511                *data = 1;
1512        } else {
1513                e1000_check_for_link(hw);
1514                if (hw->autoneg)  /* if auto_neg is set wait for it */
1515                        msleep(4000);
1516
1517                if (!(er32(STATUS) & E1000_STATUS_LU)) {
1518                        *data = 1;
1519                }
1520        }
1521        return *data;
1522}
1523
1524static int e1000_get_sset_count(struct net_device *netdev, int sset)
1525{
1526        switch (sset) {
1527        case ETH_SS_TEST:
1528                return E1000_TEST_LEN;
1529        case ETH_SS_STATS:
1530                return E1000_STATS_LEN;
1531        default:
1532                return -EOPNOTSUPP;
1533        }
1534}
1535
1536static void e1000_diag_test(struct net_device *netdev,
1537                            struct ethtool_test *eth_test, u64 *data)
1538{
1539        struct e1000_adapter *adapter = netdev_priv(netdev);
1540        struct e1000_hw *hw = &adapter->hw;
1541        bool if_running = netif_running(netdev);
1542
1543        set_bit(__E1000_TESTING, &adapter->flags);
1544        if (eth_test->flags == ETH_TEST_FL_OFFLINE) {
1545                /* Offline tests */
1546
1547                /* save speed, duplex, autoneg settings */
1548                u16 autoneg_advertised = hw->autoneg_advertised;
1549                u8 forced_speed_duplex = hw->forced_speed_duplex;
1550                u8 autoneg = hw->autoneg;
1551
1552                e_info(hw, "offline testing starting\n");
1553
1554                /* Link test performed before hardware reset so autoneg doesn't
1555                 * interfere with test result
1556                 */
1557                if (e1000_link_test(adapter, &data[4]))
1558                        eth_test->flags |= ETH_TEST_FL_FAILED;
1559
1560                if (if_running)
1561                        /* indicate we're in test mode */
1562                        dev_close(netdev);
1563                else
1564                        e1000_reset(adapter);
1565
1566                if (e1000_reg_test(adapter, &data[0]))
1567                        eth_test->flags |= ETH_TEST_FL_FAILED;
1568
1569                e1000_reset(adapter);
1570                if (e1000_eeprom_test(adapter, &data[1]))
1571                        eth_test->flags |= ETH_TEST_FL_FAILED;
1572
1573                e1000_reset(adapter);
1574                if (e1000_intr_test(adapter, &data[2]))
1575                        eth_test->flags |= ETH_TEST_FL_FAILED;
1576
1577                e1000_reset(adapter);
1578                /* make sure the phy is powered up */
1579                e1000_power_up_phy(adapter);
1580                if (e1000_loopback_test(adapter, &data[3]))
1581                        eth_test->flags |= ETH_TEST_FL_FAILED;
1582
1583                /* restore speed, duplex, autoneg settings */
1584                hw->autoneg_advertised = autoneg_advertised;
1585                hw->forced_speed_duplex = forced_speed_duplex;
1586                hw->autoneg = autoneg;
1587
1588                e1000_reset(adapter);
1589                clear_bit(__E1000_TESTING, &adapter->flags);
1590                if (if_running)
1591                        dev_open(netdev);
1592        } else {
1593                e_info(hw, "online testing starting\n");
1594                /* Online tests */
1595                if (e1000_link_test(adapter, &data[4]))
1596                        eth_test->flags |= ETH_TEST_FL_FAILED;
1597
1598                /* Online tests aren't run; pass by default */
1599                data[0] = 0;
1600                data[1] = 0;
1601                data[2] = 0;
1602                data[3] = 0;
1603
1604                clear_bit(__E1000_TESTING, &adapter->flags);
1605        }
1606        msleep_interruptible(4 * 1000);
1607}
1608
1609static int e1000_wol_exclusion(struct e1000_adapter *adapter,
1610                               struct ethtool_wolinfo *wol)
1611{
1612        struct e1000_hw *hw = &adapter->hw;
1613        int retval = 1; /* fail by default */
1614
1615        switch (hw->device_id) {
1616        case E1000_DEV_ID_82542:
1617        case E1000_DEV_ID_82543GC_FIBER:
1618        case E1000_DEV_ID_82543GC_COPPER:
1619        case E1000_DEV_ID_82544EI_FIBER:
1620        case E1000_DEV_ID_82546EB_QUAD_COPPER:
1621        case E1000_DEV_ID_82545EM_FIBER:
1622        case E1000_DEV_ID_82545EM_COPPER:
1623        case E1000_DEV_ID_82546GB_QUAD_COPPER:
1624        case E1000_DEV_ID_82546GB_PCIE:
1625                /* these don't support WoL at all */
1626                wol->supported = 0;
1627                break;
1628        case E1000_DEV_ID_82546EB_FIBER:
1629        case E1000_DEV_ID_82546GB_FIBER:
1630                /* Wake events not supported on port B */
1631                if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1632                        wol->supported = 0;
1633                        break;
1634                }
1635                /* return success for non excluded adapter ports */
1636                retval = 0;
1637                break;
1638        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1639                /* quad port adapters only support WoL on port A */
1640                if (!adapter->quad_port_a) {
1641                        wol->supported = 0;
1642                        break;
1643                }
1644                /* return success for non excluded adapter ports */
1645                retval = 0;
1646                break;
1647        default:
1648                /* dual port cards only support WoL on port A from now on
1649                 * unless it was enabled in the eeprom for port B
1650                 * so exclude FUNC_1 ports from having WoL enabled
1651                 */
1652                if (er32(STATUS) & E1000_STATUS_FUNC_1 &&
1653                    !adapter->eeprom_wol) {
1654                        wol->supported = 0;
1655                        break;
1656                }
1657
1658                retval = 0;
1659        }
1660
1661        return retval;
1662}
1663
1664static void e1000_get_wol(struct net_device *netdev,
1665                          struct ethtool_wolinfo *wol)
1666{
1667        struct e1000_adapter *adapter = netdev_priv(netdev);
1668        struct e1000_hw *hw = &adapter->hw;
1669
1670        wol->supported = WAKE_UCAST | WAKE_MCAST |
1671                         WAKE_BCAST | WAKE_MAGIC;
1672        wol->wolopts = 0;
1673
1674        /* this function will set ->supported = 0 and return 1 if wol is not
1675         * supported by this hardware
1676         */
1677        if (e1000_wol_exclusion(adapter, wol) ||
1678            !device_can_wakeup(&adapter->pdev->dev))
1679                return;
1680
1681        /* apply any specific unsupported masks here */
1682        switch (hw->device_id) {
1683        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1684                /* KSP3 does not support UCAST wake-ups */
1685                wol->supported &= ~WAKE_UCAST;
1686
1687                if (adapter->wol & E1000_WUFC_EX)
1688                        e_err(drv, "Interface does not support directed "
1689                              "(unicast) frame wake-up packets\n");
1690                break;
1691        default:
1692                break;
1693        }
1694
1695        if (adapter->wol & E1000_WUFC_EX)
1696                wol->wolopts |= WAKE_UCAST;
1697        if (adapter->wol & E1000_WUFC_MC)
1698                wol->wolopts |= WAKE_MCAST;
1699        if (adapter->wol & E1000_WUFC_BC)
1700                wol->wolopts |= WAKE_BCAST;
1701        if (adapter->wol & E1000_WUFC_MAG)
1702                wol->wolopts |= WAKE_MAGIC;
1703}
1704
1705static int e1000_set_wol(struct net_device *netdev, struct ethtool_wolinfo *wol)
1706{
1707        struct e1000_adapter *adapter = netdev_priv(netdev);
1708        struct e1000_hw *hw = &adapter->hw;
1709
1710        if (wol->wolopts & (WAKE_PHY | WAKE_ARP | WAKE_MAGICSECURE))
1711                return -EOPNOTSUPP;
1712
1713        if (e1000_wol_exclusion(adapter, wol) ||
1714            !device_can_wakeup(&adapter->pdev->dev))
1715                return wol->wolopts ? -EOPNOTSUPP : 0;
1716
1717        switch (hw->device_id) {
1718        case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1719                if (wol->wolopts & WAKE_UCAST) {
1720                        e_err(drv, "Interface does not support directed "
1721                              "(unicast) frame wake-up packets\n");
1722                        return -EOPNOTSUPP;
1723                }
1724                break;
1725        default:
1726                break;
1727        }
1728
1729        /* these settings will always override what we currently have */
1730        adapter->wol = 0;
1731
1732        if (wol->wolopts & WAKE_UCAST)
1733                adapter->wol |= E1000_WUFC_EX;
1734        if (wol->wolopts & WAKE_MCAST)
1735                adapter->wol |= E1000_WUFC_MC;
1736        if (wol->wolopts & WAKE_BCAST)
1737                adapter->wol |= E1000_WUFC_BC;
1738        if (wol->wolopts & WAKE_MAGIC)
1739                adapter->wol |= E1000_WUFC_MAG;
1740
1741        device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1742
1743        return 0;
1744}
1745
1746static int e1000_set_phys_id(struct net_device *netdev,
1747                             enum ethtool_phys_id_state state)
1748{
1749        struct e1000_adapter *adapter = netdev_priv(netdev);
1750        struct e1000_hw *hw = &adapter->hw;
1751
1752        switch (state) {
1753        case ETHTOOL_ID_ACTIVE:
1754                e1000_setup_led(hw);
1755                return 2;
1756
1757        case ETHTOOL_ID_ON:
1758                e1000_led_on(hw);
1759                break;
1760
1761        case ETHTOOL_ID_OFF:
1762                e1000_led_off(hw);
1763                break;
1764
1765        case ETHTOOL_ID_INACTIVE:
1766                e1000_cleanup_led(hw);
1767        }
1768
1769        return 0;
1770}
1771
1772static int e1000_get_coalesce(struct net_device *netdev,
1773                              struct ethtool_coalesce *ec)
1774{
1775        struct e1000_adapter *adapter = netdev_priv(netdev);
1776
1777        if (adapter->hw.mac_type < e1000_82545)
1778                return -EOPNOTSUPP;
1779
1780        if (adapter->itr_setting <= 4)
1781                ec->rx_coalesce_usecs = adapter->itr_setting;
1782        else
1783                ec->rx_coalesce_usecs = 1000000 / adapter->itr_setting;
1784
1785        return 0;
1786}
1787
1788static int e1000_set_coalesce(struct net_device *netdev,
1789                              struct ethtool_coalesce *ec)
1790{
1791        struct e1000_adapter *adapter = netdev_priv(netdev);
1792        struct e1000_hw *hw = &adapter->hw;
1793
1794        if (hw->mac_type < e1000_82545)
1795                return -EOPNOTSUPP;
1796
1797        if ((ec->rx_coalesce_usecs > E1000_MAX_ITR_USECS) ||
1798            ((ec->rx_coalesce_usecs > 4) &&
1799             (ec->rx_coalesce_usecs < E1000_MIN_ITR_USECS)) ||
1800            (ec->rx_coalesce_usecs == 2))
1801                return -EINVAL;
1802
1803        if (ec->rx_coalesce_usecs == 4) {
1804                adapter->itr = adapter->itr_setting = 4;
1805        } else if (ec->rx_coalesce_usecs <= 3) {
1806                adapter->itr = 20000;
1807                adapter->itr_setting = ec->rx_coalesce_usecs;
1808        } else {
1809                adapter->itr = (1000000 / ec->rx_coalesce_usecs);
1810                adapter->itr_setting = adapter->itr & ~3;
1811        }
1812
1813        if (adapter->itr_setting != 0)
1814                ew32(ITR, 1000000000 / (adapter->itr * 256));
1815        else
1816                ew32(ITR, 0);
1817
1818        return 0;
1819}
1820
1821static int e1000_nway_reset(struct net_device *netdev)
1822{
1823        struct e1000_adapter *adapter = netdev_priv(netdev);
1824        if (netif_running(netdev))
1825                e1000_reinit_locked(adapter);
1826        return 0;
1827}
1828
1829static void e1000_get_ethtool_stats(struct net_device *netdev,
1830                                    struct ethtool_stats *stats, u64 *data)
1831{
1832        struct e1000_adapter *adapter = netdev_priv(netdev);
1833        int i;
1834        char *p = NULL;
1835
1836        e1000_update_stats(adapter);
1837        for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1838                switch (e1000_gstrings_stats[i].type) {
1839                case NETDEV_STATS:
1840                        p = (char *) netdev +
1841                                        e1000_gstrings_stats[i].stat_offset;
1842                        break;
1843                case E1000_STATS:
1844                        p = (char *) adapter +
1845                                        e1000_gstrings_stats[i].stat_offset;
1846                        break;
1847                }
1848
1849                data[i] = (e1000_gstrings_stats[i].sizeof_stat ==
1850                        sizeof(u64)) ? *(u64 *)p : *(u32 *)p;
1851        }
1852/* BUG_ON(i != E1000_STATS_LEN); */
1853}
1854
1855static void e1000_get_strings(struct net_device *netdev, u32 stringset,
1856                              u8 *data)
1857{
1858        u8 *p = data;
1859        int i;
1860
1861        switch (stringset) {
1862        case ETH_SS_TEST:
1863                memcpy(data, *e1000_gstrings_test,
1864                        sizeof(e1000_gstrings_test));
1865                break;
1866        case ETH_SS_STATS:
1867                for (i = 0; i < E1000_GLOBAL_STATS_LEN; i++) {
1868                        memcpy(p, e1000_gstrings_stats[i].stat_string,
1869                               ETH_GSTRING_LEN);
1870                        p += ETH_GSTRING_LEN;
1871                }
1872                /* BUG_ON(p - data != E1000_STATS_LEN * ETH_GSTRING_LEN); */
1873                break;
1874        }
1875}
1876
1877static const struct ethtool_ops e1000_ethtool_ops = {
1878        .get_settings           = e1000_get_settings,
1879        .set_settings           = e1000_set_settings,
1880        .get_drvinfo            = e1000_get_drvinfo,
1881        .get_regs_len           = e1000_get_regs_len,
1882        .get_regs               = e1000_get_regs,
1883        .get_wol                = e1000_get_wol,
1884        .set_wol                = e1000_set_wol,
1885        .get_msglevel           = e1000_get_msglevel,
1886        .set_msglevel           = e1000_set_msglevel,
1887        .nway_reset             = e1000_nway_reset,
1888        .get_link               = e1000_get_link,
1889        .get_eeprom_len         = e1000_get_eeprom_len,
1890        .get_eeprom             = e1000_get_eeprom,
1891        .set_eeprom             = e1000_set_eeprom,
1892        .get_ringparam          = e1000_get_ringparam,
1893        .set_ringparam          = e1000_set_ringparam,
1894        .get_pauseparam         = e1000_get_pauseparam,
1895        .set_pauseparam         = e1000_set_pauseparam,
1896        .self_test              = e1000_diag_test,
1897        .get_strings            = e1000_get_strings,
1898        .set_phys_id            = e1000_set_phys_id,
1899        .get_ethtool_stats      = e1000_get_ethtool_stats,
1900        .get_sset_count         = e1000_get_sset_count,
1901        .get_coalesce           = e1000_get_coalesce,
1902        .set_coalesce           = e1000_set_coalesce,
1903        .get_ts_info            = ethtool_op_get_ts_info,
1904};
1905
1906void e1000_set_ethtool_ops(struct net_device *netdev)
1907{
1908        SET_ETHTOOL_OPS(netdev, &e1000_ethtool_ops);
1909}
1910