linux/drivers/net/irda/sh_sir.c
<<
>>
Prefs
   1/*
   2 * SuperH IrDA Driver
   3 *
   4 * Copyright (C) 2009 Renesas Solutions Corp.
   5 * Kuninori Morimoto <morimoto.kuninori@renesas.com>
   6 *
   7 * Based on bfin_sir.c
   8 * Copyright 2006-2009 Analog Devices Inc.
   9 *
  10 * This program is free software; you can redistribute it and/or modify
  11 * it under the terms of the GNU General Public License version 2 as
  12 * published by the Free Software Foundation.
  13 */
  14
  15#include <linux/io.h>
  16#include <linux/interrupt.h>
  17#include <linux/module.h>
  18#include <linux/platform_device.h>
  19#include <linux/slab.h>
  20#include <net/irda/wrapper.h>
  21#include <net/irda/irda_device.h>
  22#include <asm/clock.h>
  23
  24#define DRIVER_NAME "sh_sir"
  25
  26#define RX_PHASE        (1 << 0)
  27#define TX_PHASE        (1 << 1)
  28#define TX_COMP_PHASE   (1 << 2) /* tx complete */
  29#define NONE_PHASE      (1 << 31)
  30
  31#define IRIF_RINTCLR    0x0016 /* DMA rx interrupt source clear */
  32#define IRIF_TINTCLR    0x0018 /* DMA tx interrupt source clear */
  33#define IRIF_SIR0       0x0020 /* IrDA-SIR10 control */
  34#define IRIF_SIR1       0x0022 /* IrDA-SIR10 baudrate error correction */
  35#define IRIF_SIR2       0x0024 /* IrDA-SIR10 baudrate count */
  36#define IRIF_SIR3       0x0026 /* IrDA-SIR10 status */
  37#define IRIF_SIR_FRM    0x0028 /* Hardware frame processing set */
  38#define IRIF_SIR_EOF    0x002A /* EOF value */
  39#define IRIF_SIR_FLG    0x002C /* Flag clear */
  40#define IRIF_UART_STS2  0x002E /* UART status 2 */
  41#define IRIF_UART0      0x0030 /* UART control */
  42#define IRIF_UART1      0x0032 /* UART status */
  43#define IRIF_UART2      0x0034 /* UART mode */
  44#define IRIF_UART3      0x0036 /* UART transmit data */
  45#define IRIF_UART4      0x0038 /* UART receive data */
  46#define IRIF_UART5      0x003A /* UART interrupt mask */
  47#define IRIF_UART6      0x003C /* UART baud rate error correction */
  48#define IRIF_UART7      0x003E /* UART baud rate count set */
  49#define IRIF_CRC0       0x0040 /* CRC engine control */
  50#define IRIF_CRC1       0x0042 /* CRC engine input data */
  51#define IRIF_CRC2       0x0044 /* CRC engine calculation */
  52#define IRIF_CRC3       0x0046 /* CRC engine output data 1 */
  53#define IRIF_CRC4       0x0048 /* CRC engine output data 2 */
  54
  55/* IRIF_SIR0 */
  56#define IRTPW           (1 << 1) /* transmit pulse width select */
  57#define IRERRC          (1 << 0) /* Clear receive pulse width error */
  58
  59/* IRIF_SIR3 */
  60#define IRERR           (1 << 0) /* received pulse width Error */
  61
  62/* IRIF_SIR_FRM */
  63#define EOFD            (1 << 9) /* EOF detection flag */
  64#define FRER            (1 << 8) /* Frame Error bit */
  65#define FRP             (1 << 0) /* Frame processing set */
  66
  67/* IRIF_UART_STS2 */
  68#define IRSME           (1 << 6) /* Receive Sum     Error flag */
  69#define IROVE           (1 << 5) /* Receive Overrun Error flag */
  70#define IRFRE           (1 << 4) /* Receive Framing Error flag */
  71#define IRPRE           (1 << 3) /* Receive Parity  Error flag */
  72
  73/* IRIF_UART0_*/
  74#define TBEC            (1 << 2) /* Transmit Data Clear */
  75#define RIE             (1 << 1) /* Receive Enable */
  76#define TIE             (1 << 0) /* Transmit Enable */
  77
  78/* IRIF_UART1 */
  79#define URSME           (1 << 6) /* Receive Sum Error Flag */
  80#define UROVE           (1 << 5) /* Receive Overrun Error Flag */
  81#define URFRE           (1 << 4) /* Receive Framing Error Flag */
  82#define URPRE           (1 << 3) /* Receive Parity Error Flag */
  83#define RBF             (1 << 2) /* Receive Buffer Full Flag */
  84#define TSBE            (1 << 1) /* Transmit Shift Buffer Empty Flag */
  85#define TBE             (1 << 0) /* Transmit Buffer Empty flag */
  86#define TBCOMP          (TSBE | TBE)
  87
  88/* IRIF_UART5 */
  89#define RSEIM           (1 << 6) /* Receive Sum Error Flag IRQ Mask */
  90#define RBFIM           (1 << 2) /* Receive Buffer Full Flag IRQ Mask */
  91#define TSBEIM          (1 << 1) /* Transmit Shift Buffer Empty Flag IRQ Mask */
  92#define TBEIM           (1 << 0) /* Transmit Buffer Empty Flag IRQ Mask */
  93#define RX_MASK         (RSEIM  | RBFIM)
  94
  95/* IRIF_CRC0 */
  96#define CRC_RST         (1 << 15) /* CRC Engine Reset */
  97#define CRC_CT_MASK     0x0FFF
  98
  99/************************************************************************
 100
 101
 102                        structure
 103
 104
 105************************************************************************/
 106struct sh_sir_self {
 107        void __iomem            *membase;
 108        unsigned int             irq;
 109        struct clk              *clk;
 110
 111        struct net_device       *ndev;
 112
 113        struct irlap_cb         *irlap;
 114        struct qos_info         qos;
 115
 116        iobuff_t                tx_buff;
 117        iobuff_t                rx_buff;
 118};
 119
 120/************************************************************************
 121
 122
 123                        common function
 124
 125
 126************************************************************************/
 127static void sh_sir_write(struct sh_sir_self *self, u32 offset, u16 data)
 128{
 129        iowrite16(data, self->membase + offset);
 130}
 131
 132static u16 sh_sir_read(struct sh_sir_self *self, u32 offset)
 133{
 134        return ioread16(self->membase + offset);
 135}
 136
 137static void sh_sir_update_bits(struct sh_sir_self *self, u32 offset,
 138                               u16 mask, u16 data)
 139{
 140        u16 old, new;
 141
 142        old = sh_sir_read(self, offset);
 143        new = (old & ~mask) | data;
 144        if (old != new)
 145                sh_sir_write(self, offset, new);
 146}
 147
 148/************************************************************************
 149
 150
 151                        CRC function
 152
 153
 154************************************************************************/
 155static void sh_sir_crc_reset(struct sh_sir_self *self)
 156{
 157        sh_sir_write(self, IRIF_CRC0, CRC_RST);
 158}
 159
 160static void sh_sir_crc_add(struct sh_sir_self *self, u8 data)
 161{
 162        sh_sir_write(self, IRIF_CRC1, (u16)data);
 163}
 164
 165static u16 sh_sir_crc_cnt(struct sh_sir_self *self)
 166{
 167        return CRC_CT_MASK & sh_sir_read(self, IRIF_CRC0);
 168}
 169
 170static u16 sh_sir_crc_out(struct sh_sir_self *self)
 171{
 172        return sh_sir_read(self, IRIF_CRC4);
 173}
 174
 175static int sh_sir_crc_init(struct sh_sir_self *self)
 176{
 177        struct device *dev = &self->ndev->dev;
 178        int ret = -EIO;
 179        u16 val;
 180
 181        sh_sir_crc_reset(self);
 182
 183        sh_sir_crc_add(self, 0xCC);
 184        sh_sir_crc_add(self, 0xF5);
 185        sh_sir_crc_add(self, 0xF1);
 186        sh_sir_crc_add(self, 0xA7);
 187
 188        val = sh_sir_crc_cnt(self);
 189        if (4 != val) {
 190                dev_err(dev, "CRC count error %x\n", val);
 191                goto crc_init_out;
 192        }
 193
 194        val = sh_sir_crc_out(self);
 195        if (0x51DF != val) {
 196                dev_err(dev, "CRC result error%x\n", val);
 197                goto crc_init_out;
 198        }
 199
 200        ret = 0;
 201
 202crc_init_out:
 203
 204        sh_sir_crc_reset(self);
 205        return ret;
 206}
 207
 208/************************************************************************
 209
 210
 211                        baud rate functions
 212
 213
 214************************************************************************/
 215#define SCLK_BASE 1843200 /* 1.8432MHz */
 216
 217static u32 sh_sir_find_sclk(struct clk *irda_clk)
 218{
 219        struct cpufreq_frequency_table *freq_table = irda_clk->freq_table;
 220        struct clk *pclk = clk_get(NULL, "peripheral_clk");
 221        u32 limit, min = 0xffffffff, tmp;
 222        int i, index = 0;
 223
 224        limit = clk_get_rate(pclk);
 225        clk_put(pclk);
 226
 227        /* IrDA can not set over peripheral_clk */
 228        for (i = 0;
 229             freq_table[i].frequency != CPUFREQ_TABLE_END;
 230             i++) {
 231                u32 freq = freq_table[i].frequency;
 232
 233                if (freq == CPUFREQ_ENTRY_INVALID)
 234                        continue;
 235
 236                /* IrDA should not over peripheral_clk */
 237                if (freq > limit)
 238                        continue;
 239
 240                tmp = freq % SCLK_BASE;
 241                if (tmp < min) {
 242                        min = tmp;
 243                        index = i;
 244                }
 245        }
 246
 247        return freq_table[index].frequency;
 248}
 249
 250#define ERR_ROUNDING(a) ((a + 5000) / 10000)
 251static int sh_sir_set_baudrate(struct sh_sir_self *self, u32 baudrate)
 252{
 253        struct clk *clk;
 254        struct device *dev = &self->ndev->dev;
 255        u32 rate;
 256        u16 uabca, uabc;
 257        u16 irbca, irbc;
 258        u32 min, rerr, tmp;
 259        int i;
 260
 261        /* Baud Rate Error Correction x 10000 */
 262        u32 rate_err_array[] = {
 263                   0,  625, 1250, 1875,
 264                2500, 3125, 3750, 4375,
 265                5000, 5625, 6250, 6875,
 266                7500, 8125, 8750, 9375,
 267        };
 268
 269        /*
 270         * FIXME
 271         *
 272         * it support 9600 only now
 273         */
 274        switch (baudrate) {
 275        case 9600:
 276                break;
 277        default:
 278                dev_err(dev, "un-supported baudrate %d\n", baudrate);
 279                return -EIO;
 280        }
 281
 282        clk = clk_get(NULL, "irda_clk");
 283        if (IS_ERR(clk)) {
 284                dev_err(dev, "can not get irda_clk\n");
 285                return -EIO;
 286        }
 287
 288        clk_set_rate(clk, sh_sir_find_sclk(clk));
 289        rate = clk_get_rate(clk);
 290        clk_put(clk);
 291
 292        dev_dbg(dev, "selected sclk = %d\n", rate);
 293
 294        /*
 295         * CALCULATION
 296         *
 297         * 1843200 = system rate / (irbca + (irbc + 1))
 298         */
 299
 300        irbc = rate / SCLK_BASE;
 301
 302        tmp = rate - (SCLK_BASE * irbc);
 303        tmp *= 10000;
 304
 305        rerr = tmp / SCLK_BASE;
 306
 307        min = 0xffffffff;
 308        irbca = 0;
 309        for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
 310                tmp = abs(rate_err_array[i] - rerr);
 311                if (min > tmp) {
 312                        min = tmp;
 313                        irbca = i;
 314                }
 315        }
 316
 317        tmp = rate / (irbc + ERR_ROUNDING(rate_err_array[irbca]));
 318        if ((SCLK_BASE / 100) < abs(tmp - SCLK_BASE))
 319                dev_warn(dev, "IrDA freq error margin over %d\n", tmp);
 320
 321        dev_dbg(dev, "target = %d, result = %d, infrared = %d.%d\n",
 322               SCLK_BASE, tmp, irbc, rate_err_array[irbca]);
 323
 324        irbca = (irbca & 0xF) << 4;
 325        irbc  = (irbc - 1) & 0xF;
 326
 327        if (!irbc) {
 328                dev_err(dev, "sh_sir can not set 0 in IRIF_SIR2\n");
 329                return -EIO;
 330        }
 331
 332        sh_sir_write(self, IRIF_SIR0, IRTPW | IRERRC);
 333        sh_sir_write(self, IRIF_SIR1, irbca);
 334        sh_sir_write(self, IRIF_SIR2, irbc);
 335
 336        /*
 337         * CALCULATION
 338         *
 339         * BaudRate[bps] = system rate / (uabca + (uabc + 1) x 16)
 340         */
 341
 342        uabc = rate / baudrate;
 343        uabc = (uabc / 16) - 1;
 344        uabc = (uabc + 1) * 16;
 345
 346        tmp = rate - (uabc * baudrate);
 347        tmp *= 10000;
 348
 349        rerr = tmp / baudrate;
 350
 351        min = 0xffffffff;
 352        uabca = 0;
 353        for (i = 0; i < ARRAY_SIZE(rate_err_array); i++) {
 354                tmp = abs(rate_err_array[i] - rerr);
 355                if (min > tmp) {
 356                        min = tmp;
 357                        uabca = i;
 358                }
 359        }
 360
 361        tmp = rate / (uabc + ERR_ROUNDING(rate_err_array[uabca]));
 362        if ((baudrate / 100) < abs(tmp - baudrate))
 363                dev_warn(dev, "UART freq error margin over %d\n", tmp);
 364
 365        dev_dbg(dev, "target = %d, result = %d, uart = %d.%d\n",
 366               baudrate, tmp,
 367               uabc, rate_err_array[uabca]);
 368
 369        uabca = (uabca & 0xF) << 4;
 370        uabc  = (uabc / 16) - 1;
 371
 372        sh_sir_write(self, IRIF_UART6, uabca);
 373        sh_sir_write(self, IRIF_UART7, uabc);
 374
 375        return 0;
 376}
 377
 378/************************************************************************
 379
 380
 381                        iobuf function
 382
 383
 384************************************************************************/
 385static int __sh_sir_init_iobuf(iobuff_t *io, int size)
 386{
 387        io->head = kmalloc(size, GFP_KERNEL);
 388        if (!io->head)
 389                return -ENOMEM;
 390
 391        io->truesize    = size;
 392        io->in_frame    = FALSE;
 393        io->state       = OUTSIDE_FRAME;
 394        io->data        = io->head;
 395
 396        return 0;
 397}
 398
 399static void sh_sir_remove_iobuf(struct sh_sir_self *self)
 400{
 401        kfree(self->rx_buff.head);
 402        kfree(self->tx_buff.head);
 403
 404        self->rx_buff.head = NULL;
 405        self->tx_buff.head = NULL;
 406}
 407
 408static int sh_sir_init_iobuf(struct sh_sir_self *self, int rxsize, int txsize)
 409{
 410        int err = -ENOMEM;
 411
 412        if (self->rx_buff.head ||
 413            self->tx_buff.head) {
 414                dev_err(&self->ndev->dev, "iobuff has already existed.");
 415                return err;
 416        }
 417
 418        err = __sh_sir_init_iobuf(&self->rx_buff, rxsize);
 419        if (err)
 420                goto iobuf_err;
 421
 422        err = __sh_sir_init_iobuf(&self->tx_buff, txsize);
 423
 424iobuf_err:
 425        if (err)
 426                sh_sir_remove_iobuf(self);
 427
 428        return err;
 429}
 430
 431/************************************************************************
 432
 433
 434                        status function
 435
 436
 437************************************************************************/
 438static void sh_sir_clear_all_err(struct sh_sir_self *self)
 439{
 440        /* Clear error flag for receive pulse width */
 441        sh_sir_update_bits(self, IRIF_SIR0, IRERRC, IRERRC);
 442
 443        /* Clear frame / EOF error flag */
 444        sh_sir_write(self, IRIF_SIR_FLG, 0xffff);
 445
 446        /* Clear all status error */
 447        sh_sir_write(self, IRIF_UART_STS2, 0);
 448}
 449
 450static void sh_sir_set_phase(struct sh_sir_self *self, int phase)
 451{
 452        u16 uart5 = 0;
 453        u16 uart0 = 0;
 454
 455        switch (phase) {
 456        case TX_PHASE:
 457                uart5 = TBEIM;
 458                uart0 = TBEC | TIE;
 459                break;
 460        case TX_COMP_PHASE:
 461                uart5 = TSBEIM;
 462                uart0 = TIE;
 463                break;
 464        case RX_PHASE:
 465                uart5 = RX_MASK;
 466                uart0 = RIE;
 467                break;
 468        default:
 469                break;
 470        }
 471
 472        sh_sir_write(self, IRIF_UART5, uart5);
 473        sh_sir_write(self, IRIF_UART0, uart0);
 474}
 475
 476static int sh_sir_is_which_phase(struct sh_sir_self *self)
 477{
 478        u16 val = sh_sir_read(self, IRIF_UART5);
 479
 480        if (val & TBEIM)
 481                return TX_PHASE;
 482
 483        if (val & TSBEIM)
 484                return TX_COMP_PHASE;
 485
 486        if (val & RX_MASK)
 487                return RX_PHASE;
 488
 489        return NONE_PHASE;
 490}
 491
 492static void sh_sir_tx(struct sh_sir_self *self, int phase)
 493{
 494        switch (phase) {
 495        case TX_PHASE:
 496                if (0 >= self->tx_buff.len) {
 497                        sh_sir_set_phase(self, TX_COMP_PHASE);
 498                } else {
 499                        sh_sir_write(self, IRIF_UART3, self->tx_buff.data[0]);
 500                        self->tx_buff.len--;
 501                        self->tx_buff.data++;
 502                }
 503                break;
 504        case TX_COMP_PHASE:
 505                sh_sir_set_phase(self, RX_PHASE);
 506                netif_wake_queue(self->ndev);
 507                break;
 508        default:
 509                dev_err(&self->ndev->dev, "should not happen\n");
 510                break;
 511        }
 512}
 513
 514static int sh_sir_read_data(struct sh_sir_self *self)
 515{
 516        u16 val = 0;
 517        int timeout = 1024;
 518
 519        while (timeout--) {
 520                val = sh_sir_read(self, IRIF_UART1);
 521
 522                /* data get */
 523                if (val & RBF) {
 524                        if (val & (URSME | UROVE | URFRE | URPRE))
 525                                break;
 526
 527                        return (int)sh_sir_read(self, IRIF_UART4);
 528                }
 529
 530                udelay(1);
 531        }
 532
 533        dev_err(&self->ndev->dev, "UART1 %04x : STATUS %04x\n",
 534                val, sh_sir_read(self, IRIF_UART_STS2));
 535
 536        /* read data register for clear error */
 537        sh_sir_read(self, IRIF_UART4);
 538
 539        return -1;
 540}
 541
 542static void sh_sir_rx(struct sh_sir_self *self)
 543{
 544        int timeout = 1024;
 545        int data;
 546
 547        while (timeout--) {
 548                data = sh_sir_read_data(self);
 549                if (data < 0)
 550                        break;
 551
 552                async_unwrap_char(self->ndev, &self->ndev->stats,
 553                                  &self->rx_buff, (u8)data);
 554                self->ndev->last_rx = jiffies;
 555
 556                if (EOFD & sh_sir_read(self, IRIF_SIR_FRM))
 557                        continue;
 558
 559                break;
 560        }
 561}
 562
 563static irqreturn_t sh_sir_irq(int irq, void *dev_id)
 564{
 565        struct sh_sir_self *self = dev_id;
 566        struct device *dev = &self->ndev->dev;
 567        int phase = sh_sir_is_which_phase(self);
 568
 569        switch (phase) {
 570        case TX_COMP_PHASE:
 571        case TX_PHASE:
 572                sh_sir_tx(self, phase);
 573                break;
 574        case RX_PHASE:
 575                if (sh_sir_read(self, IRIF_SIR3))
 576                        dev_err(dev, "rcv pulse width error occurred\n");
 577
 578                sh_sir_rx(self);
 579                sh_sir_clear_all_err(self);
 580                break;
 581        default:
 582                dev_err(dev, "unknown interrupt\n");
 583        }
 584
 585         return IRQ_HANDLED;
 586}
 587
 588/************************************************************************
 589
 590
 591                        net_device_ops function
 592
 593
 594************************************************************************/
 595static int sh_sir_hard_xmit(struct sk_buff *skb, struct net_device *ndev)
 596{
 597        struct sh_sir_self *self = netdev_priv(ndev);
 598        int speed = irda_get_next_speed(skb);
 599
 600        if ((0 < speed) &&
 601            (9600 != speed)) {
 602                dev_err(&ndev->dev, "support 9600 only (%d)\n", speed);
 603                return -EIO;
 604        }
 605
 606        netif_stop_queue(ndev);
 607
 608        self->tx_buff.data = self->tx_buff.head;
 609        self->tx_buff.len = 0;
 610        if (skb->len)
 611                self->tx_buff.len = async_wrap_skb(skb, self->tx_buff.data,
 612                                                   self->tx_buff.truesize);
 613
 614        sh_sir_set_phase(self, TX_PHASE);
 615        dev_kfree_skb(skb);
 616
 617        return 0;
 618}
 619
 620static int sh_sir_ioctl(struct net_device *ndev, struct ifreq *ifreq, int cmd)
 621{
 622        /*
 623         * FIXME
 624         *
 625         * This function is needed for irda framework.
 626         * But nothing to do now
 627         */
 628        return 0;
 629}
 630
 631static struct net_device_stats *sh_sir_stats(struct net_device *ndev)
 632{
 633        struct sh_sir_self *self = netdev_priv(ndev);
 634
 635        return &self->ndev->stats;
 636}
 637
 638static int sh_sir_open(struct net_device *ndev)
 639{
 640        struct sh_sir_self *self = netdev_priv(ndev);
 641        int err;
 642
 643        clk_enable(self->clk);
 644        err = sh_sir_crc_init(self);
 645        if (err)
 646                goto open_err;
 647
 648        sh_sir_set_baudrate(self, 9600);
 649
 650        self->irlap = irlap_open(ndev, &self->qos, DRIVER_NAME);
 651        if (!self->irlap) {
 652                err = -ENODEV;
 653                goto open_err;
 654        }
 655
 656        /*
 657         * Now enable the interrupt then start the queue
 658         */
 659        sh_sir_update_bits(self, IRIF_SIR_FRM, FRP, FRP);
 660        sh_sir_read(self, IRIF_UART1); /* flag clear */
 661        sh_sir_read(self, IRIF_UART4); /* flag clear */
 662        sh_sir_set_phase(self, RX_PHASE);
 663
 664        netif_start_queue(ndev);
 665
 666        dev_info(&self->ndev->dev, "opened\n");
 667
 668        return 0;
 669
 670open_err:
 671        clk_disable(self->clk);
 672
 673        return err;
 674}
 675
 676static int sh_sir_stop(struct net_device *ndev)
 677{
 678        struct sh_sir_self *self = netdev_priv(ndev);
 679
 680        /* Stop IrLAP */
 681        if (self->irlap) {
 682                irlap_close(self->irlap);
 683                self->irlap = NULL;
 684        }
 685
 686        netif_stop_queue(ndev);
 687
 688        dev_info(&ndev->dev, "stopped\n");
 689
 690        return 0;
 691}
 692
 693static const struct net_device_ops sh_sir_ndo = {
 694        .ndo_open               = sh_sir_open,
 695        .ndo_stop               = sh_sir_stop,
 696        .ndo_start_xmit         = sh_sir_hard_xmit,
 697        .ndo_do_ioctl           = sh_sir_ioctl,
 698        .ndo_get_stats          = sh_sir_stats,
 699};
 700
 701/************************************************************************
 702
 703
 704                        platform_driver function
 705
 706
 707************************************************************************/
 708static int sh_sir_probe(struct platform_device *pdev)
 709{
 710        struct net_device *ndev;
 711        struct sh_sir_self *self;
 712        struct resource *res;
 713        char clk_name[8];
 714        int irq;
 715        int err = -ENOMEM;
 716
 717        res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
 718        irq = platform_get_irq(pdev, 0);
 719        if (!res || irq < 0) {
 720                dev_err(&pdev->dev, "Not enough platform resources.\n");
 721                goto exit;
 722        }
 723
 724        ndev = alloc_irdadev(sizeof(*self));
 725        if (!ndev)
 726                goto exit;
 727
 728        self = netdev_priv(ndev);
 729        self->membase = ioremap_nocache(res->start, resource_size(res));
 730        if (!self->membase) {
 731                err = -ENXIO;
 732                dev_err(&pdev->dev, "Unable to ioremap.\n");
 733                goto err_mem_1;
 734        }
 735
 736        err = sh_sir_init_iobuf(self, IRDA_SKB_MAX_MTU, IRDA_SIR_MAX_FRAME);
 737        if (err)
 738                goto err_mem_2;
 739
 740        snprintf(clk_name, sizeof(clk_name), "irda%d", pdev->id);
 741        self->clk = clk_get(&pdev->dev, clk_name);
 742        if (IS_ERR(self->clk)) {
 743                dev_err(&pdev->dev, "cannot get clock \"%s\"\n", clk_name);
 744                err = -ENODEV;
 745                goto err_mem_3;
 746        }
 747
 748        irda_init_max_qos_capabilies(&self->qos);
 749
 750        ndev->netdev_ops        = &sh_sir_ndo;
 751        ndev->irq               = irq;
 752
 753        self->ndev                      = ndev;
 754        self->qos.baud_rate.bits        &= IR_9600; /* FIXME */
 755        self->qos.min_turn_time.bits    = 1; /* 10 ms or more */
 756
 757        irda_qos_bits_to_value(&self->qos);
 758
 759        err = register_netdev(ndev);
 760        if (err)
 761                goto err_mem_4;
 762
 763        platform_set_drvdata(pdev, ndev);
 764        err = request_irq(irq, sh_sir_irq, IRQF_DISABLED, "sh_sir", self);
 765        if (err) {
 766                dev_warn(&pdev->dev, "Unable to attach sh_sir interrupt\n");
 767                goto err_mem_4;
 768        }
 769
 770        dev_info(&pdev->dev, "SuperH IrDA probed\n");
 771
 772        goto exit;
 773
 774err_mem_4:
 775        clk_put(self->clk);
 776err_mem_3:
 777        sh_sir_remove_iobuf(self);
 778err_mem_2:
 779        iounmap(self->membase);
 780err_mem_1:
 781        free_netdev(ndev);
 782exit:
 783        return err;
 784}
 785
 786static int sh_sir_remove(struct platform_device *pdev)
 787{
 788        struct net_device *ndev = platform_get_drvdata(pdev);
 789        struct sh_sir_self *self = netdev_priv(ndev);
 790
 791        if (!self)
 792                return 0;
 793
 794        unregister_netdev(ndev);
 795        clk_put(self->clk);
 796        sh_sir_remove_iobuf(self);
 797        iounmap(self->membase);
 798        free_netdev(ndev);
 799        platform_set_drvdata(pdev, NULL);
 800
 801        return 0;
 802}
 803
 804static struct platform_driver sh_sir_driver = {
 805        .probe   = sh_sir_probe,
 806        .remove  = sh_sir_remove,
 807        .driver  = {
 808                .name = DRIVER_NAME,
 809        },
 810};
 811
 812module_platform_driver(sh_sir_driver);
 813
 814MODULE_AUTHOR("Kuninori Morimoto <morimoto.kuninori@renesas.com>");
 815MODULE_DESCRIPTION("SuperH IrDA driver");
 816MODULE_LICENSE("GPL");
 817