linux/drivers/net/ethernet/intel/igb/e1000_nvm.c
<<
>>
Prefs
   1/*******************************************************************************
   2
   3  Intel(R) Gigabit Ethernet Linux driver
   4  Copyright(c) 2007-2013 Intel Corporation.
   5
   6  This program is free software; you can redistribute it and/or modify it
   7  under the terms and conditions of the GNU General Public License,
   8  version 2, as published by the Free Software Foundation.
   9
  10  This program is distributed in the hope it will be useful, but WITHOUT
  11  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  12  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  13  more details.
  14
  15  You should have received a copy of the GNU General Public License along with
  16  this program; if not, write to the Free Software Foundation, Inc.,
  17  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  18
  19  The full GNU General Public License is included in this distribution in
  20  the file called "COPYING".
  21
  22  Contact Information:
  23  e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
  24  Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
  25
  26*******************************************************************************/
  27
  28#include <linux/if_ether.h>
  29#include <linux/delay.h>
  30
  31#include "e1000_mac.h"
  32#include "e1000_nvm.h"
  33
  34/**
  35 *  igb_raise_eec_clk - Raise EEPROM clock
  36 *  @hw: pointer to the HW structure
  37 *  @eecd: pointer to the EEPROM
  38 *
  39 *  Enable/Raise the EEPROM clock bit.
  40 **/
  41static void igb_raise_eec_clk(struct e1000_hw *hw, u32 *eecd)
  42{
  43        *eecd = *eecd | E1000_EECD_SK;
  44        wr32(E1000_EECD, *eecd);
  45        wrfl();
  46        udelay(hw->nvm.delay_usec);
  47}
  48
  49/**
  50 *  igb_lower_eec_clk - Lower EEPROM clock
  51 *  @hw: pointer to the HW structure
  52 *  @eecd: pointer to the EEPROM
  53 *
  54 *  Clear/Lower the EEPROM clock bit.
  55 **/
  56static void igb_lower_eec_clk(struct e1000_hw *hw, u32 *eecd)
  57{
  58        *eecd = *eecd & ~E1000_EECD_SK;
  59        wr32(E1000_EECD, *eecd);
  60        wrfl();
  61        udelay(hw->nvm.delay_usec);
  62}
  63
  64/**
  65 *  igb_shift_out_eec_bits - Shift data bits our to the EEPROM
  66 *  @hw: pointer to the HW structure
  67 *  @data: data to send to the EEPROM
  68 *  @count: number of bits to shift out
  69 *
  70 *  We need to shift 'count' bits out to the EEPROM.  So, the value in the
  71 *  "data" parameter will be shifted out to the EEPROM one bit at a time.
  72 *  In order to do this, "data" must be broken down into bits.
  73 **/
  74static void igb_shift_out_eec_bits(struct e1000_hw *hw, u16 data, u16 count)
  75{
  76        struct e1000_nvm_info *nvm = &hw->nvm;
  77        u32 eecd = rd32(E1000_EECD);
  78        u32 mask;
  79
  80        mask = 0x01 << (count - 1);
  81        if (nvm->type == e1000_nvm_eeprom_spi)
  82                eecd |= E1000_EECD_DO;
  83
  84        do {
  85                eecd &= ~E1000_EECD_DI;
  86
  87                if (data & mask)
  88                        eecd |= E1000_EECD_DI;
  89
  90                wr32(E1000_EECD, eecd);
  91                wrfl();
  92
  93                udelay(nvm->delay_usec);
  94
  95                igb_raise_eec_clk(hw, &eecd);
  96                igb_lower_eec_clk(hw, &eecd);
  97
  98                mask >>= 1;
  99        } while (mask);
 100
 101        eecd &= ~E1000_EECD_DI;
 102        wr32(E1000_EECD, eecd);
 103}
 104
 105/**
 106 *  igb_shift_in_eec_bits - Shift data bits in from the EEPROM
 107 *  @hw: pointer to the HW structure
 108 *  @count: number of bits to shift in
 109 *
 110 *  In order to read a register from the EEPROM, we need to shift 'count' bits
 111 *  in from the EEPROM.  Bits are "shifted in" by raising the clock input to
 112 *  the EEPROM (setting the SK bit), and then reading the value of the data out
 113 *  "DO" bit.  During this "shifting in" process the data in "DI" bit should
 114 *  always be clear.
 115 **/
 116static u16 igb_shift_in_eec_bits(struct e1000_hw *hw, u16 count)
 117{
 118        u32 eecd;
 119        u32 i;
 120        u16 data;
 121
 122        eecd = rd32(E1000_EECD);
 123
 124        eecd &= ~(E1000_EECD_DO | E1000_EECD_DI);
 125        data = 0;
 126
 127        for (i = 0; i < count; i++) {
 128                data <<= 1;
 129                igb_raise_eec_clk(hw, &eecd);
 130
 131                eecd = rd32(E1000_EECD);
 132
 133                eecd &= ~E1000_EECD_DI;
 134                if (eecd & E1000_EECD_DO)
 135                        data |= 1;
 136
 137                igb_lower_eec_clk(hw, &eecd);
 138        }
 139
 140        return data;
 141}
 142
 143/**
 144 *  igb_poll_eerd_eewr_done - Poll for EEPROM read/write completion
 145 *  @hw: pointer to the HW structure
 146 *  @ee_reg: EEPROM flag for polling
 147 *
 148 *  Polls the EEPROM status bit for either read or write completion based
 149 *  upon the value of 'ee_reg'.
 150 **/
 151static s32 igb_poll_eerd_eewr_done(struct e1000_hw *hw, int ee_reg)
 152{
 153        u32 attempts = 100000;
 154        u32 i, reg = 0;
 155        s32 ret_val = -E1000_ERR_NVM;
 156
 157        for (i = 0; i < attempts; i++) {
 158                if (ee_reg == E1000_NVM_POLL_READ)
 159                        reg = rd32(E1000_EERD);
 160                else
 161                        reg = rd32(E1000_EEWR);
 162
 163                if (reg & E1000_NVM_RW_REG_DONE) {
 164                        ret_val = 0;
 165                        break;
 166                }
 167
 168                udelay(5);
 169        }
 170
 171        return ret_val;
 172}
 173
 174/**
 175 *  igb_acquire_nvm - Generic request for access to EEPROM
 176 *  @hw: pointer to the HW structure
 177 *
 178 *  Set the EEPROM access request bit and wait for EEPROM access grant bit.
 179 *  Return successful if access grant bit set, else clear the request for
 180 *  EEPROM access and return -E1000_ERR_NVM (-1).
 181 **/
 182s32 igb_acquire_nvm(struct e1000_hw *hw)
 183{
 184        u32 eecd = rd32(E1000_EECD);
 185        s32 timeout = E1000_NVM_GRANT_ATTEMPTS;
 186        s32 ret_val = 0;
 187
 188
 189        wr32(E1000_EECD, eecd | E1000_EECD_REQ);
 190        eecd = rd32(E1000_EECD);
 191
 192        while (timeout) {
 193                if (eecd & E1000_EECD_GNT)
 194                        break;
 195                udelay(5);
 196                eecd = rd32(E1000_EECD);
 197                timeout--;
 198        }
 199
 200        if (!timeout) {
 201                eecd &= ~E1000_EECD_REQ;
 202                wr32(E1000_EECD, eecd);
 203                hw_dbg("Could not acquire NVM grant\n");
 204                ret_val = -E1000_ERR_NVM;
 205        }
 206
 207        return ret_val;
 208}
 209
 210/**
 211 *  igb_standby_nvm - Return EEPROM to standby state
 212 *  @hw: pointer to the HW structure
 213 *
 214 *  Return the EEPROM to a standby state.
 215 **/
 216static void igb_standby_nvm(struct e1000_hw *hw)
 217{
 218        struct e1000_nvm_info *nvm = &hw->nvm;
 219        u32 eecd = rd32(E1000_EECD);
 220
 221        if (nvm->type == e1000_nvm_eeprom_spi) {
 222                /* Toggle CS to flush commands */
 223                eecd |= E1000_EECD_CS;
 224                wr32(E1000_EECD, eecd);
 225                wrfl();
 226                udelay(nvm->delay_usec);
 227                eecd &= ~E1000_EECD_CS;
 228                wr32(E1000_EECD, eecd);
 229                wrfl();
 230                udelay(nvm->delay_usec);
 231        }
 232}
 233
 234/**
 235 *  e1000_stop_nvm - Terminate EEPROM command
 236 *  @hw: pointer to the HW structure
 237 *
 238 *  Terminates the current command by inverting the EEPROM's chip select pin.
 239 **/
 240static void e1000_stop_nvm(struct e1000_hw *hw)
 241{
 242        u32 eecd;
 243
 244        eecd = rd32(E1000_EECD);
 245        if (hw->nvm.type == e1000_nvm_eeprom_spi) {
 246                /* Pull CS high */
 247                eecd |= E1000_EECD_CS;
 248                igb_lower_eec_clk(hw, &eecd);
 249        }
 250}
 251
 252/**
 253 *  igb_release_nvm - Release exclusive access to EEPROM
 254 *  @hw: pointer to the HW structure
 255 *
 256 *  Stop any current commands to the EEPROM and clear the EEPROM request bit.
 257 **/
 258void igb_release_nvm(struct e1000_hw *hw)
 259{
 260        u32 eecd;
 261
 262        e1000_stop_nvm(hw);
 263
 264        eecd = rd32(E1000_EECD);
 265        eecd &= ~E1000_EECD_REQ;
 266        wr32(E1000_EECD, eecd);
 267}
 268
 269/**
 270 *  igb_ready_nvm_eeprom - Prepares EEPROM for read/write
 271 *  @hw: pointer to the HW structure
 272 *
 273 *  Setups the EEPROM for reading and writing.
 274 **/
 275static s32 igb_ready_nvm_eeprom(struct e1000_hw *hw)
 276{
 277        struct e1000_nvm_info *nvm = &hw->nvm;
 278        u32 eecd = rd32(E1000_EECD);
 279        s32 ret_val = 0;
 280        u16 timeout = 0;
 281        u8 spi_stat_reg;
 282
 283
 284        if (nvm->type == e1000_nvm_eeprom_spi) {
 285                /* Clear SK and CS */
 286                eecd &= ~(E1000_EECD_CS | E1000_EECD_SK);
 287                wr32(E1000_EECD, eecd);
 288                wrfl();
 289                udelay(1);
 290                timeout = NVM_MAX_RETRY_SPI;
 291
 292                /* Read "Status Register" repeatedly until the LSB is cleared.
 293                 * The EEPROM will signal that the command has been completed
 294                 * by clearing bit 0 of the internal status register.  If it's
 295                 * not cleared within 'timeout', then error out.
 296                 */
 297                while (timeout) {
 298                        igb_shift_out_eec_bits(hw, NVM_RDSR_OPCODE_SPI,
 299                                               hw->nvm.opcode_bits);
 300                        spi_stat_reg = (u8)igb_shift_in_eec_bits(hw, 8);
 301                        if (!(spi_stat_reg & NVM_STATUS_RDY_SPI))
 302                                break;
 303
 304                        udelay(5);
 305                        igb_standby_nvm(hw);
 306                        timeout--;
 307                }
 308
 309                if (!timeout) {
 310                        hw_dbg("SPI NVM Status error\n");
 311                        ret_val = -E1000_ERR_NVM;
 312                        goto out;
 313                }
 314        }
 315
 316out:
 317        return ret_val;
 318}
 319
 320/**
 321 *  igb_read_nvm_spi - Read EEPROM's using SPI
 322 *  @hw: pointer to the HW structure
 323 *  @offset: offset of word in the EEPROM to read
 324 *  @words: number of words to read
 325 *  @data: word read from the EEPROM
 326 *
 327 *  Reads a 16 bit word from the EEPROM.
 328 **/
 329s32 igb_read_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 330{
 331        struct e1000_nvm_info *nvm = &hw->nvm;
 332        u32 i = 0;
 333        s32 ret_val;
 334        u16 word_in;
 335        u8 read_opcode = NVM_READ_OPCODE_SPI;
 336
 337        /* A check for invalid values:  offset too large, too many words,
 338         * and not enough words.
 339         */
 340        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 341            (words == 0)) {
 342                hw_dbg("nvm parameter(s) out of bounds\n");
 343                ret_val = -E1000_ERR_NVM;
 344                goto out;
 345        }
 346
 347        ret_val = nvm->ops.acquire(hw);
 348        if (ret_val)
 349                goto out;
 350
 351        ret_val = igb_ready_nvm_eeprom(hw);
 352        if (ret_val)
 353                goto release;
 354
 355        igb_standby_nvm(hw);
 356
 357        if ((nvm->address_bits == 8) && (offset >= 128))
 358                read_opcode |= NVM_A8_OPCODE_SPI;
 359
 360        /* Send the READ command (opcode + addr) */
 361        igb_shift_out_eec_bits(hw, read_opcode, nvm->opcode_bits);
 362        igb_shift_out_eec_bits(hw, (u16)(offset*2), nvm->address_bits);
 363
 364        /* Read the data.  SPI NVMs increment the address with each byte
 365         * read and will roll over if reading beyond the end.  This allows
 366         * us to read the whole NVM from any offset
 367         */
 368        for (i = 0; i < words; i++) {
 369                word_in = igb_shift_in_eec_bits(hw, 16);
 370                data[i] = (word_in >> 8) | (word_in << 8);
 371        }
 372
 373release:
 374        nvm->ops.release(hw);
 375
 376out:
 377        return ret_val;
 378}
 379
 380/**
 381 *  igb_read_nvm_eerd - Reads EEPROM using EERD register
 382 *  @hw: pointer to the HW structure
 383 *  @offset: offset of word in the EEPROM to read
 384 *  @words: number of words to read
 385 *  @data: word read from the EEPROM
 386 *
 387 *  Reads a 16 bit word from the EEPROM using the EERD register.
 388 **/
 389s32 igb_read_nvm_eerd(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 390{
 391        struct e1000_nvm_info *nvm = &hw->nvm;
 392        u32 i, eerd = 0;
 393        s32 ret_val = 0;
 394
 395        /* A check for invalid values:  offset too large, too many words,
 396         * and not enough words.
 397         */
 398        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 399            (words == 0)) {
 400                hw_dbg("nvm parameter(s) out of bounds\n");
 401                ret_val = -E1000_ERR_NVM;
 402                goto out;
 403        }
 404
 405        for (i = 0; i < words; i++) {
 406                eerd = ((offset+i) << E1000_NVM_RW_ADDR_SHIFT) +
 407                        E1000_NVM_RW_REG_START;
 408
 409                wr32(E1000_EERD, eerd);
 410                ret_val = igb_poll_eerd_eewr_done(hw, E1000_NVM_POLL_READ);
 411                if (ret_val)
 412                        break;
 413
 414                data[i] = (rd32(E1000_EERD) >>
 415                        E1000_NVM_RW_REG_DATA);
 416        }
 417
 418out:
 419        return ret_val;
 420}
 421
 422/**
 423 *  igb_write_nvm_spi - Write to EEPROM using SPI
 424 *  @hw: pointer to the HW structure
 425 *  @offset: offset within the EEPROM to be written to
 426 *  @words: number of words to write
 427 *  @data: 16 bit word(s) to be written to the EEPROM
 428 *
 429 *  Writes data to EEPROM at offset using SPI interface.
 430 *
 431 *  If e1000_update_nvm_checksum is not called after this function , the
 432 *  EEPROM will most likley contain an invalid checksum.
 433 **/
 434s32 igb_write_nvm_spi(struct e1000_hw *hw, u16 offset, u16 words, u16 *data)
 435{
 436        struct e1000_nvm_info *nvm = &hw->nvm;
 437        s32 ret_val = -E1000_ERR_NVM;
 438        u16 widx = 0;
 439
 440        /* A check for invalid values:  offset too large, too many words,
 441         * and not enough words.
 442         */
 443        if ((offset >= nvm->word_size) || (words > (nvm->word_size - offset)) ||
 444            (words == 0)) {
 445                hw_dbg("nvm parameter(s) out of bounds\n");
 446                return ret_val;
 447        }
 448
 449        while (widx < words) {
 450                u8 write_opcode = NVM_WRITE_OPCODE_SPI;
 451
 452                ret_val = nvm->ops.acquire(hw);
 453                if (ret_val)
 454                        return ret_val;
 455
 456                ret_val = igb_ready_nvm_eeprom(hw);
 457                if (ret_val) {
 458                        nvm->ops.release(hw);
 459                        return ret_val;
 460                }
 461
 462                igb_standby_nvm(hw);
 463
 464                /* Send the WRITE ENABLE command (8 bit opcode) */
 465                igb_shift_out_eec_bits(hw, NVM_WREN_OPCODE_SPI,
 466                                         nvm->opcode_bits);
 467
 468                igb_standby_nvm(hw);
 469
 470                /* Some SPI eeproms use the 8th address bit embedded in the
 471                 * opcode
 472                 */
 473                if ((nvm->address_bits == 8) && (offset >= 128))
 474                        write_opcode |= NVM_A8_OPCODE_SPI;
 475
 476                /* Send the Write command (8-bit opcode + addr) */
 477                igb_shift_out_eec_bits(hw, write_opcode, nvm->opcode_bits);
 478                igb_shift_out_eec_bits(hw, (u16)((offset + widx) * 2),
 479                                         nvm->address_bits);
 480
 481                /* Loop to allow for up to whole page write of eeprom */
 482                while (widx < words) {
 483                        u16 word_out = data[widx];
 484                        word_out = (word_out >> 8) | (word_out << 8);
 485                        igb_shift_out_eec_bits(hw, word_out, 16);
 486                        widx++;
 487
 488                        if ((((offset + widx) * 2) % nvm->page_size) == 0) {
 489                                igb_standby_nvm(hw);
 490                                break;
 491                        }
 492                }
 493                usleep_range(1000, 2000);
 494                nvm->ops.release(hw);
 495        }
 496
 497        return ret_val;
 498}
 499
 500/**
 501 *  igb_read_part_string - Read device part number
 502 *  @hw: pointer to the HW structure
 503 *  @part_num: pointer to device part number
 504 *  @part_num_size: size of part number buffer
 505 *
 506 *  Reads the product board assembly (PBA) number from the EEPROM and stores
 507 *  the value in part_num.
 508 **/
 509s32 igb_read_part_string(struct e1000_hw *hw, u8 *part_num, u32 part_num_size)
 510{
 511        s32 ret_val;
 512        u16 nvm_data;
 513        u16 pointer;
 514        u16 offset;
 515        u16 length;
 516
 517        if (part_num == NULL) {
 518                hw_dbg("PBA string buffer was null\n");
 519                ret_val = E1000_ERR_INVALID_ARGUMENT;
 520                goto out;
 521        }
 522
 523        ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_0, 1, &nvm_data);
 524        if (ret_val) {
 525                hw_dbg("NVM Read Error\n");
 526                goto out;
 527        }
 528
 529        ret_val = hw->nvm.ops.read(hw, NVM_PBA_OFFSET_1, 1, &pointer);
 530        if (ret_val) {
 531                hw_dbg("NVM Read Error\n");
 532                goto out;
 533        }
 534
 535        /* if nvm_data is not ptr guard the PBA must be in legacy format which
 536         * means pointer is actually our second data word for the PBA number
 537         * and we can decode it into an ascii string
 538         */
 539        if (nvm_data != NVM_PBA_PTR_GUARD) {
 540                hw_dbg("NVM PBA number is not stored as string\n");
 541
 542                /* we will need 11 characters to store the PBA */
 543                if (part_num_size < 11) {
 544                        hw_dbg("PBA string buffer too small\n");
 545                        return E1000_ERR_NO_SPACE;
 546                }
 547
 548                /* extract hex string from data and pointer */
 549                part_num[0] = (nvm_data >> 12) & 0xF;
 550                part_num[1] = (nvm_data >> 8) & 0xF;
 551                part_num[2] = (nvm_data >> 4) & 0xF;
 552                part_num[3] = nvm_data & 0xF;
 553                part_num[4] = (pointer >> 12) & 0xF;
 554                part_num[5] = (pointer >> 8) & 0xF;
 555                part_num[6] = '-';
 556                part_num[7] = 0;
 557                part_num[8] = (pointer >> 4) & 0xF;
 558                part_num[9] = pointer & 0xF;
 559
 560                /* put a null character on the end of our string */
 561                part_num[10] = '\0';
 562
 563                /* switch all the data but the '-' to hex char */
 564                for (offset = 0; offset < 10; offset++) {
 565                        if (part_num[offset] < 0xA)
 566                                part_num[offset] += '0';
 567                        else if (part_num[offset] < 0x10)
 568                                part_num[offset] += 'A' - 0xA;
 569                }
 570
 571                goto out;
 572        }
 573
 574        ret_val = hw->nvm.ops.read(hw, pointer, 1, &length);
 575        if (ret_val) {
 576                hw_dbg("NVM Read Error\n");
 577                goto out;
 578        }
 579
 580        if (length == 0xFFFF || length == 0) {
 581                hw_dbg("NVM PBA number section invalid length\n");
 582                ret_val = E1000_ERR_NVM_PBA_SECTION;
 583                goto out;
 584        }
 585        /* check if part_num buffer is big enough */
 586        if (part_num_size < (((u32)length * 2) - 1)) {
 587                hw_dbg("PBA string buffer too small\n");
 588                ret_val = E1000_ERR_NO_SPACE;
 589                goto out;
 590        }
 591
 592        /* trim pba length from start of string */
 593        pointer++;
 594        length--;
 595
 596        for (offset = 0; offset < length; offset++) {
 597                ret_val = hw->nvm.ops.read(hw, pointer + offset, 1, &nvm_data);
 598                if (ret_val) {
 599                        hw_dbg("NVM Read Error\n");
 600                        goto out;
 601                }
 602                part_num[offset * 2] = (u8)(nvm_data >> 8);
 603                part_num[(offset * 2) + 1] = (u8)(nvm_data & 0xFF);
 604        }
 605        part_num[offset * 2] = '\0';
 606
 607out:
 608        return ret_val;
 609}
 610
 611/**
 612 *  igb_read_mac_addr - Read device MAC address
 613 *  @hw: pointer to the HW structure
 614 *
 615 *  Reads the device MAC address from the EEPROM and stores the value.
 616 *  Since devices with two ports use the same EEPROM, we increment the
 617 *  last bit in the MAC address for the second port.
 618 **/
 619s32 igb_read_mac_addr(struct e1000_hw *hw)
 620{
 621        u32 rar_high;
 622        u32 rar_low;
 623        u16 i;
 624
 625        rar_high = rd32(E1000_RAH(0));
 626        rar_low = rd32(E1000_RAL(0));
 627
 628        for (i = 0; i < E1000_RAL_MAC_ADDR_LEN; i++)
 629                hw->mac.perm_addr[i] = (u8)(rar_low >> (i*8));
 630
 631        for (i = 0; i < E1000_RAH_MAC_ADDR_LEN; i++)
 632                hw->mac.perm_addr[i+4] = (u8)(rar_high >> (i*8));
 633
 634        for (i = 0; i < ETH_ALEN; i++)
 635                hw->mac.addr[i] = hw->mac.perm_addr[i];
 636
 637        return 0;
 638}
 639
 640/**
 641 *  igb_validate_nvm_checksum - Validate EEPROM checksum
 642 *  @hw: pointer to the HW structure
 643 *
 644 *  Calculates the EEPROM checksum by reading/adding each word of the EEPROM
 645 *  and then verifies that the sum of the EEPROM is equal to 0xBABA.
 646 **/
 647s32 igb_validate_nvm_checksum(struct e1000_hw *hw)
 648{
 649        s32 ret_val = 0;
 650        u16 checksum = 0;
 651        u16 i, nvm_data;
 652
 653        for (i = 0; i < (NVM_CHECKSUM_REG + 1); i++) {
 654                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 655                if (ret_val) {
 656                        hw_dbg("NVM Read Error\n");
 657                        goto out;
 658                }
 659                checksum += nvm_data;
 660        }
 661
 662        if (checksum != (u16) NVM_SUM) {
 663                hw_dbg("NVM Checksum Invalid\n");
 664                ret_val = -E1000_ERR_NVM;
 665                goto out;
 666        }
 667
 668out:
 669        return ret_val;
 670}
 671
 672/**
 673 *  igb_update_nvm_checksum - Update EEPROM checksum
 674 *  @hw: pointer to the HW structure
 675 *
 676 *  Updates the EEPROM checksum by reading/adding each word of the EEPROM
 677 *  up to the checksum.  Then calculates the EEPROM checksum and writes the
 678 *  value to the EEPROM.
 679 **/
 680s32 igb_update_nvm_checksum(struct e1000_hw *hw)
 681{
 682        s32  ret_val;
 683        u16 checksum = 0;
 684        u16 i, nvm_data;
 685
 686        for (i = 0; i < NVM_CHECKSUM_REG; i++) {
 687                ret_val = hw->nvm.ops.read(hw, i, 1, &nvm_data);
 688                if (ret_val) {
 689                        hw_dbg("NVM Read Error while updating checksum.\n");
 690                        goto out;
 691                }
 692                checksum += nvm_data;
 693        }
 694        checksum = (u16) NVM_SUM - checksum;
 695        ret_val = hw->nvm.ops.write(hw, NVM_CHECKSUM_REG, 1, &checksum);
 696        if (ret_val)
 697                hw_dbg("NVM Write Error while updating checksum.\n");
 698
 699out:
 700        return ret_val;
 701}
 702
 703/**
 704 *  igb_get_fw_version - Get firmware version information
 705 *  @hw: pointer to the HW structure
 706 *  @fw_vers: pointer to output structure
 707 *
 708 *  unsupported MAC types will return all 0 version structure
 709 **/
 710void igb_get_fw_version(struct e1000_hw *hw, struct e1000_fw_version *fw_vers)
 711{
 712        u16 eeprom_verh, eeprom_verl, comb_verh, comb_verl, comb_offset;
 713        u16 fw_version;
 714
 715        memset(fw_vers, 0, sizeof(struct e1000_fw_version));
 716
 717        switch (hw->mac.type) {
 718        case e1000_i211:
 719                igb_read_invm_version(hw, fw_vers);
 720                return;
 721        case e1000_82575:
 722        case e1000_82576:
 723        case e1000_82580:
 724        case e1000_i354:
 725        case e1000_i350:
 726        case e1000_i210:
 727                break;
 728        default:
 729                return;
 730        }
 731        /* basic eeprom version numbers */
 732        hw->nvm.ops.read(hw, NVM_VERSION, 1, &fw_version);
 733        fw_vers->eep_major = (fw_version & NVM_MAJOR_MASK) >> NVM_MAJOR_SHIFT;
 734        fw_vers->eep_minor = (fw_version & NVM_MINOR_MASK);
 735
 736        /* etrack id */
 737        hw->nvm.ops.read(hw, NVM_ETRACK_WORD, 1, &eeprom_verl);
 738        hw->nvm.ops.read(hw, (NVM_ETRACK_WORD + 1), 1, &eeprom_verh);
 739        fw_vers->etrack_id = (eeprom_verh << NVM_ETRACK_SHIFT) | eeprom_verl;
 740
 741        switch (hw->mac.type) {
 742        case e1000_i210:
 743        case e1000_i354:
 744        case e1000_i350:
 745                /* find combo image version */
 746                hw->nvm.ops.read(hw, NVM_COMB_VER_PTR, 1, &comb_offset);
 747                if ((comb_offset != 0x0) && (comb_offset != NVM_VER_INVALID)) {
 748
 749                        hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset
 750                                         + 1), 1, &comb_verh);
 751                        hw->nvm.ops.read(hw, (NVM_COMB_VER_OFF + comb_offset),
 752                                         1, &comb_verl);
 753
 754                        /* get Option Rom version if it exists and is valid */
 755                        if ((comb_verh && comb_verl) &&
 756                            ((comb_verh != NVM_VER_INVALID) &&
 757                             (comb_verl != NVM_VER_INVALID))) {
 758
 759                                fw_vers->or_valid = true;
 760                                fw_vers->or_major =
 761                                        comb_verl >> NVM_COMB_VER_SHFT;
 762                                fw_vers->or_build =
 763                                        ((comb_verl << NVM_COMB_VER_SHFT)
 764                                        | (comb_verh >> NVM_COMB_VER_SHFT));
 765                                fw_vers->or_patch =
 766                                        comb_verh & NVM_COMB_VER_MASK;
 767                        }
 768                }
 769                break;
 770        default:
 771                break;
 772        }
 773        return;
 774}
 775