linux/drivers/tty/tty_io.c
<<
>>
Prefs
   1/*
   2 *  Copyright (C) 1991, 1992  Linus Torvalds
   3 */
   4
   5/*
   6 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
   7 * or rs-channels. It also implements echoing, cooked mode etc.
   8 *
   9 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
  10 *
  11 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
  12 * tty_struct and tty_queue structures.  Previously there was an array
  13 * of 256 tty_struct's which was statically allocated, and the
  14 * tty_queue structures were allocated at boot time.  Both are now
  15 * dynamically allocated only when the tty is open.
  16 *
  17 * Also restructured routines so that there is more of a separation
  18 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
  19 * the low-level tty routines (serial.c, pty.c, console.c).  This
  20 * makes for cleaner and more compact code.  -TYT, 9/17/92
  21 *
  22 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
  23 * which can be dynamically activated and de-activated by the line
  24 * discipline handling modules (like SLIP).
  25 *
  26 * NOTE: pay no attention to the line discipline code (yet); its
  27 * interface is still subject to change in this version...
  28 * -- TYT, 1/31/92
  29 *
  30 * Added functionality to the OPOST tty handling.  No delays, but all
  31 * other bits should be there.
  32 *      -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
  33 *
  34 * Rewrote canonical mode and added more termios flags.
  35 *      -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
  36 *
  37 * Reorganized FASYNC support so mouse code can share it.
  38 *      -- ctm@ardi.com, 9Sep95
  39 *
  40 * New TIOCLINUX variants added.
  41 *      -- mj@k332.feld.cvut.cz, 19-Nov-95
  42 *
  43 * Restrict vt switching via ioctl()
  44 *      -- grif@cs.ucr.edu, 5-Dec-95
  45 *
  46 * Move console and virtual terminal code to more appropriate files,
  47 * implement CONFIG_VT and generalize console device interface.
  48 *      -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
  49 *
  50 * Rewrote tty_init_dev and tty_release_dev to eliminate races.
  51 *      -- Bill Hawes <whawes@star.net>, June 97
  52 *
  53 * Added devfs support.
  54 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
  55 *
  56 * Added support for a Unix98-style ptmx device.
  57 *      -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
  58 *
  59 * Reduced memory usage for older ARM systems
  60 *      -- Russell King <rmk@arm.linux.org.uk>
  61 *
  62 * Move do_SAK() into process context.  Less stack use in devfs functions.
  63 * alloc_tty_struct() always uses kmalloc()
  64 *                       -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
  65 */
  66
  67#include <linux/types.h>
  68#include <linux/major.h>
  69#include <linux/errno.h>
  70#include <linux/signal.h>
  71#include <linux/fcntl.h>
  72#include <linux/sched.h>
  73#include <linux/interrupt.h>
  74#include <linux/tty.h>
  75#include <linux/tty_driver.h>
  76#include <linux/tty_flip.h>
  77#include <linux/devpts_fs.h>
  78#include <linux/file.h>
  79#include <linux/fdtable.h>
  80#include <linux/console.h>
  81#include <linux/timer.h>
  82#include <linux/ctype.h>
  83#include <linux/kd.h>
  84#include <linux/mm.h>
  85#include <linux/string.h>
  86#include <linux/slab.h>
  87#include <linux/poll.h>
  88#include <linux/proc_fs.h>
  89#include <linux/init.h>
  90#include <linux/module.h>
  91#include <linux/device.h>
  92#include <linux/wait.h>
  93#include <linux/bitops.h>
  94#include <linux/delay.h>
  95#include <linux/seq_file.h>
  96#include <linux/serial.h>
  97#include <linux/ratelimit.h>
  98
  99#include <linux/uaccess.h>
 100
 101#include <linux/kbd_kern.h>
 102#include <linux/vt_kern.h>
 103#include <linux/selection.h>
 104
 105#include <linux/kmod.h>
 106#include <linux/nsproxy.h>
 107
 108#undef TTY_DEBUG_HANGUP
 109
 110#define TTY_PARANOIA_CHECK 1
 111#define CHECK_TTY_COUNT 1
 112
 113struct ktermios tty_std_termios = {     /* for the benefit of tty drivers  */
 114        .c_iflag = ICRNL | IXON,
 115        .c_oflag = OPOST | ONLCR,
 116        .c_cflag = B38400 | CS8 | CREAD | HUPCL,
 117        .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
 118                   ECHOCTL | ECHOKE | IEXTEN,
 119        .c_cc = INIT_C_CC,
 120        .c_ispeed = 38400,
 121        .c_ospeed = 38400
 122};
 123
 124EXPORT_SYMBOL(tty_std_termios);
 125
 126/* This list gets poked at by procfs and various bits of boot up code. This
 127   could do with some rationalisation such as pulling the tty proc function
 128   into this file */
 129
 130LIST_HEAD(tty_drivers);                 /* linked list of tty drivers */
 131
 132/* Mutex to protect creating and releasing a tty. This is shared with
 133   vt.c for deeply disgusting hack reasons */
 134DEFINE_MUTEX(tty_mutex);
 135EXPORT_SYMBOL(tty_mutex);
 136
 137/* Spinlock to protect the tty->tty_files list */
 138DEFINE_SPINLOCK(tty_files_lock);
 139
 140static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
 141static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
 142ssize_t redirected_tty_write(struct file *, const char __user *,
 143                                                        size_t, loff_t *);
 144static unsigned int tty_poll(struct file *, poll_table *);
 145static int tty_open(struct inode *, struct file *);
 146long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
 147#ifdef CONFIG_COMPAT
 148static long tty_compat_ioctl(struct file *file, unsigned int cmd,
 149                                unsigned long arg);
 150#else
 151#define tty_compat_ioctl NULL
 152#endif
 153static int __tty_fasync(int fd, struct file *filp, int on);
 154static int tty_fasync(int fd, struct file *filp, int on);
 155static void release_tty(struct tty_struct *tty, int idx);
 156static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 157static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty);
 158
 159/**
 160 *      alloc_tty_struct        -       allocate a tty object
 161 *
 162 *      Return a new empty tty structure. The data fields have not
 163 *      been initialized in any way but has been zeroed
 164 *
 165 *      Locking: none
 166 */
 167
 168struct tty_struct *alloc_tty_struct(void)
 169{
 170        return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
 171}
 172
 173/**
 174 *      free_tty_struct         -       free a disused tty
 175 *      @tty: tty struct to free
 176 *
 177 *      Free the write buffers, tty queue and tty memory itself.
 178 *
 179 *      Locking: none. Must be called after tty is definitely unused
 180 */
 181
 182void free_tty_struct(struct tty_struct *tty)
 183{
 184        if (!tty)
 185                return;
 186        if (tty->dev)
 187                put_device(tty->dev);
 188        kfree(tty->write_buf);
 189        tty->magic = 0xDEADDEAD;
 190        kfree(tty);
 191}
 192
 193static inline struct tty_struct *file_tty(struct file *file)
 194{
 195        return ((struct tty_file_private *)file->private_data)->tty;
 196}
 197
 198int tty_alloc_file(struct file *file)
 199{
 200        struct tty_file_private *priv;
 201
 202        priv = kmalloc(sizeof(*priv), GFP_KERNEL);
 203        if (!priv)
 204                return -ENOMEM;
 205
 206        file->private_data = priv;
 207
 208        return 0;
 209}
 210
 211/* Associate a new file with the tty structure */
 212void tty_add_file(struct tty_struct *tty, struct file *file)
 213{
 214        struct tty_file_private *priv = file->private_data;
 215
 216        priv->tty = tty;
 217        priv->file = file;
 218
 219        spin_lock(&tty_files_lock);
 220        list_add(&priv->list, &tty->tty_files);
 221        spin_unlock(&tty_files_lock);
 222}
 223
 224/**
 225 * tty_free_file - free file->private_data
 226 *
 227 * This shall be used only for fail path handling when tty_add_file was not
 228 * called yet.
 229 */
 230void tty_free_file(struct file *file)
 231{
 232        struct tty_file_private *priv = file->private_data;
 233
 234        file->private_data = NULL;
 235        kfree(priv);
 236}
 237
 238/* Delete file from its tty */
 239static void tty_del_file(struct file *file)
 240{
 241        struct tty_file_private *priv = file->private_data;
 242
 243        spin_lock(&tty_files_lock);
 244        list_del(&priv->list);
 245        spin_unlock(&tty_files_lock);
 246        tty_free_file(file);
 247}
 248
 249
 250#define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
 251
 252/**
 253 *      tty_name        -       return tty naming
 254 *      @tty: tty structure
 255 *      @buf: buffer for output
 256 *
 257 *      Convert a tty structure into a name. The name reflects the kernel
 258 *      naming policy and if udev is in use may not reflect user space
 259 *
 260 *      Locking: none
 261 */
 262
 263char *tty_name(struct tty_struct *tty, char *buf)
 264{
 265        if (!tty) /* Hmm.  NULL pointer.  That's fun. */
 266                strcpy(buf, "NULL tty");
 267        else
 268                strcpy(buf, tty->name);
 269        return buf;
 270}
 271
 272EXPORT_SYMBOL(tty_name);
 273
 274int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
 275                              const char *routine)
 276{
 277#ifdef TTY_PARANOIA_CHECK
 278        if (!tty) {
 279                printk(KERN_WARNING
 280                        "null TTY for (%d:%d) in %s\n",
 281                        imajor(inode), iminor(inode), routine);
 282                return 1;
 283        }
 284        if (tty->magic != TTY_MAGIC) {
 285                printk(KERN_WARNING
 286                        "bad magic number for tty struct (%d:%d) in %s\n",
 287                        imajor(inode), iminor(inode), routine);
 288                return 1;
 289        }
 290#endif
 291        return 0;
 292}
 293
 294static int check_tty_count(struct tty_struct *tty, const char *routine)
 295{
 296#ifdef CHECK_TTY_COUNT
 297        struct list_head *p;
 298        int count = 0;
 299
 300        spin_lock(&tty_files_lock);
 301        list_for_each(p, &tty->tty_files) {
 302                count++;
 303        }
 304        spin_unlock(&tty_files_lock);
 305        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
 306            tty->driver->subtype == PTY_TYPE_SLAVE &&
 307            tty->link && tty->link->count)
 308                count++;
 309        if (tty->count != count) {
 310                printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
 311                                    "!= #fd's(%d) in %s\n",
 312                       tty->name, tty->count, count, routine);
 313                return count;
 314        }
 315#endif
 316        return 0;
 317}
 318
 319/**
 320 *      get_tty_driver          -       find device of a tty
 321 *      @dev_t: device identifier
 322 *      @index: returns the index of the tty
 323 *
 324 *      This routine returns a tty driver structure, given a device number
 325 *      and also passes back the index number.
 326 *
 327 *      Locking: caller must hold tty_mutex
 328 */
 329
 330static struct tty_driver *get_tty_driver(dev_t device, int *index)
 331{
 332        struct tty_driver *p;
 333
 334        list_for_each_entry(p, &tty_drivers, tty_drivers) {
 335                dev_t base = MKDEV(p->major, p->minor_start);
 336                if (device < base || device >= base + p->num)
 337                        continue;
 338                *index = device - base;
 339                return tty_driver_kref_get(p);
 340        }
 341        return NULL;
 342}
 343
 344#ifdef CONFIG_CONSOLE_POLL
 345
 346/**
 347 *      tty_find_polling_driver -       find device of a polled tty
 348 *      @name: name string to match
 349 *      @line: pointer to resulting tty line nr
 350 *
 351 *      This routine returns a tty driver structure, given a name
 352 *      and the condition that the tty driver is capable of polled
 353 *      operation.
 354 */
 355struct tty_driver *tty_find_polling_driver(char *name, int *line)
 356{
 357        struct tty_driver *p, *res = NULL;
 358        int tty_line = 0;
 359        int len;
 360        char *str, *stp;
 361
 362        for (str = name; *str; str++)
 363                if ((*str >= '0' && *str <= '9') || *str == ',')
 364                        break;
 365        if (!*str)
 366                return NULL;
 367
 368        len = str - name;
 369        tty_line = simple_strtoul(str, &str, 10);
 370
 371        mutex_lock(&tty_mutex);
 372        /* Search through the tty devices to look for a match */
 373        list_for_each_entry(p, &tty_drivers, tty_drivers) {
 374                if (strncmp(name, p->name, len) != 0)
 375                        continue;
 376                stp = str;
 377                if (*stp == ',')
 378                        stp++;
 379                if (*stp == '\0')
 380                        stp = NULL;
 381
 382                if (tty_line >= 0 && tty_line < p->num && p->ops &&
 383                    p->ops->poll_init && !p->ops->poll_init(p, tty_line, stp)) {
 384                        res = tty_driver_kref_get(p);
 385                        *line = tty_line;
 386                        break;
 387                }
 388        }
 389        mutex_unlock(&tty_mutex);
 390
 391        return res;
 392}
 393EXPORT_SYMBOL_GPL(tty_find_polling_driver);
 394#endif
 395
 396/**
 397 *      tty_check_change        -       check for POSIX terminal changes
 398 *      @tty: tty to check
 399 *
 400 *      If we try to write to, or set the state of, a terminal and we're
 401 *      not in the foreground, send a SIGTTOU.  If the signal is blocked or
 402 *      ignored, go ahead and perform the operation.  (POSIX 7.2)
 403 *
 404 *      Locking: ctrl_lock
 405 */
 406
 407int tty_check_change(struct tty_struct *tty)
 408{
 409        unsigned long flags;
 410        int ret = 0;
 411
 412        if (current->signal->tty != tty)
 413                return 0;
 414
 415        spin_lock_irqsave(&tty->ctrl_lock, flags);
 416
 417        if (!tty->pgrp) {
 418                printk(KERN_WARNING "tty_check_change: tty->pgrp == NULL!\n");
 419                goto out_unlock;
 420        }
 421        if (task_pgrp(current) == tty->pgrp)
 422                goto out_unlock;
 423        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 424        if (is_ignored(SIGTTOU))
 425                goto out;
 426        if (is_current_pgrp_orphaned()) {
 427                ret = -EIO;
 428                goto out;
 429        }
 430        kill_pgrp(task_pgrp(current), SIGTTOU, 1);
 431        set_thread_flag(TIF_SIGPENDING);
 432        ret = -ERESTARTSYS;
 433out:
 434        return ret;
 435out_unlock:
 436        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 437        return ret;
 438}
 439
 440EXPORT_SYMBOL(tty_check_change);
 441
 442static ssize_t hung_up_tty_read(struct file *file, char __user *buf,
 443                                size_t count, loff_t *ppos)
 444{
 445        return 0;
 446}
 447
 448static ssize_t hung_up_tty_write(struct file *file, const char __user *buf,
 449                                 size_t count, loff_t *ppos)
 450{
 451        return -EIO;
 452}
 453
 454/* No kernel lock held - none needed ;) */
 455static unsigned int hung_up_tty_poll(struct file *filp, poll_table *wait)
 456{
 457        return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
 458}
 459
 460static long hung_up_tty_ioctl(struct file *file, unsigned int cmd,
 461                unsigned long arg)
 462{
 463        return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 464}
 465
 466static long hung_up_tty_compat_ioctl(struct file *file,
 467                                     unsigned int cmd, unsigned long arg)
 468{
 469        return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
 470}
 471
 472static const struct file_operations tty_fops = {
 473        .llseek         = no_llseek,
 474        .read           = tty_read,
 475        .write          = tty_write,
 476        .poll           = tty_poll,
 477        .unlocked_ioctl = tty_ioctl,
 478        .compat_ioctl   = tty_compat_ioctl,
 479        .open           = tty_open,
 480        .release        = tty_release,
 481        .fasync         = tty_fasync,
 482};
 483
 484static const struct file_operations console_fops = {
 485        .llseek         = no_llseek,
 486        .read           = tty_read,
 487        .write          = redirected_tty_write,
 488        .poll           = tty_poll,
 489        .unlocked_ioctl = tty_ioctl,
 490        .compat_ioctl   = tty_compat_ioctl,
 491        .open           = tty_open,
 492        .release        = tty_release,
 493        .fasync         = tty_fasync,
 494};
 495
 496static const struct file_operations hung_up_tty_fops = {
 497        .llseek         = no_llseek,
 498        .read           = hung_up_tty_read,
 499        .write          = hung_up_tty_write,
 500        .poll           = hung_up_tty_poll,
 501        .unlocked_ioctl = hung_up_tty_ioctl,
 502        .compat_ioctl   = hung_up_tty_compat_ioctl,
 503        .release        = tty_release,
 504};
 505
 506static DEFINE_SPINLOCK(redirect_lock);
 507static struct file *redirect;
 508
 509/**
 510 *      tty_wakeup      -       request more data
 511 *      @tty: terminal
 512 *
 513 *      Internal and external helper for wakeups of tty. This function
 514 *      informs the line discipline if present that the driver is ready
 515 *      to receive more output data.
 516 */
 517
 518void tty_wakeup(struct tty_struct *tty)
 519{
 520        struct tty_ldisc *ld;
 521
 522        if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
 523                ld = tty_ldisc_ref(tty);
 524                if (ld) {
 525                        if (ld->ops->write_wakeup)
 526                                ld->ops->write_wakeup(tty);
 527                        tty_ldisc_deref(ld);
 528                }
 529        }
 530        wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
 531}
 532
 533EXPORT_SYMBOL_GPL(tty_wakeup);
 534
 535/**
 536 *      tty_signal_session_leader       - sends SIGHUP to session leader
 537 *      @tty            controlling tty
 538 *      @exit_session   if non-zero, signal all foreground group processes
 539 *
 540 *      Send SIGHUP and SIGCONT to the session leader and its process group.
 541 *      Optionally, signal all processes in the foreground process group.
 542 *
 543 *      Returns the number of processes in the session with this tty
 544 *      as their controlling terminal. This value is used to drop
 545 *      tty references for those processes.
 546 */
 547static int tty_signal_session_leader(struct tty_struct *tty, int exit_session)
 548{
 549        struct task_struct *p;
 550        int refs = 0;
 551        struct pid *tty_pgrp = NULL;
 552
 553        read_lock(&tasklist_lock);
 554        if (tty->session) {
 555                do_each_pid_task(tty->session, PIDTYPE_SID, p) {
 556                        spin_lock_irq(&p->sighand->siglock);
 557                        if (p->signal->tty == tty) {
 558                                p->signal->tty = NULL;
 559                                /* We defer the dereferences outside fo
 560                                   the tasklist lock */
 561                                refs++;
 562                        }
 563                        if (!p->signal->leader) {
 564                                spin_unlock_irq(&p->sighand->siglock);
 565                                continue;
 566                        }
 567                        __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
 568                        __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
 569                        put_pid(p->signal->tty_old_pgrp);  /* A noop */
 570                        spin_lock(&tty->ctrl_lock);
 571                        tty_pgrp = get_pid(tty->pgrp);
 572                        if (tty->pgrp)
 573                                p->signal->tty_old_pgrp = get_pid(tty->pgrp);
 574                        spin_unlock(&tty->ctrl_lock);
 575                        spin_unlock_irq(&p->sighand->siglock);
 576                } while_each_pid_task(tty->session, PIDTYPE_SID, p);
 577        }
 578        read_unlock(&tasklist_lock);
 579
 580        if (tty_pgrp) {
 581                if (exit_session)
 582                        kill_pgrp(tty_pgrp, SIGHUP, exit_session);
 583                put_pid(tty_pgrp);
 584        }
 585
 586        return refs;
 587}
 588
 589/**
 590 *      __tty_hangup            -       actual handler for hangup events
 591 *      @work: tty device
 592 *
 593 *      This can be called by a "kworker" kernel thread.  That is process
 594 *      synchronous but doesn't hold any locks, so we need to make sure we
 595 *      have the appropriate locks for what we're doing.
 596 *
 597 *      The hangup event clears any pending redirections onto the hung up
 598 *      device. It ensures future writes will error and it does the needed
 599 *      line discipline hangup and signal delivery. The tty object itself
 600 *      remains intact.
 601 *
 602 *      Locking:
 603 *              BTM
 604 *                redirect lock for undoing redirection
 605 *                file list lock for manipulating list of ttys
 606 *                tty_ldisc_lock from called functions
 607 *                termios_mutex resetting termios data
 608 *                tasklist_lock to walk task list for hangup event
 609 *                  ->siglock to protect ->signal/->sighand
 610 */
 611static void __tty_hangup(struct tty_struct *tty, int exit_session)
 612{
 613        struct file *cons_filp = NULL;
 614        struct file *filp, *f = NULL;
 615        struct tty_file_private *priv;
 616        int    closecount = 0, n;
 617        int refs;
 618
 619        if (!tty)
 620                return;
 621
 622
 623        spin_lock(&redirect_lock);
 624        if (redirect && file_tty(redirect) == tty) {
 625                f = redirect;
 626                redirect = NULL;
 627        }
 628        spin_unlock(&redirect_lock);
 629
 630        tty_lock(tty);
 631
 632        /* some functions below drop BTM, so we need this bit */
 633        set_bit(TTY_HUPPING, &tty->flags);
 634
 635        /* inuse_filps is protected by the single tty lock,
 636           this really needs to change if we want to flush the
 637           workqueue with the lock held */
 638        check_tty_count(tty, "tty_hangup");
 639
 640        spin_lock(&tty_files_lock);
 641        /* This breaks for file handles being sent over AF_UNIX sockets ? */
 642        list_for_each_entry(priv, &tty->tty_files, list) {
 643                filp = priv->file;
 644                if (filp->f_op->write == redirected_tty_write)
 645                        cons_filp = filp;
 646                if (filp->f_op->write != tty_write)
 647                        continue;
 648                closecount++;
 649                __tty_fasync(-1, filp, 0);      /* can't block */
 650                filp->f_op = &hung_up_tty_fops;
 651        }
 652        spin_unlock(&tty_files_lock);
 653
 654        refs = tty_signal_session_leader(tty, exit_session);
 655        /* Account for the p->signal references we killed */
 656        while (refs--)
 657                tty_kref_put(tty);
 658
 659        /*
 660         * it drops BTM and thus races with reopen
 661         * we protect the race by TTY_HUPPING
 662         */
 663        tty_ldisc_hangup(tty);
 664
 665        spin_lock_irq(&tty->ctrl_lock);
 666        clear_bit(TTY_THROTTLED, &tty->flags);
 667        clear_bit(TTY_PUSH, &tty->flags);
 668        clear_bit(TTY_DO_WRITE_WAKEUP, &tty->flags);
 669        put_pid(tty->session);
 670        put_pid(tty->pgrp);
 671        tty->session = NULL;
 672        tty->pgrp = NULL;
 673        tty->ctrl_status = 0;
 674        spin_unlock_irq(&tty->ctrl_lock);
 675
 676        /*
 677         * If one of the devices matches a console pointer, we
 678         * cannot just call hangup() because that will cause
 679         * tty->count and state->count to go out of sync.
 680         * So we just call close() the right number of times.
 681         */
 682        if (cons_filp) {
 683                if (tty->ops->close)
 684                        for (n = 0; n < closecount; n++)
 685                                tty->ops->close(tty, cons_filp);
 686        } else if (tty->ops->hangup)
 687                (tty->ops->hangup)(tty);
 688        /*
 689         * We don't want to have driver/ldisc interactions beyond
 690         * the ones we did here. The driver layer expects no
 691         * calls after ->hangup() from the ldisc side. However we
 692         * can't yet guarantee all that.
 693         */
 694        set_bit(TTY_HUPPED, &tty->flags);
 695        clear_bit(TTY_HUPPING, &tty->flags);
 696
 697        tty_unlock(tty);
 698
 699        if (f)
 700                fput(f);
 701}
 702
 703static void do_tty_hangup(struct work_struct *work)
 704{
 705        struct tty_struct *tty =
 706                container_of(work, struct tty_struct, hangup_work);
 707
 708        __tty_hangup(tty, 0);
 709}
 710
 711/**
 712 *      tty_hangup              -       trigger a hangup event
 713 *      @tty: tty to hangup
 714 *
 715 *      A carrier loss (virtual or otherwise) has occurred on this like
 716 *      schedule a hangup sequence to run after this event.
 717 */
 718
 719void tty_hangup(struct tty_struct *tty)
 720{
 721#ifdef TTY_DEBUG_HANGUP
 722        char    buf[64];
 723        printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
 724#endif
 725        schedule_work(&tty->hangup_work);
 726}
 727
 728EXPORT_SYMBOL(tty_hangup);
 729
 730/**
 731 *      tty_vhangup             -       process vhangup
 732 *      @tty: tty to hangup
 733 *
 734 *      The user has asked via system call for the terminal to be hung up.
 735 *      We do this synchronously so that when the syscall returns the process
 736 *      is complete. That guarantee is necessary for security reasons.
 737 */
 738
 739void tty_vhangup(struct tty_struct *tty)
 740{
 741#ifdef TTY_DEBUG_HANGUP
 742        char    buf[64];
 743
 744        printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
 745#endif
 746        __tty_hangup(tty, 0);
 747}
 748
 749EXPORT_SYMBOL(tty_vhangup);
 750
 751
 752/**
 753 *      tty_vhangup_self        -       process vhangup for own ctty
 754 *
 755 *      Perform a vhangup on the current controlling tty
 756 */
 757
 758void tty_vhangup_self(void)
 759{
 760        struct tty_struct *tty;
 761
 762        tty = get_current_tty();
 763        if (tty) {
 764                tty_vhangup(tty);
 765                tty_kref_put(tty);
 766        }
 767}
 768
 769/**
 770 *      tty_vhangup_session             -       hangup session leader exit
 771 *      @tty: tty to hangup
 772 *
 773 *      The session leader is exiting and hanging up its controlling terminal.
 774 *      Every process in the foreground process group is signalled SIGHUP.
 775 *
 776 *      We do this synchronously so that when the syscall returns the process
 777 *      is complete. That guarantee is necessary for security reasons.
 778 */
 779
 780static void tty_vhangup_session(struct tty_struct *tty)
 781{
 782#ifdef TTY_DEBUG_HANGUP
 783        char    buf[64];
 784
 785        printk(KERN_DEBUG "%s vhangup session...\n", tty_name(tty, buf));
 786#endif
 787        __tty_hangup(tty, 1);
 788}
 789
 790/**
 791 *      tty_hung_up_p           -       was tty hung up
 792 *      @filp: file pointer of tty
 793 *
 794 *      Return true if the tty has been subject to a vhangup or a carrier
 795 *      loss
 796 */
 797
 798int tty_hung_up_p(struct file *filp)
 799{
 800        return (filp->f_op == &hung_up_tty_fops);
 801}
 802
 803EXPORT_SYMBOL(tty_hung_up_p);
 804
 805static void session_clear_tty(struct pid *session)
 806{
 807        struct task_struct *p;
 808        do_each_pid_task(session, PIDTYPE_SID, p) {
 809                proc_clear_tty(p);
 810        } while_each_pid_task(session, PIDTYPE_SID, p);
 811}
 812
 813/**
 814 *      disassociate_ctty       -       disconnect controlling tty
 815 *      @on_exit: true if exiting so need to "hang up" the session
 816 *
 817 *      This function is typically called only by the session leader, when
 818 *      it wants to disassociate itself from its controlling tty.
 819 *
 820 *      It performs the following functions:
 821 *      (1)  Sends a SIGHUP and SIGCONT to the foreground process group
 822 *      (2)  Clears the tty from being controlling the session
 823 *      (3)  Clears the controlling tty for all processes in the
 824 *              session group.
 825 *
 826 *      The argument on_exit is set to 1 if called when a process is
 827 *      exiting; it is 0 if called by the ioctl TIOCNOTTY.
 828 *
 829 *      Locking:
 830 *              BTM is taken for hysterical raisins, and held when
 831 *                called from no_tty().
 832 *                tty_mutex is taken to protect tty
 833 *                ->siglock is taken to protect ->signal/->sighand
 834 *                tasklist_lock is taken to walk process list for sessions
 835 *                  ->siglock is taken to protect ->signal/->sighand
 836 */
 837
 838void disassociate_ctty(int on_exit)
 839{
 840        struct tty_struct *tty;
 841
 842        if (!current->signal->leader)
 843                return;
 844
 845        tty = get_current_tty();
 846        if (tty) {
 847                if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY) {
 848                        tty_vhangup_session(tty);
 849                } else {
 850                        struct pid *tty_pgrp = tty_get_pgrp(tty);
 851                        if (tty_pgrp) {
 852                                kill_pgrp(tty_pgrp, SIGHUP, on_exit);
 853                                kill_pgrp(tty_pgrp, SIGCONT, on_exit);
 854                                put_pid(tty_pgrp);
 855                        }
 856                }
 857                tty_kref_put(tty);
 858
 859        } else if (on_exit) {
 860                struct pid *old_pgrp;
 861                spin_lock_irq(&current->sighand->siglock);
 862                old_pgrp = current->signal->tty_old_pgrp;
 863                current->signal->tty_old_pgrp = NULL;
 864                spin_unlock_irq(&current->sighand->siglock);
 865                if (old_pgrp) {
 866                        kill_pgrp(old_pgrp, SIGHUP, on_exit);
 867                        kill_pgrp(old_pgrp, SIGCONT, on_exit);
 868                        put_pid(old_pgrp);
 869                }
 870                return;
 871        }
 872
 873        spin_lock_irq(&current->sighand->siglock);
 874        put_pid(current->signal->tty_old_pgrp);
 875        current->signal->tty_old_pgrp = NULL;
 876        spin_unlock_irq(&current->sighand->siglock);
 877
 878        tty = get_current_tty();
 879        if (tty) {
 880                unsigned long flags;
 881                spin_lock_irqsave(&tty->ctrl_lock, flags);
 882                put_pid(tty->session);
 883                put_pid(tty->pgrp);
 884                tty->session = NULL;
 885                tty->pgrp = NULL;
 886                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 887                tty_kref_put(tty);
 888        } else {
 889#ifdef TTY_DEBUG_HANGUP
 890                printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
 891                       " = NULL", tty);
 892#endif
 893        }
 894
 895        /* Now clear signal->tty under the lock */
 896        read_lock(&tasklist_lock);
 897        session_clear_tty(task_session(current));
 898        read_unlock(&tasklist_lock);
 899}
 900
 901/**
 902 *
 903 *      no_tty  - Ensure the current process does not have a controlling tty
 904 */
 905void no_tty(void)
 906{
 907        /* FIXME: Review locking here. The tty_lock never covered any race
 908           between a new association and proc_clear_tty but possible we need
 909           to protect against this anyway */
 910        struct task_struct *tsk = current;
 911        disassociate_ctty(0);
 912        proc_clear_tty(tsk);
 913}
 914
 915
 916/**
 917 *      stop_tty        -       propagate flow control
 918 *      @tty: tty to stop
 919 *
 920 *      Perform flow control to the driver. For PTY/TTY pairs we
 921 *      must also propagate the TIOCKPKT status. May be called
 922 *      on an already stopped device and will not re-call the driver
 923 *      method.
 924 *
 925 *      This functionality is used by both the line disciplines for
 926 *      halting incoming flow and by the driver. It may therefore be
 927 *      called from any context, may be under the tty atomic_write_lock
 928 *      but not always.
 929 *
 930 *      Locking:
 931 *              Uses the tty control lock internally
 932 */
 933
 934void stop_tty(struct tty_struct *tty)
 935{
 936        unsigned long flags;
 937        spin_lock_irqsave(&tty->ctrl_lock, flags);
 938        if (tty->stopped) {
 939                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 940                return;
 941        }
 942        tty->stopped = 1;
 943        if (tty->link && tty->link->packet) {
 944                tty->ctrl_status &= ~TIOCPKT_START;
 945                tty->ctrl_status |= TIOCPKT_STOP;
 946                wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 947        }
 948        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 949        if (tty->ops->stop)
 950                (tty->ops->stop)(tty);
 951}
 952
 953EXPORT_SYMBOL(stop_tty);
 954
 955/**
 956 *      start_tty       -       propagate flow control
 957 *      @tty: tty to start
 958 *
 959 *      Start a tty that has been stopped if at all possible. Perform
 960 *      any necessary wakeups and propagate the TIOCPKT status. If this
 961 *      is the tty was previous stopped and is being started then the
 962 *      driver start method is invoked and the line discipline woken.
 963 *
 964 *      Locking:
 965 *              ctrl_lock
 966 */
 967
 968void start_tty(struct tty_struct *tty)
 969{
 970        unsigned long flags;
 971        spin_lock_irqsave(&tty->ctrl_lock, flags);
 972        if (!tty->stopped || tty->flow_stopped) {
 973                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 974                return;
 975        }
 976        tty->stopped = 0;
 977        if (tty->link && tty->link->packet) {
 978                tty->ctrl_status &= ~TIOCPKT_STOP;
 979                tty->ctrl_status |= TIOCPKT_START;
 980                wake_up_interruptible_poll(&tty->link->read_wait, POLLIN);
 981        }
 982        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
 983        if (tty->ops->start)
 984                (tty->ops->start)(tty);
 985        /* If we have a running line discipline it may need kicking */
 986        tty_wakeup(tty);
 987}
 988
 989EXPORT_SYMBOL(start_tty);
 990
 991/* We limit tty time update visibility to every 8 seconds or so. */
 992static void tty_update_time(struct timespec *time)
 993{
 994        unsigned long sec = get_seconds() & ~7;
 995        if ((long)(sec - time->tv_sec) > 0)
 996                time->tv_sec = sec;
 997}
 998
 999/**
1000 *      tty_read        -       read method for tty device files
1001 *      @file: pointer to tty file
1002 *      @buf: user buffer
1003 *      @count: size of user buffer
1004 *      @ppos: unused
1005 *
1006 *      Perform the read system call function on this terminal device. Checks
1007 *      for hung up devices before calling the line discipline method.
1008 *
1009 *      Locking:
1010 *              Locks the line discipline internally while needed. Multiple
1011 *      read calls may be outstanding in parallel.
1012 */
1013
1014static ssize_t tty_read(struct file *file, char __user *buf, size_t count,
1015                        loff_t *ppos)
1016{
1017        int i;
1018        struct inode *inode = file_inode(file);
1019        struct tty_struct *tty = file_tty(file);
1020        struct tty_ldisc *ld;
1021
1022        if (tty_paranoia_check(tty, inode, "tty_read"))
1023                return -EIO;
1024        if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1025                return -EIO;
1026
1027        /* We want to wait for the line discipline to sort out in this
1028           situation */
1029        ld = tty_ldisc_ref_wait(tty);
1030        if (ld->ops->read)
1031                i = (ld->ops->read)(tty, file, buf, count);
1032        else
1033                i = -EIO;
1034        tty_ldisc_deref(ld);
1035
1036        if (i > 0)
1037                tty_update_time(&inode->i_atime);
1038
1039        return i;
1040}
1041
1042void tty_write_unlock(struct tty_struct *tty)
1043        __releases(&tty->atomic_write_lock)
1044{
1045        mutex_unlock(&tty->atomic_write_lock);
1046        wake_up_interruptible_poll(&tty->write_wait, POLLOUT);
1047}
1048
1049int tty_write_lock(struct tty_struct *tty, int ndelay)
1050        __acquires(&tty->atomic_write_lock)
1051{
1052        if (!mutex_trylock(&tty->atomic_write_lock)) {
1053                if (ndelay)
1054                        return -EAGAIN;
1055                if (mutex_lock_interruptible(&tty->atomic_write_lock))
1056                        return -ERESTARTSYS;
1057        }
1058        return 0;
1059}
1060
1061/*
1062 * Split writes up in sane blocksizes to avoid
1063 * denial-of-service type attacks
1064 */
1065static inline ssize_t do_tty_write(
1066        ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1067        struct tty_struct *tty,
1068        struct file *file,
1069        const char __user *buf,
1070        size_t count)
1071{
1072        ssize_t ret, written = 0;
1073        unsigned int chunk;
1074
1075        ret = tty_write_lock(tty, file->f_flags & O_NDELAY);
1076        if (ret < 0)
1077                return ret;
1078
1079        /*
1080         * We chunk up writes into a temporary buffer. This
1081         * simplifies low-level drivers immensely, since they
1082         * don't have locking issues and user mode accesses.
1083         *
1084         * But if TTY_NO_WRITE_SPLIT is set, we should use a
1085         * big chunk-size..
1086         *
1087         * The default chunk-size is 2kB, because the NTTY
1088         * layer has problems with bigger chunks. It will
1089         * claim to be able to handle more characters than
1090         * it actually does.
1091         *
1092         * FIXME: This can probably go away now except that 64K chunks
1093         * are too likely to fail unless switched to vmalloc...
1094         */
1095        chunk = 2048;
1096        if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1097                chunk = 65536;
1098        if (count < chunk)
1099                chunk = count;
1100
1101        /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1102        if (tty->write_cnt < chunk) {
1103                unsigned char *buf_chunk;
1104
1105                if (chunk < 1024)
1106                        chunk = 1024;
1107
1108                buf_chunk = kmalloc(chunk, GFP_KERNEL);
1109                if (!buf_chunk) {
1110                        ret = -ENOMEM;
1111                        goto out;
1112                }
1113                kfree(tty->write_buf);
1114                tty->write_cnt = chunk;
1115                tty->write_buf = buf_chunk;
1116        }
1117
1118        /* Do the write .. */
1119        for (;;) {
1120                size_t size = count;
1121                if (size > chunk)
1122                        size = chunk;
1123                ret = -EFAULT;
1124                if (copy_from_user(tty->write_buf, buf, size))
1125                        break;
1126                ret = write(tty, file, tty->write_buf, size);
1127                if (ret <= 0)
1128                        break;
1129                written += ret;
1130                buf += ret;
1131                count -= ret;
1132                if (!count)
1133                        break;
1134                ret = -ERESTARTSYS;
1135                if (signal_pending(current))
1136                        break;
1137                cond_resched();
1138        }
1139        if (written) {
1140                tty_update_time(&file_inode(file)->i_mtime);
1141                ret = written;
1142        }
1143out:
1144        tty_write_unlock(tty);
1145        return ret;
1146}
1147
1148/**
1149 * tty_write_message - write a message to a certain tty, not just the console.
1150 * @tty: the destination tty_struct
1151 * @msg: the message to write
1152 *
1153 * This is used for messages that need to be redirected to a specific tty.
1154 * We don't put it into the syslog queue right now maybe in the future if
1155 * really needed.
1156 *
1157 * We must still hold the BTM and test the CLOSING flag for the moment.
1158 */
1159
1160void tty_write_message(struct tty_struct *tty, char *msg)
1161{
1162        if (tty) {
1163                mutex_lock(&tty->atomic_write_lock);
1164                tty_lock(tty);
1165                if (tty->ops->write && !test_bit(TTY_CLOSING, &tty->flags)) {
1166                        tty_unlock(tty);
1167                        tty->ops->write(tty, msg, strlen(msg));
1168                } else
1169                        tty_unlock(tty);
1170                tty_write_unlock(tty);
1171        }
1172        return;
1173}
1174
1175
1176/**
1177 *      tty_write               -       write method for tty device file
1178 *      @file: tty file pointer
1179 *      @buf: user data to write
1180 *      @count: bytes to write
1181 *      @ppos: unused
1182 *
1183 *      Write data to a tty device via the line discipline.
1184 *
1185 *      Locking:
1186 *              Locks the line discipline as required
1187 *              Writes to the tty driver are serialized by the atomic_write_lock
1188 *      and are then processed in chunks to the device. The line discipline
1189 *      write method will not be invoked in parallel for each device.
1190 */
1191
1192static ssize_t tty_write(struct file *file, const char __user *buf,
1193                                                size_t count, loff_t *ppos)
1194{
1195        struct tty_struct *tty = file_tty(file);
1196        struct tty_ldisc *ld;
1197        ssize_t ret;
1198
1199        if (tty_paranoia_check(tty, file_inode(file), "tty_write"))
1200                return -EIO;
1201        if (!tty || !tty->ops->write ||
1202                (test_bit(TTY_IO_ERROR, &tty->flags)))
1203                        return -EIO;
1204        /* Short term debug to catch buggy drivers */
1205        if (tty->ops->write_room == NULL)
1206                printk(KERN_ERR "tty driver %s lacks a write_room method.\n",
1207                        tty->driver->name);
1208        ld = tty_ldisc_ref_wait(tty);
1209        if (!ld->ops->write)
1210                ret = -EIO;
1211        else
1212                ret = do_tty_write(ld->ops->write, tty, file, buf, count);
1213        tty_ldisc_deref(ld);
1214        return ret;
1215}
1216
1217ssize_t redirected_tty_write(struct file *file, const char __user *buf,
1218                                                size_t count, loff_t *ppos)
1219{
1220        struct file *p = NULL;
1221
1222        spin_lock(&redirect_lock);
1223        if (redirect)
1224                p = get_file(redirect);
1225        spin_unlock(&redirect_lock);
1226
1227        if (p) {
1228                ssize_t res;
1229                res = vfs_write(p, buf, count, &p->f_pos);
1230                fput(p);
1231                return res;
1232        }
1233        return tty_write(file, buf, count, ppos);
1234}
1235
1236static char ptychar[] = "pqrstuvwxyzabcde";
1237
1238/**
1239 *      pty_line_name   -       generate name for a pty
1240 *      @driver: the tty driver in use
1241 *      @index: the minor number
1242 *      @p: output buffer of at least 6 bytes
1243 *
1244 *      Generate a name from a driver reference and write it to the output
1245 *      buffer.
1246 *
1247 *      Locking: None
1248 */
1249static void pty_line_name(struct tty_driver *driver, int index, char *p)
1250{
1251        int i = index + driver->name_base;
1252        /* ->name is initialized to "ttyp", but "tty" is expected */
1253        sprintf(p, "%s%c%x",
1254                driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1255                ptychar[i >> 4 & 0xf], i & 0xf);
1256}
1257
1258/**
1259 *      tty_line_name   -       generate name for a tty
1260 *      @driver: the tty driver in use
1261 *      @index: the minor number
1262 *      @p: output buffer of at least 7 bytes
1263 *
1264 *      Generate a name from a driver reference and write it to the output
1265 *      buffer.
1266 *
1267 *      Locking: None
1268 */
1269static void tty_line_name(struct tty_driver *driver, int index, char *p)
1270{
1271        if (driver->flags & TTY_DRIVER_UNNUMBERED_NODE)
1272                strcpy(p, driver->name);
1273        else
1274                sprintf(p, "%s%d", driver->name, index + driver->name_base);
1275}
1276
1277/**
1278 *      tty_driver_lookup_tty() - find an existing tty, if any
1279 *      @driver: the driver for the tty
1280 *      @idx:    the minor number
1281 *
1282 *      Return the tty, if found or ERR_PTR() otherwise.
1283 *
1284 *      Locking: tty_mutex must be held. If tty is found, the mutex must
1285 *      be held until the 'fast-open' is also done. Will change once we
1286 *      have refcounting in the driver and per driver locking
1287 */
1288static struct tty_struct *tty_driver_lookup_tty(struct tty_driver *driver,
1289                struct inode *inode, int idx)
1290{
1291        if (driver->ops->lookup)
1292                return driver->ops->lookup(driver, inode, idx);
1293
1294        return driver->ttys[idx];
1295}
1296
1297/**
1298 *      tty_init_termios        -  helper for termios setup
1299 *      @tty: the tty to set up
1300 *
1301 *      Initialise the termios structures for this tty. Thus runs under
1302 *      the tty_mutex currently so we can be relaxed about ordering.
1303 */
1304
1305int tty_init_termios(struct tty_struct *tty)
1306{
1307        struct ktermios *tp;
1308        int idx = tty->index;
1309
1310        if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1311                tty->termios = tty->driver->init_termios;
1312        else {
1313                /* Check for lazy saved data */
1314                tp = tty->driver->termios[idx];
1315                if (tp != NULL)
1316                        tty->termios = *tp;
1317                else
1318                        tty->termios = tty->driver->init_termios;
1319        }
1320        /* Compatibility until drivers always set this */
1321        tty->termios.c_ispeed = tty_termios_input_baud_rate(&tty->termios);
1322        tty->termios.c_ospeed = tty_termios_baud_rate(&tty->termios);
1323        return 0;
1324}
1325EXPORT_SYMBOL_GPL(tty_init_termios);
1326
1327int tty_standard_install(struct tty_driver *driver, struct tty_struct *tty)
1328{
1329        int ret = tty_init_termios(tty);
1330        if (ret)
1331                return ret;
1332
1333        tty_driver_kref_get(driver);
1334        tty->count++;
1335        driver->ttys[tty->index] = tty;
1336        return 0;
1337}
1338EXPORT_SYMBOL_GPL(tty_standard_install);
1339
1340/**
1341 *      tty_driver_install_tty() - install a tty entry in the driver
1342 *      @driver: the driver for the tty
1343 *      @tty: the tty
1344 *
1345 *      Install a tty object into the driver tables. The tty->index field
1346 *      will be set by the time this is called. This method is responsible
1347 *      for ensuring any need additional structures are allocated and
1348 *      configured.
1349 *
1350 *      Locking: tty_mutex for now
1351 */
1352static int tty_driver_install_tty(struct tty_driver *driver,
1353                                                struct tty_struct *tty)
1354{
1355        return driver->ops->install ? driver->ops->install(driver, tty) :
1356                tty_standard_install(driver, tty);
1357}
1358
1359/**
1360 *      tty_driver_remove_tty() - remove a tty from the driver tables
1361 *      @driver: the driver for the tty
1362 *      @idx:    the minor number
1363 *
1364 *      Remvoe a tty object from the driver tables. The tty->index field
1365 *      will be set by the time this is called.
1366 *
1367 *      Locking: tty_mutex for now
1368 */
1369void tty_driver_remove_tty(struct tty_driver *driver, struct tty_struct *tty)
1370{
1371        if (driver->ops->remove)
1372                driver->ops->remove(driver, tty);
1373        else
1374                driver->ttys[tty->index] = NULL;
1375}
1376
1377/*
1378 *      tty_reopen()    - fast re-open of an open tty
1379 *      @tty    - the tty to open
1380 *
1381 *      Return 0 on success, -errno on error.
1382 *
1383 *      Locking: tty_mutex must be held from the time the tty was found
1384 *               till this open completes.
1385 */
1386static int tty_reopen(struct tty_struct *tty)
1387{
1388        struct tty_driver *driver = tty->driver;
1389
1390        if (test_bit(TTY_CLOSING, &tty->flags) ||
1391                        test_bit(TTY_HUPPING, &tty->flags) ||
1392                        test_bit(TTY_LDISC_CHANGING, &tty->flags))
1393                return -EIO;
1394
1395        if (driver->type == TTY_DRIVER_TYPE_PTY &&
1396            driver->subtype == PTY_TYPE_MASTER) {
1397                /*
1398                 * special case for PTY masters: only one open permitted,
1399                 * and the slave side open count is incremented as well.
1400                 */
1401                if (tty->count)
1402                        return -EIO;
1403
1404                tty->link->count++;
1405        }
1406        tty->count++;
1407
1408        WARN_ON(!test_bit(TTY_LDISC, &tty->flags));
1409
1410        return 0;
1411}
1412
1413/**
1414 *      tty_init_dev            -       initialise a tty device
1415 *      @driver: tty driver we are opening a device on
1416 *      @idx: device index
1417 *      @ret_tty: returned tty structure
1418 *
1419 *      Prepare a tty device. This may not be a "new" clean device but
1420 *      could also be an active device. The pty drivers require special
1421 *      handling because of this.
1422 *
1423 *      Locking:
1424 *              The function is called under the tty_mutex, which
1425 *      protects us from the tty struct or driver itself going away.
1426 *
1427 *      On exit the tty device has the line discipline attached and
1428 *      a reference count of 1. If a pair was created for pty/tty use
1429 *      and the other was a pty master then it too has a reference count of 1.
1430 *
1431 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1432 * failed open.  The new code protects the open with a mutex, so it's
1433 * really quite straightforward.  The mutex locking can probably be
1434 * relaxed for the (most common) case of reopening a tty.
1435 */
1436
1437struct tty_struct *tty_init_dev(struct tty_driver *driver, int idx)
1438{
1439        struct tty_struct *tty;
1440        int retval;
1441
1442        /*
1443         * First time open is complex, especially for PTY devices.
1444         * This code guarantees that either everything succeeds and the
1445         * TTY is ready for operation, or else the table slots are vacated
1446         * and the allocated memory released.  (Except that the termios
1447         * and locked termios may be retained.)
1448         */
1449
1450        if (!try_module_get(driver->owner))
1451                return ERR_PTR(-ENODEV);
1452
1453        tty = alloc_tty_struct();
1454        if (!tty) {
1455                retval = -ENOMEM;
1456                goto err_module_put;
1457        }
1458        initialize_tty_struct(tty, driver, idx);
1459
1460        tty_lock(tty);
1461        retval = tty_driver_install_tty(driver, tty);
1462        if (retval < 0)
1463                goto err_deinit_tty;
1464
1465        if (!tty->port)
1466                tty->port = driver->ports[idx];
1467
1468        WARN_RATELIMIT(!tty->port,
1469                        "%s: %s driver does not set tty->port. This will crash the kernel later. Fix the driver!\n",
1470                        __func__, tty->driver->name);
1471
1472        tty->port->itty = tty;
1473
1474        /*
1475         * Structures all installed ... call the ldisc open routines.
1476         * If we fail here just call release_tty to clean up.  No need
1477         * to decrement the use counts, as release_tty doesn't care.
1478         */
1479        retval = tty_ldisc_setup(tty, tty->link);
1480        if (retval)
1481                goto err_release_tty;
1482        /* Return the tty locked so that it cannot vanish under the caller */
1483        return tty;
1484
1485err_deinit_tty:
1486        tty_unlock(tty);
1487        deinitialize_tty_struct(tty);
1488        free_tty_struct(tty);
1489err_module_put:
1490        module_put(driver->owner);
1491        return ERR_PTR(retval);
1492
1493        /* call the tty release_tty routine to clean out this slot */
1494err_release_tty:
1495        tty_unlock(tty);
1496        printk_ratelimited(KERN_INFO "tty_init_dev: ldisc open failed, "
1497                                 "clearing slot %d\n", idx);
1498        release_tty(tty, idx);
1499        return ERR_PTR(retval);
1500}
1501
1502void tty_free_termios(struct tty_struct *tty)
1503{
1504        struct ktermios *tp;
1505        int idx = tty->index;
1506
1507        /* If the port is going to reset then it has no termios to save */
1508        if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1509                return;
1510
1511        /* Stash the termios data */
1512        tp = tty->driver->termios[idx];
1513        if (tp == NULL) {
1514                tp = kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1515                if (tp == NULL) {
1516                        pr_warn("tty: no memory to save termios state.\n");
1517                        return;
1518                }
1519                tty->driver->termios[idx] = tp;
1520        }
1521        *tp = tty->termios;
1522}
1523EXPORT_SYMBOL(tty_free_termios);
1524
1525/**
1526 *      tty_flush_works         -       flush all works of a tty
1527 *      @tty: tty device to flush works for
1528 *
1529 *      Sync flush all works belonging to @tty.
1530 */
1531static void tty_flush_works(struct tty_struct *tty)
1532{
1533        flush_work(&tty->SAK_work);
1534        flush_work(&tty->hangup_work);
1535}
1536
1537/**
1538 *      release_one_tty         -       release tty structure memory
1539 *      @kref: kref of tty we are obliterating
1540 *
1541 *      Releases memory associated with a tty structure, and clears out the
1542 *      driver table slots. This function is called when a device is no longer
1543 *      in use. It also gets called when setup of a device fails.
1544 *
1545 *      Locking:
1546 *              takes the file list lock internally when working on the list
1547 *      of ttys that the driver keeps.
1548 *
1549 *      This method gets called from a work queue so that the driver private
1550 *      cleanup ops can sleep (needed for USB at least)
1551 */
1552static void release_one_tty(struct work_struct *work)
1553{
1554        struct tty_struct *tty =
1555                container_of(work, struct tty_struct, hangup_work);
1556        struct tty_driver *driver = tty->driver;
1557
1558        if (tty->ops->cleanup)
1559                tty->ops->cleanup(tty);
1560
1561        tty->magic = 0;
1562        tty_driver_kref_put(driver);
1563        module_put(driver->owner);
1564
1565        spin_lock(&tty_files_lock);
1566        list_del_init(&tty->tty_files);
1567        spin_unlock(&tty_files_lock);
1568
1569        put_pid(tty->pgrp);
1570        put_pid(tty->session);
1571        free_tty_struct(tty);
1572}
1573
1574static void queue_release_one_tty(struct kref *kref)
1575{
1576        struct tty_struct *tty = container_of(kref, struct tty_struct, kref);
1577
1578        /* The hangup queue is now free so we can reuse it rather than
1579           waste a chunk of memory for each port */
1580        INIT_WORK(&tty->hangup_work, release_one_tty);
1581        schedule_work(&tty->hangup_work);
1582}
1583
1584/**
1585 *      tty_kref_put            -       release a tty kref
1586 *      @tty: tty device
1587 *
1588 *      Release a reference to a tty device and if need be let the kref
1589 *      layer destruct the object for us
1590 */
1591
1592void tty_kref_put(struct tty_struct *tty)
1593{
1594        if (tty)
1595                kref_put(&tty->kref, queue_release_one_tty);
1596}
1597EXPORT_SYMBOL(tty_kref_put);
1598
1599/**
1600 *      release_tty             -       release tty structure memory
1601 *
1602 *      Release both @tty and a possible linked partner (think pty pair),
1603 *      and decrement the refcount of the backing module.
1604 *
1605 *      Locking:
1606 *              tty_mutex
1607 *              takes the file list lock internally when working on the list
1608 *      of ttys that the driver keeps.
1609 *
1610 */
1611static void release_tty(struct tty_struct *tty, int idx)
1612{
1613        /* This should always be true but check for the moment */
1614        WARN_ON(tty->index != idx);
1615        WARN_ON(!mutex_is_locked(&tty_mutex));
1616        if (tty->ops->shutdown)
1617                tty->ops->shutdown(tty);
1618        tty_free_termios(tty);
1619        tty_driver_remove_tty(tty->driver, tty);
1620        tty->port->itty = NULL;
1621        cancel_work_sync(&tty->port->buf.work);
1622
1623        if (tty->link)
1624                tty_kref_put(tty->link);
1625        tty_kref_put(tty);
1626}
1627
1628/**
1629 *      tty_release_checks - check a tty before real release
1630 *      @tty: tty to check
1631 *      @o_tty: link of @tty (if any)
1632 *      @idx: index of the tty
1633 *
1634 *      Performs some paranoid checking before true release of the @tty.
1635 *      This is a no-op unless TTY_PARANOIA_CHECK is defined.
1636 */
1637static int tty_release_checks(struct tty_struct *tty, struct tty_struct *o_tty,
1638                int idx)
1639{
1640#ifdef TTY_PARANOIA_CHECK
1641        if (idx < 0 || idx >= tty->driver->num) {
1642                printk(KERN_DEBUG "%s: bad idx when trying to free (%s)\n",
1643                                __func__, tty->name);
1644                return -1;
1645        }
1646
1647        /* not much to check for devpts */
1648        if (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)
1649                return 0;
1650
1651        if (tty != tty->driver->ttys[idx]) {
1652                printk(KERN_DEBUG "%s: driver.table[%d] not tty for (%s)\n",
1653                                __func__, idx, tty->name);
1654                return -1;
1655        }
1656        if (tty->driver->other) {
1657                if (o_tty != tty->driver->other->ttys[idx]) {
1658                        printk(KERN_DEBUG "%s: other->table[%d] not o_tty for (%s)\n",
1659                                        __func__, idx, tty->name);
1660                        return -1;
1661                }
1662                if (o_tty->link != tty) {
1663                        printk(KERN_DEBUG "%s: bad pty pointers\n", __func__);
1664                        return -1;
1665                }
1666        }
1667#endif
1668        return 0;
1669}
1670
1671/**
1672 *      tty_release             -       vfs callback for close
1673 *      @inode: inode of tty
1674 *      @filp: file pointer for handle to tty
1675 *
1676 *      Called the last time each file handle is closed that references
1677 *      this tty. There may however be several such references.
1678 *
1679 *      Locking:
1680 *              Takes bkl. See tty_release_dev
1681 *
1682 * Even releasing the tty structures is a tricky business.. We have
1683 * to be very careful that the structures are all released at the
1684 * same time, as interrupts might otherwise get the wrong pointers.
1685 *
1686 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
1687 * lead to double frees or releasing memory still in use.
1688 */
1689
1690int tty_release(struct inode *inode, struct file *filp)
1691{
1692        struct tty_struct *tty = file_tty(filp);
1693        struct tty_struct *o_tty;
1694        int     pty_master, tty_closing, o_tty_closing, do_sleep;
1695        int     idx;
1696        char    buf[64];
1697
1698        if (tty_paranoia_check(tty, inode, __func__))
1699                return 0;
1700
1701        tty_lock(tty);
1702        check_tty_count(tty, __func__);
1703
1704        __tty_fasync(-1, filp, 0);
1705
1706        idx = tty->index;
1707        pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
1708                      tty->driver->subtype == PTY_TYPE_MASTER);
1709        /* Review: parallel close */
1710        o_tty = tty->link;
1711
1712        if (tty_release_checks(tty, o_tty, idx)) {
1713                tty_unlock(tty);
1714                return 0;
1715        }
1716
1717#ifdef TTY_DEBUG_HANGUP
1718        printk(KERN_DEBUG "%s: %s (tty count=%d)...\n", __func__,
1719                        tty_name(tty, buf), tty->count);
1720#endif
1721
1722        if (tty->ops->close)
1723                tty->ops->close(tty, filp);
1724
1725        tty_unlock(tty);
1726        /*
1727         * Sanity check: if tty->count is going to zero, there shouldn't be
1728         * any waiters on tty->read_wait or tty->write_wait.  We test the
1729         * wait queues and kick everyone out _before_ actually starting to
1730         * close.  This ensures that we won't block while releasing the tty
1731         * structure.
1732         *
1733         * The test for the o_tty closing is necessary, since the master and
1734         * slave sides may close in any order.  If the slave side closes out
1735         * first, its count will be one, since the master side holds an open.
1736         * Thus this test wouldn't be triggered at the time the slave closes,
1737         * so we do it now.
1738         *
1739         * Note that it's possible for the tty to be opened again while we're
1740         * flushing out waiters.  By recalculating the closing flags before
1741         * each iteration we avoid any problems.
1742         */
1743        while (1) {
1744                /* Guard against races with tty->count changes elsewhere and
1745                   opens on /dev/tty */
1746
1747                mutex_lock(&tty_mutex);
1748                tty_lock_pair(tty, o_tty);
1749                tty_closing = tty->count <= 1;
1750                o_tty_closing = o_tty &&
1751                        (o_tty->count <= (pty_master ? 1 : 0));
1752                do_sleep = 0;
1753
1754                if (tty_closing) {
1755                        if (waitqueue_active(&tty->read_wait)) {
1756                                wake_up_poll(&tty->read_wait, POLLIN);
1757                                do_sleep++;
1758                        }
1759                        if (waitqueue_active(&tty->write_wait)) {
1760                                wake_up_poll(&tty->write_wait, POLLOUT);
1761                                do_sleep++;
1762                        }
1763                }
1764                if (o_tty_closing) {
1765                        if (waitqueue_active(&o_tty->read_wait)) {
1766                                wake_up_poll(&o_tty->read_wait, POLLIN);
1767                                do_sleep++;
1768                        }
1769                        if (waitqueue_active(&o_tty->write_wait)) {
1770                                wake_up_poll(&o_tty->write_wait, POLLOUT);
1771                                do_sleep++;
1772                        }
1773                }
1774                if (!do_sleep)
1775                        break;
1776
1777                printk(KERN_WARNING "%s: %s: read/write wait queue active!\n",
1778                                __func__, tty_name(tty, buf));
1779                tty_unlock_pair(tty, o_tty);
1780                mutex_unlock(&tty_mutex);
1781                schedule();
1782        }
1783
1784        /*
1785         * The closing flags are now consistent with the open counts on
1786         * both sides, and we've completed the last operation that could
1787         * block, so it's safe to proceed with closing.
1788         *
1789         * We must *not* drop the tty_mutex until we ensure that a further
1790         * entry into tty_open can not pick up this tty.
1791         */
1792        if (pty_master) {
1793                if (--o_tty->count < 0) {
1794                        printk(KERN_WARNING "%s: bad pty slave count (%d) for %s\n",
1795                                __func__, o_tty->count, tty_name(o_tty, buf));
1796                        o_tty->count = 0;
1797                }
1798        }
1799        if (--tty->count < 0) {
1800                printk(KERN_WARNING "%s: bad tty->count (%d) for %s\n",
1801                                __func__, tty->count, tty_name(tty, buf));
1802                tty->count = 0;
1803        }
1804
1805        /*
1806         * We've decremented tty->count, so we need to remove this file
1807         * descriptor off the tty->tty_files list; this serves two
1808         * purposes:
1809         *  - check_tty_count sees the correct number of file descriptors
1810         *    associated with this tty.
1811         *  - do_tty_hangup no longer sees this file descriptor as
1812         *    something that needs to be handled for hangups.
1813         */
1814        tty_del_file(filp);
1815
1816        /*
1817         * Perform some housekeeping before deciding whether to return.
1818         *
1819         * Set the TTY_CLOSING flag if this was the last open.  In the
1820         * case of a pty we may have to wait around for the other side
1821         * to close, and TTY_CLOSING makes sure we can't be reopened.
1822         */
1823        if (tty_closing)
1824                set_bit(TTY_CLOSING, &tty->flags);
1825        if (o_tty_closing)
1826                set_bit(TTY_CLOSING, &o_tty->flags);
1827
1828        /*
1829         * If _either_ side is closing, make sure there aren't any
1830         * processes that still think tty or o_tty is their controlling
1831         * tty.
1832         */
1833        if (tty_closing || o_tty_closing) {
1834                read_lock(&tasklist_lock);
1835                session_clear_tty(tty->session);
1836                if (o_tty)
1837                        session_clear_tty(o_tty->session);
1838                read_unlock(&tasklist_lock);
1839        }
1840
1841        mutex_unlock(&tty_mutex);
1842        tty_unlock_pair(tty, o_tty);
1843        /* At this point the TTY_CLOSING flag should ensure a dead tty
1844           cannot be re-opened by a racing opener */
1845
1846        /* check whether both sides are closing ... */
1847        if (!tty_closing || (o_tty && !o_tty_closing))
1848                return 0;
1849
1850#ifdef TTY_DEBUG_HANGUP
1851        printk(KERN_DEBUG "%s: %s: final close\n", __func__, tty_name(tty, buf));
1852#endif
1853        /*
1854         * Ask the line discipline code to release its structures
1855         */
1856        tty_ldisc_release(tty, o_tty);
1857
1858        /* Wait for pending work before tty destruction commmences */
1859        tty_flush_works(tty);
1860        if (o_tty)
1861                tty_flush_works(o_tty);
1862
1863#ifdef TTY_DEBUG_HANGUP
1864        printk(KERN_DEBUG "%s: %s: freeing structure...\n", __func__, tty_name(tty, buf));
1865#endif
1866        /*
1867         * The release_tty function takes care of the details of clearing
1868         * the slots and preserving the termios structure. The tty_unlock_pair
1869         * should be safe as we keep a kref while the tty is locked (so the
1870         * unlock never unlocks a freed tty).
1871         */
1872        mutex_lock(&tty_mutex);
1873        release_tty(tty, idx);
1874        mutex_unlock(&tty_mutex);
1875
1876        return 0;
1877}
1878
1879/**
1880 *      tty_open_current_tty - get tty of current task for open
1881 *      @device: device number
1882 *      @filp: file pointer to tty
1883 *      @return: tty of the current task iff @device is /dev/tty
1884 *
1885 *      We cannot return driver and index like for the other nodes because
1886 *      devpts will not work then. It expects inodes to be from devpts FS.
1887 *
1888 *      We need to move to returning a refcounted object from all the lookup
1889 *      paths including this one.
1890 */
1891static struct tty_struct *tty_open_current_tty(dev_t device, struct file *filp)
1892{
1893        struct tty_struct *tty;
1894
1895        if (device != MKDEV(TTYAUX_MAJOR, 0))
1896                return NULL;
1897
1898        tty = get_current_tty();
1899        if (!tty)
1900                return ERR_PTR(-ENXIO);
1901
1902        filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
1903        /* noctty = 1; */
1904        tty_kref_put(tty);
1905        /* FIXME: we put a reference and return a TTY! */
1906        /* This is only safe because the caller holds tty_mutex */
1907        return tty;
1908}
1909
1910/**
1911 *      tty_lookup_driver - lookup a tty driver for a given device file
1912 *      @device: device number
1913 *      @filp: file pointer to tty
1914 *      @noctty: set if the device should not become a controlling tty
1915 *      @index: index for the device in the @return driver
1916 *      @return: driver for this inode (with increased refcount)
1917 *
1918 *      If @return is not erroneous, the caller is responsible to decrement the
1919 *      refcount by tty_driver_kref_put.
1920 *
1921 *      Locking: tty_mutex protects get_tty_driver
1922 */
1923static struct tty_driver *tty_lookup_driver(dev_t device, struct file *filp,
1924                int *noctty, int *index)
1925{
1926        struct tty_driver *driver;
1927
1928        switch (device) {
1929#ifdef CONFIG_VT
1930        case MKDEV(TTY_MAJOR, 0): {
1931                extern struct tty_driver *console_driver;
1932                driver = tty_driver_kref_get(console_driver);
1933                *index = fg_console;
1934                *noctty = 1;
1935                break;
1936        }
1937#endif
1938        case MKDEV(TTYAUX_MAJOR, 1): {
1939                struct tty_driver *console_driver = console_device(index);
1940                if (console_driver) {
1941                        driver = tty_driver_kref_get(console_driver);
1942                        if (driver) {
1943                                /* Don't let /dev/console block */
1944                                filp->f_flags |= O_NONBLOCK;
1945                                *noctty = 1;
1946                                break;
1947                        }
1948                }
1949                return ERR_PTR(-ENODEV);
1950        }
1951        default:
1952                driver = get_tty_driver(device, index);
1953                if (!driver)
1954                        return ERR_PTR(-ENODEV);
1955                break;
1956        }
1957        return driver;
1958}
1959
1960/**
1961 *      tty_open                -       open a tty device
1962 *      @inode: inode of device file
1963 *      @filp: file pointer to tty
1964 *
1965 *      tty_open and tty_release keep up the tty count that contains the
1966 *      number of opens done on a tty. We cannot use the inode-count, as
1967 *      different inodes might point to the same tty.
1968 *
1969 *      Open-counting is needed for pty masters, as well as for keeping
1970 *      track of serial lines: DTR is dropped when the last close happens.
1971 *      (This is not done solely through tty->count, now.  - Ted 1/27/92)
1972 *
1973 *      The termios state of a pty is reset on first open so that
1974 *      settings don't persist across reuse.
1975 *
1976 *      Locking: tty_mutex protects tty, tty_lookup_driver and tty_init_dev.
1977 *               tty->count should protect the rest.
1978 *               ->siglock protects ->signal/->sighand
1979 *
1980 *      Note: the tty_unlock/lock cases without a ref are only safe due to
1981 *      tty_mutex
1982 */
1983
1984static int tty_open(struct inode *inode, struct file *filp)
1985{
1986        struct tty_struct *tty;
1987        int noctty, retval;
1988        struct tty_driver *driver = NULL;
1989        int index;
1990        dev_t device = inode->i_rdev;
1991        unsigned saved_flags = filp->f_flags;
1992
1993        nonseekable_open(inode, filp);
1994
1995retry_open:
1996        retval = tty_alloc_file(filp);
1997        if (retval)
1998                return -ENOMEM;
1999
2000        noctty = filp->f_flags & O_NOCTTY;
2001        index  = -1;
2002        retval = 0;
2003
2004        mutex_lock(&tty_mutex);
2005        /* This is protected by the tty_mutex */
2006        tty = tty_open_current_tty(device, filp);
2007        if (IS_ERR(tty)) {
2008                retval = PTR_ERR(tty);
2009                goto err_unlock;
2010        } else if (!tty) {
2011                driver = tty_lookup_driver(device, filp, &noctty, &index);
2012                if (IS_ERR(driver)) {
2013                        retval = PTR_ERR(driver);
2014                        goto err_unlock;
2015                }
2016
2017                /* check whether we're reopening an existing tty */
2018                tty = tty_driver_lookup_tty(driver, inode, index);
2019                if (IS_ERR(tty)) {
2020                        retval = PTR_ERR(tty);
2021                        goto err_unlock;
2022                }
2023        }
2024
2025        if (tty) {
2026                tty_lock(tty);
2027                retval = tty_reopen(tty);
2028                if (retval < 0) {
2029                        tty_unlock(tty);
2030                        tty = ERR_PTR(retval);
2031                }
2032        } else  /* Returns with the tty_lock held for now */
2033                tty = tty_init_dev(driver, index);
2034
2035        mutex_unlock(&tty_mutex);
2036        if (driver)
2037                tty_driver_kref_put(driver);
2038        if (IS_ERR(tty)) {
2039                retval = PTR_ERR(tty);
2040                goto err_file;
2041        }
2042
2043        tty_add_file(tty, filp);
2044
2045        check_tty_count(tty, __func__);
2046        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2047            tty->driver->subtype == PTY_TYPE_MASTER)
2048                noctty = 1;
2049#ifdef TTY_DEBUG_HANGUP
2050        printk(KERN_DEBUG "%s: opening %s...\n", __func__, tty->name);
2051#endif
2052        if (tty->ops->open)
2053                retval = tty->ops->open(tty, filp);
2054        else
2055                retval = -ENODEV;
2056        filp->f_flags = saved_flags;
2057
2058        if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) &&
2059                                                !capable(CAP_SYS_ADMIN))
2060                retval = -EBUSY;
2061
2062        if (retval) {
2063#ifdef TTY_DEBUG_HANGUP
2064                printk(KERN_DEBUG "%s: error %d in opening %s...\n", __func__,
2065                                retval, tty->name);
2066#endif
2067                tty_unlock(tty); /* need to call tty_release without BTM */
2068                tty_release(inode, filp);
2069                if (retval != -ERESTARTSYS)
2070                        return retval;
2071
2072                if (signal_pending(current))
2073                        return retval;
2074
2075                schedule();
2076                /*
2077                 * Need to reset f_op in case a hangup happened.
2078                 */
2079                if (filp->f_op == &hung_up_tty_fops)
2080                        filp->f_op = &tty_fops;
2081                goto retry_open;
2082        }
2083        tty_unlock(tty);
2084
2085
2086        mutex_lock(&tty_mutex);
2087        tty_lock(tty);
2088        spin_lock_irq(&current->sighand->siglock);
2089        if (!noctty &&
2090            current->signal->leader &&
2091            !current->signal->tty &&
2092            tty->session == NULL)
2093                __proc_set_tty(current, tty);
2094        spin_unlock_irq(&current->sighand->siglock);
2095        tty_unlock(tty);
2096        mutex_unlock(&tty_mutex);
2097        return 0;
2098err_unlock:
2099        mutex_unlock(&tty_mutex);
2100        /* after locks to avoid deadlock */
2101        if (!IS_ERR_OR_NULL(driver))
2102                tty_driver_kref_put(driver);
2103err_file:
2104        tty_free_file(filp);
2105        return retval;
2106}
2107
2108
2109
2110/**
2111 *      tty_poll        -       check tty status
2112 *      @filp: file being polled
2113 *      @wait: poll wait structures to update
2114 *
2115 *      Call the line discipline polling method to obtain the poll
2116 *      status of the device.
2117 *
2118 *      Locking: locks called line discipline but ldisc poll method
2119 *      may be re-entered freely by other callers.
2120 */
2121
2122static unsigned int tty_poll(struct file *filp, poll_table *wait)
2123{
2124        struct tty_struct *tty = file_tty(filp);
2125        struct tty_ldisc *ld;
2126        int ret = 0;
2127
2128        if (tty_paranoia_check(tty, file_inode(filp), "tty_poll"))
2129                return 0;
2130
2131        ld = tty_ldisc_ref_wait(tty);
2132        if (ld->ops->poll)
2133                ret = (ld->ops->poll)(tty, filp, wait);
2134        tty_ldisc_deref(ld);
2135        return ret;
2136}
2137
2138static int __tty_fasync(int fd, struct file *filp, int on)
2139{
2140        struct tty_struct *tty = file_tty(filp);
2141        unsigned long flags;
2142        int retval = 0;
2143
2144        if (tty_paranoia_check(tty, file_inode(filp), "tty_fasync"))
2145                goto out;
2146
2147        retval = fasync_helper(fd, filp, on, &tty->fasync);
2148        if (retval <= 0)
2149                goto out;
2150
2151        if (on) {
2152                enum pid_type type;
2153                struct pid *pid;
2154                if (!waitqueue_active(&tty->read_wait))
2155                        tty->minimum_to_wake = 1;
2156                spin_lock_irqsave(&tty->ctrl_lock, flags);
2157                if (tty->pgrp) {
2158                        pid = tty->pgrp;
2159                        type = PIDTYPE_PGID;
2160                } else {
2161                        pid = task_pid(current);
2162                        type = PIDTYPE_PID;
2163                }
2164                get_pid(pid);
2165                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2166                retval = __f_setown(filp, pid, type, 0);
2167                put_pid(pid);
2168                if (retval)
2169                        goto out;
2170        } else {
2171                if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2172                        tty->minimum_to_wake = N_TTY_BUF_SIZE;
2173        }
2174        retval = 0;
2175out:
2176        return retval;
2177}
2178
2179static int tty_fasync(int fd, struct file *filp, int on)
2180{
2181        struct tty_struct *tty = file_tty(filp);
2182        int retval;
2183
2184        tty_lock(tty);
2185        retval = __tty_fasync(fd, filp, on);
2186        tty_unlock(tty);
2187
2188        return retval;
2189}
2190
2191/**
2192 *      tiocsti                 -       fake input character
2193 *      @tty: tty to fake input into
2194 *      @p: pointer to character
2195 *
2196 *      Fake input to a tty device. Does the necessary locking and
2197 *      input management.
2198 *
2199 *      FIXME: does not honour flow control ??
2200 *
2201 *      Locking:
2202 *              Called functions take tty_ldisc_lock
2203 *              current->signal->tty check is safe without locks
2204 *
2205 *      FIXME: may race normal receive processing
2206 */
2207
2208static int tiocsti(struct tty_struct *tty, char __user *p)
2209{
2210        char ch, mbz = 0;
2211        struct tty_ldisc *ld;
2212
2213        if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2214                return -EPERM;
2215        if (get_user(ch, p))
2216                return -EFAULT;
2217        tty_audit_tiocsti(tty, ch);
2218        ld = tty_ldisc_ref_wait(tty);
2219        ld->ops->receive_buf(tty, &ch, &mbz, 1);
2220        tty_ldisc_deref(ld);
2221        return 0;
2222}
2223
2224/**
2225 *      tiocgwinsz              -       implement window query ioctl
2226 *      @tty; tty
2227 *      @arg: user buffer for result
2228 *
2229 *      Copies the kernel idea of the window size into the user buffer.
2230 *
2231 *      Locking: tty->termios_mutex is taken to ensure the winsize data
2232 *              is consistent.
2233 */
2234
2235static int tiocgwinsz(struct tty_struct *tty, struct winsize __user *arg)
2236{
2237        int err;
2238
2239        mutex_lock(&tty->termios_mutex);
2240        err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2241        mutex_unlock(&tty->termios_mutex);
2242
2243        return err ? -EFAULT: 0;
2244}
2245
2246/**
2247 *      tty_do_resize           -       resize event
2248 *      @tty: tty being resized
2249 *      @rows: rows (character)
2250 *      @cols: cols (character)
2251 *
2252 *      Update the termios variables and send the necessary signals to
2253 *      peform a terminal resize correctly
2254 */
2255
2256int tty_do_resize(struct tty_struct *tty, struct winsize *ws)
2257{
2258        struct pid *pgrp;
2259        unsigned long flags;
2260
2261        /* Lock the tty */
2262        mutex_lock(&tty->termios_mutex);
2263        if (!memcmp(ws, &tty->winsize, sizeof(*ws)))
2264                goto done;
2265        /* Get the PID values and reference them so we can
2266           avoid holding the tty ctrl lock while sending signals */
2267        spin_lock_irqsave(&tty->ctrl_lock, flags);
2268        pgrp = get_pid(tty->pgrp);
2269        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2270
2271        if (pgrp)
2272                kill_pgrp(pgrp, SIGWINCH, 1);
2273        put_pid(pgrp);
2274
2275        tty->winsize = *ws;
2276done:
2277        mutex_unlock(&tty->termios_mutex);
2278        return 0;
2279}
2280EXPORT_SYMBOL(tty_do_resize);
2281
2282/**
2283 *      tiocswinsz              -       implement window size set ioctl
2284 *      @tty; tty side of tty
2285 *      @arg: user buffer for result
2286 *
2287 *      Copies the user idea of the window size to the kernel. Traditionally
2288 *      this is just advisory information but for the Linux console it
2289 *      actually has driver level meaning and triggers a VC resize.
2290 *
2291 *      Locking:
2292 *              Driver dependent. The default do_resize method takes the
2293 *      tty termios mutex and ctrl_lock. The console takes its own lock
2294 *      then calls into the default method.
2295 */
2296
2297static int tiocswinsz(struct tty_struct *tty, struct winsize __user *arg)
2298{
2299        struct winsize tmp_ws;
2300        if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2301                return -EFAULT;
2302
2303        if (tty->ops->resize)
2304                return tty->ops->resize(tty, &tmp_ws);
2305        else
2306                return tty_do_resize(tty, &tmp_ws);
2307}
2308
2309/**
2310 *      tioccons        -       allow admin to move logical console
2311 *      @file: the file to become console
2312 *
2313 *      Allow the administrator to move the redirected console device
2314 *
2315 *      Locking: uses redirect_lock to guard the redirect information
2316 */
2317
2318static int tioccons(struct file *file)
2319{
2320        if (!capable(CAP_SYS_ADMIN))
2321                return -EPERM;
2322        if (file->f_op->write == redirected_tty_write) {
2323                struct file *f;
2324                spin_lock(&redirect_lock);
2325                f = redirect;
2326                redirect = NULL;
2327                spin_unlock(&redirect_lock);
2328                if (f)
2329                        fput(f);
2330                return 0;
2331        }
2332        spin_lock(&redirect_lock);
2333        if (redirect) {
2334                spin_unlock(&redirect_lock);
2335                return -EBUSY;
2336        }
2337        redirect = get_file(file);
2338        spin_unlock(&redirect_lock);
2339        return 0;
2340}
2341
2342/**
2343 *      fionbio         -       non blocking ioctl
2344 *      @file: file to set blocking value
2345 *      @p: user parameter
2346 *
2347 *      Historical tty interfaces had a blocking control ioctl before
2348 *      the generic functionality existed. This piece of history is preserved
2349 *      in the expected tty API of posix OS's.
2350 *
2351 *      Locking: none, the open file handle ensures it won't go away.
2352 */
2353
2354static int fionbio(struct file *file, int __user *p)
2355{
2356        int nonblock;
2357
2358        if (get_user(nonblock, p))
2359                return -EFAULT;
2360
2361        spin_lock(&file->f_lock);
2362        if (nonblock)
2363                file->f_flags |= O_NONBLOCK;
2364        else
2365                file->f_flags &= ~O_NONBLOCK;
2366        spin_unlock(&file->f_lock);
2367        return 0;
2368}
2369
2370/**
2371 *      tiocsctty       -       set controlling tty
2372 *      @tty: tty structure
2373 *      @arg: user argument
2374 *
2375 *      This ioctl is used to manage job control. It permits a session
2376 *      leader to set this tty as the controlling tty for the session.
2377 *
2378 *      Locking:
2379 *              Takes tty_mutex() to protect tty instance
2380 *              Takes tasklist_lock internally to walk sessions
2381 *              Takes ->siglock() when updating signal->tty
2382 */
2383
2384static int tiocsctty(struct tty_struct *tty, int arg)
2385{
2386        int ret = 0;
2387        if (current->signal->leader && (task_session(current) == tty->session))
2388                return ret;
2389
2390        mutex_lock(&tty_mutex);
2391        /*
2392         * The process must be a session leader and
2393         * not have a controlling tty already.
2394         */
2395        if (!current->signal->leader || current->signal->tty) {
2396                ret = -EPERM;
2397                goto unlock;
2398        }
2399
2400        if (tty->session) {
2401                /*
2402                 * This tty is already the controlling
2403                 * tty for another session group!
2404                 */
2405                if (arg == 1 && capable(CAP_SYS_ADMIN)) {
2406                        /*
2407                         * Steal it away
2408                         */
2409                        read_lock(&tasklist_lock);
2410                        session_clear_tty(tty->session);
2411                        read_unlock(&tasklist_lock);
2412                } else {
2413                        ret = -EPERM;
2414                        goto unlock;
2415                }
2416        }
2417        proc_set_tty(current, tty);
2418unlock:
2419        mutex_unlock(&tty_mutex);
2420        return ret;
2421}
2422
2423/**
2424 *      tty_get_pgrp    -       return a ref counted pgrp pid
2425 *      @tty: tty to read
2426 *
2427 *      Returns a refcounted instance of the pid struct for the process
2428 *      group controlling the tty.
2429 */
2430
2431struct pid *tty_get_pgrp(struct tty_struct *tty)
2432{
2433        unsigned long flags;
2434        struct pid *pgrp;
2435
2436        spin_lock_irqsave(&tty->ctrl_lock, flags);
2437        pgrp = get_pid(tty->pgrp);
2438        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2439
2440        return pgrp;
2441}
2442EXPORT_SYMBOL_GPL(tty_get_pgrp);
2443
2444/**
2445 *      tiocgpgrp               -       get process group
2446 *      @tty: tty passed by user
2447 *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2448 *      @p: returned pid
2449 *
2450 *      Obtain the process group of the tty. If there is no process group
2451 *      return an error.
2452 *
2453 *      Locking: none. Reference to current->signal->tty is safe.
2454 */
2455
2456static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2457{
2458        struct pid *pid;
2459        int ret;
2460        /*
2461         * (tty == real_tty) is a cheap way of
2462         * testing if the tty is NOT a master pty.
2463         */
2464        if (tty == real_tty && current->signal->tty != real_tty)
2465                return -ENOTTY;
2466        pid = tty_get_pgrp(real_tty);
2467        ret =  put_user(pid_vnr(pid), p);
2468        put_pid(pid);
2469        return ret;
2470}
2471
2472/**
2473 *      tiocspgrp               -       attempt to set process group
2474 *      @tty: tty passed by user
2475 *      @real_tty: tty side device matching tty passed by user
2476 *      @p: pid pointer
2477 *
2478 *      Set the process group of the tty to the session passed. Only
2479 *      permitted where the tty session is our session.
2480 *
2481 *      Locking: RCU, ctrl lock
2482 */
2483
2484static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2485{
2486        struct pid *pgrp;
2487        pid_t pgrp_nr;
2488        int retval = tty_check_change(real_tty);
2489        unsigned long flags;
2490
2491        if (retval == -EIO)
2492                return -ENOTTY;
2493        if (retval)
2494                return retval;
2495        if (!current->signal->tty ||
2496            (current->signal->tty != real_tty) ||
2497            (real_tty->session != task_session(current)))
2498                return -ENOTTY;
2499        if (get_user(pgrp_nr, p))
2500                return -EFAULT;
2501        if (pgrp_nr < 0)
2502                return -EINVAL;
2503        rcu_read_lock();
2504        pgrp = find_vpid(pgrp_nr);
2505        retval = -ESRCH;
2506        if (!pgrp)
2507                goto out_unlock;
2508        retval = -EPERM;
2509        if (session_of_pgrp(pgrp) != task_session(current))
2510                goto out_unlock;
2511        retval = 0;
2512        spin_lock_irqsave(&tty->ctrl_lock, flags);
2513        put_pid(real_tty->pgrp);
2514        real_tty->pgrp = get_pid(pgrp);
2515        spin_unlock_irqrestore(&tty->ctrl_lock, flags);
2516out_unlock:
2517        rcu_read_unlock();
2518        return retval;
2519}
2520
2521/**
2522 *      tiocgsid                -       get session id
2523 *      @tty: tty passed by user
2524 *      @real_tty: tty side of the tty passed by the user if a pty else the tty
2525 *      @p: pointer to returned session id
2526 *
2527 *      Obtain the session id of the tty. If there is no session
2528 *      return an error.
2529 *
2530 *      Locking: none. Reference to current->signal->tty is safe.
2531 */
2532
2533static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2534{
2535        /*
2536         * (tty == real_tty) is a cheap way of
2537         * testing if the tty is NOT a master pty.
2538        */
2539        if (tty == real_tty && current->signal->tty != real_tty)
2540                return -ENOTTY;
2541        if (!real_tty->session)
2542                return -ENOTTY;
2543        return put_user(pid_vnr(real_tty->session), p);
2544}
2545
2546/**
2547 *      tiocsetd        -       set line discipline
2548 *      @tty: tty device
2549 *      @p: pointer to user data
2550 *
2551 *      Set the line discipline according to user request.
2552 *
2553 *      Locking: see tty_set_ldisc, this function is just a helper
2554 */
2555
2556static int tiocsetd(struct tty_struct *tty, int __user *p)
2557{
2558        int ldisc;
2559        int ret;
2560
2561        if (get_user(ldisc, p))
2562                return -EFAULT;
2563
2564        ret = tty_set_ldisc(tty, ldisc);
2565
2566        return ret;
2567}
2568
2569/**
2570 *      send_break      -       performed time break
2571 *      @tty: device to break on
2572 *      @duration: timeout in mS
2573 *
2574 *      Perform a timed break on hardware that lacks its own driver level
2575 *      timed break functionality.
2576 *
2577 *      Locking:
2578 *              atomic_write_lock serializes
2579 *
2580 */
2581
2582static int send_break(struct tty_struct *tty, unsigned int duration)
2583{
2584        int retval;
2585
2586        if (tty->ops->break_ctl == NULL)
2587                return 0;
2588
2589        if (tty->driver->flags & TTY_DRIVER_HARDWARE_BREAK)
2590                retval = tty->ops->break_ctl(tty, duration);
2591        else {
2592                /* Do the work ourselves */
2593                if (tty_write_lock(tty, 0) < 0)
2594                        return -EINTR;
2595                retval = tty->ops->break_ctl(tty, -1);
2596                if (retval)
2597                        goto out;
2598                if (!signal_pending(current))
2599                        msleep_interruptible(duration);
2600                retval = tty->ops->break_ctl(tty, 0);
2601out:
2602                tty_write_unlock(tty);
2603                if (signal_pending(current))
2604                        retval = -EINTR;
2605        }
2606        return retval;
2607}
2608
2609/**
2610 *      tty_tiocmget            -       get modem status
2611 *      @tty: tty device
2612 *      @file: user file pointer
2613 *      @p: pointer to result
2614 *
2615 *      Obtain the modem status bits from the tty driver if the feature
2616 *      is supported. Return -EINVAL if it is not available.
2617 *
2618 *      Locking: none (up to the driver)
2619 */
2620
2621static int tty_tiocmget(struct tty_struct *tty, int __user *p)
2622{
2623        int retval = -EINVAL;
2624
2625        if (tty->ops->tiocmget) {
2626                retval = tty->ops->tiocmget(tty);
2627
2628                if (retval >= 0)
2629                        retval = put_user(retval, p);
2630        }
2631        return retval;
2632}
2633
2634/**
2635 *      tty_tiocmset            -       set modem status
2636 *      @tty: tty device
2637 *      @cmd: command - clear bits, set bits or set all
2638 *      @p: pointer to desired bits
2639 *
2640 *      Set the modem status bits from the tty driver if the feature
2641 *      is supported. Return -EINVAL if it is not available.
2642 *
2643 *      Locking: none (up to the driver)
2644 */
2645
2646static int tty_tiocmset(struct tty_struct *tty, unsigned int cmd,
2647             unsigned __user *p)
2648{
2649        int retval;
2650        unsigned int set, clear, val;
2651
2652        if (tty->ops->tiocmset == NULL)
2653                return -EINVAL;
2654
2655        retval = get_user(val, p);
2656        if (retval)
2657                return retval;
2658        set = clear = 0;
2659        switch (cmd) {
2660        case TIOCMBIS:
2661                set = val;
2662                break;
2663        case TIOCMBIC:
2664                clear = val;
2665                break;
2666        case TIOCMSET:
2667                set = val;
2668                clear = ~val;
2669                break;
2670        }
2671        set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2672        clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
2673        return tty->ops->tiocmset(tty, set, clear);
2674}
2675
2676static int tty_tiocgicount(struct tty_struct *tty, void __user *arg)
2677{
2678        int retval = -EINVAL;
2679        struct serial_icounter_struct icount;
2680        memset(&icount, 0, sizeof(icount));
2681        if (tty->ops->get_icount)
2682                retval = tty->ops->get_icount(tty, &icount);
2683        if (retval != 0)
2684                return retval;
2685        if (copy_to_user(arg, &icount, sizeof(icount)))
2686                return -EFAULT;
2687        return 0;
2688}
2689
2690struct tty_struct *tty_pair_get_tty(struct tty_struct *tty)
2691{
2692        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2693            tty->driver->subtype == PTY_TYPE_MASTER)
2694                tty = tty->link;
2695        return tty;
2696}
2697EXPORT_SYMBOL(tty_pair_get_tty);
2698
2699struct tty_struct *tty_pair_get_pty(struct tty_struct *tty)
2700{
2701        if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2702            tty->driver->subtype == PTY_TYPE_MASTER)
2703            return tty;
2704        return tty->link;
2705}
2706EXPORT_SYMBOL(tty_pair_get_pty);
2707
2708/*
2709 * Split this up, as gcc can choke on it otherwise..
2710 */
2711long tty_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2712{
2713        struct tty_struct *tty = file_tty(file);
2714        struct tty_struct *real_tty;
2715        void __user *p = (void __user *)arg;
2716        int retval;
2717        struct tty_ldisc *ld;
2718
2719        if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2720                return -EINVAL;
2721
2722        real_tty = tty_pair_get_tty(tty);
2723
2724        /*
2725         * Factor out some common prep work
2726         */
2727        switch (cmd) {
2728        case TIOCSETD:
2729        case TIOCSBRK:
2730        case TIOCCBRK:
2731        case TCSBRK:
2732        case TCSBRKP:
2733                retval = tty_check_change(tty);
2734                if (retval)
2735                        return retval;
2736                if (cmd != TIOCCBRK) {
2737                        tty_wait_until_sent(tty, 0);
2738                        if (signal_pending(current))
2739                                return -EINTR;
2740                }
2741                break;
2742        }
2743
2744        /*
2745         *      Now do the stuff.
2746         */
2747        switch (cmd) {
2748        case TIOCSTI:
2749                return tiocsti(tty, p);
2750        case TIOCGWINSZ:
2751                return tiocgwinsz(real_tty, p);
2752        case TIOCSWINSZ:
2753                return tiocswinsz(real_tty, p);
2754        case TIOCCONS:
2755                return real_tty != tty ? -EINVAL : tioccons(file);
2756        case FIONBIO:
2757                return fionbio(file, p);
2758        case TIOCEXCL:
2759                set_bit(TTY_EXCLUSIVE, &tty->flags);
2760                return 0;
2761        case TIOCNXCL:
2762                clear_bit(TTY_EXCLUSIVE, &tty->flags);
2763                return 0;
2764        case TIOCGEXCL:
2765        {
2766                int excl = test_bit(TTY_EXCLUSIVE, &tty->flags);
2767                return put_user(excl, (int __user *)p);
2768        }
2769        case TIOCNOTTY:
2770                if (current->signal->tty != tty)
2771                        return -ENOTTY;
2772                no_tty();
2773                return 0;
2774        case TIOCSCTTY:
2775                return tiocsctty(tty, arg);
2776        case TIOCGPGRP:
2777                return tiocgpgrp(tty, real_tty, p);
2778        case TIOCSPGRP:
2779                return tiocspgrp(tty, real_tty, p);
2780        case TIOCGSID:
2781                return tiocgsid(tty, real_tty, p);
2782        case TIOCGETD:
2783                return put_user(tty->ldisc->ops->num, (int __user *)p);
2784        case TIOCSETD:
2785                return tiocsetd(tty, p);
2786        case TIOCVHANGUP:
2787                if (!capable(CAP_SYS_ADMIN))
2788                        return -EPERM;
2789                tty_vhangup(tty);
2790                return 0;
2791        case TIOCGDEV:
2792        {
2793                unsigned int ret = new_encode_dev(tty_devnum(real_tty));
2794                return put_user(ret, (unsigned int __user *)p);
2795        }
2796        /*
2797         * Break handling
2798         */
2799        case TIOCSBRK:  /* Turn break on, unconditionally */
2800                if (tty->ops->break_ctl)
2801                        return tty->ops->break_ctl(tty, -1);
2802                return 0;
2803        case TIOCCBRK:  /* Turn break off, unconditionally */
2804                if (tty->ops->break_ctl)
2805                        return tty->ops->break_ctl(tty, 0);
2806                return 0;
2807        case TCSBRK:   /* SVID version: non-zero arg --> no break */
2808                /* non-zero arg means wait for all output data
2809                 * to be sent (performed above) but don't send break.
2810                 * This is used by the tcdrain() termios function.
2811                 */
2812                if (!arg)
2813                        return send_break(tty, 250);
2814                return 0;
2815        case TCSBRKP:   /* support for POSIX tcsendbreak() */
2816                return send_break(tty, arg ? arg*100 : 250);
2817
2818        case TIOCMGET:
2819                return tty_tiocmget(tty, p);
2820        case TIOCMSET:
2821        case TIOCMBIC:
2822        case TIOCMBIS:
2823                return tty_tiocmset(tty, cmd, p);
2824        case TIOCGICOUNT:
2825                retval = tty_tiocgicount(tty, p);
2826                /* For the moment allow fall through to the old method */
2827                if (retval != -EINVAL)
2828                        return retval;
2829                break;
2830        case TCFLSH:
2831                switch (arg) {
2832                case TCIFLUSH:
2833                case TCIOFLUSH:
2834                /* flush tty buffer and allow ldisc to process ioctl */
2835                        tty_buffer_flush(tty);
2836                        break;
2837                }
2838                break;
2839        }
2840        if (tty->ops->ioctl) {
2841                retval = (tty->ops->ioctl)(tty, cmd, arg);
2842                if (retval != -ENOIOCTLCMD)
2843                        return retval;
2844        }
2845        ld = tty_ldisc_ref_wait(tty);
2846        retval = -EINVAL;
2847        if (ld->ops->ioctl) {
2848                retval = ld->ops->ioctl(tty, file, cmd, arg);
2849                if (retval == -ENOIOCTLCMD)
2850                        retval = -ENOTTY;
2851        }
2852        tty_ldisc_deref(ld);
2853        return retval;
2854}
2855
2856#ifdef CONFIG_COMPAT
2857static long tty_compat_ioctl(struct file *file, unsigned int cmd,
2858                                unsigned long arg)
2859{
2860        struct tty_struct *tty = file_tty(file);
2861        struct tty_ldisc *ld;
2862        int retval = -ENOIOCTLCMD;
2863
2864        if (tty_paranoia_check(tty, file_inode(file), "tty_ioctl"))
2865                return -EINVAL;
2866
2867        if (tty->ops->compat_ioctl) {
2868                retval = (tty->ops->compat_ioctl)(tty, cmd, arg);
2869                if (retval != -ENOIOCTLCMD)
2870                        return retval;
2871        }
2872
2873        ld = tty_ldisc_ref_wait(tty);
2874        if (ld->ops->compat_ioctl)
2875                retval = ld->ops->compat_ioctl(tty, file, cmd, arg);
2876        else
2877                retval = n_tty_compat_ioctl_helper(tty, file, cmd, arg);
2878        tty_ldisc_deref(ld);
2879
2880        return retval;
2881}
2882#endif
2883
2884static int this_tty(const void *t, struct file *file, unsigned fd)
2885{
2886        if (likely(file->f_op->read != tty_read))
2887                return 0;
2888        return file_tty(file) != t ? 0 : fd + 1;
2889}
2890        
2891/*
2892 * This implements the "Secure Attention Key" ---  the idea is to
2893 * prevent trojan horses by killing all processes associated with this
2894 * tty when the user hits the "Secure Attention Key".  Required for
2895 * super-paranoid applications --- see the Orange Book for more details.
2896 *
2897 * This code could be nicer; ideally it should send a HUP, wait a few
2898 * seconds, then send a INT, and then a KILL signal.  But you then
2899 * have to coordinate with the init process, since all processes associated
2900 * with the current tty must be dead before the new getty is allowed
2901 * to spawn.
2902 *
2903 * Now, if it would be correct ;-/ The current code has a nasty hole -
2904 * it doesn't catch files in flight. We may send the descriptor to ourselves
2905 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
2906 *
2907 * Nasty bug: do_SAK is being called in interrupt context.  This can
2908 * deadlock.  We punt it up to process context.  AKPM - 16Mar2001
2909 */
2910void __do_SAK(struct tty_struct *tty)
2911{
2912#ifdef TTY_SOFT_SAK
2913        tty_hangup(tty);
2914#else
2915        struct task_struct *g, *p;
2916        struct pid *session;
2917        int             i;
2918
2919        if (!tty)
2920                return;
2921        session = tty->session;
2922
2923        tty_ldisc_flush(tty);
2924
2925        tty_driver_flush_buffer(tty);
2926
2927        read_lock(&tasklist_lock);
2928        /* Kill the entire session */
2929        do_each_pid_task(session, PIDTYPE_SID, p) {
2930                printk(KERN_NOTICE "SAK: killed process %d"
2931                        " (%s): task_session(p)==tty->session\n",
2932                        task_pid_nr(p), p->comm);
2933                send_sig(SIGKILL, p, 1);
2934        } while_each_pid_task(session, PIDTYPE_SID, p);
2935        /* Now kill any processes that happen to have the
2936         * tty open.
2937         */
2938        do_each_thread(g, p) {
2939                if (p->signal->tty == tty) {
2940                        printk(KERN_NOTICE "SAK: killed process %d"
2941                            " (%s): task_session(p)==tty->session\n",
2942                            task_pid_nr(p), p->comm);
2943                        send_sig(SIGKILL, p, 1);
2944                        continue;
2945                }
2946                task_lock(p);
2947                i = iterate_fd(p->files, 0, this_tty, tty);
2948                if (i != 0) {
2949                        printk(KERN_NOTICE "SAK: killed process %d"
2950                            " (%s): fd#%d opened to the tty\n",
2951                                    task_pid_nr(p), p->comm, i - 1);
2952                        force_sig(SIGKILL, p);
2953                }
2954                task_unlock(p);
2955        } while_each_thread(g, p);
2956        read_unlock(&tasklist_lock);
2957#endif
2958}
2959
2960static void do_SAK_work(struct work_struct *work)
2961{
2962        struct tty_struct *tty =
2963                container_of(work, struct tty_struct, SAK_work);
2964        __do_SAK(tty);
2965}
2966
2967/*
2968 * The tq handling here is a little racy - tty->SAK_work may already be queued.
2969 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
2970 * the values which we write to it will be identical to the values which it
2971 * already has. --akpm
2972 */
2973void do_SAK(struct tty_struct *tty)
2974{
2975        if (!tty)
2976                return;
2977        schedule_work(&tty->SAK_work);
2978}
2979
2980EXPORT_SYMBOL(do_SAK);
2981
2982static int dev_match_devt(struct device *dev, const void *data)
2983{
2984        const dev_t *devt = data;
2985        return dev->devt == *devt;
2986}
2987
2988/* Must put_device() after it's unused! */
2989static struct device *tty_get_device(struct tty_struct *tty)
2990{
2991        dev_t devt = tty_devnum(tty);
2992        return class_find_device(tty_class, NULL, &devt, dev_match_devt);
2993}
2994
2995
2996/**
2997 *      initialize_tty_struct
2998 *      @tty: tty to initialize
2999 *
3000 *      This subroutine initializes a tty structure that has been newly
3001 *      allocated.
3002 *
3003 *      Locking: none - tty in question must not be exposed at this point
3004 */
3005
3006void initialize_tty_struct(struct tty_struct *tty,
3007                struct tty_driver *driver, int idx)
3008{
3009        memset(tty, 0, sizeof(struct tty_struct));
3010        kref_init(&tty->kref);
3011        tty->magic = TTY_MAGIC;
3012        tty_ldisc_init(tty);
3013        tty->session = NULL;
3014        tty->pgrp = NULL;
3015        mutex_init(&tty->legacy_mutex);
3016        mutex_init(&tty->termios_mutex);
3017        mutex_init(&tty->ldisc_mutex);
3018        init_waitqueue_head(&tty->write_wait);
3019        init_waitqueue_head(&tty->read_wait);
3020        INIT_WORK(&tty->hangup_work, do_tty_hangup);
3021        mutex_init(&tty->atomic_write_lock);
3022        spin_lock_init(&tty->ctrl_lock);
3023        INIT_LIST_HEAD(&tty->tty_files);
3024        INIT_WORK(&tty->SAK_work, do_SAK_work);
3025
3026        tty->driver = driver;
3027        tty->ops = driver->ops;
3028        tty->index = idx;
3029        tty_line_name(driver, idx, tty->name);
3030        tty->dev = tty_get_device(tty);
3031}
3032
3033/**
3034 *      deinitialize_tty_struct
3035 *      @tty: tty to deinitialize
3036 *
3037 *      This subroutine deinitializes a tty structure that has been newly
3038 *      allocated but tty_release cannot be called on that yet.
3039 *
3040 *      Locking: none - tty in question must not be exposed at this point
3041 */
3042void deinitialize_tty_struct(struct tty_struct *tty)
3043{
3044        tty_ldisc_deinit(tty);
3045}
3046
3047/**
3048 *      tty_put_char    -       write one character to a tty
3049 *      @tty: tty
3050 *      @ch: character
3051 *
3052 *      Write one byte to the tty using the provided put_char method
3053 *      if present. Returns the number of characters successfully output.
3054 *
3055 *      Note: the specific put_char operation in the driver layer may go
3056 *      away soon. Don't call it directly, use this method
3057 */
3058
3059int tty_put_char(struct tty_struct *tty, unsigned char ch)
3060{
3061        if (tty->ops->put_char)
3062                return tty->ops->put_char(tty, ch);
3063        return tty->ops->write(tty, &ch, 1);
3064}
3065EXPORT_SYMBOL_GPL(tty_put_char);
3066
3067struct class *tty_class;
3068
3069static int tty_cdev_add(struct tty_driver *driver, dev_t dev,
3070                unsigned int index, unsigned int count)
3071{
3072        /* init here, since reused cdevs cause crashes */
3073        cdev_init(&driver->cdevs[index], &tty_fops);
3074        driver->cdevs[index].owner = driver->owner;
3075        return cdev_add(&driver->cdevs[index], dev, count);
3076}
3077
3078/**
3079 *      tty_register_device - register a tty device
3080 *      @driver: the tty driver that describes the tty device
3081 *      @index: the index in the tty driver for this tty device
3082 *      @device: a struct device that is associated with this tty device.
3083 *              This field is optional, if there is no known struct device
3084 *              for this tty device it can be set to NULL safely.
3085 *
3086 *      Returns a pointer to the struct device for this tty device
3087 *      (or ERR_PTR(-EFOO) on error).
3088 *
3089 *      This call is required to be made to register an individual tty device
3090 *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3091 *      that bit is not set, this function should not be called by a tty
3092 *      driver.
3093 *
3094 *      Locking: ??
3095 */
3096
3097struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3098                                   struct device *device)
3099{
3100        return tty_register_device_attr(driver, index, device, NULL, NULL);
3101}
3102EXPORT_SYMBOL(tty_register_device);
3103
3104static void tty_device_create_release(struct device *dev)
3105{
3106        pr_debug("device: '%s': %s\n", dev_name(dev), __func__);
3107        kfree(dev);
3108}
3109
3110/**
3111 *      tty_register_device_attr - register a tty device
3112 *      @driver: the tty driver that describes the tty device
3113 *      @index: the index in the tty driver for this tty device
3114 *      @device: a struct device that is associated with this tty device.
3115 *              This field is optional, if there is no known struct device
3116 *              for this tty device it can be set to NULL safely.
3117 *      @drvdata: Driver data to be set to device.
3118 *      @attr_grp: Attribute group to be set on device.
3119 *
3120 *      Returns a pointer to the struct device for this tty device
3121 *      (or ERR_PTR(-EFOO) on error).
3122 *
3123 *      This call is required to be made to register an individual tty device
3124 *      if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set.  If
3125 *      that bit is not set, this function should not be called by a tty
3126 *      driver.
3127 *
3128 *      Locking: ??
3129 */
3130struct device *tty_register_device_attr(struct tty_driver *driver,
3131                                   unsigned index, struct device *device,
3132                                   void *drvdata,
3133                                   const struct attribute_group **attr_grp)
3134{
3135        char name[64];
3136        dev_t devt = MKDEV(driver->major, driver->minor_start) + index;
3137        struct device *dev = NULL;
3138        int retval = -ENODEV;
3139        bool cdev = false;
3140
3141        if (index >= driver->num) {
3142                printk(KERN_ERR "Attempt to register invalid tty line number "
3143                       " (%d).\n", index);
3144                return ERR_PTR(-EINVAL);
3145        }
3146
3147        if (driver->type == TTY_DRIVER_TYPE_PTY)
3148                pty_line_name(driver, index, name);
3149        else
3150                tty_line_name(driver, index, name);
3151
3152        if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3153                retval = tty_cdev_add(driver, devt, index, 1);
3154                if (retval)
3155                        goto error;
3156                cdev = true;
3157        }
3158
3159        dev = kzalloc(sizeof(*dev), GFP_KERNEL);
3160        if (!dev) {
3161                retval = -ENOMEM;
3162                goto error;
3163        }
3164
3165        dev->devt = devt;
3166        dev->class = tty_class;
3167        dev->parent = device;
3168        dev->release = tty_device_create_release;
3169        dev_set_name(dev, "%s", name);
3170        dev->groups = attr_grp;
3171        dev_set_drvdata(dev, drvdata);
3172
3173        retval = device_register(dev);
3174        if (retval)
3175                goto error;
3176
3177        return dev;
3178
3179error:
3180        put_device(dev);
3181        if (cdev)
3182                cdev_del(&driver->cdevs[index]);
3183        return ERR_PTR(retval);
3184}
3185EXPORT_SYMBOL_GPL(tty_register_device_attr);
3186
3187/**
3188 *      tty_unregister_device - unregister a tty device
3189 *      @driver: the tty driver that describes the tty device
3190 *      @index: the index in the tty driver for this tty device
3191 *
3192 *      If a tty device is registered with a call to tty_register_device() then
3193 *      this function must be called when the tty device is gone.
3194 *
3195 *      Locking: ??
3196 */
3197
3198void tty_unregister_device(struct tty_driver *driver, unsigned index)
3199{
3200        device_destroy(tty_class,
3201                MKDEV(driver->major, driver->minor_start) + index);
3202        if (!(driver->flags & TTY_DRIVER_DYNAMIC_ALLOC))
3203                cdev_del(&driver->cdevs[index]);
3204}
3205EXPORT_SYMBOL(tty_unregister_device);
3206
3207/**
3208 * __tty_alloc_driver -- allocate tty driver
3209 * @lines: count of lines this driver can handle at most
3210 * @owner: module which is repsonsible for this driver
3211 * @flags: some of TTY_DRIVER_* flags, will be set in driver->flags
3212 *
3213 * This should not be called directly, some of the provided macros should be
3214 * used instead. Use IS_ERR and friends on @retval.
3215 */
3216struct tty_driver *__tty_alloc_driver(unsigned int lines, struct module *owner,
3217                unsigned long flags)
3218{
3219        struct tty_driver *driver;
3220        unsigned int cdevs = 1;
3221        int err;
3222
3223        if (!lines || (flags & TTY_DRIVER_UNNUMBERED_NODE && lines > 1))
3224                return ERR_PTR(-EINVAL);
3225
3226        driver = kzalloc(sizeof(struct tty_driver), GFP_KERNEL);
3227        if (!driver)
3228                return ERR_PTR(-ENOMEM);
3229
3230        kref_init(&driver->kref);
3231        driver->magic = TTY_DRIVER_MAGIC;
3232        driver->num = lines;
3233        driver->owner = owner;
3234        driver->flags = flags;
3235
3236        if (!(flags & TTY_DRIVER_DEVPTS_MEM)) {
3237                driver->ttys = kcalloc(lines, sizeof(*driver->ttys),
3238                                GFP_KERNEL);
3239                driver->termios = kcalloc(lines, sizeof(*driver->termios),
3240                                GFP_KERNEL);
3241                if (!driver->ttys || !driver->termios) {
3242                        err = -ENOMEM;
3243                        goto err_free_all;
3244                }
3245        }
3246
3247        if (!(flags & TTY_DRIVER_DYNAMIC_ALLOC)) {
3248                driver->ports = kcalloc(lines, sizeof(*driver->ports),
3249                                GFP_KERNEL);
3250                if (!driver->ports) {
3251                        err = -ENOMEM;
3252                        goto err_free_all;
3253                }
3254                cdevs = lines;
3255        }
3256
3257        driver->cdevs = kcalloc(cdevs, sizeof(*driver->cdevs), GFP_KERNEL);
3258        if (!driver->cdevs) {
3259                err = -ENOMEM;
3260                goto err_free_all;
3261        }
3262
3263        return driver;
3264err_free_all:
3265        kfree(driver->ports);
3266        kfree(driver->ttys);
3267        kfree(driver->termios);
3268        kfree(driver);
3269        return ERR_PTR(err);
3270}
3271EXPORT_SYMBOL(__tty_alloc_driver);
3272
3273static void destruct_tty_driver(struct kref *kref)
3274{
3275        struct tty_driver *driver = container_of(kref, struct tty_driver, kref);
3276        int i;
3277        struct ktermios *tp;
3278
3279        if (driver->flags & TTY_DRIVER_INSTALLED) {
3280                /*
3281                 * Free the termios and termios_locked structures because
3282                 * we don't want to get memory leaks when modular tty
3283                 * drivers are removed from the kernel.
3284                 */
3285                for (i = 0; i < driver->num; i++) {
3286                        tp = driver->termios[i];
3287                        if (tp) {
3288                                driver->termios[i] = NULL;
3289                                kfree(tp);
3290                        }
3291                        if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3292                                tty_unregister_device(driver, i);
3293                }
3294                proc_tty_unregister_driver(driver);
3295                if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC)
3296                        cdev_del(&driver->cdevs[0]);
3297        }
3298        kfree(driver->cdevs);
3299        kfree(driver->ports);
3300        kfree(driver->termios);
3301        kfree(driver->ttys);
3302        kfree(driver);
3303}
3304
3305void tty_driver_kref_put(struct tty_driver *driver)
3306{
3307        kref_put(&driver->kref, destruct_tty_driver);
3308}
3309EXPORT_SYMBOL(tty_driver_kref_put);
3310
3311void tty_set_operations(struct tty_driver *driver,
3312                        const struct tty_operations *op)
3313{
3314        driver->ops = op;
3315};
3316EXPORT_SYMBOL(tty_set_operations);
3317
3318void put_tty_driver(struct tty_driver *d)
3319{
3320        tty_driver_kref_put(d);
3321}
3322EXPORT_SYMBOL(put_tty_driver);
3323
3324/*
3325 * Called by a tty driver to register itself.
3326 */
3327int tty_register_driver(struct tty_driver *driver)
3328{
3329        int error;
3330        int i;
3331        dev_t dev;
3332        struct device *d;
3333
3334        if (!driver->major) {
3335                error = alloc_chrdev_region(&dev, driver->minor_start,
3336                                                driver->num, driver->name);
3337                if (!error) {
3338                        driver->major = MAJOR(dev);
3339                        driver->minor_start = MINOR(dev);
3340                }
3341        } else {
3342                dev = MKDEV(driver->major, driver->minor_start);
3343                error = register_chrdev_region(dev, driver->num, driver->name);
3344        }
3345        if (error < 0)
3346                goto err;
3347
3348        if (driver->flags & TTY_DRIVER_DYNAMIC_ALLOC) {
3349                error = tty_cdev_add(driver, dev, 0, driver->num);
3350                if (error)
3351                        goto err_unreg_char;
3352        }
3353
3354        mutex_lock(&tty_mutex);
3355        list_add(&driver->tty_drivers, &tty_drivers);
3356        mutex_unlock(&tty_mutex);
3357
3358        if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV)) {
3359                for (i = 0; i < driver->num; i++) {
3360                        d = tty_register_device(driver, i, NULL);
3361                        if (IS_ERR(d)) {
3362                                error = PTR_ERR(d);
3363                                goto err_unreg_devs;
3364                        }
3365                }
3366        }
3367        proc_tty_register_driver(driver);
3368        driver->flags |= TTY_DRIVER_INSTALLED;
3369        return 0;
3370
3371err_unreg_devs:
3372        for (i--; i >= 0; i--)
3373                tty_unregister_device(driver, i);
3374
3375        mutex_lock(&tty_mutex);
3376        list_del(&driver->tty_drivers);
3377        mutex_unlock(&tty_mutex);
3378
3379err_unreg_char:
3380        unregister_chrdev_region(dev, driver->num);
3381err:
3382        return error;
3383}
3384EXPORT_SYMBOL(tty_register_driver);
3385
3386/*
3387 * Called by a tty driver to unregister itself.
3388 */
3389int tty_unregister_driver(struct tty_driver *driver)
3390{
3391#if 0
3392        /* FIXME */
3393        if (driver->refcount)
3394                return -EBUSY;
3395#endif
3396        unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3397                                driver->num);
3398        mutex_lock(&tty_mutex);
3399        list_del(&driver->tty_drivers);
3400        mutex_unlock(&tty_mutex);
3401        return 0;
3402}
3403
3404EXPORT_SYMBOL(tty_unregister_driver);
3405
3406dev_t tty_devnum(struct tty_struct *tty)
3407{
3408        return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3409}
3410EXPORT_SYMBOL(tty_devnum);
3411
3412void proc_clear_tty(struct task_struct *p)
3413{
3414        unsigned long flags;
3415        struct tty_struct *tty;
3416        spin_lock_irqsave(&p->sighand->siglock, flags);
3417        tty = p->signal->tty;
3418        p->signal->tty = NULL;
3419        spin_unlock_irqrestore(&p->sighand->siglock, flags);
3420        tty_kref_put(tty);
3421}
3422
3423/* Called under the sighand lock */
3424
3425static void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3426{
3427        if (tty) {
3428                unsigned long flags;
3429                /* We should not have a session or pgrp to put here but.... */
3430                spin_lock_irqsave(&tty->ctrl_lock, flags);
3431                put_pid(tty->session);
3432                put_pid(tty->pgrp);
3433                tty->pgrp = get_pid(task_pgrp(tsk));
3434                spin_unlock_irqrestore(&tty->ctrl_lock, flags);
3435                tty->session = get_pid(task_session(tsk));
3436                if (tsk->signal->tty) {
3437                        printk(KERN_DEBUG "tty not NULL!!\n");
3438                        tty_kref_put(tsk->signal->tty);
3439                }
3440        }
3441        put_pid(tsk->signal->tty_old_pgrp);
3442        tsk->signal->tty = tty_kref_get(tty);
3443        tsk->signal->tty_old_pgrp = NULL;
3444}
3445
3446static void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3447{
3448        spin_lock_irq(&tsk->sighand->siglock);
3449        __proc_set_tty(tsk, tty);
3450        spin_unlock_irq(&tsk->sighand->siglock);
3451}
3452
3453struct tty_struct *get_current_tty(void)
3454{
3455        struct tty_struct *tty;
3456        unsigned long flags;
3457
3458        spin_lock_irqsave(&current->sighand->siglock, flags);
3459        tty = tty_kref_get(current->signal->tty);
3460        spin_unlock_irqrestore(&current->sighand->siglock, flags);
3461        return tty;
3462}
3463EXPORT_SYMBOL_GPL(get_current_tty);
3464
3465void tty_default_fops(struct file_operations *fops)
3466{
3467        *fops = tty_fops;
3468}
3469
3470/*
3471 * Initialize the console device. This is called *early*, so
3472 * we can't necessarily depend on lots of kernel help here.
3473 * Just do some early initializations, and do the complex setup
3474 * later.
3475 */
3476void __init console_init(void)
3477{
3478        initcall_t *call;
3479
3480        /* Setup the default TTY line discipline. */
3481        tty_ldisc_begin();
3482
3483        /*
3484         * set up the console device so that later boot sequences can
3485         * inform about problems etc..
3486         */
3487        call = __con_initcall_start;
3488        while (call < __con_initcall_end) {
3489                (*call)();
3490                call++;
3491        }
3492}
3493
3494static char *tty_devnode(struct device *dev, umode_t *mode)
3495{
3496        if (!mode)
3497                return NULL;
3498        if (dev->devt == MKDEV(TTYAUX_MAJOR, 0) ||
3499            dev->devt == MKDEV(TTYAUX_MAJOR, 2))
3500                *mode = 0666;
3501        return NULL;
3502}
3503
3504static int __init tty_class_init(void)
3505{
3506        tty_class = class_create(THIS_MODULE, "tty");
3507        if (IS_ERR(tty_class))
3508                return PTR_ERR(tty_class);
3509        tty_class->devnode = tty_devnode;
3510        return 0;
3511}
3512
3513postcore_initcall(tty_class_init);
3514
3515/* 3/2004 jmc: why do these devices exist? */
3516static struct cdev tty_cdev, console_cdev;
3517
3518static ssize_t show_cons_active(struct device *dev,
3519                                struct device_attribute *attr, char *buf)
3520{
3521        struct console *cs[16];
3522        int i = 0;
3523        struct console *c;
3524        ssize_t count = 0;
3525
3526        console_lock();
3527        for_each_console(c) {
3528                if (!c->device)
3529                        continue;
3530                if (!c->write)
3531                        continue;
3532                if ((c->flags & CON_ENABLED) == 0)
3533                        continue;
3534                cs[i++] = c;
3535                if (i >= ARRAY_SIZE(cs))
3536                        break;
3537        }
3538        while (i--)
3539                count += sprintf(buf + count, "%s%d%c",
3540                                 cs[i]->name, cs[i]->index, i ? ' ':'\n');
3541        console_unlock();
3542
3543        return count;
3544}
3545static DEVICE_ATTR(active, S_IRUGO, show_cons_active, NULL);
3546
3547static struct device *consdev;
3548
3549void console_sysfs_notify(void)
3550{
3551        if (consdev)
3552                sysfs_notify(&consdev->kobj, NULL, "active");
3553}
3554
3555/*
3556 * Ok, now we can initialize the rest of the tty devices and can count
3557 * on memory allocations, interrupts etc..
3558 */
3559int __init tty_init(void)
3560{
3561        cdev_init(&tty_cdev, &tty_fops);
3562        if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3563            register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3564                panic("Couldn't register /dev/tty driver\n");
3565        device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), NULL, "tty");
3566
3567        cdev_init(&console_cdev, &console_fops);
3568        if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3569            register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3570                panic("Couldn't register /dev/console driver\n");
3571        consdev = device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), NULL,
3572                              "console");
3573        if (IS_ERR(consdev))
3574                consdev = NULL;
3575        else
3576                WARN_ON(device_create_file(consdev, &dev_attr_active) < 0);
3577
3578#ifdef CONFIG_VT
3579        vty_init(&console_fops);
3580#endif
3581        return 0;
3582}
3583
3584