linux/drivers/net/wireless/ath/ath5k/pcu.c
<<
>>
Prefs
   1/*
   2 * Copyright (c) 2004-2008 Reyk Floeter <reyk@openbsd.org>
   3 * Copyright (c) 2006-2008 Nick Kossifidis <mickflemm@gmail.com>
   4 * Copyright (c) 2007-2008 Matthew W. S. Bell  <mentor@madwifi.org>
   5 * Copyright (c) 2007-2008 Luis Rodriguez <mcgrof@winlab.rutgers.edu>
   6 * Copyright (c) 2007-2008 Pavel Roskin <proski@gnu.org>
   7 * Copyright (c) 2007-2008 Jiri Slaby <jirislaby@gmail.com>
   8 *
   9 * Permission to use, copy, modify, and distribute this software for any
  10 * purpose with or without fee is hereby granted, provided that the above
  11 * copyright notice and this permission notice appear in all copies.
  12 *
  13 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
  14 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
  15 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
  16 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
  17 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
  18 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
  19 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
  20 *
  21 */
  22
  23/*********************************\
  24* Protocol Control Unit Functions *
  25\*********************************/
  26
  27#include <asm/unaligned.h>
  28
  29#include "ath5k.h"
  30#include "reg.h"
  31#include "debug.h"
  32
  33/**
  34 * DOC: Protocol Control Unit (PCU) functions
  35 *
  36 * Protocol control unit is responsible to maintain various protocol
  37 * properties before a frame is send and after a frame is received to/from
  38 * baseband. To be more specific, PCU handles:
  39 *
  40 * - Buffering of RX and TX frames (after QCU/DCUs)
  41 *
  42 * - Encrypting and decrypting (using the built-in engine)
  43 *
  44 * - Generating ACKs, RTS/CTS frames
  45 *
  46 * - Maintaining TSF
  47 *
  48 * - FCS
  49 *
  50 * - Updating beacon data (with TSF etc)
  51 *
  52 * - Generating virtual CCA
  53 *
  54 * - RX/Multicast filtering
  55 *
  56 * - BSSID filtering
  57 *
  58 * - Various statistics
  59 *
  60 * -Different operating modes: AP, STA, IBSS
  61 *
  62 * Note: Most of these functions can be tweaked/bypassed so you can do
  63 * them on sw above for debugging or research. For more infos check out PCU
  64 * registers on reg.h.
  65 */
  66
  67/**
  68 * DOC: ACK rates
  69 *
  70 * AR5212+ can use higher rates for ack transmission
  71 * based on current tx rate instead of the base rate.
  72 * It does this to better utilize channel usage.
  73 * There is a mapping between G rates (that cover both
  74 * CCK and OFDM) and ack rates that we use when setting
  75 * rate -> duration table. This mapping is hw-based so
  76 * don't change anything.
  77 *
  78 * To enable this functionality we must set
  79 * ah->ah_ack_bitrate_high to true else base rate is
  80 * used (1Mb for CCK, 6Mb for OFDM).
  81 */
  82static const unsigned int ack_rates_high[] =
  83/* Tx   -> ACK  */
  84/* 1Mb  -> 1Mb  */      { 0,
  85/* 2MB  -> 2Mb  */      1,
  86/* 5.5Mb -> 2Mb */      1,
  87/* 11Mb -> 2Mb  */      1,
  88/* 6Mb  -> 6Mb  */      4,
  89/* 9Mb  -> 6Mb  */      4,
  90/* 12Mb -> 12Mb */      6,
  91/* 18Mb -> 12Mb */      6,
  92/* 24Mb -> 24Mb */      8,
  93/* 36Mb -> 24Mb */      8,
  94/* 48Mb -> 24Mb */      8,
  95/* 54Mb -> 24Mb */      8 };
  96
  97/*******************\
  98* Helper functions *
  99\*******************/
 100
 101/**
 102 * ath5k_hw_get_frame_duration() - Get tx time of a frame
 103 * @ah: The &struct ath5k_hw
 104 * @len: Frame's length in bytes
 105 * @rate: The @struct ieee80211_rate
 106 * @shortpre: Indicate short preample
 107 *
 108 * Calculate tx duration of a frame given it's rate and length
 109 * It extends ieee80211_generic_frame_duration for non standard
 110 * bwmodes.
 111 */
 112int
 113ath5k_hw_get_frame_duration(struct ath5k_hw *ah, enum ieee80211_band band,
 114                int len, struct ieee80211_rate *rate, bool shortpre)
 115{
 116        int sifs, preamble, plcp_bits, sym_time;
 117        int bitrate, bits, symbols, symbol_bits;
 118        int dur;
 119
 120        /* Fallback */
 121        if (!ah->ah_bwmode) {
 122                __le16 raw_dur = ieee80211_generic_frame_duration(ah->hw,
 123                                        NULL, band, len, rate);
 124
 125                /* subtract difference between long and short preamble */
 126                dur = le16_to_cpu(raw_dur);
 127                if (shortpre)
 128                        dur -= 96;
 129
 130                return dur;
 131        }
 132
 133        bitrate = rate->bitrate;
 134        preamble = AR5K_INIT_OFDM_PREAMPLE_TIME;
 135        plcp_bits = AR5K_INIT_OFDM_PLCP_BITS;
 136        sym_time = AR5K_INIT_OFDM_SYMBOL_TIME;
 137
 138        switch (ah->ah_bwmode) {
 139        case AR5K_BWMODE_40MHZ:
 140                sifs = AR5K_INIT_SIFS_TURBO;
 141                preamble = AR5K_INIT_OFDM_PREAMBLE_TIME_MIN;
 142                break;
 143        case AR5K_BWMODE_10MHZ:
 144                sifs = AR5K_INIT_SIFS_HALF_RATE;
 145                preamble *= 2;
 146                sym_time *= 2;
 147                break;
 148        case AR5K_BWMODE_5MHZ:
 149                sifs = AR5K_INIT_SIFS_QUARTER_RATE;
 150                preamble *= 4;
 151                sym_time *= 4;
 152                break;
 153        default:
 154                sifs = AR5K_INIT_SIFS_DEFAULT_BG;
 155                break;
 156        }
 157
 158        bits = plcp_bits + (len << 3);
 159        /* Bit rate is in 100Kbits */
 160        symbol_bits = bitrate * sym_time;
 161        symbols = DIV_ROUND_UP(bits * 10, symbol_bits);
 162
 163        dur = sifs + preamble + (sym_time * symbols);
 164
 165        return dur;
 166}
 167
 168/**
 169 * ath5k_hw_get_default_slottime() - Get the default slot time for current mode
 170 * @ah: The &struct ath5k_hw
 171 */
 172unsigned int
 173ath5k_hw_get_default_slottime(struct ath5k_hw *ah)
 174{
 175        struct ieee80211_channel *channel = ah->ah_current_channel;
 176        unsigned int slot_time;
 177
 178        switch (ah->ah_bwmode) {
 179        case AR5K_BWMODE_40MHZ:
 180                slot_time = AR5K_INIT_SLOT_TIME_TURBO;
 181                break;
 182        case AR5K_BWMODE_10MHZ:
 183                slot_time = AR5K_INIT_SLOT_TIME_HALF_RATE;
 184                break;
 185        case AR5K_BWMODE_5MHZ:
 186                slot_time = AR5K_INIT_SLOT_TIME_QUARTER_RATE;
 187                break;
 188        case AR5K_BWMODE_DEFAULT:
 189        default:
 190                slot_time = AR5K_INIT_SLOT_TIME_DEFAULT;
 191                if ((channel->hw_value == AR5K_MODE_11B) && !ah->ah_short_slot)
 192                        slot_time = AR5K_INIT_SLOT_TIME_B;
 193                break;
 194        }
 195
 196        return slot_time;
 197}
 198
 199/**
 200 * ath5k_hw_get_default_sifs() - Get the default SIFS for current mode
 201 * @ah: The &struct ath5k_hw
 202 */
 203unsigned int
 204ath5k_hw_get_default_sifs(struct ath5k_hw *ah)
 205{
 206        struct ieee80211_channel *channel = ah->ah_current_channel;
 207        unsigned int sifs;
 208
 209        switch (ah->ah_bwmode) {
 210        case AR5K_BWMODE_40MHZ:
 211                sifs = AR5K_INIT_SIFS_TURBO;
 212                break;
 213        case AR5K_BWMODE_10MHZ:
 214                sifs = AR5K_INIT_SIFS_HALF_RATE;
 215                break;
 216        case AR5K_BWMODE_5MHZ:
 217                sifs = AR5K_INIT_SIFS_QUARTER_RATE;
 218                break;
 219        case AR5K_BWMODE_DEFAULT:
 220                sifs = AR5K_INIT_SIFS_DEFAULT_BG;
 221        default:
 222                if (channel->band == IEEE80211_BAND_5GHZ)
 223                        sifs = AR5K_INIT_SIFS_DEFAULT_A;
 224                break;
 225        }
 226
 227        return sifs;
 228}
 229
 230/**
 231 * ath5k_hw_update_mib_counters() - Update MIB counters (mac layer statistics)
 232 * @ah: The &struct ath5k_hw
 233 *
 234 * Reads MIB counters from PCU and updates sw statistics. Is called after a
 235 * MIB interrupt, because one of these counters might have reached their maximum
 236 * and triggered the MIB interrupt, to let us read and clear the counter.
 237 *
 238 * NOTE: Is called in interrupt context!
 239 */
 240void
 241ath5k_hw_update_mib_counters(struct ath5k_hw *ah)
 242{
 243        struct ath5k_statistics *stats = &ah->stats;
 244
 245        /* Read-And-Clear */
 246        stats->ack_fail += ath5k_hw_reg_read(ah, AR5K_ACK_FAIL);
 247        stats->rts_fail += ath5k_hw_reg_read(ah, AR5K_RTS_FAIL);
 248        stats->rts_ok += ath5k_hw_reg_read(ah, AR5K_RTS_OK);
 249        stats->fcs_error += ath5k_hw_reg_read(ah, AR5K_FCS_FAIL);
 250        stats->beacons += ath5k_hw_reg_read(ah, AR5K_BEACON_CNT);
 251}
 252
 253
 254/******************\
 255* ACK/CTS Timeouts *
 256\******************/
 257
 258/**
 259 * ath5k_hw_write_rate_duration() - Fill rate code to duration table
 260 * @ah: The &struct ath5k_hw
 261 *
 262 * Write the rate code to duration table upon hw reset. This is a helper for
 263 * ath5k_hw_pcu_init(). It seems all this is doing is setting an ACK timeout on
 264 * the hardware, based on current mode, for each rate. The rates which are
 265 * capable of short preamble (802.11b rates 2Mbps, 5.5Mbps, and 11Mbps) have
 266 * different rate code so we write their value twice (one for long preamble
 267 * and one for short).
 268 *
 269 * Note: Band doesn't matter here, if we set the values for OFDM it works
 270 * on both a and g modes. So all we have to do is set values for all g rates
 271 * that include all OFDM and CCK rates.
 272 *
 273 */
 274static inline void
 275ath5k_hw_write_rate_duration(struct ath5k_hw *ah)
 276{
 277        struct ieee80211_rate *rate;
 278        unsigned int i;
 279        /* 802.11g covers both OFDM and CCK */
 280        u8 band = IEEE80211_BAND_2GHZ;
 281
 282        /* Write rate duration table */
 283        for (i = 0; i < ah->sbands[band].n_bitrates; i++) {
 284                u32 reg;
 285                u16 tx_time;
 286
 287                if (ah->ah_ack_bitrate_high)
 288                        rate = &ah->sbands[band].bitrates[ack_rates_high[i]];
 289                /* CCK -> 1Mb */
 290                else if (i < 4)
 291                        rate = &ah->sbands[band].bitrates[0];
 292                /* OFDM -> 6Mb */
 293                else
 294                        rate = &ah->sbands[band].bitrates[4];
 295
 296                /* Set ACK timeout */
 297                reg = AR5K_RATE_DUR(rate->hw_value);
 298
 299                /* An ACK frame consists of 10 bytes. If you add the FCS,
 300                 * which ieee80211_generic_frame_duration() adds,
 301                 * its 14 bytes. Note we use the control rate and not the
 302                 * actual rate for this rate. See mac80211 tx.c
 303                 * ieee80211_duration() for a brief description of
 304                 * what rate we should choose to TX ACKs. */
 305                tx_time = ath5k_hw_get_frame_duration(ah, band, 10,
 306                                        rate, false);
 307
 308                ath5k_hw_reg_write(ah, tx_time, reg);
 309
 310                if (!(rate->flags & IEEE80211_RATE_SHORT_PREAMBLE))
 311                        continue;
 312
 313                tx_time = ath5k_hw_get_frame_duration(ah, band, 10, rate, true);
 314                ath5k_hw_reg_write(ah, tx_time,
 315                        reg + (AR5K_SET_SHORT_PREAMBLE << 2));
 316        }
 317}
 318
 319/**
 320 * ath5k_hw_set_ack_timeout() - Set ACK timeout on PCU
 321 * @ah: The &struct ath5k_hw
 322 * @timeout: Timeout in usec
 323 */
 324static int
 325ath5k_hw_set_ack_timeout(struct ath5k_hw *ah, unsigned int timeout)
 326{
 327        if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_ACK))
 328                        <= timeout)
 329                return -EINVAL;
 330
 331        AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_ACK,
 332                ath5k_hw_htoclock(ah, timeout));
 333
 334        return 0;
 335}
 336
 337/**
 338 * ath5k_hw_set_cts_timeout() - Set CTS timeout on PCU
 339 * @ah: The &struct ath5k_hw
 340 * @timeout: Timeout in usec
 341 */
 342static int
 343ath5k_hw_set_cts_timeout(struct ath5k_hw *ah, unsigned int timeout)
 344{
 345        if (ath5k_hw_clocktoh(ah, AR5K_REG_MS(0xffffffff, AR5K_TIME_OUT_CTS))
 346                        <= timeout)
 347                return -EINVAL;
 348
 349        AR5K_REG_WRITE_BITS(ah, AR5K_TIME_OUT, AR5K_TIME_OUT_CTS,
 350                        ath5k_hw_htoclock(ah, timeout));
 351
 352        return 0;
 353}
 354
 355
 356/*******************\
 357* RX filter Control *
 358\*******************/
 359
 360/**
 361 * ath5k_hw_set_lladdr() - Set station id
 362 * @ah: The &struct ath5k_hw
 363 * @mac: The card's mac address (array of octets)
 364 *
 365 * Set station id on hw using the provided mac address
 366 */
 367int
 368ath5k_hw_set_lladdr(struct ath5k_hw *ah, const u8 *mac)
 369{
 370        struct ath_common *common = ath5k_hw_common(ah);
 371        u32 low_id, high_id;
 372        u32 pcu_reg;
 373
 374        /* Set new station ID */
 375        memcpy(common->macaddr, mac, ETH_ALEN);
 376
 377        pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
 378
 379        low_id = get_unaligned_le32(mac);
 380        high_id = get_unaligned_le16(mac + 4);
 381
 382        ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
 383        ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
 384
 385        return 0;
 386}
 387
 388/**
 389 * ath5k_hw_set_bssid() - Set current BSSID on hw
 390 * @ah: The &struct ath5k_hw
 391 *
 392 * Sets the current BSSID and BSSID mask we have from the
 393 * common struct into the hardware
 394 */
 395void
 396ath5k_hw_set_bssid(struct ath5k_hw *ah)
 397{
 398        struct ath_common *common = ath5k_hw_common(ah);
 399        u16 tim_offset = 0;
 400
 401        /*
 402         * Set BSSID mask on 5212
 403         */
 404        if (ah->ah_version == AR5K_AR5212)
 405                ath_hw_setbssidmask(common);
 406
 407        /*
 408         * Set BSSID
 409         */
 410        ath5k_hw_reg_write(ah,
 411                           get_unaligned_le32(common->curbssid),
 412                           AR5K_BSS_ID0);
 413        ath5k_hw_reg_write(ah,
 414                           get_unaligned_le16(common->curbssid + 4) |
 415                           ((common->curaid & 0x3fff) << AR5K_BSS_ID1_AID_S),
 416                           AR5K_BSS_ID1);
 417
 418        if (common->curaid == 0) {
 419                ath5k_hw_disable_pspoll(ah);
 420                return;
 421        }
 422
 423        AR5K_REG_WRITE_BITS(ah, AR5K_BEACON, AR5K_BEACON_TIM,
 424                            tim_offset ? tim_offset + 4 : 0);
 425
 426        ath5k_hw_enable_pspoll(ah, NULL, 0);
 427}
 428
 429/**
 430 * ath5k_hw_set_bssid_mask() - Filter out bssids we listen
 431 * @ah: The &struct ath5k_hw
 432 * @mask: The BSSID mask to set (array of octets)
 433 *
 434 * BSSID masking is a method used by AR5212 and newer hardware to inform PCU
 435 * which bits of the interface's MAC address should be looked at when trying
 436 * to decide which packets to ACK. In station mode and AP mode with a single
 437 * BSS every bit matters since we lock to only one BSS. In AP mode with
 438 * multiple BSSes (virtual interfaces) not every bit matters because hw must
 439 * accept frames for all BSSes and so we tweak some bits of our mac address
 440 * in order to have multiple BSSes.
 441 *
 442 * For more information check out ../hw.c of the common ath module.
 443 */
 444void
 445ath5k_hw_set_bssid_mask(struct ath5k_hw *ah, const u8 *mask)
 446{
 447        struct ath_common *common = ath5k_hw_common(ah);
 448
 449        /* Cache bssid mask so that we can restore it
 450         * on reset */
 451        memcpy(common->bssidmask, mask, ETH_ALEN);
 452        if (ah->ah_version == AR5K_AR5212)
 453                ath_hw_setbssidmask(common);
 454}
 455
 456/**
 457 * ath5k_hw_set_mcast_filter() - Set multicast filter
 458 * @ah: The &struct ath5k_hw
 459 * @filter0: Lower 32bits of muticast filter
 460 * @filter1: Higher 16bits of multicast filter
 461 */
 462void
 463ath5k_hw_set_mcast_filter(struct ath5k_hw *ah, u32 filter0, u32 filter1)
 464{
 465        ath5k_hw_reg_write(ah, filter0, AR5K_MCAST_FILTER0);
 466        ath5k_hw_reg_write(ah, filter1, AR5K_MCAST_FILTER1);
 467}
 468
 469/**
 470 * ath5k_hw_get_rx_filter() - Get current rx filter
 471 * @ah: The &struct ath5k_hw
 472 *
 473 * Returns the RX filter by reading rx filter and
 474 * phy error filter registers. RX filter is used
 475 * to set the allowed frame types that PCU will accept
 476 * and pass to the driver. For a list of frame types
 477 * check out reg.h.
 478 */
 479u32
 480ath5k_hw_get_rx_filter(struct ath5k_hw *ah)
 481{
 482        u32 data, filter = 0;
 483
 484        filter = ath5k_hw_reg_read(ah, AR5K_RX_FILTER);
 485
 486        /*Radar detection for 5212*/
 487        if (ah->ah_version == AR5K_AR5212) {
 488                data = ath5k_hw_reg_read(ah, AR5K_PHY_ERR_FIL);
 489
 490                if (data & AR5K_PHY_ERR_FIL_RADAR)
 491                        filter |= AR5K_RX_FILTER_RADARERR;
 492                if (data & (AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK))
 493                        filter |= AR5K_RX_FILTER_PHYERR;
 494        }
 495
 496        return filter;
 497}
 498
 499/**
 500 * ath5k_hw_set_rx_filter() - Set rx filter
 501 * @ah: The &struct ath5k_hw
 502 * @filter: RX filter mask (see reg.h)
 503 *
 504 * Sets RX filter register and also handles PHY error filter
 505 * register on 5212 and newer chips so that we have proper PHY
 506 * error reporting.
 507 */
 508void
 509ath5k_hw_set_rx_filter(struct ath5k_hw *ah, u32 filter)
 510{
 511        u32 data = 0;
 512
 513        /* Set PHY error filter register on 5212*/
 514        if (ah->ah_version == AR5K_AR5212) {
 515                if (filter & AR5K_RX_FILTER_RADARERR)
 516                        data |= AR5K_PHY_ERR_FIL_RADAR;
 517                if (filter & AR5K_RX_FILTER_PHYERR)
 518                        data |= AR5K_PHY_ERR_FIL_OFDM | AR5K_PHY_ERR_FIL_CCK;
 519        }
 520
 521        /*
 522         * The AR5210 uses promiscuous mode to detect radar activity
 523         */
 524        if (ah->ah_version == AR5K_AR5210 &&
 525                        (filter & AR5K_RX_FILTER_RADARERR)) {
 526                filter &= ~AR5K_RX_FILTER_RADARERR;
 527                filter |= AR5K_RX_FILTER_PROM;
 528        }
 529
 530        /*Zero length DMA (phy error reporting) */
 531        if (data)
 532                AR5K_REG_ENABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
 533        else
 534                AR5K_REG_DISABLE_BITS(ah, AR5K_RXCFG, AR5K_RXCFG_ZLFDMA);
 535
 536        /*Write RX Filter register*/
 537        ath5k_hw_reg_write(ah, filter & 0xff, AR5K_RX_FILTER);
 538
 539        /*Write PHY error filter register on 5212*/
 540        if (ah->ah_version == AR5K_AR5212)
 541                ath5k_hw_reg_write(ah, data, AR5K_PHY_ERR_FIL);
 542
 543}
 544
 545
 546/****************\
 547* Beacon control *
 548\****************/
 549
 550#define ATH5K_MAX_TSF_READ 10
 551
 552/**
 553 * ath5k_hw_get_tsf64() - Get the full 64bit TSF
 554 * @ah: The &struct ath5k_hw
 555 *
 556 * Returns the current TSF
 557 */
 558u64
 559ath5k_hw_get_tsf64(struct ath5k_hw *ah)
 560{
 561        u32 tsf_lower, tsf_upper1, tsf_upper2;
 562        int i;
 563        unsigned long flags;
 564
 565        /* This code is time critical - we don't want to be interrupted here */
 566        local_irq_save(flags);
 567
 568        /*
 569         * While reading TSF upper and then lower part, the clock is still
 570         * counting (or jumping in case of IBSS merge) so we might get
 571         * inconsistent values. To avoid this, we read the upper part again
 572         * and check it has not been changed. We make the hypothesis that a
 573         * maximum of 3 changes can happens in a row (we use 10 as a safe
 574         * value).
 575         *
 576         * Impact on performance is pretty small, since in most cases, only
 577         * 3 register reads are needed.
 578         */
 579
 580        tsf_upper1 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
 581        for (i = 0; i < ATH5K_MAX_TSF_READ; i++) {
 582                tsf_lower = ath5k_hw_reg_read(ah, AR5K_TSF_L32);
 583                tsf_upper2 = ath5k_hw_reg_read(ah, AR5K_TSF_U32);
 584                if (tsf_upper2 == tsf_upper1)
 585                        break;
 586                tsf_upper1 = tsf_upper2;
 587        }
 588
 589        local_irq_restore(flags);
 590
 591        WARN_ON(i == ATH5K_MAX_TSF_READ);
 592
 593        return ((u64)tsf_upper1 << 32) | tsf_lower;
 594}
 595
 596#undef ATH5K_MAX_TSF_READ
 597
 598/**
 599 * ath5k_hw_set_tsf64() - Set a new 64bit TSF
 600 * @ah: The &struct ath5k_hw
 601 * @tsf64: The new 64bit TSF
 602 *
 603 * Sets the new TSF
 604 */
 605void
 606ath5k_hw_set_tsf64(struct ath5k_hw *ah, u64 tsf64)
 607{
 608        ath5k_hw_reg_write(ah, tsf64 & 0xffffffff, AR5K_TSF_L32);
 609        ath5k_hw_reg_write(ah, (tsf64 >> 32) & 0xffffffff, AR5K_TSF_U32);
 610}
 611
 612/**
 613 * ath5k_hw_reset_tsf() - Force a TSF reset
 614 * @ah: The &struct ath5k_hw
 615 *
 616 * Forces a TSF reset on PCU
 617 */
 618void
 619ath5k_hw_reset_tsf(struct ath5k_hw *ah)
 620{
 621        u32 val;
 622
 623        val = ath5k_hw_reg_read(ah, AR5K_BEACON) | AR5K_BEACON_RESET_TSF;
 624
 625        /*
 626         * Each write to the RESET_TSF bit toggles a hardware internal
 627         * signal to reset TSF, but if left high it will cause a TSF reset
 628         * on the next chip reset as well.  Thus we always write the value
 629         * twice to clear the signal.
 630         */
 631        ath5k_hw_reg_write(ah, val, AR5K_BEACON);
 632        ath5k_hw_reg_write(ah, val, AR5K_BEACON);
 633}
 634
 635/**
 636 * ath5k_hw_init_beacon_timers() - Initialize beacon timers
 637 * @ah: The &struct ath5k_hw
 638 * @next_beacon: Next TBTT
 639 * @interval: Current beacon interval
 640 *
 641 * This function is used to initialize beacon timers based on current
 642 * operation mode and settings.
 643 */
 644void
 645ath5k_hw_init_beacon_timers(struct ath5k_hw *ah, u32 next_beacon, u32 interval)
 646{
 647        u32 timer1, timer2, timer3;
 648
 649        /*
 650         * Set the additional timers by mode
 651         */
 652        switch (ah->opmode) {
 653        case NL80211_IFTYPE_MONITOR:
 654        case NL80211_IFTYPE_STATION:
 655                /* In STA mode timer1 is used as next wakeup
 656                 * timer and timer2 as next CFP duration start
 657                 * timer. Both in 1/8TUs. */
 658                /* TODO: PCF handling */
 659                if (ah->ah_version == AR5K_AR5210) {
 660                        timer1 = 0xffffffff;
 661                        timer2 = 0xffffffff;
 662                } else {
 663                        timer1 = 0x0000ffff;
 664                        timer2 = 0x0007ffff;
 665                }
 666                /* Mark associated AP as PCF incapable for now */
 667                AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PCF);
 668                break;
 669        case NL80211_IFTYPE_ADHOC:
 670                AR5K_REG_ENABLE_BITS(ah, AR5K_TXCFG, AR5K_TXCFG_ADHOC_BCN_ATIM);
 671        default:
 672                /* On non-STA modes timer1 is used as next DMA
 673                 * beacon alert (DBA) timer and timer2 as next
 674                 * software beacon alert. Both in 1/8TUs. */
 675                timer1 = (next_beacon - AR5K_TUNE_DMA_BEACON_RESP) << 3;
 676                timer2 = (next_beacon - AR5K_TUNE_SW_BEACON_RESP) << 3;
 677                break;
 678        }
 679
 680        /* Timer3 marks the end of our ATIM window
 681         * a zero length window is not allowed because
 682         * we 'll get no beacons */
 683        timer3 = next_beacon + 1;
 684
 685        /*
 686         * Set the beacon register and enable all timers.
 687         */
 688        /* When in AP or Mesh Point mode zero timer0 to start TSF */
 689        if (ah->opmode == NL80211_IFTYPE_AP ||
 690            ah->opmode == NL80211_IFTYPE_MESH_POINT)
 691                ath5k_hw_reg_write(ah, 0, AR5K_TIMER0);
 692
 693        ath5k_hw_reg_write(ah, next_beacon, AR5K_TIMER0);
 694        ath5k_hw_reg_write(ah, timer1, AR5K_TIMER1);
 695        ath5k_hw_reg_write(ah, timer2, AR5K_TIMER2);
 696        ath5k_hw_reg_write(ah, timer3, AR5K_TIMER3);
 697
 698        /* Force a TSF reset if requested and enable beacons */
 699        if (interval & AR5K_BEACON_RESET_TSF)
 700                ath5k_hw_reset_tsf(ah);
 701
 702        ath5k_hw_reg_write(ah, interval & (AR5K_BEACON_PERIOD |
 703                                        AR5K_BEACON_ENABLE),
 704                                                AR5K_BEACON);
 705
 706        /* Flush any pending BMISS interrupts on ISR by
 707         * performing a clear-on-write operation on PISR
 708         * register for the BMISS bit (writing a bit on
 709         * ISR toggles a reset for that bit and leaves
 710         * the remaining bits intact) */
 711        if (ah->ah_version == AR5K_AR5210)
 712                ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_ISR);
 713        else
 714                ath5k_hw_reg_write(ah, AR5K_ISR_BMISS, AR5K_PISR);
 715
 716        /* TODO: Set enhanced sleep registers on AR5212
 717         * based on vif->bss_conf params, until then
 718         * disable power save reporting.*/
 719        AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, AR5K_STA_ID1_PWR_SV);
 720
 721}
 722
 723/**
 724 * ath5k_check_timer_win() - Check if timer B is timer A + window
 725 * @a: timer a (before b)
 726 * @b: timer b (after a)
 727 * @window: difference between a and b
 728 * @intval: timers are increased by this interval
 729 *
 730 * This helper function checks if timer B is timer A + window and covers
 731 * cases where timer A or B might have already been updated or wrapped
 732 * around (Timers are 16 bit).
 733 *
 734 * Returns true if O.K.
 735 */
 736static inline bool
 737ath5k_check_timer_win(int a, int b, int window, int intval)
 738{
 739        /*
 740         * 1.) usually B should be A + window
 741         * 2.) A already updated, B not updated yet
 742         * 3.) A already updated and has wrapped around
 743         * 4.) B has wrapped around
 744         */
 745        if ((b - a == window) ||                                /* 1.) */
 746            (a - b == intval - window) ||                       /* 2.) */
 747            ((a | 0x10000) - b == intval - window) ||           /* 3.) */
 748            ((b | 0x10000) - a == window))                      /* 4.) */
 749                return true; /* O.K. */
 750        return false;
 751}
 752
 753/**
 754 * ath5k_hw_check_beacon_timers() - Check if the beacon timers are correct
 755 * @ah: The &struct ath5k_hw
 756 * @intval: beacon interval
 757 *
 758 * This is a workaround for IBSS mode
 759 *
 760 * The need for this function arises from the fact that we have 4 separate
 761 * HW timer registers (TIMER0 - TIMER3), which are closely related to the
 762 * next beacon target time (NBTT), and that the HW updates these timers
 763 * separately based on the current TSF value. The hardware increments each
 764 * timer by the beacon interval, when the local TSF converted to TU is equal
 765 * to the value stored in the timer.
 766 *
 767 * The reception of a beacon with the same BSSID can update the local HW TSF
 768 * at any time - this is something we can't avoid. If the TSF jumps to a
 769 * time which is later than the time stored in a timer, this timer will not
 770 * be updated until the TSF in TU wraps around at 16 bit (the size of the
 771 * timers) and reaches the time which is stored in the timer.
 772 *
 773 * The problem is that these timers are closely related to TIMER0 (NBTT) and
 774 * that they define a time "window". When the TSF jumps between two timers
 775 * (e.g. ATIM and NBTT), the one in the past will be left behind (not
 776 * updated), while the one in the future will be updated every beacon
 777 * interval. This causes the window to get larger, until the TSF wraps
 778 * around as described above and the timer which was left behind gets
 779 * updated again. But - because the beacon interval is usually not an exact
 780 * divisor of the size of the timers (16 bit), an unwanted "window" between
 781 * these timers has developed!
 782 *
 783 * This is especially important with the ATIM window, because during
 784 * the ATIM window only ATIM frames and no data frames are allowed to be
 785 * sent, which creates transmission pauses after each beacon. This symptom
 786 * has been described as "ramping ping" because ping times increase linearly
 787 * for some time and then drop down again. A wrong window on the DMA beacon
 788 * timer has the same effect, so we check for these two conditions.
 789 *
 790 * Returns true if O.K.
 791 */
 792bool
 793ath5k_hw_check_beacon_timers(struct ath5k_hw *ah, int intval)
 794{
 795        unsigned int nbtt, atim, dma;
 796
 797        nbtt = ath5k_hw_reg_read(ah, AR5K_TIMER0);
 798        atim = ath5k_hw_reg_read(ah, AR5K_TIMER3);
 799        dma = ath5k_hw_reg_read(ah, AR5K_TIMER1) >> 3;
 800
 801        /* NOTE: SWBA is different. Having a wrong window there does not
 802         * stop us from sending data and this condition is caught by
 803         * other means (SWBA interrupt) */
 804
 805        if (ath5k_check_timer_win(nbtt, atim, 1, intval) &&
 806            ath5k_check_timer_win(dma, nbtt, AR5K_TUNE_DMA_BEACON_RESP,
 807                                  intval))
 808                return true; /* O.K. */
 809        return false;
 810}
 811
 812/**
 813 * ath5k_hw_set_coverage_class() - Set IEEE 802.11 coverage class
 814 * @ah: The &struct ath5k_hw
 815 * @coverage_class: IEEE 802.11 coverage class number
 816 *
 817 * Sets IFS intervals and ACK/CTS timeouts for given coverage class.
 818 */
 819void
 820ath5k_hw_set_coverage_class(struct ath5k_hw *ah, u8 coverage_class)
 821{
 822        /* As defined by IEEE 802.11-2007 17.3.8.6 */
 823        int slot_time = ath5k_hw_get_default_slottime(ah) + 3 * coverage_class;
 824        int ack_timeout = ath5k_hw_get_default_sifs(ah) + slot_time;
 825        int cts_timeout = ack_timeout;
 826
 827        ath5k_hw_set_ifs_intervals(ah, slot_time);
 828        ath5k_hw_set_ack_timeout(ah, ack_timeout);
 829        ath5k_hw_set_cts_timeout(ah, cts_timeout);
 830
 831        ah->ah_coverage_class = coverage_class;
 832}
 833
 834/***************************\
 835* Init/Start/Stop functions *
 836\***************************/
 837
 838/**
 839 * ath5k_hw_start_rx_pcu() - Start RX engine
 840 * @ah: The &struct ath5k_hw
 841 *
 842 * Starts RX engine on PCU so that hw can process RXed frames
 843 * (ACK etc).
 844 *
 845 * NOTE: RX DMA should be already enabled using ath5k_hw_start_rx_dma
 846 */
 847void
 848ath5k_hw_start_rx_pcu(struct ath5k_hw *ah)
 849{
 850        AR5K_REG_DISABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
 851}
 852
 853/**
 854 * at5k_hw_stop_rx_pcu() - Stop RX engine
 855 * @ah: The &struct ath5k_hw
 856 *
 857 * Stops RX engine on PCU
 858 */
 859void
 860ath5k_hw_stop_rx_pcu(struct ath5k_hw *ah)
 861{
 862        AR5K_REG_ENABLE_BITS(ah, AR5K_DIAG_SW, AR5K_DIAG_SW_DIS_RX);
 863}
 864
 865/**
 866 * ath5k_hw_set_opmode() - Set PCU operating mode
 867 * @ah: The &struct ath5k_hw
 868 * @op_mode: One of enum nl80211_iftype
 869 *
 870 * Configure PCU for the various operating modes (AP/STA etc)
 871 */
 872int
 873ath5k_hw_set_opmode(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
 874{
 875        struct ath_common *common = ath5k_hw_common(ah);
 876        u32 pcu_reg, beacon_reg, low_id, high_id;
 877
 878        ATH5K_DBG(ah, ATH5K_DEBUG_MODE, "mode %d\n", op_mode);
 879
 880        /* Preserve rest settings */
 881        pcu_reg = ath5k_hw_reg_read(ah, AR5K_STA_ID1) & 0xffff0000;
 882        pcu_reg &= ~(AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_AP
 883                        | AR5K_STA_ID1_KEYSRCH_MODE
 884                        | (ah->ah_version == AR5K_AR5210 ?
 885                        (AR5K_STA_ID1_PWR_SV | AR5K_STA_ID1_NO_PSPOLL) : 0));
 886
 887        beacon_reg = 0;
 888
 889        switch (op_mode) {
 890        case NL80211_IFTYPE_ADHOC:
 891                pcu_reg |= AR5K_STA_ID1_ADHOC | AR5K_STA_ID1_KEYSRCH_MODE;
 892                beacon_reg |= AR5K_BCR_ADHOC;
 893                if (ah->ah_version == AR5K_AR5210)
 894                        pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
 895                else
 896                        AR5K_REG_ENABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
 897                break;
 898
 899        case NL80211_IFTYPE_AP:
 900        case NL80211_IFTYPE_MESH_POINT:
 901                pcu_reg |= AR5K_STA_ID1_AP | AR5K_STA_ID1_KEYSRCH_MODE;
 902                beacon_reg |= AR5K_BCR_AP;
 903                if (ah->ah_version == AR5K_AR5210)
 904                        pcu_reg |= AR5K_STA_ID1_NO_PSPOLL;
 905                else
 906                        AR5K_REG_DISABLE_BITS(ah, AR5K_CFG, AR5K_CFG_IBSS);
 907                break;
 908
 909        case NL80211_IFTYPE_STATION:
 910                pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
 911                        | (ah->ah_version == AR5K_AR5210 ?
 912                                AR5K_STA_ID1_PWR_SV : 0);
 913        case NL80211_IFTYPE_MONITOR:
 914                pcu_reg |= AR5K_STA_ID1_KEYSRCH_MODE
 915                        | (ah->ah_version == AR5K_AR5210 ?
 916                                AR5K_STA_ID1_NO_PSPOLL : 0);
 917                break;
 918
 919        default:
 920                return -EINVAL;
 921        }
 922
 923        /*
 924         * Set PCU registers
 925         */
 926        low_id = get_unaligned_le32(common->macaddr);
 927        high_id = get_unaligned_le16(common->macaddr + 4);
 928        ath5k_hw_reg_write(ah, low_id, AR5K_STA_ID0);
 929        ath5k_hw_reg_write(ah, pcu_reg | high_id, AR5K_STA_ID1);
 930
 931        /*
 932         * Set Beacon Control Register on 5210
 933         */
 934        if (ah->ah_version == AR5K_AR5210)
 935                ath5k_hw_reg_write(ah, beacon_reg, AR5K_BCR);
 936
 937        return 0;
 938}
 939
 940/**
 941 * ath5k_hw_pcu_init() - Initialize PCU
 942 * @ah: The &struct ath5k_hw
 943 * @op_mode: One of enum nl80211_iftype
 944 * @mode: One of enum ath5k_driver_mode
 945 *
 946 * This function is used to initialize PCU by setting current
 947 * operation mode and various other settings.
 948 */
 949void
 950ath5k_hw_pcu_init(struct ath5k_hw *ah, enum nl80211_iftype op_mode)
 951{
 952        /* Set bssid and bssid mask */
 953        ath5k_hw_set_bssid(ah);
 954
 955        /* Set PCU config */
 956        ath5k_hw_set_opmode(ah, op_mode);
 957
 958        /* Write rate duration table only on AR5212 and if
 959         * virtual interface has already been brought up
 960         * XXX: rethink this after new mode changes to
 961         * mac80211 are integrated */
 962        if (ah->ah_version == AR5K_AR5212 &&
 963                ah->nvifs)
 964                ath5k_hw_write_rate_duration(ah);
 965
 966        /* Set RSSI/BRSSI thresholds
 967         *
 968         * Note: If we decide to set this value
 969         * dynamically, have in mind that when AR5K_RSSI_THR
 970         * register is read it might return 0x40 if we haven't
 971         * wrote anything to it plus BMISS RSSI threshold is zeroed.
 972         * So doing a save/restore procedure here isn't the right
 973         * choice. Instead store it on ath5k_hw */
 974        ath5k_hw_reg_write(ah, (AR5K_TUNE_RSSI_THRES |
 975                                AR5K_TUNE_BMISS_THRES <<
 976                                AR5K_RSSI_THR_BMISS_S),
 977                                AR5K_RSSI_THR);
 978
 979        /* MIC QoS support */
 980        if (ah->ah_mac_srev >= AR5K_SREV_AR2413) {
 981                ath5k_hw_reg_write(ah, 0x000100aa, AR5K_MIC_QOS_CTL);
 982                ath5k_hw_reg_write(ah, 0x00003210, AR5K_MIC_QOS_SEL);
 983        }
 984
 985        /* QoS NOACK Policy */
 986        if (ah->ah_version == AR5K_AR5212) {
 987                ath5k_hw_reg_write(ah,
 988                        AR5K_REG_SM(2, AR5K_QOS_NOACK_2BIT_VALUES) |
 989                        AR5K_REG_SM(5, AR5K_QOS_NOACK_BIT_OFFSET)  |
 990                        AR5K_REG_SM(0, AR5K_QOS_NOACK_BYTE_OFFSET),
 991                        AR5K_QOS_NOACK);
 992        }
 993
 994        /* Restore slot time and ACK timeouts */
 995        if (ah->ah_coverage_class > 0)
 996                ath5k_hw_set_coverage_class(ah, ah->ah_coverage_class);
 997
 998        /* Set ACK bitrate mode (see ack_rates_high) */
 999        if (ah->ah_version == AR5K_AR5212) {
1000                u32 val = AR5K_STA_ID1_BASE_RATE_11B | AR5K_STA_ID1_ACKCTS_6MB;
1001                if (ah->ah_ack_bitrate_high)
1002                        AR5K_REG_DISABLE_BITS(ah, AR5K_STA_ID1, val);
1003                else
1004                        AR5K_REG_ENABLE_BITS(ah, AR5K_STA_ID1, val);
1005        }
1006        return;
1007}
1008