linux/drivers/net/ethernet/stmicro/stmmac/stmmac_main.c
<<
>>
Prefs
   1/*******************************************************************************
   2  This is the driver for the ST MAC 10/100/1000 on-chip Ethernet controllers.
   3  ST Ethernet IPs are built around a Synopsys IP Core.
   4
   5        Copyright(C) 2007-2011 STMicroelectronics Ltd
   6
   7  This program is free software; you can redistribute it and/or modify it
   8  under the terms and conditions of the GNU General Public License,
   9  version 2, as published by the Free Software Foundation.
  10
  11  This program is distributed in the hope it will be useful, but WITHOUT
  12  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
  14  more details.
  15
  16  You should have received a copy of the GNU General Public License along with
  17  this program; if not, write to the Free Software Foundation, Inc.,
  18  51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
  19
  20  The full GNU General Public License is included in this distribution in
  21  the file called "COPYING".
  22
  23  Author: Giuseppe Cavallaro <peppe.cavallaro@st.com>
  24
  25  Documentation available at:
  26        http://www.stlinux.com
  27  Support available at:
  28        https://bugzilla.stlinux.com/
  29*******************************************************************************/
  30
  31#include <linux/clk.h>
  32#include <linux/kernel.h>
  33#include <linux/interrupt.h>
  34#include <linux/ip.h>
  35#include <linux/tcp.h>
  36#include <linux/skbuff.h>
  37#include <linux/ethtool.h>
  38#include <linux/if_ether.h>
  39#include <linux/crc32.h>
  40#include <linux/mii.h>
  41#include <linux/if.h>
  42#include <linux/if_vlan.h>
  43#include <linux/dma-mapping.h>
  44#include <linux/slab.h>
  45#include <linux/prefetch.h>
  46#ifdef CONFIG_STMMAC_DEBUG_FS
  47#include <linux/debugfs.h>
  48#include <linux/seq_file.h>
  49#endif /* CONFIG_STMMAC_DEBUG_FS */
  50#include <linux/net_tstamp.h>
  51#include "stmmac_ptp.h"
  52#include "stmmac.h"
  53
  54#undef STMMAC_DEBUG
  55/*#define STMMAC_DEBUG*/
  56#ifdef STMMAC_DEBUG
  57#define DBG(nlevel, klevel, fmt, args...) \
  58                ((void)(netif_msg_##nlevel(priv) && \
  59                printk(KERN_##klevel fmt, ## args)))
  60#else
  61#define DBG(nlevel, klevel, fmt, args...) do { } while (0)
  62#endif
  63
  64#undef STMMAC_RX_DEBUG
  65/*#define STMMAC_RX_DEBUG*/
  66#ifdef STMMAC_RX_DEBUG
  67#define RX_DBG(fmt, args...)  printk(fmt, ## args)
  68#else
  69#define RX_DBG(fmt, args...)  do { } while (0)
  70#endif
  71
  72#undef STMMAC_XMIT_DEBUG
  73/*#define STMMAC_XMIT_DEBUG*/
  74#ifdef STMMAC_XMIT_DEBUG
  75#define TX_DBG(fmt, args...)  printk(fmt, ## args)
  76#else
  77#define TX_DBG(fmt, args...)  do { } while (0)
  78#endif
  79
  80#define STMMAC_ALIGN(x) L1_CACHE_ALIGN(x)
  81#define JUMBO_LEN       9000
  82
  83/* Module parameters */
  84#define TX_TIMEO        5000
  85static int watchdog = TX_TIMEO;
  86module_param(watchdog, int, S_IRUGO | S_IWUSR);
  87MODULE_PARM_DESC(watchdog, "Transmit timeout in milliseconds (default 5s)");
  88
  89static int debug = -1;
  90module_param(debug, int, S_IRUGO | S_IWUSR);
  91MODULE_PARM_DESC(debug, "Message Level (-1: default, 0: no output, 16: all)");
  92
  93int phyaddr = -1;
  94module_param(phyaddr, int, S_IRUGO);
  95MODULE_PARM_DESC(phyaddr, "Physical device address");
  96
  97#define DMA_TX_SIZE 256
  98static int dma_txsize = DMA_TX_SIZE;
  99module_param(dma_txsize, int, S_IRUGO | S_IWUSR);
 100MODULE_PARM_DESC(dma_txsize, "Number of descriptors in the TX list");
 101
 102#define DMA_RX_SIZE 256
 103static int dma_rxsize = DMA_RX_SIZE;
 104module_param(dma_rxsize, int, S_IRUGO | S_IWUSR);
 105MODULE_PARM_DESC(dma_rxsize, "Number of descriptors in the RX list");
 106
 107static int flow_ctrl = FLOW_OFF;
 108module_param(flow_ctrl, int, S_IRUGO | S_IWUSR);
 109MODULE_PARM_DESC(flow_ctrl, "Flow control ability [on/off]");
 110
 111static int pause = PAUSE_TIME;
 112module_param(pause, int, S_IRUGO | S_IWUSR);
 113MODULE_PARM_DESC(pause, "Flow Control Pause Time");
 114
 115#define TC_DEFAULT 64
 116static int tc = TC_DEFAULT;
 117module_param(tc, int, S_IRUGO | S_IWUSR);
 118MODULE_PARM_DESC(tc, "DMA threshold control value");
 119
 120#define DMA_BUFFER_SIZE BUF_SIZE_2KiB
 121static int buf_sz = DMA_BUFFER_SIZE;
 122module_param(buf_sz, int, S_IRUGO | S_IWUSR);
 123MODULE_PARM_DESC(buf_sz, "DMA buffer size");
 124
 125static const u32 default_msg_level = (NETIF_MSG_DRV | NETIF_MSG_PROBE |
 126                                      NETIF_MSG_LINK | NETIF_MSG_IFUP |
 127                                      NETIF_MSG_IFDOWN | NETIF_MSG_TIMER);
 128
 129#define STMMAC_DEFAULT_LPI_TIMER        1000
 130static int eee_timer = STMMAC_DEFAULT_LPI_TIMER;
 131module_param(eee_timer, int, S_IRUGO | S_IWUSR);
 132MODULE_PARM_DESC(eee_timer, "LPI tx expiration time in msec");
 133#define STMMAC_LPI_T(x) (jiffies + msecs_to_jiffies(x))
 134
 135/* By default the driver will use the ring mode to manage tx and rx descriptors
 136 * but passing this value so user can force to use the chain instead of the ring
 137 */
 138static unsigned int chain_mode;
 139module_param(chain_mode, int, S_IRUGO);
 140MODULE_PARM_DESC(chain_mode, "To use chain instead of ring mode");
 141
 142static irqreturn_t stmmac_interrupt(int irq, void *dev_id);
 143
 144#ifdef CONFIG_STMMAC_DEBUG_FS
 145static int stmmac_init_fs(struct net_device *dev);
 146static void stmmac_exit_fs(void);
 147#endif
 148
 149#define STMMAC_COAL_TIMER(x) (jiffies + usecs_to_jiffies(x))
 150
 151/**
 152 * stmmac_verify_args - verify the driver parameters.
 153 * Description: it verifies if some wrong parameter is passed to the driver.
 154 * Note that wrong parameters are replaced with the default values.
 155 */
 156static void stmmac_verify_args(void)
 157{
 158        if (unlikely(watchdog < 0))
 159                watchdog = TX_TIMEO;
 160        if (unlikely(dma_rxsize < 0))
 161                dma_rxsize = DMA_RX_SIZE;
 162        if (unlikely(dma_txsize < 0))
 163                dma_txsize = DMA_TX_SIZE;
 164        if (unlikely((buf_sz < DMA_BUFFER_SIZE) || (buf_sz > BUF_SIZE_16KiB)))
 165                buf_sz = DMA_BUFFER_SIZE;
 166        if (unlikely(flow_ctrl > 1))
 167                flow_ctrl = FLOW_AUTO;
 168        else if (likely(flow_ctrl < 0))
 169                flow_ctrl = FLOW_OFF;
 170        if (unlikely((pause < 0) || (pause > 0xffff)))
 171                pause = PAUSE_TIME;
 172        if (eee_timer < 0)
 173                eee_timer = STMMAC_DEFAULT_LPI_TIMER;
 174}
 175
 176/**
 177 * stmmac_clk_csr_set - dynamically set the MDC clock
 178 * @priv: driver private structure
 179 * Description: this is to dynamically set the MDC clock according to the csr
 180 * clock input.
 181 * Note:
 182 *      If a specific clk_csr value is passed from the platform
 183 *      this means that the CSR Clock Range selection cannot be
 184 *      changed at run-time and it is fixed (as reported in the driver
 185 *      documentation). Viceversa the driver will try to set the MDC
 186 *      clock dynamically according to the actual clock input.
 187 */
 188static void stmmac_clk_csr_set(struct stmmac_priv *priv)
 189{
 190        u32 clk_rate;
 191
 192        clk_rate = clk_get_rate(priv->stmmac_clk);
 193
 194        /* Platform provided default clk_csr would be assumed valid
 195         * for all other cases except for the below mentioned ones.
 196         * For values higher than the IEEE 802.3 specified frequency
 197         * we can not estimate the proper divider as it is not known
 198         * the frequency of clk_csr_i. So we do not change the default
 199         * divider.
 200         */
 201        if (!(priv->clk_csr & MAC_CSR_H_FRQ_MASK)) {
 202                if (clk_rate < CSR_F_35M)
 203                        priv->clk_csr = STMMAC_CSR_20_35M;
 204                else if ((clk_rate >= CSR_F_35M) && (clk_rate < CSR_F_60M))
 205                        priv->clk_csr = STMMAC_CSR_35_60M;
 206                else if ((clk_rate >= CSR_F_60M) && (clk_rate < CSR_F_100M))
 207                        priv->clk_csr = STMMAC_CSR_60_100M;
 208                else if ((clk_rate >= CSR_F_100M) && (clk_rate < CSR_F_150M))
 209                        priv->clk_csr = STMMAC_CSR_100_150M;
 210                else if ((clk_rate >= CSR_F_150M) && (clk_rate < CSR_F_250M))
 211                        priv->clk_csr = STMMAC_CSR_150_250M;
 212                else if ((clk_rate >= CSR_F_250M) && (clk_rate < CSR_F_300M))
 213                        priv->clk_csr = STMMAC_CSR_250_300M;
 214        }
 215}
 216
 217#if defined(STMMAC_XMIT_DEBUG) || defined(STMMAC_RX_DEBUG)
 218static void print_pkt(unsigned char *buf, int len)
 219{
 220        int j;
 221        pr_info("len = %d byte, buf addr: 0x%p", len, buf);
 222        for (j = 0; j < len; j++) {
 223                if ((j % 16) == 0)
 224                        pr_info("\n %03x:", j);
 225                pr_info(" %02x", buf[j]);
 226        }
 227        pr_info("\n");
 228}
 229#endif
 230
 231/* minimum number of free TX descriptors required to wake up TX process */
 232#define STMMAC_TX_THRESH(x)     (x->dma_tx_size/4)
 233
 234static inline u32 stmmac_tx_avail(struct stmmac_priv *priv)
 235{
 236        return priv->dirty_tx + priv->dma_tx_size - priv->cur_tx - 1;
 237}
 238
 239/**
 240 * stmmac_hw_fix_mac_speed: callback for speed selection
 241 * @priv: driver private structure
 242 * Description: on some platforms (e.g. ST), some HW system configuraton
 243 * registers have to be set according to the link speed negotiated.
 244 */
 245static inline void stmmac_hw_fix_mac_speed(struct stmmac_priv *priv)
 246{
 247        struct phy_device *phydev = priv->phydev;
 248
 249        if (likely(priv->plat->fix_mac_speed))
 250                priv->plat->fix_mac_speed(priv->plat->bsp_priv, phydev->speed);
 251}
 252
 253/**
 254 * stmmac_enable_eee_mode: Check and enter in LPI mode
 255 * @priv: driver private structure
 256 * Description: this function is to verify and enter in LPI mode for EEE.
 257 */
 258static void stmmac_enable_eee_mode(struct stmmac_priv *priv)
 259{
 260        /* Check and enter in LPI mode */
 261        if ((priv->dirty_tx == priv->cur_tx) &&
 262            (priv->tx_path_in_lpi_mode == false))
 263                priv->hw->mac->set_eee_mode(priv->ioaddr);
 264}
 265
 266/**
 267 * stmmac_disable_eee_mode: disable/exit from EEE
 268 * @priv: driver private structure
 269 * Description: this function is to exit and disable EEE in case of
 270 * LPI state is true. This is called by the xmit.
 271 */
 272void stmmac_disable_eee_mode(struct stmmac_priv *priv)
 273{
 274        priv->hw->mac->reset_eee_mode(priv->ioaddr);
 275        del_timer_sync(&priv->eee_ctrl_timer);
 276        priv->tx_path_in_lpi_mode = false;
 277}
 278
 279/**
 280 * stmmac_eee_ctrl_timer: EEE TX SW timer.
 281 * @arg : data hook
 282 * Description:
 283 *  if there is no data transfer and if we are not in LPI state,
 284 *  then MAC Transmitter can be moved to LPI state.
 285 */
 286static void stmmac_eee_ctrl_timer(unsigned long arg)
 287{
 288        struct stmmac_priv *priv = (struct stmmac_priv *)arg;
 289
 290        stmmac_enable_eee_mode(priv);
 291        mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
 292}
 293
 294/**
 295 * stmmac_eee_init: init EEE
 296 * @priv: driver private structure
 297 * Description:
 298 *  If the EEE support has been enabled while configuring the driver,
 299 *  if the GMAC actually supports the EEE (from the HW cap reg) and the
 300 *  phy can also manage EEE, so enable the LPI state and start the timer
 301 *  to verify if the tx path can enter in LPI state.
 302 */
 303bool stmmac_eee_init(struct stmmac_priv *priv)
 304{
 305        bool ret = false;
 306
 307        /* Using PCS we cannot dial with the phy registers at this stage
 308         * so we do not support extra feature like EEE.
 309         */
 310        if ((priv->pcs == STMMAC_PCS_RGMII) || (priv->pcs == STMMAC_PCS_TBI) ||
 311            (priv->pcs == STMMAC_PCS_RTBI))
 312                goto out;
 313
 314        /* MAC core supports the EEE feature. */
 315        if (priv->dma_cap.eee) {
 316                /* Check if the PHY supports EEE */
 317                if (phy_init_eee(priv->phydev, 1))
 318                        goto out;
 319
 320                if (!priv->eee_active) {
 321                        priv->eee_active = 1;
 322                        init_timer(&priv->eee_ctrl_timer);
 323                        priv->eee_ctrl_timer.function = stmmac_eee_ctrl_timer;
 324                        priv->eee_ctrl_timer.data = (unsigned long)priv;
 325                        priv->eee_ctrl_timer.expires = STMMAC_LPI_T(eee_timer);
 326                        add_timer(&priv->eee_ctrl_timer);
 327
 328                        priv->hw->mac->set_eee_timer(priv->ioaddr,
 329                                                     STMMAC_DEFAULT_LIT_LS,
 330                                                     priv->tx_lpi_timer);
 331                } else
 332                        /* Set HW EEE according to the speed */
 333                        priv->hw->mac->set_eee_pls(priv->ioaddr,
 334                                                   priv->phydev->link);
 335
 336                pr_info("stmmac: Energy-Efficient Ethernet initialized\n");
 337
 338                ret = true;
 339        }
 340out:
 341        return ret;
 342}
 343
 344/* stmmac_get_tx_hwtstamp: get HW TX timestamps
 345 * @priv: driver private structure
 346 * @entry : descriptor index to be used.
 347 * @skb : the socket buffer
 348 * Description :
 349 * This function will read timestamp from the descriptor & pass it to stack.
 350 * and also perform some sanity checks.
 351 */
 352static void stmmac_get_tx_hwtstamp(struct stmmac_priv *priv,
 353                                   unsigned int entry, struct sk_buff *skb)
 354{
 355        struct skb_shared_hwtstamps shhwtstamp;
 356        u64 ns;
 357        void *desc = NULL;
 358
 359        if (!priv->hwts_tx_en)
 360                return;
 361
 362        /* exit if skb doesn't support hw tstamp */
 363        if (likely(!(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)))
 364                return;
 365
 366        if (priv->adv_ts)
 367                desc = (priv->dma_etx + entry);
 368        else
 369                desc = (priv->dma_tx + entry);
 370
 371        /* check tx tstamp status */
 372        if (!priv->hw->desc->get_tx_timestamp_status((struct dma_desc *)desc))
 373                return;
 374
 375        /* get the valid tstamp */
 376        ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
 377
 378        memset(&shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
 379        shhwtstamp.hwtstamp = ns_to_ktime(ns);
 380        /* pass tstamp to stack */
 381        skb_tstamp_tx(skb, &shhwtstamp);
 382
 383        return;
 384}
 385
 386/* stmmac_get_rx_hwtstamp: get HW RX timestamps
 387 * @priv: driver private structure
 388 * @entry : descriptor index to be used.
 389 * @skb : the socket buffer
 390 * Description :
 391 * This function will read received packet's timestamp from the descriptor
 392 * and pass it to stack. It also perform some sanity checks.
 393 */
 394static void stmmac_get_rx_hwtstamp(struct stmmac_priv *priv,
 395                                   unsigned int entry, struct sk_buff *skb)
 396{
 397        struct skb_shared_hwtstamps *shhwtstamp = NULL;
 398        u64 ns;
 399        void *desc = NULL;
 400
 401        if (!priv->hwts_rx_en)
 402                return;
 403
 404        if (priv->adv_ts)
 405                desc = (priv->dma_erx + entry);
 406        else
 407                desc = (priv->dma_rx + entry);
 408
 409        /* exit if rx tstamp is not valid */
 410        if (!priv->hw->desc->get_rx_timestamp_status(desc, priv->adv_ts))
 411                return;
 412
 413        /* get valid tstamp */
 414        ns = priv->hw->desc->get_timestamp(desc, priv->adv_ts);
 415        shhwtstamp = skb_hwtstamps(skb);
 416        memset(shhwtstamp, 0, sizeof(struct skb_shared_hwtstamps));
 417        shhwtstamp->hwtstamp = ns_to_ktime(ns);
 418}
 419
 420/**
 421 *  stmmac_hwtstamp_ioctl - control hardware timestamping.
 422 *  @dev: device pointer.
 423 *  @ifr: An IOCTL specefic structure, that can contain a pointer to
 424 *  a proprietary structure used to pass information to the driver.
 425 *  Description:
 426 *  This function configures the MAC to enable/disable both outgoing(TX)
 427 *  and incoming(RX) packets time stamping based on user input.
 428 *  Return Value:
 429 *  0 on success and an appropriate -ve integer on failure.
 430 */
 431static int stmmac_hwtstamp_ioctl(struct net_device *dev, struct ifreq *ifr)
 432{
 433        struct stmmac_priv *priv = netdev_priv(dev);
 434        struct hwtstamp_config config;
 435        struct timespec now;
 436        u64 temp = 0;
 437        u32 ptp_v2 = 0;
 438        u32 tstamp_all = 0;
 439        u32 ptp_over_ipv4_udp = 0;
 440        u32 ptp_over_ipv6_udp = 0;
 441        u32 ptp_over_ethernet = 0;
 442        u32 snap_type_sel = 0;
 443        u32 ts_master_en = 0;
 444        u32 ts_event_en = 0;
 445        u32 value = 0;
 446
 447        if (!(priv->dma_cap.time_stamp || priv->adv_ts)) {
 448                netdev_alert(priv->dev, "No support for HW time stamping\n");
 449                priv->hwts_tx_en = 0;
 450                priv->hwts_rx_en = 0;
 451
 452                return -EOPNOTSUPP;
 453        }
 454
 455        if (copy_from_user(&config, ifr->ifr_data,
 456                           sizeof(struct hwtstamp_config)))
 457                return -EFAULT;
 458
 459        pr_debug("%s config flags:0x%x, tx_type:0x%x, rx_filter:0x%x\n",
 460                 __func__, config.flags, config.tx_type, config.rx_filter);
 461
 462        /* reserved for future extensions */
 463        if (config.flags)
 464                return -EINVAL;
 465
 466        switch (config.tx_type) {
 467        case HWTSTAMP_TX_OFF:
 468                priv->hwts_tx_en = 0;
 469                break;
 470        case HWTSTAMP_TX_ON:
 471                priv->hwts_tx_en = 1;
 472                break;
 473        default:
 474                return -ERANGE;
 475        }
 476
 477        if (priv->adv_ts) {
 478                switch (config.rx_filter) {
 479                case HWTSTAMP_FILTER_NONE:
 480                        /* time stamp no incoming packet at all */
 481                        config.rx_filter = HWTSTAMP_FILTER_NONE;
 482                        break;
 483
 484                case HWTSTAMP_FILTER_PTP_V1_L4_EVENT:
 485                        /* PTP v1, UDP, any kind of event packet */
 486                        config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
 487                        /* take time stamp for all event messages */
 488                        snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
 489
 490                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 491                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 492                        break;
 493
 494                case HWTSTAMP_FILTER_PTP_V1_L4_SYNC:
 495                        /* PTP v1, UDP, Sync packet */
 496                        config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_SYNC;
 497                        /* take time stamp for SYNC messages only */
 498                        ts_event_en = PTP_TCR_TSEVNTENA;
 499
 500                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 501                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 502                        break;
 503
 504                case HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ:
 505                        /* PTP v1, UDP, Delay_req packet */
 506                        config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_DELAY_REQ;
 507                        /* take time stamp for Delay_Req messages only */
 508                        ts_master_en = PTP_TCR_TSMSTRENA;
 509                        ts_event_en = PTP_TCR_TSEVNTENA;
 510
 511                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 512                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 513                        break;
 514
 515                case HWTSTAMP_FILTER_PTP_V2_L4_EVENT:
 516                        /* PTP v2, UDP, any kind of event packet */
 517                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_EVENT;
 518                        ptp_v2 = PTP_TCR_TSVER2ENA;
 519                        /* take time stamp for all event messages */
 520                        snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
 521
 522                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 523                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 524                        break;
 525
 526                case HWTSTAMP_FILTER_PTP_V2_L4_SYNC:
 527                        /* PTP v2, UDP, Sync packet */
 528                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_SYNC;
 529                        ptp_v2 = PTP_TCR_TSVER2ENA;
 530                        /* take time stamp for SYNC messages only */
 531                        ts_event_en = PTP_TCR_TSEVNTENA;
 532
 533                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 534                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 535                        break;
 536
 537                case HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ:
 538                        /* PTP v2, UDP, Delay_req packet */
 539                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_L4_DELAY_REQ;
 540                        ptp_v2 = PTP_TCR_TSVER2ENA;
 541                        /* take time stamp for Delay_Req messages only */
 542                        ts_master_en = PTP_TCR_TSMSTRENA;
 543                        ts_event_en = PTP_TCR_TSEVNTENA;
 544
 545                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 546                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 547                        break;
 548
 549                case HWTSTAMP_FILTER_PTP_V2_EVENT:
 550                        /* PTP v2/802.AS1 any layer, any kind of event packet */
 551                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_EVENT;
 552                        ptp_v2 = PTP_TCR_TSVER2ENA;
 553                        /* take time stamp for all event messages */
 554                        snap_type_sel = PTP_TCR_SNAPTYPSEL_1;
 555
 556                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 557                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 558                        ptp_over_ethernet = PTP_TCR_TSIPENA;
 559                        break;
 560
 561                case HWTSTAMP_FILTER_PTP_V2_SYNC:
 562                        /* PTP v2/802.AS1, any layer, Sync packet */
 563                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_SYNC;
 564                        ptp_v2 = PTP_TCR_TSVER2ENA;
 565                        /* take time stamp for SYNC messages only */
 566                        ts_event_en = PTP_TCR_TSEVNTENA;
 567
 568                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 569                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 570                        ptp_over_ethernet = PTP_TCR_TSIPENA;
 571                        break;
 572
 573                case HWTSTAMP_FILTER_PTP_V2_DELAY_REQ:
 574                        /* PTP v2/802.AS1, any layer, Delay_req packet */
 575                        config.rx_filter = HWTSTAMP_FILTER_PTP_V2_DELAY_REQ;
 576                        ptp_v2 = PTP_TCR_TSVER2ENA;
 577                        /* take time stamp for Delay_Req messages only */
 578                        ts_master_en = PTP_TCR_TSMSTRENA;
 579                        ts_event_en = PTP_TCR_TSEVNTENA;
 580
 581                        ptp_over_ipv4_udp = PTP_TCR_TSIPV4ENA;
 582                        ptp_over_ipv6_udp = PTP_TCR_TSIPV6ENA;
 583                        ptp_over_ethernet = PTP_TCR_TSIPENA;
 584                        break;
 585
 586                case HWTSTAMP_FILTER_ALL:
 587                        /* time stamp any incoming packet */
 588                        config.rx_filter = HWTSTAMP_FILTER_ALL;
 589                        tstamp_all = PTP_TCR_TSENALL;
 590                        break;
 591
 592                default:
 593                        return -ERANGE;
 594                }
 595        } else {
 596                switch (config.rx_filter) {
 597                case HWTSTAMP_FILTER_NONE:
 598                        config.rx_filter = HWTSTAMP_FILTER_NONE;
 599                        break;
 600                default:
 601                        /* PTP v1, UDP, any kind of event packet */
 602                        config.rx_filter = HWTSTAMP_FILTER_PTP_V1_L4_EVENT;
 603                        break;
 604                }
 605        }
 606        priv->hwts_rx_en = ((config.rx_filter == HWTSTAMP_FILTER_NONE) ? 0 : 1);
 607
 608        if (!priv->hwts_tx_en && !priv->hwts_rx_en)
 609                priv->hw->ptp->config_hw_tstamping(priv->ioaddr, 0);
 610        else {
 611                value = (PTP_TCR_TSENA | PTP_TCR_TSCFUPDT | PTP_TCR_TSCTRLSSR |
 612                         tstamp_all | ptp_v2 | ptp_over_ethernet |
 613                         ptp_over_ipv6_udp | ptp_over_ipv4_udp | ts_event_en |
 614                         ts_master_en | snap_type_sel);
 615
 616                priv->hw->ptp->config_hw_tstamping(priv->ioaddr, value);
 617
 618                /* program Sub Second Increment reg */
 619                priv->hw->ptp->config_sub_second_increment(priv->ioaddr);
 620
 621                /* calculate default added value:
 622                 * formula is :
 623                 * addend = (2^32)/freq_div_ratio;
 624                 * where, freq_div_ratio = STMMAC_SYSCLOCK/50MHz
 625                 * hence, addend = ((2^32) * 50MHz)/STMMAC_SYSCLOCK;
 626                 * NOTE: STMMAC_SYSCLOCK should be >= 50MHz to
 627                 *       achive 20ns accuracy.
 628                 *
 629                 * 2^x * y == (y << x), hence
 630                 * 2^32 * 50000000 ==> (50000000 << 32)
 631                 */
 632                temp = (u64) (50000000ULL << 32);
 633                priv->default_addend = div_u64(temp, STMMAC_SYSCLOCK);
 634                priv->hw->ptp->config_addend(priv->ioaddr,
 635                                             priv->default_addend);
 636
 637                /* initialize system time */
 638                getnstimeofday(&now);
 639                priv->hw->ptp->init_systime(priv->ioaddr, now.tv_sec,
 640                                            now.tv_nsec);
 641        }
 642
 643        return copy_to_user(ifr->ifr_data, &config,
 644                            sizeof(struct hwtstamp_config)) ? -EFAULT : 0;
 645}
 646
 647/**
 648 * stmmac_init_ptp: init PTP
 649 * @priv: driver private structure
 650 * Description: this is to verify if the HW supports the PTPv1 or v2.
 651 * This is done by looking at the HW cap. register.
 652 * Also it registers the ptp driver.
 653 */
 654static int stmmac_init_ptp(struct stmmac_priv *priv)
 655{
 656        if (!(priv->dma_cap.time_stamp || priv->dma_cap.atime_stamp))
 657                return -EOPNOTSUPP;
 658
 659        if (netif_msg_hw(priv)) {
 660                if (priv->dma_cap.time_stamp) {
 661                        pr_debug("IEEE 1588-2002 Time Stamp supported\n");
 662                        priv->adv_ts = 0;
 663                }
 664                if (priv->dma_cap.atime_stamp && priv->extend_desc) {
 665                        pr_debug
 666                            ("IEEE 1588-2008 Advanced Time Stamp supported\n");
 667                        priv->adv_ts = 1;
 668                }
 669        }
 670
 671        priv->hw->ptp = &stmmac_ptp;
 672        priv->hwts_tx_en = 0;
 673        priv->hwts_rx_en = 0;
 674
 675        return stmmac_ptp_register(priv);
 676}
 677
 678static void stmmac_release_ptp(struct stmmac_priv *priv)
 679{
 680        stmmac_ptp_unregister(priv);
 681}
 682
 683/**
 684 * stmmac_adjust_link
 685 * @dev: net device structure
 686 * Description: it adjusts the link parameters.
 687 */
 688static void stmmac_adjust_link(struct net_device *dev)
 689{
 690        struct stmmac_priv *priv = netdev_priv(dev);
 691        struct phy_device *phydev = priv->phydev;
 692        unsigned long flags;
 693        int new_state = 0;
 694        unsigned int fc = priv->flow_ctrl, pause_time = priv->pause;
 695
 696        if (phydev == NULL)
 697                return;
 698
 699        DBG(probe, DEBUG, "stmmac_adjust_link: called.  address %d link %d\n",
 700            phydev->addr, phydev->link);
 701
 702        spin_lock_irqsave(&priv->lock, flags);
 703
 704        if (phydev->link) {
 705                u32 ctrl = readl(priv->ioaddr + MAC_CTRL_REG);
 706
 707                /* Now we make sure that we can be in full duplex mode.
 708                 * If not, we operate in half-duplex mode. */
 709                if (phydev->duplex != priv->oldduplex) {
 710                        new_state = 1;
 711                        if (!(phydev->duplex))
 712                                ctrl &= ~priv->hw->link.duplex;
 713                        else
 714                                ctrl |= priv->hw->link.duplex;
 715                        priv->oldduplex = phydev->duplex;
 716                }
 717                /* Flow Control operation */
 718                if (phydev->pause)
 719                        priv->hw->mac->flow_ctrl(priv->ioaddr, phydev->duplex,
 720                                                 fc, pause_time);
 721
 722                if (phydev->speed != priv->speed) {
 723                        new_state = 1;
 724                        switch (phydev->speed) {
 725                        case 1000:
 726                                if (likely(priv->plat->has_gmac))
 727                                        ctrl &= ~priv->hw->link.port;
 728                                stmmac_hw_fix_mac_speed(priv);
 729                                break;
 730                        case 100:
 731                        case 10:
 732                                if (priv->plat->has_gmac) {
 733                                        ctrl |= priv->hw->link.port;
 734                                        if (phydev->speed == SPEED_100) {
 735                                                ctrl |= priv->hw->link.speed;
 736                                        } else {
 737                                                ctrl &= ~(priv->hw->link.speed);
 738                                        }
 739                                } else {
 740                                        ctrl &= ~priv->hw->link.port;
 741                                }
 742                                stmmac_hw_fix_mac_speed(priv);
 743                                break;
 744                        default:
 745                                if (netif_msg_link(priv))
 746                                        pr_warn("%s: Speed (%d) not 10/100\n",
 747                                                dev->name, phydev->speed);
 748                                break;
 749                        }
 750
 751                        priv->speed = phydev->speed;
 752                }
 753
 754                writel(ctrl, priv->ioaddr + MAC_CTRL_REG);
 755
 756                if (!priv->oldlink) {
 757                        new_state = 1;
 758                        priv->oldlink = 1;
 759                }
 760        } else if (priv->oldlink) {
 761                new_state = 1;
 762                priv->oldlink = 0;
 763                priv->speed = 0;
 764                priv->oldduplex = -1;
 765        }
 766
 767        if (new_state && netif_msg_link(priv))
 768                phy_print_status(phydev);
 769
 770        /* At this stage, it could be needed to setup the EEE or adjust some
 771         * MAC related HW registers.
 772         */
 773        priv->eee_enabled = stmmac_eee_init(priv);
 774
 775        spin_unlock_irqrestore(&priv->lock, flags);
 776
 777        DBG(probe, DEBUG, "stmmac_adjust_link: exiting\n");
 778}
 779
 780/**
 781 * stmmac_check_pcs_mode: verify if RGMII/SGMII is supported
 782 * @priv: driver private structure
 783 * Description: this is to verify if the HW supports the PCS.
 784 * Physical Coding Sublayer (PCS) interface that can be used when the MAC is
 785 * configured for the TBI, RTBI, or SGMII PHY interface.
 786 */
 787static void stmmac_check_pcs_mode(struct stmmac_priv *priv)
 788{
 789        int interface = priv->plat->interface;
 790
 791        if (priv->dma_cap.pcs) {
 792                if ((interface & PHY_INTERFACE_MODE_RGMII) ||
 793                    (interface & PHY_INTERFACE_MODE_RGMII_ID) ||
 794                    (interface & PHY_INTERFACE_MODE_RGMII_RXID) ||
 795                    (interface & PHY_INTERFACE_MODE_RGMII_TXID)) {
 796                        pr_debug("STMMAC: PCS RGMII support enable\n");
 797                        priv->pcs = STMMAC_PCS_RGMII;
 798                } else if (interface & PHY_INTERFACE_MODE_SGMII) {
 799                        pr_debug("STMMAC: PCS SGMII support enable\n");
 800                        priv->pcs = STMMAC_PCS_SGMII;
 801                }
 802        }
 803}
 804
 805/**
 806 * stmmac_init_phy - PHY initialization
 807 * @dev: net device structure
 808 * Description: it initializes the driver's PHY state, and attaches the PHY
 809 * to the mac driver.
 810 *  Return value:
 811 *  0 on success
 812 */
 813static int stmmac_init_phy(struct net_device *dev)
 814{
 815        struct stmmac_priv *priv = netdev_priv(dev);
 816        struct phy_device *phydev;
 817        char phy_id_fmt[MII_BUS_ID_SIZE + 3];
 818        char bus_id[MII_BUS_ID_SIZE];
 819        int interface = priv->plat->interface;
 820        priv->oldlink = 0;
 821        priv->speed = 0;
 822        priv->oldduplex = -1;
 823
 824        if (priv->plat->phy_bus_name)
 825                snprintf(bus_id, MII_BUS_ID_SIZE, "%s-%x",
 826                         priv->plat->phy_bus_name, priv->plat->bus_id);
 827        else
 828                snprintf(bus_id, MII_BUS_ID_SIZE, "stmmac-%x",
 829                         priv->plat->bus_id);
 830
 831        snprintf(phy_id_fmt, MII_BUS_ID_SIZE + 3, PHY_ID_FMT, bus_id,
 832                 priv->plat->phy_addr);
 833        pr_debug("stmmac_init_phy:  trying to attach to %s\n", phy_id_fmt);
 834
 835        phydev = phy_connect(dev, phy_id_fmt, &stmmac_adjust_link, interface);
 836
 837        if (IS_ERR(phydev)) {
 838                pr_err("%s: Could not attach to PHY\n", dev->name);
 839                return PTR_ERR(phydev);
 840        }
 841
 842        /* Stop Advertising 1000BASE Capability if interface is not GMII */
 843        if ((interface == PHY_INTERFACE_MODE_MII) ||
 844            (interface == PHY_INTERFACE_MODE_RMII))
 845                phydev->advertising &= ~(SUPPORTED_1000baseT_Half |
 846                                         SUPPORTED_1000baseT_Full);
 847
 848        /*
 849         * Broken HW is sometimes missing the pull-up resistor on the
 850         * MDIO line, which results in reads to non-existent devices returning
 851         * 0 rather than 0xffff. Catch this here and treat 0 as a non-existent
 852         * device as well.
 853         * Note: phydev->phy_id is the result of reading the UID PHY registers.
 854         */
 855        if (phydev->phy_id == 0) {
 856                phy_disconnect(phydev);
 857                return -ENODEV;
 858        }
 859        pr_debug("stmmac_init_phy:  %s: attached to PHY (UID 0x%x)"
 860                 " Link = %d\n", dev->name, phydev->phy_id, phydev->link);
 861
 862        priv->phydev = phydev;
 863
 864        return 0;
 865}
 866
 867/**
 868 * stmmac_display_ring: display ring
 869 * @head: pointer to the head of the ring passed.
 870 * @size: size of the ring.
 871 * @extend_desc: to verify if extended descriptors are used.
 872 * Description: display the control/status and buffer descriptors.
 873 */
 874static void stmmac_display_ring(void *head, int size, int extend_desc)
 875{
 876        int i;
 877        struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
 878        struct dma_desc *p = (struct dma_desc *)head;
 879
 880        for (i = 0; i < size; i++) {
 881                u64 x;
 882                if (extend_desc) {
 883                        x = *(u64 *) ep;
 884                        pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
 885                                i, (unsigned int)virt_to_phys(ep),
 886                                (unsigned int)x, (unsigned int)(x >> 32),
 887                                ep->basic.des2, ep->basic.des3);
 888                        ep++;
 889                } else {
 890                        x = *(u64 *) p;
 891                        pr_info("%d [0x%x]: 0x%x 0x%x 0x%x 0x%x",
 892                                i, (unsigned int)virt_to_phys(p),
 893                                (unsigned int)x, (unsigned int)(x >> 32),
 894                                p->des2, p->des3);
 895                        p++;
 896                }
 897                pr_info("\n");
 898        }
 899}
 900
 901static void stmmac_display_rings(struct stmmac_priv *priv)
 902{
 903        unsigned int txsize = priv->dma_tx_size;
 904        unsigned int rxsize = priv->dma_rx_size;
 905
 906        if (priv->extend_desc) {
 907                pr_info("Extended RX descriptor ring:\n");
 908                stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
 909                pr_info("Extended TX descriptor ring:\n");
 910                stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
 911        } else {
 912                pr_info("RX descriptor ring:\n");
 913                stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
 914                pr_info("TX descriptor ring:\n");
 915                stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
 916        }
 917}
 918
 919static int stmmac_set_bfsize(int mtu, int bufsize)
 920{
 921        int ret = bufsize;
 922
 923        if (mtu >= BUF_SIZE_4KiB)
 924                ret = BUF_SIZE_8KiB;
 925        else if (mtu >= BUF_SIZE_2KiB)
 926                ret = BUF_SIZE_4KiB;
 927        else if (mtu >= DMA_BUFFER_SIZE)
 928                ret = BUF_SIZE_2KiB;
 929        else
 930                ret = DMA_BUFFER_SIZE;
 931
 932        return ret;
 933}
 934
 935/**
 936 * stmmac_clear_descriptors: clear descriptors
 937 * @priv: driver private structure
 938 * Description: this function is called to clear the tx and rx descriptors
 939 * in case of both basic and extended descriptors are used.
 940 */
 941static void stmmac_clear_descriptors(struct stmmac_priv *priv)
 942{
 943        int i;
 944        unsigned int txsize = priv->dma_tx_size;
 945        unsigned int rxsize = priv->dma_rx_size;
 946
 947        /* Clear the Rx/Tx descriptors */
 948        for (i = 0; i < rxsize; i++)
 949                if (priv->extend_desc)
 950                        priv->hw->desc->init_rx_desc(&priv->dma_erx[i].basic,
 951                                                     priv->use_riwt, priv->mode,
 952                                                     (i == rxsize - 1));
 953                else
 954                        priv->hw->desc->init_rx_desc(&priv->dma_rx[i],
 955                                                     priv->use_riwt, priv->mode,
 956                                                     (i == rxsize - 1));
 957        for (i = 0; i < txsize; i++)
 958                if (priv->extend_desc)
 959                        priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
 960                                                     priv->mode,
 961                                                     (i == txsize - 1));
 962                else
 963                        priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
 964                                                     priv->mode,
 965                                                     (i == txsize - 1));
 966}
 967
 968static int stmmac_init_rx_buffers(struct stmmac_priv *priv, struct dma_desc *p,
 969                                  int i)
 970{
 971        struct sk_buff *skb;
 972
 973        skb = __netdev_alloc_skb(priv->dev, priv->dma_buf_sz + NET_IP_ALIGN,
 974                                 GFP_KERNEL);
 975        if (unlikely(skb == NULL)) {
 976                pr_err("%s: Rx init fails; skb is NULL\n", __func__);
 977                return 1;
 978        }
 979        skb_reserve(skb, NET_IP_ALIGN);
 980        priv->rx_skbuff[i] = skb;
 981        priv->rx_skbuff_dma[i] = dma_map_single(priv->device, skb->data,
 982                                                priv->dma_buf_sz,
 983                                                DMA_FROM_DEVICE);
 984
 985        p->des2 = priv->rx_skbuff_dma[i];
 986
 987        if ((priv->mode == STMMAC_RING_MODE) &&
 988            (priv->dma_buf_sz == BUF_SIZE_16KiB))
 989                priv->hw->ring->init_desc3(p);
 990
 991        return 0;
 992}
 993
 994/**
 995 * init_dma_desc_rings - init the RX/TX descriptor rings
 996 * @dev: net device structure
 997 * Description:  this function initializes the DMA RX/TX descriptors
 998 * and allocates the socket buffers. It suppors the chained and ring
 999 * modes.
1000 */
1001static void init_dma_desc_rings(struct net_device *dev)
1002{
1003        int i;
1004        struct stmmac_priv *priv = netdev_priv(dev);
1005        unsigned int txsize = priv->dma_tx_size;
1006        unsigned int rxsize = priv->dma_rx_size;
1007        unsigned int bfsize = 0;
1008
1009        /* Set the max buffer size according to the DESC mode
1010         * and the MTU. Note that RING mode allows 16KiB bsize.
1011         */
1012        if (priv->mode == STMMAC_RING_MODE)
1013                bfsize = priv->hw->ring->set_16kib_bfsize(dev->mtu);
1014
1015        if (bfsize < BUF_SIZE_16KiB)
1016                bfsize = stmmac_set_bfsize(dev->mtu, priv->dma_buf_sz);
1017
1018        DBG(probe, INFO, "stmmac: txsize %d, rxsize %d, bfsize %d\n",
1019            txsize, rxsize, bfsize);
1020
1021        if (priv->extend_desc) {
1022                priv->dma_erx = dma_alloc_coherent(priv->device, rxsize *
1023                                                   sizeof(struct
1024                                                          dma_extended_desc),
1025                                                   &priv->dma_rx_phy,
1026                                                   GFP_KERNEL);
1027                priv->dma_etx = dma_alloc_coherent(priv->device, txsize *
1028                                                   sizeof(struct
1029                                                          dma_extended_desc),
1030                                                   &priv->dma_tx_phy,
1031                                                   GFP_KERNEL);
1032                if ((!priv->dma_erx) || (!priv->dma_etx))
1033                        return;
1034        } else {
1035                priv->dma_rx = dma_alloc_coherent(priv->device, rxsize *
1036                                                  sizeof(struct dma_desc),
1037                                                  &priv->dma_rx_phy,
1038                                                  GFP_KERNEL);
1039                priv->dma_tx = dma_alloc_coherent(priv->device, txsize *
1040                                                  sizeof(struct dma_desc),
1041                                                  &priv->dma_tx_phy,
1042                                                  GFP_KERNEL);
1043                if ((!priv->dma_rx) || (!priv->dma_tx))
1044                        return;
1045        }
1046
1047        priv->rx_skbuff_dma = kmalloc_array(rxsize, sizeof(dma_addr_t),
1048                                            GFP_KERNEL);
1049        priv->rx_skbuff = kmalloc_array(rxsize, sizeof(struct sk_buff *),
1050                                        GFP_KERNEL);
1051        priv->tx_skbuff_dma = kmalloc_array(txsize, sizeof(dma_addr_t),
1052                                            GFP_KERNEL);
1053        priv->tx_skbuff = kmalloc_array(txsize, sizeof(struct sk_buff *),
1054                                        GFP_KERNEL);
1055        if (netif_msg_drv(priv))
1056                pr_debug("(%s) dma_rx_phy=0x%08x dma_tx_phy=0x%08x\n", __func__,
1057                         (u32) priv->dma_rx_phy, (u32) priv->dma_tx_phy);
1058
1059        /* RX INITIALIZATION */
1060        DBG(probe, INFO, "stmmac: SKB addresses:\nskb\t\tskb data\tdma data\n");
1061        for (i = 0; i < rxsize; i++) {
1062                struct dma_desc *p;
1063                if (priv->extend_desc)
1064                        p = &((priv->dma_erx + i)->basic);
1065                else
1066                        p = priv->dma_rx + i;
1067
1068                if (stmmac_init_rx_buffers(priv, p, i))
1069                        break;
1070
1071                DBG(probe, INFO, "[%p]\t[%p]\t[%x]\n", priv->rx_skbuff[i],
1072                    priv->rx_skbuff[i]->data, priv->rx_skbuff_dma[i]);
1073        }
1074        priv->cur_rx = 0;
1075        priv->dirty_rx = (unsigned int)(i - rxsize);
1076        priv->dma_buf_sz = bfsize;
1077        buf_sz = bfsize;
1078
1079        /* Setup the chained descriptor addresses */
1080        if (priv->mode == STMMAC_CHAIN_MODE) {
1081                if (priv->extend_desc) {
1082                        priv->hw->chain->init(priv->dma_erx, priv->dma_rx_phy,
1083                                              rxsize, 1);
1084                        priv->hw->chain->init(priv->dma_etx, priv->dma_tx_phy,
1085                                              txsize, 1);
1086                } else {
1087                        priv->hw->chain->init(priv->dma_rx, priv->dma_rx_phy,
1088                                              rxsize, 0);
1089                        priv->hw->chain->init(priv->dma_tx, priv->dma_tx_phy,
1090                                              txsize, 0);
1091                }
1092        }
1093
1094        /* TX INITIALIZATION */
1095        for (i = 0; i < txsize; i++) {
1096                struct dma_desc *p;
1097                if (priv->extend_desc)
1098                        p = &((priv->dma_etx + i)->basic);
1099                else
1100                        p = priv->dma_tx + i;
1101                p->des2 = 0;
1102                priv->tx_skbuff_dma[i] = 0;
1103                priv->tx_skbuff[i] = NULL;
1104        }
1105
1106        priv->dirty_tx = 0;
1107        priv->cur_tx = 0;
1108
1109        stmmac_clear_descriptors(priv);
1110
1111        if (netif_msg_hw(priv))
1112                stmmac_display_rings(priv);
1113}
1114
1115static void dma_free_rx_skbufs(struct stmmac_priv *priv)
1116{
1117        int i;
1118
1119        for (i = 0; i < priv->dma_rx_size; i++) {
1120                if (priv->rx_skbuff[i]) {
1121                        dma_unmap_single(priv->device, priv->rx_skbuff_dma[i],
1122                                         priv->dma_buf_sz, DMA_FROM_DEVICE);
1123                        dev_kfree_skb_any(priv->rx_skbuff[i]);
1124                }
1125                priv->rx_skbuff[i] = NULL;
1126        }
1127}
1128
1129static void dma_free_tx_skbufs(struct stmmac_priv *priv)
1130{
1131        int i;
1132
1133        for (i = 0; i < priv->dma_tx_size; i++) {
1134                if (priv->tx_skbuff[i] != NULL) {
1135                        struct dma_desc *p;
1136                        if (priv->extend_desc)
1137                                p = &((priv->dma_etx + i)->basic);
1138                        else
1139                                p = priv->dma_tx + i;
1140
1141                        if (priv->tx_skbuff_dma[i])
1142                                dma_unmap_single(priv->device,
1143                                                 priv->tx_skbuff_dma[i],
1144                                                 priv->hw->desc->get_tx_len(p),
1145                                                 DMA_TO_DEVICE);
1146                        dev_kfree_skb_any(priv->tx_skbuff[i]);
1147                        priv->tx_skbuff[i] = NULL;
1148                        priv->tx_skbuff_dma[i] = 0;
1149                }
1150        }
1151}
1152
1153static void free_dma_desc_resources(struct stmmac_priv *priv)
1154{
1155        /* Release the DMA TX/RX socket buffers */
1156        dma_free_rx_skbufs(priv);
1157        dma_free_tx_skbufs(priv);
1158
1159        /* Free DMA regions of consistent memory previously allocated */
1160        if (!priv->extend_desc) {
1161                dma_free_coherent(priv->device,
1162                                  priv->dma_tx_size * sizeof(struct dma_desc),
1163                                  priv->dma_tx, priv->dma_tx_phy);
1164                dma_free_coherent(priv->device,
1165                                  priv->dma_rx_size * sizeof(struct dma_desc),
1166                                  priv->dma_rx, priv->dma_rx_phy);
1167        } else {
1168                dma_free_coherent(priv->device, priv->dma_tx_size *
1169                                  sizeof(struct dma_extended_desc),
1170                                  priv->dma_etx, priv->dma_tx_phy);
1171                dma_free_coherent(priv->device, priv->dma_rx_size *
1172                                  sizeof(struct dma_extended_desc),
1173                                  priv->dma_erx, priv->dma_rx_phy);
1174        }
1175        kfree(priv->rx_skbuff_dma);
1176        kfree(priv->rx_skbuff);
1177        kfree(priv->tx_skbuff_dma);
1178        kfree(priv->tx_skbuff);
1179}
1180
1181/**
1182 *  stmmac_dma_operation_mode - HW DMA operation mode
1183 *  @priv: driver private structure
1184 *  Description: it sets the DMA operation mode: tx/rx DMA thresholds
1185 *  or Store-And-Forward capability.
1186 */
1187static void stmmac_dma_operation_mode(struct stmmac_priv *priv)
1188{
1189        if (likely(priv->plat->force_sf_dma_mode ||
1190                   ((priv->plat->tx_coe) && (!priv->no_csum_insertion)))) {
1191                /*
1192                 * In case of GMAC, SF mode can be enabled
1193                 * to perform the TX COE in HW. This depends on:
1194                 * 1) TX COE if actually supported
1195                 * 2) There is no bugged Jumbo frame support
1196                 *    that needs to not insert csum in the TDES.
1197                 */
1198                priv->hw->dma->dma_mode(priv->ioaddr, SF_DMA_MODE, SF_DMA_MODE);
1199                tc = SF_DMA_MODE;
1200        } else
1201                priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1202}
1203
1204/**
1205 * stmmac_tx_clean:
1206 * @priv: driver private structure
1207 * Description: it reclaims resources after transmission completes.
1208 */
1209static void stmmac_tx_clean(struct stmmac_priv *priv)
1210{
1211        unsigned int txsize = priv->dma_tx_size;
1212
1213        spin_lock(&priv->tx_lock);
1214
1215        priv->xstats.tx_clean++;
1216
1217        while (priv->dirty_tx != priv->cur_tx) {
1218                int last;
1219                unsigned int entry = priv->dirty_tx % txsize;
1220                struct sk_buff *skb = priv->tx_skbuff[entry];
1221                struct dma_desc *p;
1222
1223                if (priv->extend_desc)
1224                        p = (struct dma_desc *)(priv->dma_etx + entry);
1225                else
1226                        p = priv->dma_tx + entry;
1227
1228                /* Check if the descriptor is owned by the DMA. */
1229                if (priv->hw->desc->get_tx_owner(p))
1230                        break;
1231
1232                /* Verify tx error by looking at the last segment. */
1233                last = priv->hw->desc->get_tx_ls(p);
1234                if (likely(last)) {
1235                        int tx_error =
1236                            priv->hw->desc->tx_status(&priv->dev->stats,
1237                                                      &priv->xstats, p,
1238                                                      priv->ioaddr);
1239                        if (likely(tx_error == 0)) {
1240                                priv->dev->stats.tx_packets++;
1241                                priv->xstats.tx_pkt_n++;
1242                        } else
1243                                priv->dev->stats.tx_errors++;
1244
1245                        stmmac_get_tx_hwtstamp(priv, entry, skb);
1246                }
1247                TX_DBG("%s: curr %d, dirty %d\n", __func__,
1248                       priv->cur_tx, priv->dirty_tx);
1249
1250                if (likely(priv->tx_skbuff_dma[entry])) {
1251                        dma_unmap_single(priv->device,
1252                                         priv->tx_skbuff_dma[entry],
1253                                         priv->hw->desc->get_tx_len(p),
1254                                         DMA_TO_DEVICE);
1255                        priv->tx_skbuff_dma[entry] = 0;
1256                }
1257                priv->hw->ring->clean_desc3(priv, p);
1258
1259                if (likely(skb != NULL)) {
1260                        dev_kfree_skb(skb);
1261                        priv->tx_skbuff[entry] = NULL;
1262                }
1263
1264                priv->hw->desc->release_tx_desc(p, priv->mode);
1265
1266                priv->dirty_tx++;
1267        }
1268        if (unlikely(netif_queue_stopped(priv->dev) &&
1269                     stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv))) {
1270                netif_tx_lock(priv->dev);
1271                if (netif_queue_stopped(priv->dev) &&
1272                    stmmac_tx_avail(priv) > STMMAC_TX_THRESH(priv)) {
1273                        TX_DBG("%s: restart transmit\n", __func__);
1274                        netif_wake_queue(priv->dev);
1275                }
1276                netif_tx_unlock(priv->dev);
1277        }
1278
1279        if ((priv->eee_enabled) && (!priv->tx_path_in_lpi_mode)) {
1280                stmmac_enable_eee_mode(priv);
1281                mod_timer(&priv->eee_ctrl_timer, STMMAC_LPI_T(eee_timer));
1282        }
1283        spin_unlock(&priv->tx_lock);
1284}
1285
1286static inline void stmmac_enable_dma_irq(struct stmmac_priv *priv)
1287{
1288        priv->hw->dma->enable_dma_irq(priv->ioaddr);
1289}
1290
1291static inline void stmmac_disable_dma_irq(struct stmmac_priv *priv)
1292{
1293        priv->hw->dma->disable_dma_irq(priv->ioaddr);
1294}
1295
1296/**
1297 * stmmac_tx_err: irq tx error mng function
1298 * @priv: driver private structure
1299 * Description: it cleans the descriptors and restarts the transmission
1300 * in case of errors.
1301 */
1302static void stmmac_tx_err(struct stmmac_priv *priv)
1303{
1304        int i;
1305        int txsize = priv->dma_tx_size;
1306        netif_stop_queue(priv->dev);
1307
1308        priv->hw->dma->stop_tx(priv->ioaddr);
1309        dma_free_tx_skbufs(priv);
1310        for (i = 0; i < txsize; i++)
1311                if (priv->extend_desc)
1312                        priv->hw->desc->init_tx_desc(&priv->dma_etx[i].basic,
1313                                                     priv->mode,
1314                                                     (i == txsize - 1));
1315                else
1316                        priv->hw->desc->init_tx_desc(&priv->dma_tx[i],
1317                                                     priv->mode,
1318                                                     (i == txsize - 1));
1319        priv->dirty_tx = 0;
1320        priv->cur_tx = 0;
1321        priv->hw->dma->start_tx(priv->ioaddr);
1322
1323        priv->dev->stats.tx_errors++;
1324        netif_wake_queue(priv->dev);
1325}
1326
1327/**
1328 * stmmac_dma_interrupt: DMA ISR
1329 * @priv: driver private structure
1330 * Description: this is the DMA ISR. It is called by the main ISR.
1331 * It calls the dwmac dma routine to understand which type of interrupt
1332 * happened. In case of there is a Normal interrupt and either TX or RX
1333 * interrupt happened so the NAPI is scheduled.
1334 */
1335static void stmmac_dma_interrupt(struct stmmac_priv *priv)
1336{
1337        int status;
1338
1339        status = priv->hw->dma->dma_interrupt(priv->ioaddr, &priv->xstats);
1340        if (likely((status & handle_rx)) || (status & handle_tx)) {
1341                if (likely(napi_schedule_prep(&priv->napi))) {
1342                        stmmac_disable_dma_irq(priv);
1343                        __napi_schedule(&priv->napi);
1344                }
1345        }
1346        if (unlikely(status & tx_hard_error_bump_tc)) {
1347                /* Try to bump up the dma threshold on this failure */
1348                if (unlikely(tc != SF_DMA_MODE) && (tc <= 256)) {
1349                        tc += 64;
1350                        priv->hw->dma->dma_mode(priv->ioaddr, tc, SF_DMA_MODE);
1351                        priv->xstats.threshold = tc;
1352                }
1353        } else if (unlikely(status == tx_hard_error))
1354                stmmac_tx_err(priv);
1355}
1356
1357/**
1358 * stmmac_mmc_setup: setup the Mac Management Counters (MMC)
1359 * @priv: driver private structure
1360 * Description: this masks the MMC irq, in fact, the counters are managed in SW.
1361 */
1362static void stmmac_mmc_setup(struct stmmac_priv *priv)
1363{
1364        unsigned int mode = MMC_CNTRL_RESET_ON_READ | MMC_CNTRL_COUNTER_RESET |
1365            MMC_CNTRL_PRESET | MMC_CNTRL_FULL_HALF_PRESET;
1366
1367        dwmac_mmc_intr_all_mask(priv->ioaddr);
1368
1369        if (priv->dma_cap.rmon) {
1370                dwmac_mmc_ctrl(priv->ioaddr, mode);
1371                memset(&priv->mmc, 0, sizeof(struct stmmac_counters));
1372        } else
1373                pr_info(" No MAC Management Counters available\n");
1374}
1375
1376static u32 stmmac_get_synopsys_id(struct stmmac_priv *priv)
1377{
1378        u32 hwid = priv->hw->synopsys_uid;
1379
1380        /* Check Synopsys Id (not available on old chips) */
1381        if (likely(hwid)) {
1382                u32 uid = ((hwid & 0x0000ff00) >> 8);
1383                u32 synid = (hwid & 0x000000ff);
1384
1385                pr_info("stmmac - user ID: 0x%x, Synopsys ID: 0x%x\n",
1386                        uid, synid);
1387
1388                return synid;
1389        }
1390        return 0;
1391}
1392
1393/**
1394 * stmmac_selec_desc_mode: to select among: normal/alternate/extend descriptors
1395 * @priv: driver private structure
1396 * Description: select the Enhanced/Alternate or Normal descriptors.
1397 * In case of Enhanced/Alternate, it looks at the extended descriptors are
1398 * supported by the HW cap. register.
1399 */
1400static void stmmac_selec_desc_mode(struct stmmac_priv *priv)
1401{
1402        if (priv->plat->enh_desc) {
1403                pr_info(" Enhanced/Alternate descriptors\n");
1404
1405                /* GMAC older than 3.50 has no extended descriptors */
1406                if (priv->synopsys_id >= DWMAC_CORE_3_50) {
1407                        pr_info("\tEnabled extended descriptors\n");
1408                        priv->extend_desc = 1;
1409                } else
1410                        pr_warn("Extended descriptors not supported\n");
1411
1412                priv->hw->desc = &enh_desc_ops;
1413        } else {
1414                pr_info(" Normal descriptors\n");
1415                priv->hw->desc = &ndesc_ops;
1416        }
1417}
1418
1419/**
1420 * stmmac_get_hw_features: get MAC capabilities from the HW cap. register.
1421 * @priv: driver private structure
1422 * Description:
1423 *  new GMAC chip generations have a new register to indicate the
1424 *  presence of the optional feature/functions.
1425 *  This can be also used to override the value passed through the
1426 *  platform and necessary for old MAC10/100 and GMAC chips.
1427 */
1428static int stmmac_get_hw_features(struct stmmac_priv *priv)
1429{
1430        u32 hw_cap = 0;
1431
1432        if (priv->hw->dma->get_hw_feature) {
1433                hw_cap = priv->hw->dma->get_hw_feature(priv->ioaddr);
1434
1435                priv->dma_cap.mbps_10_100 = (hw_cap & DMA_HW_FEAT_MIISEL);
1436                priv->dma_cap.mbps_1000 = (hw_cap & DMA_HW_FEAT_GMIISEL) >> 1;
1437                priv->dma_cap.half_duplex = (hw_cap & DMA_HW_FEAT_HDSEL) >> 2;
1438                priv->dma_cap.hash_filter = (hw_cap & DMA_HW_FEAT_HASHSEL) >> 4;
1439                priv->dma_cap.multi_addr = (hw_cap & DMA_HW_FEAT_ADDMAC) >> 5;
1440                priv->dma_cap.pcs = (hw_cap & DMA_HW_FEAT_PCSSEL) >> 6;
1441                priv->dma_cap.sma_mdio = (hw_cap & DMA_HW_FEAT_SMASEL) >> 8;
1442                priv->dma_cap.pmt_remote_wake_up =
1443                    (hw_cap & DMA_HW_FEAT_RWKSEL) >> 9;
1444                priv->dma_cap.pmt_magic_frame =
1445                    (hw_cap & DMA_HW_FEAT_MGKSEL) >> 10;
1446                /* MMC */
1447                priv->dma_cap.rmon = (hw_cap & DMA_HW_FEAT_MMCSEL) >> 11;
1448                /* IEEE 1588-2002 */
1449                priv->dma_cap.time_stamp =
1450                    (hw_cap & DMA_HW_FEAT_TSVER1SEL) >> 12;
1451                /* IEEE 1588-2008 */
1452                priv->dma_cap.atime_stamp =
1453                    (hw_cap & DMA_HW_FEAT_TSVER2SEL) >> 13;
1454                /* 802.3az - Energy-Efficient Ethernet (EEE) */
1455                priv->dma_cap.eee = (hw_cap & DMA_HW_FEAT_EEESEL) >> 14;
1456                priv->dma_cap.av = (hw_cap & DMA_HW_FEAT_AVSEL) >> 15;
1457                /* TX and RX csum */
1458                priv->dma_cap.tx_coe = (hw_cap & DMA_HW_FEAT_TXCOESEL) >> 16;
1459                priv->dma_cap.rx_coe_type1 =
1460                    (hw_cap & DMA_HW_FEAT_RXTYP1COE) >> 17;
1461                priv->dma_cap.rx_coe_type2 =
1462                    (hw_cap & DMA_HW_FEAT_RXTYP2COE) >> 18;
1463                priv->dma_cap.rxfifo_over_2048 =
1464                    (hw_cap & DMA_HW_FEAT_RXFIFOSIZE) >> 19;
1465                /* TX and RX number of channels */
1466                priv->dma_cap.number_rx_channel =
1467                    (hw_cap & DMA_HW_FEAT_RXCHCNT) >> 20;
1468                priv->dma_cap.number_tx_channel =
1469                    (hw_cap & DMA_HW_FEAT_TXCHCNT) >> 22;
1470                /* Alternate (enhanced) DESC mode */
1471                priv->dma_cap.enh_desc = (hw_cap & DMA_HW_FEAT_ENHDESSEL) >> 24;
1472        }
1473
1474        return hw_cap;
1475}
1476
1477/**
1478 * stmmac_check_ether_addr: check if the MAC addr is valid
1479 * @priv: driver private structure
1480 * Description:
1481 * it is to verify if the MAC address is valid, in case of failures it
1482 * generates a random MAC address
1483 */
1484static void stmmac_check_ether_addr(struct stmmac_priv *priv)
1485{
1486        if (!is_valid_ether_addr(priv->dev->dev_addr)) {
1487                priv->hw->mac->get_umac_addr((void __iomem *)
1488                                             priv->dev->base_addr,
1489                                             priv->dev->dev_addr, 0);
1490                if (!is_valid_ether_addr(priv->dev->dev_addr))
1491                        eth_hw_addr_random(priv->dev);
1492        }
1493        pr_warn("%s: device MAC address %pM\n", priv->dev->name,
1494                priv->dev->dev_addr);
1495}
1496
1497/**
1498 * stmmac_init_dma_engine: DMA init.
1499 * @priv: driver private structure
1500 * Description:
1501 * It inits the DMA invoking the specific MAC/GMAC callback.
1502 * Some DMA parameters can be passed from the platform;
1503 * in case of these are not passed a default is kept for the MAC or GMAC.
1504 */
1505static int stmmac_init_dma_engine(struct stmmac_priv *priv)
1506{
1507        int pbl = DEFAULT_DMA_PBL, fixed_burst = 0, burst_len = 0;
1508        int mixed_burst = 0;
1509        int atds = 0;
1510
1511        if (priv->plat->dma_cfg) {
1512                pbl = priv->plat->dma_cfg->pbl;
1513                fixed_burst = priv->plat->dma_cfg->fixed_burst;
1514                mixed_burst = priv->plat->dma_cfg->mixed_burst;
1515                burst_len = priv->plat->dma_cfg->burst_len;
1516        }
1517
1518        if (priv->extend_desc && (priv->mode == STMMAC_RING_MODE))
1519                atds = 1;
1520
1521        return priv->hw->dma->init(priv->ioaddr, pbl, fixed_burst, mixed_burst,
1522                                   burst_len, priv->dma_tx_phy,
1523                                   priv->dma_rx_phy, atds);
1524}
1525
1526/**
1527 * stmmac_tx_timer: mitigation sw timer for tx.
1528 * @data: data pointer
1529 * Description:
1530 * This is the timer handler to directly invoke the stmmac_tx_clean.
1531 */
1532static void stmmac_tx_timer(unsigned long data)
1533{
1534        struct stmmac_priv *priv = (struct stmmac_priv *)data;
1535
1536        stmmac_tx_clean(priv);
1537}
1538
1539/**
1540 * stmmac_init_tx_coalesce: init tx mitigation options.
1541 * @priv: driver private structure
1542 * Description:
1543 * This inits the transmit coalesce parameters: i.e. timer rate,
1544 * timer handler and default threshold used for enabling the
1545 * interrupt on completion bit.
1546 */
1547static void stmmac_init_tx_coalesce(struct stmmac_priv *priv)
1548{
1549        priv->tx_coal_frames = STMMAC_TX_FRAMES;
1550        priv->tx_coal_timer = STMMAC_COAL_TX_TIMER;
1551        init_timer(&priv->txtimer);
1552        priv->txtimer.expires = STMMAC_COAL_TIMER(priv->tx_coal_timer);
1553        priv->txtimer.data = (unsigned long)priv;
1554        priv->txtimer.function = stmmac_tx_timer;
1555        add_timer(&priv->txtimer);
1556}
1557
1558/**
1559 *  stmmac_open - open entry point of the driver
1560 *  @dev : pointer to the device structure.
1561 *  Description:
1562 *  This function is the open entry point of the driver.
1563 *  Return value:
1564 *  0 on success and an appropriate (-)ve integer as defined in errno.h
1565 *  file on failure.
1566 */
1567static int stmmac_open(struct net_device *dev)
1568{
1569        struct stmmac_priv *priv = netdev_priv(dev);
1570        int ret;
1571
1572        clk_prepare_enable(priv->stmmac_clk);
1573
1574        stmmac_check_ether_addr(priv);
1575
1576        if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
1577            priv->pcs != STMMAC_PCS_RTBI) {
1578                ret = stmmac_init_phy(dev);
1579                if (ret) {
1580                        pr_err("%s: Cannot attach to PHY (error: %d)\n",
1581                               __func__, ret);
1582                        goto open_error;
1583                }
1584        }
1585
1586        /* Create and initialize the TX/RX descriptors chains. */
1587        priv->dma_tx_size = STMMAC_ALIGN(dma_txsize);
1588        priv->dma_rx_size = STMMAC_ALIGN(dma_rxsize);
1589        priv->dma_buf_sz = STMMAC_ALIGN(buf_sz);
1590        init_dma_desc_rings(dev);
1591
1592        /* DMA initialization and SW reset */
1593        ret = stmmac_init_dma_engine(priv);
1594        if (ret < 0) {
1595                pr_err("%s: DMA initialization failed\n", __func__);
1596                goto open_error;
1597        }
1598
1599        /* Copy the MAC addr into the HW  */
1600        priv->hw->mac->set_umac_addr(priv->ioaddr, dev->dev_addr, 0);
1601
1602        /* If required, perform hw setup of the bus. */
1603        if (priv->plat->bus_setup)
1604                priv->plat->bus_setup(priv->ioaddr);
1605
1606        /* Initialize the MAC Core */
1607        priv->hw->mac->core_init(priv->ioaddr);
1608
1609        /* Request the IRQ lines */
1610        ret = request_irq(dev->irq, stmmac_interrupt,
1611                          IRQF_SHARED, dev->name, dev);
1612        if (unlikely(ret < 0)) {
1613                pr_err("%s: ERROR: allocating the IRQ %d (error: %d)\n",
1614                       __func__, dev->irq, ret);
1615                goto open_error;
1616        }
1617
1618        /* Request the Wake IRQ in case of another line is used for WoL */
1619        if (priv->wol_irq != dev->irq) {
1620                ret = request_irq(priv->wol_irq, stmmac_interrupt,
1621                                  IRQF_SHARED, dev->name, dev);
1622                if (unlikely(ret < 0)) {
1623                        pr_err("%s: ERROR: allocating the WoL IRQ %d (%d)\n",
1624                               __func__, priv->wol_irq, ret);
1625                        goto open_error_wolirq;
1626                }
1627        }
1628
1629        /* Request the IRQ lines */
1630        if (priv->lpi_irq != -ENXIO) {
1631                ret = request_irq(priv->lpi_irq, stmmac_interrupt, IRQF_SHARED,
1632                                  dev->name, dev);
1633                if (unlikely(ret < 0)) {
1634                        pr_err("%s: ERROR: allocating the LPI IRQ %d (%d)\n",
1635                               __func__, priv->lpi_irq, ret);
1636                        goto open_error_lpiirq;
1637                }
1638        }
1639
1640        /* Enable the MAC Rx/Tx */
1641        stmmac_set_mac(priv->ioaddr, true);
1642
1643        /* Set the HW DMA mode and the COE */
1644        stmmac_dma_operation_mode(priv);
1645
1646        /* Extra statistics */
1647        memset(&priv->xstats, 0, sizeof(struct stmmac_extra_stats));
1648        priv->xstats.threshold = tc;
1649
1650        stmmac_mmc_setup(priv);
1651
1652        ret = stmmac_init_ptp(priv);
1653        if (ret)
1654                pr_warn("%s: failed PTP initialisation\n", __func__);
1655
1656#ifdef CONFIG_STMMAC_DEBUG_FS
1657        ret = stmmac_init_fs(dev);
1658        if (ret < 0)
1659                pr_warn("%s: failed debugFS registration\n", __func__);
1660#endif
1661        /* Start the ball rolling... */
1662        DBG(probe, DEBUG, "%s: DMA RX/TX processes started...\n", dev->name);
1663        priv->hw->dma->start_tx(priv->ioaddr);
1664        priv->hw->dma->start_rx(priv->ioaddr);
1665
1666        /* Dump DMA/MAC registers */
1667        if (netif_msg_hw(priv)) {
1668                priv->hw->mac->dump_regs(priv->ioaddr);
1669                priv->hw->dma->dump_regs(priv->ioaddr);
1670        }
1671
1672        if (priv->phydev)
1673                phy_start(priv->phydev);
1674
1675        priv->tx_lpi_timer = STMMAC_DEFAULT_TWT_LS;
1676
1677        priv->eee_enabled = stmmac_eee_init(priv);
1678
1679        stmmac_init_tx_coalesce(priv);
1680
1681        if ((priv->use_riwt) && (priv->hw->dma->rx_watchdog)) {
1682                priv->rx_riwt = MAX_DMA_RIWT;
1683                priv->hw->dma->rx_watchdog(priv->ioaddr, MAX_DMA_RIWT);
1684        }
1685
1686        if (priv->pcs && priv->hw->mac->ctrl_ane)
1687                priv->hw->mac->ctrl_ane(priv->ioaddr, 0);
1688
1689        napi_enable(&priv->napi);
1690        netif_start_queue(dev);
1691
1692        return 0;
1693
1694open_error_lpiirq:
1695        if (priv->wol_irq != dev->irq)
1696                free_irq(priv->wol_irq, dev);
1697
1698open_error_wolirq:
1699        free_irq(dev->irq, dev);
1700
1701open_error:
1702        if (priv->phydev)
1703                phy_disconnect(priv->phydev);
1704
1705        clk_disable_unprepare(priv->stmmac_clk);
1706
1707        return ret;
1708}
1709
1710/**
1711 *  stmmac_release - close entry point of the driver
1712 *  @dev : device pointer.
1713 *  Description:
1714 *  This is the stop entry point of the driver.
1715 */
1716static int stmmac_release(struct net_device *dev)
1717{
1718        struct stmmac_priv *priv = netdev_priv(dev);
1719
1720        if (priv->eee_enabled)
1721                del_timer_sync(&priv->eee_ctrl_timer);
1722
1723        /* Stop and disconnect the PHY */
1724        if (priv->phydev) {
1725                phy_stop(priv->phydev);
1726                phy_disconnect(priv->phydev);
1727                priv->phydev = NULL;
1728        }
1729
1730        netif_stop_queue(dev);
1731
1732        napi_disable(&priv->napi);
1733
1734        del_timer_sync(&priv->txtimer);
1735
1736        /* Free the IRQ lines */
1737        free_irq(dev->irq, dev);
1738        if (priv->wol_irq != dev->irq)
1739                free_irq(priv->wol_irq, dev);
1740        if (priv->lpi_irq != -ENXIO)
1741                free_irq(priv->lpi_irq, dev);
1742
1743        /* Stop TX/RX DMA and clear the descriptors */
1744        priv->hw->dma->stop_tx(priv->ioaddr);
1745        priv->hw->dma->stop_rx(priv->ioaddr);
1746
1747        /* Release and free the Rx/Tx resources */
1748        free_dma_desc_resources(priv);
1749
1750        /* Disable the MAC Rx/Tx */
1751        stmmac_set_mac(priv->ioaddr, false);
1752
1753        netif_carrier_off(dev);
1754
1755#ifdef CONFIG_STMMAC_DEBUG_FS
1756        stmmac_exit_fs();
1757#endif
1758        clk_disable_unprepare(priv->stmmac_clk);
1759
1760        stmmac_release_ptp(priv);
1761
1762        return 0;
1763}
1764
1765/**
1766 *  stmmac_xmit: Tx entry point of the driver
1767 *  @skb : the socket buffer
1768 *  @dev : device pointer
1769 *  Description : this is the tx entry point of the driver.
1770 *  It programs the chain or the ring and supports oversized frames
1771 *  and SG feature.
1772 */
1773static netdev_tx_t stmmac_xmit(struct sk_buff *skb, struct net_device *dev)
1774{
1775        struct stmmac_priv *priv = netdev_priv(dev);
1776        unsigned int txsize = priv->dma_tx_size;
1777        unsigned int entry;
1778        int i, csum_insertion = 0, is_jumbo = 0;
1779        int nfrags = skb_shinfo(skb)->nr_frags;
1780        struct dma_desc *desc, *first;
1781        unsigned int nopaged_len = skb_headlen(skb);
1782
1783        if (unlikely(stmmac_tx_avail(priv) < nfrags + 1)) {
1784                if (!netif_queue_stopped(dev)) {
1785                        netif_stop_queue(dev);
1786                        /* This is a hard error, log it. */
1787                        pr_err("%s: Tx Ring full when queue awake\n", __func__);
1788                }
1789                return NETDEV_TX_BUSY;
1790        }
1791
1792        spin_lock(&priv->tx_lock);
1793
1794        if (priv->tx_path_in_lpi_mode)
1795                stmmac_disable_eee_mode(priv);
1796
1797        entry = priv->cur_tx % txsize;
1798
1799#ifdef STMMAC_XMIT_DEBUG
1800        if ((skb->len > ETH_FRAME_LEN) || nfrags)
1801                pr_debug("%s: [entry %d]: skb addr %p len: %d nopagedlen: %d\n"
1802                         "\tn_frags: %d - ip_summed: %d - %s gso\n"
1803                         "\ttx_count_frames %d\n", __func__, entry,
1804                         skb, skb->len, nopaged_len, nfrags, skb->ip_summed,
1805                         !skb_is_gso(skb) ? "isn't" : "is",
1806                         priv->tx_count_frames);
1807#endif
1808
1809        csum_insertion = (skb->ip_summed == CHECKSUM_PARTIAL);
1810
1811        if (priv->extend_desc)
1812                desc = (struct dma_desc *)(priv->dma_etx + entry);
1813        else
1814                desc = priv->dma_tx + entry;
1815
1816        first = desc;
1817
1818#ifdef STMMAC_XMIT_DEBUG
1819        if ((nfrags > 0) || (skb->len > ETH_FRAME_LEN))
1820                pr_debug("\tskb len: %d, nopaged_len: %d,\n"
1821                         "\t\tn_frags: %d, ip_summed: %d\n",
1822                         skb->len, nopaged_len, nfrags, skb->ip_summed);
1823#endif
1824        priv->tx_skbuff[entry] = skb;
1825
1826        /* To program the descriptors according to the size of the frame */
1827        if (priv->mode == STMMAC_RING_MODE) {
1828                is_jumbo = priv->hw->ring->is_jumbo_frm(skb->len,
1829                                                        priv->plat->enh_desc);
1830                if (unlikely(is_jumbo))
1831                        entry = priv->hw->ring->jumbo_frm(priv, skb,
1832                                                          csum_insertion);
1833        } else {
1834                is_jumbo = priv->hw->chain->is_jumbo_frm(skb->len,
1835                                                         priv->plat->enh_desc);
1836                if (unlikely(is_jumbo))
1837                        entry = priv->hw->chain->jumbo_frm(priv, skb,
1838                                                           csum_insertion);
1839        }
1840        if (likely(!is_jumbo)) {
1841                desc->des2 = dma_map_single(priv->device, skb->data,
1842                                            nopaged_len, DMA_TO_DEVICE);
1843                priv->tx_skbuff_dma[entry] = desc->des2;
1844                priv->hw->desc->prepare_tx_desc(desc, 1, nopaged_len,
1845                                                csum_insertion, priv->mode);
1846        } else
1847                desc = first;
1848
1849        for (i = 0; i < nfrags; i++) {
1850                const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1851                int len = skb_frag_size(frag);
1852
1853                entry = (++priv->cur_tx) % txsize;
1854                if (priv->extend_desc)
1855                        desc = (struct dma_desc *)(priv->dma_etx + entry);
1856                else
1857                        desc = priv->dma_tx + entry;
1858
1859                TX_DBG("\t[entry %d] segment len: %d\n", entry, len);
1860                desc->des2 = skb_frag_dma_map(priv->device, frag, 0, len,
1861                                              DMA_TO_DEVICE);
1862                priv->tx_skbuff_dma[entry] = desc->des2;
1863                priv->tx_skbuff[entry] = NULL;
1864                priv->hw->desc->prepare_tx_desc(desc, 0, len, csum_insertion,
1865                                                priv->mode);
1866                wmb();
1867                priv->hw->desc->set_tx_owner(desc);
1868                wmb();
1869        }
1870
1871        /* Finalize the latest segment. */
1872        priv->hw->desc->close_tx_desc(desc);
1873
1874        wmb();
1875        /* According to the coalesce parameter the IC bit for the latest
1876         * segment could be reset and the timer re-started to invoke the
1877         * stmmac_tx function. This approach takes care about the fragments.
1878         */
1879        priv->tx_count_frames += nfrags + 1;
1880        if (priv->tx_coal_frames > priv->tx_count_frames) {
1881                priv->hw->desc->clear_tx_ic(desc);
1882                priv->xstats.tx_reset_ic_bit++;
1883                TX_DBG("\t[entry %d]: tx_count_frames %d\n", entry,
1884                       priv->tx_count_frames);
1885                mod_timer(&priv->txtimer,
1886                          STMMAC_COAL_TIMER(priv->tx_coal_timer));
1887        } else
1888                priv->tx_count_frames = 0;
1889
1890        /* To avoid raise condition */
1891        priv->hw->desc->set_tx_owner(first);
1892        wmb();
1893
1894        priv->cur_tx++;
1895
1896#ifdef STMMAC_XMIT_DEBUG
1897        if (netif_msg_pktdata(priv)) {
1898                pr_info("%s: curr %d dirty=%d entry=%d, first=%p, nfrags=%d",
1899                        __func__, (priv->cur_tx % txsize),
1900                        (priv->dirty_tx % txsize), entry, first, nfrags);
1901                if (priv->extend_desc)
1902                        stmmac_display_ring((void *)priv->dma_etx, txsize, 1);
1903                else
1904                        stmmac_display_ring((void *)priv->dma_tx, txsize, 0);
1905
1906                pr_info(">>> frame to be transmitted: ");
1907                print_pkt(skb->data, skb->len);
1908        }
1909#endif
1910        if (unlikely(stmmac_tx_avail(priv) <= (MAX_SKB_FRAGS + 1))) {
1911                TX_DBG("%s: stop transmitted packets\n", __func__);
1912                netif_stop_queue(dev);
1913        }
1914
1915        dev->stats.tx_bytes += skb->len;
1916
1917        if (unlikely((skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP) &&
1918                     priv->hwts_tx_en)) {
1919                /* declare that device is doing timestamping */
1920                skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1921                priv->hw->desc->enable_tx_timestamp(first);
1922        }
1923
1924        if (!priv->hwts_tx_en)
1925                skb_tx_timestamp(skb);
1926
1927        priv->hw->dma->enable_dma_transmission(priv->ioaddr);
1928
1929        spin_unlock(&priv->tx_lock);
1930
1931        return NETDEV_TX_OK;
1932}
1933
1934/**
1935 * stmmac_rx_refill: refill used skb preallocated buffers
1936 * @priv: driver private structure
1937 * Description : this is to reallocate the skb for the reception process
1938 * that is based on zero-copy.
1939 */
1940static inline void stmmac_rx_refill(struct stmmac_priv *priv)
1941{
1942        unsigned int rxsize = priv->dma_rx_size;
1943        int bfsize = priv->dma_buf_sz;
1944
1945        for (; priv->cur_rx - priv->dirty_rx > 0; priv->dirty_rx++) {
1946                unsigned int entry = priv->dirty_rx % rxsize;
1947                struct dma_desc *p;
1948
1949                if (priv->extend_desc)
1950                        p = (struct dma_desc *)(priv->dma_erx + entry);
1951                else
1952                        p = priv->dma_rx + entry;
1953
1954                if (likely(priv->rx_skbuff[entry] == NULL)) {
1955                        struct sk_buff *skb;
1956
1957                        skb = netdev_alloc_skb_ip_align(priv->dev, bfsize);
1958
1959                        if (unlikely(skb == NULL))
1960                                break;
1961
1962                        priv->rx_skbuff[entry] = skb;
1963                        priv->rx_skbuff_dma[entry] =
1964                            dma_map_single(priv->device, skb->data, bfsize,
1965                                           DMA_FROM_DEVICE);
1966
1967                        p->des2 = priv->rx_skbuff_dma[entry];
1968
1969                        priv->hw->ring->refill_desc3(priv, p);
1970
1971                        RX_DBG(KERN_INFO "\trefill entry #%d\n", entry);
1972                }
1973                wmb();
1974                priv->hw->desc->set_rx_owner(p);
1975                wmb();
1976        }
1977}
1978
1979/**
1980 * stmmac_rx_refill: refill used skb preallocated buffers
1981 * @priv: driver private structure
1982 * @limit: napi bugget.
1983 * Description :  this the function called by the napi poll method.
1984 * It gets all the frames inside the ring.
1985 */
1986static int stmmac_rx(struct stmmac_priv *priv, int limit)
1987{
1988        unsigned int rxsize = priv->dma_rx_size;
1989        unsigned int entry = priv->cur_rx % rxsize;
1990        unsigned int next_entry;
1991        unsigned int count = 0;
1992        int coe = priv->plat->rx_coe;
1993
1994#ifdef STMMAC_RX_DEBUG
1995        if (netif_msg_hw(priv)) {
1996                pr_debug(">>> stmmac_rx: descriptor ring:\n");
1997                if (priv->extend_desc)
1998                        stmmac_display_ring((void *)priv->dma_erx, rxsize, 1);
1999                else
2000                        stmmac_display_ring((void *)priv->dma_rx, rxsize, 0);
2001        }
2002#endif
2003        while (count < limit) {
2004                int status;
2005                struct dma_desc *p;
2006
2007                if (priv->extend_desc)
2008                        p = (struct dma_desc *)(priv->dma_erx + entry);
2009                else
2010                        p = priv->dma_rx + entry;
2011
2012                if (priv->hw->desc->get_rx_owner(p))
2013                        break;
2014
2015                count++;
2016
2017                next_entry = (++priv->cur_rx) % rxsize;
2018                if (priv->extend_desc)
2019                        prefetch(priv->dma_erx + next_entry);
2020                else
2021                        prefetch(priv->dma_rx + next_entry);
2022
2023                /* read the status of the incoming frame */
2024                status = priv->hw->desc->rx_status(&priv->dev->stats,
2025                                                   &priv->xstats, p);
2026                if ((priv->extend_desc) && (priv->hw->desc->rx_extended_status))
2027                        priv->hw->desc->rx_extended_status(&priv->dev->stats,
2028                                                           &priv->xstats,
2029                                                           priv->dma_erx +
2030                                                           entry);
2031                if (unlikely(status == discard_frame)) {
2032                        priv->dev->stats.rx_errors++;
2033                        if (priv->hwts_rx_en && !priv->extend_desc) {
2034                                /* DESC2 & DESC3 will be overwitten by device
2035                                 * with timestamp value, hence reinitialize
2036                                 * them in stmmac_rx_refill() function so that
2037                                 * device can reuse it.
2038                                 */
2039                                priv->rx_skbuff[entry] = NULL;
2040                                dma_unmap_single(priv->device,
2041                                                 priv->rx_skbuff_dma[entry],
2042                                                 priv->dma_buf_sz,
2043                                                 DMA_FROM_DEVICE);
2044                        }
2045                } else {
2046                        struct sk_buff *skb;
2047                        int frame_len;
2048
2049                        frame_len = priv->hw->desc->get_rx_frame_len(p, coe);
2050
2051                        /* ACS is set; GMAC core strips PAD/FCS for IEEE 802.3
2052                         * Type frames (LLC/LLC-SNAP)
2053                         */
2054                        if (unlikely(status != llc_snap))
2055                                frame_len -= ETH_FCS_LEN;
2056#ifdef STMMAC_RX_DEBUG
2057                        if (frame_len > ETH_FRAME_LEN)
2058                                pr_debug("\tRX frame size %d, COE status: %d\n",
2059                                         frame_len, status);
2060
2061                        if (netif_msg_hw(priv))
2062                                pr_debug("\tdesc: %p [entry %d] buff=0x%x\n",
2063                                         p, entry, p->des2);
2064#endif
2065                        skb = priv->rx_skbuff[entry];
2066                        if (unlikely(!skb)) {
2067                                pr_err("%s: Inconsistent Rx descriptor chain\n",
2068                                       priv->dev->name);
2069                                priv->dev->stats.rx_dropped++;
2070                                break;
2071                        }
2072                        prefetch(skb->data - NET_IP_ALIGN);
2073                        priv->rx_skbuff[entry] = NULL;
2074
2075                        stmmac_get_rx_hwtstamp(priv, entry, skb);
2076
2077                        skb_put(skb, frame_len);
2078                        dma_unmap_single(priv->device,
2079                                         priv->rx_skbuff_dma[entry],
2080                                         priv->dma_buf_sz, DMA_FROM_DEVICE);
2081#ifdef STMMAC_RX_DEBUG
2082                        if (netif_msg_pktdata(priv)) {
2083                                pr_info(" frame received (%dbytes)", frame_len);
2084                                print_pkt(skb->data, frame_len);
2085                        }
2086#endif
2087                        skb->protocol = eth_type_trans(skb, priv->dev);
2088
2089                        if (unlikely(!coe))
2090                                skb_checksum_none_assert(skb);
2091                        else
2092                                skb->ip_summed = CHECKSUM_UNNECESSARY;
2093
2094                        napi_gro_receive(&priv->napi, skb);
2095
2096                        priv->dev->stats.rx_packets++;
2097                        priv->dev->stats.rx_bytes += frame_len;
2098                }
2099                entry = next_entry;
2100        }
2101
2102        stmmac_rx_refill(priv);
2103
2104        priv->xstats.rx_pkt_n += count;
2105
2106        return count;
2107}
2108
2109/**
2110 *  stmmac_poll - stmmac poll method (NAPI)
2111 *  @napi : pointer to the napi structure.
2112 *  @budget : maximum number of packets that the current CPU can receive from
2113 *            all interfaces.
2114 *  Description :
2115 *  To look at the incoming frames and clear the tx resources.
2116 */
2117static int stmmac_poll(struct napi_struct *napi, int budget)
2118{
2119        struct stmmac_priv *priv = container_of(napi, struct stmmac_priv, napi);
2120        int work_done = 0;
2121
2122        priv->xstats.napi_poll++;
2123        stmmac_tx_clean(priv);
2124
2125        work_done = stmmac_rx(priv, budget);
2126        if (work_done < budget) {
2127                napi_complete(napi);
2128                stmmac_enable_dma_irq(priv);
2129        }
2130        return work_done;
2131}
2132
2133/**
2134 *  stmmac_tx_timeout
2135 *  @dev : Pointer to net device structure
2136 *  Description: this function is called when a packet transmission fails to
2137 *   complete within a reasonable time. The driver will mark the error in the
2138 *   netdev structure and arrange for the device to be reset to a sane state
2139 *   in order to transmit a new packet.
2140 */
2141static void stmmac_tx_timeout(struct net_device *dev)
2142{
2143        struct stmmac_priv *priv = netdev_priv(dev);
2144
2145        /* Clear Tx resources and restart transmitting again */
2146        stmmac_tx_err(priv);
2147}
2148
2149/* Configuration changes (passed on by ifconfig) */
2150static int stmmac_config(struct net_device *dev, struct ifmap *map)
2151{
2152        if (dev->flags & IFF_UP)        /* can't act on a running interface */
2153                return -EBUSY;
2154
2155        /* Don't allow changing the I/O address */
2156        if (map->base_addr != dev->base_addr) {
2157                pr_warn("%s: can't change I/O address\n", dev->name);
2158                return -EOPNOTSUPP;
2159        }
2160
2161        /* Don't allow changing the IRQ */
2162        if (map->irq != dev->irq) {
2163                pr_warn("%s: not change IRQ number %d\n", dev->name, dev->irq);
2164                return -EOPNOTSUPP;
2165        }
2166
2167        return 0;
2168}
2169
2170/**
2171 *  stmmac_set_rx_mode - entry point for multicast addressing
2172 *  @dev : pointer to the device structure
2173 *  Description:
2174 *  This function is a driver entry point which gets called by the kernel
2175 *  whenever multicast addresses must be enabled/disabled.
2176 *  Return value:
2177 *  void.
2178 */
2179static void stmmac_set_rx_mode(struct net_device *dev)
2180{
2181        struct stmmac_priv *priv = netdev_priv(dev);
2182
2183        spin_lock(&priv->lock);
2184        priv->hw->mac->set_filter(dev, priv->synopsys_id);
2185        spin_unlock(&priv->lock);
2186}
2187
2188/**
2189 *  stmmac_change_mtu - entry point to change MTU size for the device.
2190 *  @dev : device pointer.
2191 *  @new_mtu : the new MTU size for the device.
2192 *  Description: the Maximum Transfer Unit (MTU) is used by the network layer
2193 *  to drive packet transmission. Ethernet has an MTU of 1500 octets
2194 *  (ETH_DATA_LEN). This value can be changed with ifconfig.
2195 *  Return value:
2196 *  0 on success and an appropriate (-)ve integer as defined in errno.h
2197 *  file on failure.
2198 */
2199static int stmmac_change_mtu(struct net_device *dev, int new_mtu)
2200{
2201        struct stmmac_priv *priv = netdev_priv(dev);
2202        int max_mtu;
2203
2204        if (netif_running(dev)) {
2205                pr_err("%s: must be stopped to change its MTU\n", dev->name);
2206                return -EBUSY;
2207        }
2208
2209        if (priv->plat->enh_desc)
2210                max_mtu = JUMBO_LEN;
2211        else
2212                max_mtu = SKB_MAX_HEAD(NET_SKB_PAD + NET_IP_ALIGN);
2213
2214        if ((new_mtu < 46) || (new_mtu > max_mtu)) {
2215                pr_err("%s: invalid MTU, max MTU is: %d\n", dev->name, max_mtu);
2216                return -EINVAL;
2217        }
2218
2219        dev->mtu = new_mtu;
2220        netdev_update_features(dev);
2221
2222        return 0;
2223}
2224
2225static netdev_features_t stmmac_fix_features(struct net_device *dev,
2226                                             netdev_features_t features)
2227{
2228        struct stmmac_priv *priv = netdev_priv(dev);
2229
2230        if (priv->plat->rx_coe == STMMAC_RX_COE_NONE)
2231                features &= ~NETIF_F_RXCSUM;
2232        else if (priv->plat->rx_coe == STMMAC_RX_COE_TYPE1)
2233                features &= ~NETIF_F_IPV6_CSUM;
2234        if (!priv->plat->tx_coe)
2235                features &= ~NETIF_F_ALL_CSUM;
2236
2237        /* Some GMAC devices have a bugged Jumbo frame support that
2238         * needs to have the Tx COE disabled for oversized frames
2239         * (due to limited buffer sizes). In this case we disable
2240         * the TX csum insertionin the TDES and not use SF.
2241         */
2242        if (priv->plat->bugged_jumbo && (dev->mtu > ETH_DATA_LEN))
2243                features &= ~NETIF_F_ALL_CSUM;
2244
2245        return features;
2246}
2247
2248/**
2249 *  stmmac_interrupt - main ISR
2250 *  @irq: interrupt number.
2251 *  @dev_id: to pass the net device pointer.
2252 *  Description: this is the main driver interrupt service routine.
2253 *  It calls the DMA ISR and also the core ISR to manage PMT, MMC, LPI
2254 *  interrupts.
2255 */
2256static irqreturn_t stmmac_interrupt(int irq, void *dev_id)
2257{
2258        struct net_device *dev = (struct net_device *)dev_id;
2259        struct stmmac_priv *priv = netdev_priv(dev);
2260
2261        if (unlikely(!dev)) {
2262                pr_err("%s: invalid dev pointer\n", __func__);
2263                return IRQ_NONE;
2264        }
2265
2266        /* To handle GMAC own interrupts */
2267        if (priv->plat->has_gmac) {
2268                int status = priv->hw->mac->host_irq_status((void __iomem *)
2269                                                            dev->base_addr,
2270                                                            &priv->xstats);
2271                if (unlikely(status)) {
2272                        /* For LPI we need to save the tx status */
2273                        if (status & CORE_IRQ_TX_PATH_IN_LPI_MODE)
2274                                priv->tx_path_in_lpi_mode = true;
2275                        if (status & CORE_IRQ_TX_PATH_EXIT_LPI_MODE)
2276                                priv->tx_path_in_lpi_mode = false;
2277                }
2278        }
2279
2280        /* To handle DMA interrupts */
2281        stmmac_dma_interrupt(priv);
2282
2283        return IRQ_HANDLED;
2284}
2285
2286#ifdef CONFIG_NET_POLL_CONTROLLER
2287/* Polling receive - used by NETCONSOLE and other diagnostic tools
2288 * to allow network I/O with interrupts disabled.
2289 */
2290static void stmmac_poll_controller(struct net_device *dev)
2291{
2292        disable_irq(dev->irq);
2293        stmmac_interrupt(dev->irq, dev);
2294        enable_irq(dev->irq);
2295}
2296#endif
2297
2298/**
2299 *  stmmac_ioctl - Entry point for the Ioctl
2300 *  @dev: Device pointer.
2301 *  @rq: An IOCTL specefic structure, that can contain a pointer to
2302 *  a proprietary structure used to pass information to the driver.
2303 *  @cmd: IOCTL command
2304 *  Description:
2305 *  Currently it supports the phy_mii_ioctl(...) and HW time stamping.
2306 */
2307static int stmmac_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2308{
2309        struct stmmac_priv *priv = netdev_priv(dev);
2310        int ret = -EOPNOTSUPP;
2311
2312        if (!netif_running(dev))
2313                return -EINVAL;
2314
2315        switch (cmd) {
2316        case SIOCGMIIPHY:
2317        case SIOCGMIIREG:
2318        case SIOCSMIIREG:
2319                if (!priv->phydev)
2320                        return -EINVAL;
2321                ret = phy_mii_ioctl(priv->phydev, rq, cmd);
2322                break;
2323        case SIOCSHWTSTAMP:
2324                ret = stmmac_hwtstamp_ioctl(dev, rq);
2325                break;
2326        default:
2327                break;
2328        }
2329
2330        return ret;
2331}
2332
2333#ifdef CONFIG_STMMAC_DEBUG_FS
2334static struct dentry *stmmac_fs_dir;
2335static struct dentry *stmmac_rings_status;
2336static struct dentry *stmmac_dma_cap;
2337
2338static void sysfs_display_ring(void *head, int size, int extend_desc,
2339                               struct seq_file *seq)
2340{
2341        int i;
2342        struct dma_extended_desc *ep = (struct dma_extended_desc *)head;
2343        struct dma_desc *p = (struct dma_desc *)head;
2344
2345        for (i = 0; i < size; i++) {
2346                u64 x;
2347                if (extend_desc) {
2348                        x = *(u64 *) ep;
2349                        seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2350                                   i, (unsigned int)virt_to_phys(ep),
2351                                   (unsigned int)x, (unsigned int)(x >> 32),
2352                                   ep->basic.des2, ep->basic.des3);
2353                        ep++;
2354                } else {
2355                        x = *(u64 *) p;
2356                        seq_printf(seq, "%d [0x%x]: 0x%x 0x%x 0x%x 0x%x\n",
2357                                   i, (unsigned int)virt_to_phys(ep),
2358                                   (unsigned int)x, (unsigned int)(x >> 32),
2359                                   p->des2, p->des3);
2360                        p++;
2361                }
2362                seq_printf(seq, "\n");
2363        }
2364}
2365
2366static int stmmac_sysfs_ring_read(struct seq_file *seq, void *v)
2367{
2368        struct net_device *dev = seq->private;
2369        struct stmmac_priv *priv = netdev_priv(dev);
2370        unsigned int txsize = priv->dma_tx_size;
2371        unsigned int rxsize = priv->dma_rx_size;
2372
2373        if (priv->extend_desc) {
2374                seq_printf(seq, "Extended RX descriptor ring:\n");
2375                sysfs_display_ring((void *)priv->dma_erx, rxsize, 1, seq);
2376                seq_printf(seq, "Extended TX descriptor ring:\n");
2377                sysfs_display_ring((void *)priv->dma_etx, txsize, 1, seq);
2378        } else {
2379                seq_printf(seq, "RX descriptor ring:\n");
2380                sysfs_display_ring((void *)priv->dma_rx, rxsize, 0, seq);
2381                seq_printf(seq, "TX descriptor ring:\n");
2382                sysfs_display_ring((void *)priv->dma_tx, txsize, 0, seq);
2383        }
2384
2385        return 0;
2386}
2387
2388static int stmmac_sysfs_ring_open(struct inode *inode, struct file *file)
2389{
2390        return single_open(file, stmmac_sysfs_ring_read, inode->i_private);
2391}
2392
2393static const struct file_operations stmmac_rings_status_fops = {
2394        .owner = THIS_MODULE,
2395        .open = stmmac_sysfs_ring_open,
2396        .read = seq_read,
2397        .llseek = seq_lseek,
2398        .release = single_release,
2399};
2400
2401static int stmmac_sysfs_dma_cap_read(struct seq_file *seq, void *v)
2402{
2403        struct net_device *dev = seq->private;
2404        struct stmmac_priv *priv = netdev_priv(dev);
2405
2406        if (!priv->hw_cap_support) {
2407                seq_printf(seq, "DMA HW features not supported\n");
2408                return 0;
2409        }
2410
2411        seq_printf(seq, "==============================\n");
2412        seq_printf(seq, "\tDMA HW features\n");
2413        seq_printf(seq, "==============================\n");
2414
2415        seq_printf(seq, "\t10/100 Mbps %s\n",
2416                   (priv->dma_cap.mbps_10_100) ? "Y" : "N");
2417        seq_printf(seq, "\t1000 Mbps %s\n",
2418                   (priv->dma_cap.mbps_1000) ? "Y" : "N");
2419        seq_printf(seq, "\tHalf duple %s\n",
2420                   (priv->dma_cap.half_duplex) ? "Y" : "N");
2421        seq_printf(seq, "\tHash Filter: %s\n",
2422                   (priv->dma_cap.hash_filter) ? "Y" : "N");
2423        seq_printf(seq, "\tMultiple MAC address registers: %s\n",
2424                   (priv->dma_cap.multi_addr) ? "Y" : "N");
2425        seq_printf(seq, "\tPCS (TBI/SGMII/RTBI PHY interfatces): %s\n",
2426                   (priv->dma_cap.pcs) ? "Y" : "N");
2427        seq_printf(seq, "\tSMA (MDIO) Interface: %s\n",
2428                   (priv->dma_cap.sma_mdio) ? "Y" : "N");
2429        seq_printf(seq, "\tPMT Remote wake up: %s\n",
2430                   (priv->dma_cap.pmt_remote_wake_up) ? "Y" : "N");
2431        seq_printf(seq, "\tPMT Magic Frame: %s\n",
2432                   (priv->dma_cap.pmt_magic_frame) ? "Y" : "N");
2433        seq_printf(seq, "\tRMON module: %s\n",
2434                   (priv->dma_cap.rmon) ? "Y" : "N");
2435        seq_printf(seq, "\tIEEE 1588-2002 Time Stamp: %s\n",
2436                   (priv->dma_cap.time_stamp) ? "Y" : "N");
2437        seq_printf(seq, "\tIEEE 1588-2008 Advanced Time Stamp:%s\n",
2438                   (priv->dma_cap.atime_stamp) ? "Y" : "N");
2439        seq_printf(seq, "\t802.3az - Energy-Efficient Ethernet (EEE) %s\n",
2440                   (priv->dma_cap.eee) ? "Y" : "N");
2441        seq_printf(seq, "\tAV features: %s\n", (priv->dma_cap.av) ? "Y" : "N");
2442        seq_printf(seq, "\tChecksum Offload in TX: %s\n",
2443                   (priv->dma_cap.tx_coe) ? "Y" : "N");
2444        seq_printf(seq, "\tIP Checksum Offload (type1) in RX: %s\n",
2445                   (priv->dma_cap.rx_coe_type1) ? "Y" : "N");
2446        seq_printf(seq, "\tIP Checksum Offload (type2) in RX: %s\n",
2447                   (priv->dma_cap.rx_coe_type2) ? "Y" : "N");
2448        seq_printf(seq, "\tRXFIFO > 2048bytes: %s\n",
2449                   (priv->dma_cap.rxfifo_over_2048) ? "Y" : "N");
2450        seq_printf(seq, "\tNumber of Additional RX channel: %d\n",
2451                   priv->dma_cap.number_rx_channel);
2452        seq_printf(seq, "\tNumber of Additional TX channel: %d\n",
2453                   priv->dma_cap.number_tx_channel);
2454        seq_printf(seq, "\tEnhanced descriptors: %s\n",
2455                   (priv->dma_cap.enh_desc) ? "Y" : "N");
2456
2457        return 0;
2458}
2459
2460static int stmmac_sysfs_dma_cap_open(struct inode *inode, struct file *file)
2461{
2462        return single_open(file, stmmac_sysfs_dma_cap_read, inode->i_private);
2463}
2464
2465static const struct file_operations stmmac_dma_cap_fops = {
2466        .owner = THIS_MODULE,
2467        .open = stmmac_sysfs_dma_cap_open,
2468        .read = seq_read,
2469        .llseek = seq_lseek,
2470        .release = single_release,
2471};
2472
2473static int stmmac_init_fs(struct net_device *dev)
2474{
2475        /* Create debugfs entries */
2476        stmmac_fs_dir = debugfs_create_dir(STMMAC_RESOURCE_NAME, NULL);
2477
2478        if (!stmmac_fs_dir || IS_ERR(stmmac_fs_dir)) {
2479                pr_err("ERROR %s, debugfs create directory failed\n",
2480                       STMMAC_RESOURCE_NAME);
2481
2482                return -ENOMEM;
2483        }
2484
2485        /* Entry to report DMA RX/TX rings */
2486        stmmac_rings_status = debugfs_create_file("descriptors_status",
2487                                                  S_IRUGO, stmmac_fs_dir, dev,
2488                                                  &stmmac_rings_status_fops);
2489
2490        if (!stmmac_rings_status || IS_ERR(stmmac_rings_status)) {
2491                pr_info("ERROR creating stmmac ring debugfs file\n");
2492                debugfs_remove(stmmac_fs_dir);
2493
2494                return -ENOMEM;
2495        }
2496
2497        /* Entry to report the DMA HW features */
2498        stmmac_dma_cap = debugfs_create_file("dma_cap", S_IRUGO, stmmac_fs_dir,
2499                                             dev, &stmmac_dma_cap_fops);
2500
2501        if (!stmmac_dma_cap || IS_ERR(stmmac_dma_cap)) {
2502                pr_info("ERROR creating stmmac MMC debugfs file\n");
2503                debugfs_remove(stmmac_rings_status);
2504                debugfs_remove(stmmac_fs_dir);
2505
2506                return -ENOMEM;
2507        }
2508
2509        return 0;
2510}
2511
2512static void stmmac_exit_fs(void)
2513{
2514        debugfs_remove(stmmac_rings_status);
2515        debugfs_remove(stmmac_dma_cap);
2516        debugfs_remove(stmmac_fs_dir);
2517}
2518#endif /* CONFIG_STMMAC_DEBUG_FS */
2519
2520static const struct net_device_ops stmmac_netdev_ops = {
2521        .ndo_open = stmmac_open,
2522        .ndo_start_xmit = stmmac_xmit,
2523        .ndo_stop = stmmac_release,
2524        .ndo_change_mtu = stmmac_change_mtu,
2525        .ndo_fix_features = stmmac_fix_features,
2526        .ndo_set_rx_mode = stmmac_set_rx_mode,
2527        .ndo_tx_timeout = stmmac_tx_timeout,
2528        .ndo_do_ioctl = stmmac_ioctl,
2529        .ndo_set_config = stmmac_config,
2530#ifdef CONFIG_NET_POLL_CONTROLLER
2531        .ndo_poll_controller = stmmac_poll_controller,
2532#endif
2533        .ndo_set_mac_address = eth_mac_addr,
2534};
2535
2536/**
2537 *  stmmac_hw_init - Init the MAC device
2538 *  @priv: driver private structure
2539 *  Description: this function detects which MAC device
2540 *  (GMAC/MAC10-100) has to attached, checks the HW capability
2541 *  (if supported) and sets the driver's features (for example
2542 *  to use the ring or chaine mode or support the normal/enh
2543 *  descriptor structure).
2544 */
2545static int stmmac_hw_init(struct stmmac_priv *priv)
2546{
2547        int ret;
2548        struct mac_device_info *mac;
2549
2550        /* Identify the MAC HW device */
2551        if (priv->plat->has_gmac) {
2552                priv->dev->priv_flags |= IFF_UNICAST_FLT;
2553                mac = dwmac1000_setup(priv->ioaddr);
2554        } else {
2555                mac = dwmac100_setup(priv->ioaddr);
2556        }
2557        if (!mac)
2558                return -ENOMEM;
2559
2560        priv->hw = mac;
2561
2562        /* Get and dump the chip ID */
2563        priv->synopsys_id = stmmac_get_synopsys_id(priv);
2564
2565        /* To use alternate (extended) or normal descriptor structures */
2566        stmmac_selec_desc_mode(priv);
2567
2568        /* To use the chained or ring mode */
2569        if (chain_mode) {
2570                priv->hw->chain = &chain_mode_ops;
2571                pr_info(" Chain mode enabled\n");
2572                priv->mode = STMMAC_CHAIN_MODE;
2573        } else {
2574                priv->hw->ring = &ring_mode_ops;
2575                pr_info(" Ring mode enabled\n");
2576                priv->mode = STMMAC_RING_MODE;
2577        }
2578
2579        /* Get the HW capability (new GMAC newer than 3.50a) */
2580        priv->hw_cap_support = stmmac_get_hw_features(priv);
2581        if (priv->hw_cap_support) {
2582                pr_info(" DMA HW capability register supported");
2583
2584                /* We can override some gmac/dma configuration fields: e.g.
2585                 * enh_desc, tx_coe (e.g. that are passed through the
2586                 * platform) with the values from the HW capability
2587                 * register (if supported).
2588                 */
2589                priv->plat->enh_desc = priv->dma_cap.enh_desc;
2590                priv->plat->pmt = priv->dma_cap.pmt_remote_wake_up;
2591
2592                priv->plat->tx_coe = priv->dma_cap.tx_coe;
2593
2594                if (priv->dma_cap.rx_coe_type2)
2595                        priv->plat->rx_coe = STMMAC_RX_COE_TYPE2;
2596                else if (priv->dma_cap.rx_coe_type1)
2597                        priv->plat->rx_coe = STMMAC_RX_COE_TYPE1;
2598
2599        } else
2600                pr_info(" No HW DMA feature register supported");
2601
2602        ret = priv->hw->mac->rx_ipc(priv->ioaddr);
2603        if (!ret) {
2604                pr_warn(" RX IPC Checksum Offload not configured.\n");
2605                priv->plat->rx_coe = STMMAC_RX_COE_NONE;
2606        }
2607
2608        if (priv->plat->rx_coe)
2609                pr_info(" RX Checksum Offload Engine supported (type %d)\n",
2610                        priv->plat->rx_coe);
2611        if (priv->plat->tx_coe)
2612                pr_info(" TX Checksum insertion supported\n");
2613
2614        if (priv->plat->pmt) {
2615                pr_info(" Wake-Up On Lan supported\n");
2616                device_set_wakeup_capable(priv->device, 1);
2617        }
2618
2619        return 0;
2620}
2621
2622/**
2623 * stmmac_dvr_probe
2624 * @device: device pointer
2625 * @plat_dat: platform data pointer
2626 * @addr: iobase memory address
2627 * Description: this is the main probe function used to
2628 * call the alloc_etherdev, allocate the priv structure.
2629 */
2630struct stmmac_priv *stmmac_dvr_probe(struct device *device,
2631                                     struct plat_stmmacenet_data *plat_dat,
2632                                     void __iomem *addr)
2633{
2634        int ret = 0;
2635        struct net_device *ndev = NULL;
2636        struct stmmac_priv *priv;
2637
2638        ndev = alloc_etherdev(sizeof(struct stmmac_priv));
2639        if (!ndev)
2640                return NULL;
2641
2642        SET_NETDEV_DEV(ndev, device);
2643
2644        priv = netdev_priv(ndev);
2645        priv->device = device;
2646        priv->dev = ndev;
2647
2648        ether_setup(ndev);
2649
2650        stmmac_set_ethtool_ops(ndev);
2651        priv->pause = pause;
2652        priv->plat = plat_dat;
2653        priv->ioaddr = addr;
2654        priv->dev->base_addr = (unsigned long)addr;
2655
2656        /* Verify driver arguments */
2657        stmmac_verify_args();
2658
2659        /* Override with kernel parameters if supplied XXX CRS XXX
2660         * this needs to have multiple instances
2661         */
2662        if ((phyaddr >= 0) && (phyaddr <= 31))
2663                priv->plat->phy_addr = phyaddr;
2664
2665        /* Init MAC and get the capabilities */
2666        ret = stmmac_hw_init(priv);
2667        if (ret)
2668                goto error_free_netdev;
2669
2670        ndev->netdev_ops = &stmmac_netdev_ops;
2671
2672        ndev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | NETIF_F_IPV6_CSUM |
2673                            NETIF_F_RXCSUM;
2674        ndev->features |= ndev->hw_features | NETIF_F_HIGHDMA;
2675        ndev->watchdog_timeo = msecs_to_jiffies(watchdog);
2676#ifdef STMMAC_VLAN_TAG_USED
2677        /* Both mac100 and gmac support receive VLAN tag detection */
2678        ndev->features |= NETIF_F_HW_VLAN_CTAG_RX;
2679#endif
2680        priv->msg_enable = netif_msg_init(debug, default_msg_level);
2681
2682        if (flow_ctrl)
2683                priv->flow_ctrl = FLOW_AUTO;    /* RX/TX pause on */
2684
2685        /* Rx Watchdog is available in the COREs newer than the 3.40.
2686         * In some case, for example on bugged HW this feature
2687         * has to be disable and this can be done by passing the
2688         * riwt_off field from the platform.
2689         */
2690        if ((priv->synopsys_id >= DWMAC_CORE_3_50) && (!priv->plat->riwt_off)) {
2691                priv->use_riwt = 1;
2692                pr_info(" Enable RX Mitigation via HW Watchdog Timer\n");
2693        }
2694
2695        netif_napi_add(ndev, &priv->napi, stmmac_poll, 64);
2696
2697        spin_lock_init(&priv->lock);
2698        spin_lock_init(&priv->tx_lock);
2699
2700        ret = register_netdev(ndev);
2701        if (ret) {
2702                pr_err("%s: ERROR %i registering the device\n", __func__, ret);
2703                goto error_netdev_register;
2704        }
2705
2706        priv->stmmac_clk = clk_get(priv->device, STMMAC_RESOURCE_NAME);
2707        if (IS_ERR(priv->stmmac_clk)) {
2708                pr_warn("%s: warning: cannot get CSR clock\n", __func__);
2709                goto error_clk_get;
2710        }
2711
2712        /* If a specific clk_csr value is passed from the platform
2713         * this means that the CSR Clock Range selection cannot be
2714         * changed at run-time and it is fixed. Viceversa the driver'll try to
2715         * set the MDC clock dynamically according to the csr actual
2716         * clock input.
2717         */
2718        if (!priv->plat->clk_csr)
2719                stmmac_clk_csr_set(priv);
2720        else
2721                priv->clk_csr = priv->plat->clk_csr;
2722
2723        stmmac_check_pcs_mode(priv);
2724
2725        if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2726            priv->pcs != STMMAC_PCS_RTBI) {
2727                /* MDIO bus Registration */
2728                ret = stmmac_mdio_register(ndev);
2729                if (ret < 0) {
2730                        pr_debug("%s: MDIO bus (id: %d) registration failed",
2731                                 __func__, priv->plat->bus_id);
2732                        goto error_mdio_register;
2733                }
2734        }
2735
2736        return priv;
2737
2738error_mdio_register:
2739        clk_put(priv->stmmac_clk);
2740error_clk_get:
2741        unregister_netdev(ndev);
2742error_netdev_register:
2743        netif_napi_del(&priv->napi);
2744error_free_netdev:
2745        free_netdev(ndev);
2746
2747        return NULL;
2748}
2749
2750/**
2751 * stmmac_dvr_remove
2752 * @ndev: net device pointer
2753 * Description: this function resets the TX/RX processes, disables the MAC RX/TX
2754 * changes the link status, releases the DMA descriptor rings.
2755 */
2756int stmmac_dvr_remove(struct net_device *ndev)
2757{
2758        struct stmmac_priv *priv = netdev_priv(ndev);
2759
2760        pr_info("%s:\n\tremoving driver", __func__);
2761
2762        priv->hw->dma->stop_rx(priv->ioaddr);
2763        priv->hw->dma->stop_tx(priv->ioaddr);
2764
2765        stmmac_set_mac(priv->ioaddr, false);
2766        if (priv->pcs != STMMAC_PCS_RGMII && priv->pcs != STMMAC_PCS_TBI &&
2767            priv->pcs != STMMAC_PCS_RTBI)
2768                stmmac_mdio_unregister(ndev);
2769        netif_carrier_off(ndev);
2770        unregister_netdev(ndev);
2771        free_netdev(ndev);
2772
2773        return 0;
2774}
2775
2776#ifdef CONFIG_PM
2777int stmmac_suspend(struct net_device *ndev)
2778{
2779        struct stmmac_priv *priv = netdev_priv(ndev);
2780        unsigned long flags;
2781
2782        if (!ndev || !netif_running(ndev))
2783                return 0;
2784
2785        if (priv->phydev)
2786                phy_stop(priv->phydev);
2787
2788        spin_lock_irqsave(&priv->lock, flags);
2789
2790        netif_device_detach(ndev);
2791        netif_stop_queue(ndev);
2792
2793        napi_disable(&priv->napi);
2794
2795        /* Stop TX/RX DMA */
2796        priv->hw->dma->stop_tx(priv->ioaddr);
2797        priv->hw->dma->stop_rx(priv->ioaddr);
2798
2799        stmmac_clear_descriptors(priv);
2800
2801        /* Enable Power down mode by programming the PMT regs */
2802        if (device_may_wakeup(priv->device))
2803                priv->hw->mac->pmt(priv->ioaddr, priv->wolopts);
2804        else {
2805                stmmac_set_mac(priv->ioaddr, false);
2806                /* Disable clock in case of PWM is off */
2807                clk_disable_unprepare(priv->stmmac_clk);
2808        }
2809        spin_unlock_irqrestore(&priv->lock, flags);
2810        return 0;
2811}
2812
2813int stmmac_resume(struct net_device *ndev)
2814{
2815        struct stmmac_priv *priv = netdev_priv(ndev);
2816        unsigned long flags;
2817
2818        if (!netif_running(ndev))
2819                return 0;
2820
2821        spin_lock_irqsave(&priv->lock, flags);
2822
2823        /* Power Down bit, into the PM register, is cleared
2824         * automatically as soon as a magic packet or a Wake-up frame
2825         * is received. Anyway, it's better to manually clear
2826         * this bit because it can generate problems while resuming
2827         * from another devices (e.g. serial console).
2828         */
2829        if (device_may_wakeup(priv->device))
2830                priv->hw->mac->pmt(priv->ioaddr, 0);
2831        else
2832                /* enable the clk prevously disabled */
2833                clk_prepare_enable(priv->stmmac_clk);
2834
2835        netif_device_attach(ndev);
2836
2837        /* Enable the MAC and DMA */
2838        stmmac_set_mac(priv->ioaddr, true);
2839        priv->hw->dma->start_tx(priv->ioaddr);
2840        priv->hw->dma->start_rx(priv->ioaddr);
2841
2842        napi_enable(&priv->napi);
2843
2844        netif_start_queue(ndev);
2845
2846        spin_unlock_irqrestore(&priv->lock, flags);
2847
2848        if (priv->phydev)
2849                phy_start(priv->phydev);
2850
2851        return 0;
2852}
2853
2854int stmmac_freeze(struct net_device *ndev)
2855{
2856        if (!ndev || !netif_running(ndev))
2857                return 0;
2858
2859        return stmmac_release(ndev);
2860}
2861
2862int stmmac_restore(struct net_device *ndev)
2863{
2864        if (!ndev || !netif_running(ndev))
2865                return 0;
2866
2867        return stmmac_open(ndev);
2868}
2869#endif /* CONFIG_PM */
2870
2871/* Driver can be configured w/ and w/ both PCI and Platf drivers
2872 * depending on the configuration selected.
2873 */
2874static int __init stmmac_init(void)
2875{
2876        int ret;
2877
2878        ret = stmmac_register_platform();
2879        if (ret)
2880                goto err;
2881        ret = stmmac_register_pci();
2882        if (ret)
2883                goto err_pci;
2884        return 0;
2885err_pci:
2886        stmmac_unregister_platform();
2887err:
2888        pr_err("stmmac: driver registration failed\n");
2889        return ret;
2890}
2891
2892static void __exit stmmac_exit(void)
2893{
2894        stmmac_unregister_platform();
2895        stmmac_unregister_pci();
2896}
2897
2898module_init(stmmac_init);
2899module_exit(stmmac_exit);
2900
2901#ifndef MODULE
2902static int __init stmmac_cmdline_opt(char *str)
2903{
2904        char *opt;
2905
2906        if (!str || !*str)
2907                return -EINVAL;
2908        while ((opt = strsep(&str, ",")) != NULL) {
2909                if (!strncmp(opt, "debug:", 6)) {
2910                        if (kstrtoint(opt + 6, 0, &debug))
2911                                goto err;
2912                } else if (!strncmp(opt, "phyaddr:", 8)) {
2913                        if (kstrtoint(opt + 8, 0, &phyaddr))
2914                                goto err;
2915                } else if (!strncmp(opt, "dma_txsize:", 11)) {
2916                        if (kstrtoint(opt + 11, 0, &dma_txsize))
2917                                goto err;
2918                } else if (!strncmp(opt, "dma_rxsize:", 11)) {
2919                        if (kstrtoint(opt + 11, 0, &dma_rxsize))
2920                                goto err;
2921                } else if (!strncmp(opt, "buf_sz:", 7)) {
2922                        if (kstrtoint(opt + 7, 0, &buf_sz))
2923                                goto err;
2924                } else if (!strncmp(opt, "tc:", 3)) {
2925                        if (kstrtoint(opt + 3, 0, &tc))
2926                                goto err;
2927                } else if (!strncmp(opt, "watchdog:", 9)) {
2928                        if (kstrtoint(opt + 9, 0, &watchdog))
2929                                goto err;
2930                } else if (!strncmp(opt, "flow_ctrl:", 10)) {
2931                        if (kstrtoint(opt + 10, 0, &flow_ctrl))
2932                                goto err;
2933                } else if (!strncmp(opt, "pause:", 6)) {
2934                        if (kstrtoint(opt + 6, 0, &pause))
2935                                goto err;
2936                } else if (!strncmp(opt, "eee_timer:", 10)) {
2937                        if (kstrtoint(opt + 10, 0, &eee_timer))
2938                                goto err;
2939                } else if (!strncmp(opt, "chain_mode:", 11)) {
2940                        if (kstrtoint(opt + 11, 0, &chain_mode))
2941                                goto err;
2942                }
2943        }
2944        return 0;
2945
2946err:
2947        pr_err("%s: ERROR broken module parameter conversion", __func__);
2948        return -EINVAL;
2949}
2950
2951__setup("stmmaceth=", stmmac_cmdline_opt);
2952#endif /* MODULE */
2953
2954MODULE_DESCRIPTION("STMMAC 10/100/1000 Ethernet device driver");
2955MODULE_AUTHOR("Giuseppe Cavallaro <peppe.cavallaro@st.com>");
2956MODULE_LICENSE("GPL");
2957