linux/drivers/usb/core/message.c
<<
>>
Prefs
   1/*
   2 * message.c - synchronous message handling
   3 */
   4
   5#include <linux/pci.h>  /* for scatterlist macros */
   6#include <linux/usb.h>
   7#include <linux/module.h>
   8#include <linux/slab.h>
   9#include <linux/init.h>
  10#include <linux/mm.h>
  11#include <linux/timer.h>
  12#include <linux/ctype.h>
  13#include <linux/nls.h>
  14#include <linux/device.h>
  15#include <linux/scatterlist.h>
  16#include <linux/usb/quirks.h>
  17#include <linux/usb/hcd.h>      /* for usbcore internals */
  18#include <asm/byteorder.h>
  19
  20#include "usb.h"
  21
  22static void cancel_async_set_config(struct usb_device *udev);
  23
  24struct api_context {
  25        struct completion       done;
  26        int                     status;
  27};
  28
  29static void usb_api_blocking_completion(struct urb *urb)
  30{
  31        struct api_context *ctx = urb->context;
  32
  33        ctx->status = urb->status;
  34        complete(&ctx->done);
  35}
  36
  37
  38/*
  39 * Starts urb and waits for completion or timeout. Note that this call
  40 * is NOT interruptible. Many device driver i/o requests should be
  41 * interruptible and therefore these drivers should implement their
  42 * own interruptible routines.
  43 */
  44static int usb_start_wait_urb(struct urb *urb, int timeout, int *actual_length)
  45{
  46        struct api_context ctx;
  47        unsigned long expire;
  48        int retval;
  49
  50        init_completion(&ctx.done);
  51        urb->context = &ctx;
  52        urb->actual_length = 0;
  53        retval = usb_submit_urb(urb, GFP_NOIO);
  54        if (unlikely(retval))
  55                goto out;
  56
  57        expire = timeout ? msecs_to_jiffies(timeout) : MAX_SCHEDULE_TIMEOUT;
  58        if (!wait_for_completion_timeout(&ctx.done, expire)) {
  59                usb_kill_urb(urb);
  60                retval = (ctx.status == -ENOENT ? -ETIMEDOUT : ctx.status);
  61
  62                dev_dbg(&urb->dev->dev,
  63                        "%s timed out on ep%d%s len=%u/%u\n",
  64                        current->comm,
  65                        usb_endpoint_num(&urb->ep->desc),
  66                        usb_urb_dir_in(urb) ? "in" : "out",
  67                        urb->actual_length,
  68                        urb->transfer_buffer_length);
  69        } else
  70                retval = ctx.status;
  71out:
  72        if (actual_length)
  73                *actual_length = urb->actual_length;
  74
  75        usb_free_urb(urb);
  76        return retval;
  77}
  78
  79/*-------------------------------------------------------------------*/
  80/* returns status (negative) or length (positive) */
  81static int usb_internal_control_msg(struct usb_device *usb_dev,
  82                                    unsigned int pipe,
  83                                    struct usb_ctrlrequest *cmd,
  84                                    void *data, int len, int timeout)
  85{
  86        struct urb *urb;
  87        int retv;
  88        int length;
  89
  90        urb = usb_alloc_urb(0, GFP_NOIO);
  91        if (!urb)
  92                return -ENOMEM;
  93
  94        usb_fill_control_urb(urb, usb_dev, pipe, (unsigned char *)cmd, data,
  95                             len, usb_api_blocking_completion, NULL);
  96
  97        retv = usb_start_wait_urb(urb, timeout, &length);
  98        if (retv < 0)
  99                return retv;
 100        else
 101                return length;
 102}
 103
 104/**
 105 * usb_control_msg - Builds a control urb, sends it off and waits for completion
 106 * @dev: pointer to the usb device to send the message to
 107 * @pipe: endpoint "pipe" to send the message to
 108 * @request: USB message request value
 109 * @requesttype: USB message request type value
 110 * @value: USB message value
 111 * @index: USB message index value
 112 * @data: pointer to the data to send
 113 * @size: length in bytes of the data to send
 114 * @timeout: time in msecs to wait for the message to complete before timing
 115 *      out (if 0 the wait is forever)
 116 *
 117 * Context: !in_interrupt ()
 118 *
 119 * This function sends a simple control message to a specified endpoint and
 120 * waits for the message to complete, or timeout.
 121 *
 122 * If successful, it returns the number of bytes transferred, otherwise a
 123 * negative error number.
 124 *
 125 * Don't use this function from within an interrupt context, like a bottom half
 126 * handler.  If you need an asynchronous message, or need to send a message
 127 * from within interrupt context, use usb_submit_urb().
 128 * If a thread in your driver uses this call, make sure your disconnect()
 129 * method can wait for it to complete.  Since you don't have a handle on the
 130 * URB used, you can't cancel the request.
 131 */
 132int usb_control_msg(struct usb_device *dev, unsigned int pipe, __u8 request,
 133                    __u8 requesttype, __u16 value, __u16 index, void *data,
 134                    __u16 size, int timeout)
 135{
 136        struct usb_ctrlrequest *dr;
 137        int ret;
 138
 139        dr = kmalloc(sizeof(struct usb_ctrlrequest), GFP_NOIO);
 140        if (!dr)
 141                return -ENOMEM;
 142
 143        dr->bRequestType = requesttype;
 144        dr->bRequest = request;
 145        dr->wValue = cpu_to_le16(value);
 146        dr->wIndex = cpu_to_le16(index);
 147        dr->wLength = cpu_to_le16(size);
 148
 149        ret = usb_internal_control_msg(dev, pipe, dr, data, size, timeout);
 150
 151        kfree(dr);
 152
 153        return ret;
 154}
 155EXPORT_SYMBOL_GPL(usb_control_msg);
 156
 157/**
 158 * usb_interrupt_msg - Builds an interrupt urb, sends it off and waits for completion
 159 * @usb_dev: pointer to the usb device to send the message to
 160 * @pipe: endpoint "pipe" to send the message to
 161 * @data: pointer to the data to send
 162 * @len: length in bytes of the data to send
 163 * @actual_length: pointer to a location to put the actual length transferred
 164 *      in bytes
 165 * @timeout: time in msecs to wait for the message to complete before
 166 *      timing out (if 0 the wait is forever)
 167 *
 168 * Context: !in_interrupt ()
 169 *
 170 * This function sends a simple interrupt message to a specified endpoint and
 171 * waits for the message to complete, or timeout.
 172 *
 173 * If successful, it returns 0, otherwise a negative error number.  The number
 174 * of actual bytes transferred will be stored in the actual_length paramater.
 175 *
 176 * Don't use this function from within an interrupt context, like a bottom half
 177 * handler.  If you need an asynchronous message, or need to send a message
 178 * from within interrupt context, use usb_submit_urb() If a thread in your
 179 * driver uses this call, make sure your disconnect() method can wait for it to
 180 * complete.  Since you don't have a handle on the URB used, you can't cancel
 181 * the request.
 182 */
 183int usb_interrupt_msg(struct usb_device *usb_dev, unsigned int pipe,
 184                      void *data, int len, int *actual_length, int timeout)
 185{
 186        return usb_bulk_msg(usb_dev, pipe, data, len, actual_length, timeout);
 187}
 188EXPORT_SYMBOL_GPL(usb_interrupt_msg);
 189
 190/**
 191 * usb_bulk_msg - Builds a bulk urb, sends it off and waits for completion
 192 * @usb_dev: pointer to the usb device to send the message to
 193 * @pipe: endpoint "pipe" to send the message to
 194 * @data: pointer to the data to send
 195 * @len: length in bytes of the data to send
 196 * @actual_length: pointer to a location to put the actual length transferred
 197 *      in bytes
 198 * @timeout: time in msecs to wait for the message to complete before
 199 *      timing out (if 0 the wait is forever)
 200 *
 201 * Context: !in_interrupt ()
 202 *
 203 * This function sends a simple bulk message to a specified endpoint
 204 * and waits for the message to complete, or timeout.
 205 *
 206 * If successful, it returns 0, otherwise a negative error number.  The number
 207 * of actual bytes transferred will be stored in the actual_length paramater.
 208 *
 209 * Don't use this function from within an interrupt context, like a bottom half
 210 * handler.  If you need an asynchronous message, or need to send a message
 211 * from within interrupt context, use usb_submit_urb() If a thread in your
 212 * driver uses this call, make sure your disconnect() method can wait for it to
 213 * complete.  Since you don't have a handle on the URB used, you can't cancel
 214 * the request.
 215 *
 216 * Because there is no usb_interrupt_msg() and no USBDEVFS_INTERRUPT ioctl,
 217 * users are forced to abuse this routine by using it to submit URBs for
 218 * interrupt endpoints.  We will take the liberty of creating an interrupt URB
 219 * (with the default interval) if the target is an interrupt endpoint.
 220 */
 221int usb_bulk_msg(struct usb_device *usb_dev, unsigned int pipe,
 222                 void *data, int len, int *actual_length, int timeout)
 223{
 224        struct urb *urb;
 225        struct usb_host_endpoint *ep;
 226
 227        ep = usb_pipe_endpoint(usb_dev, pipe);
 228        if (!ep || len < 0)
 229                return -EINVAL;
 230
 231        urb = usb_alloc_urb(0, GFP_KERNEL);
 232        if (!urb)
 233                return -ENOMEM;
 234
 235        if ((ep->desc.bmAttributes & USB_ENDPOINT_XFERTYPE_MASK) ==
 236                        USB_ENDPOINT_XFER_INT) {
 237                pipe = (pipe & ~(3 << 30)) | (PIPE_INTERRUPT << 30);
 238                usb_fill_int_urb(urb, usb_dev, pipe, data, len,
 239                                usb_api_blocking_completion, NULL,
 240                                ep->desc.bInterval);
 241        } else
 242                usb_fill_bulk_urb(urb, usb_dev, pipe, data, len,
 243                                usb_api_blocking_completion, NULL);
 244
 245        return usb_start_wait_urb(urb, timeout, actual_length);
 246}
 247EXPORT_SYMBOL_GPL(usb_bulk_msg);
 248
 249/*-------------------------------------------------------------------*/
 250
 251static void sg_clean(struct usb_sg_request *io)
 252{
 253        if (io->urbs) {
 254                while (io->entries--)
 255                        usb_free_urb(io->urbs [io->entries]);
 256                kfree(io->urbs);
 257                io->urbs = NULL;
 258        }
 259        io->dev = NULL;
 260}
 261
 262static void sg_complete(struct urb *urb)
 263{
 264        struct usb_sg_request *io = urb->context;
 265        int status = urb->status;
 266
 267        spin_lock(&io->lock);
 268
 269        /* In 2.5 we require hcds' endpoint queues not to progress after fault
 270         * reports, until the completion callback (this!) returns.  That lets
 271         * device driver code (like this routine) unlink queued urbs first,
 272         * if it needs to, since the HC won't work on them at all.  So it's
 273         * not possible for page N+1 to overwrite page N, and so on.
 274         *
 275         * That's only for "hard" faults; "soft" faults (unlinks) sometimes
 276         * complete before the HCD can get requests away from hardware,
 277         * though never during cleanup after a hard fault.
 278         */
 279        if (io->status
 280                        && (io->status != -ECONNRESET
 281                                || status != -ECONNRESET)
 282                        && urb->actual_length) {
 283                dev_err(io->dev->bus->controller,
 284                        "dev %s ep%d%s scatterlist error %d/%d\n",
 285                        io->dev->devpath,
 286                        usb_endpoint_num(&urb->ep->desc),
 287                        usb_urb_dir_in(urb) ? "in" : "out",
 288                        status, io->status);
 289                /* BUG (); */
 290        }
 291
 292        if (io->status == 0 && status && status != -ECONNRESET) {
 293                int i, found, retval;
 294
 295                io->status = status;
 296
 297                /* the previous urbs, and this one, completed already.
 298                 * unlink pending urbs so they won't rx/tx bad data.
 299                 * careful: unlink can sometimes be synchronous...
 300                 */
 301                spin_unlock(&io->lock);
 302                for (i = 0, found = 0; i < io->entries; i++) {
 303                        if (!io->urbs [i] || !io->urbs [i]->dev)
 304                                continue;
 305                        if (found) {
 306                                retval = usb_unlink_urb(io->urbs [i]);
 307                                if (retval != -EINPROGRESS &&
 308                                    retval != -ENODEV &&
 309                                    retval != -EBUSY &&
 310                                    retval != -EIDRM)
 311                                        dev_err(&io->dev->dev,
 312                                                "%s, unlink --> %d\n",
 313                                                __func__, retval);
 314                        } else if (urb == io->urbs [i])
 315                                found = 1;
 316                }
 317                spin_lock(&io->lock);
 318        }
 319
 320        /* on the last completion, signal usb_sg_wait() */
 321        io->bytes += urb->actual_length;
 322        io->count--;
 323        if (!io->count)
 324                complete(&io->complete);
 325
 326        spin_unlock(&io->lock);
 327}
 328
 329
 330/**
 331 * usb_sg_init - initializes scatterlist-based bulk/interrupt I/O request
 332 * @io: request block being initialized.  until usb_sg_wait() returns,
 333 *      treat this as a pointer to an opaque block of memory,
 334 * @dev: the usb device that will send or receive the data
 335 * @pipe: endpoint "pipe" used to transfer the data
 336 * @period: polling rate for interrupt endpoints, in frames or
 337 *      (for high speed endpoints) microframes; ignored for bulk
 338 * @sg: scatterlist entries
 339 * @nents: how many entries in the scatterlist
 340 * @length: how many bytes to send from the scatterlist, or zero to
 341 *      send every byte identified in the list.
 342 * @mem_flags: SLAB_* flags affecting memory allocations in this call
 343 *
 344 * Returns zero for success, else a negative errno value.  This initializes a
 345 * scatter/gather request, allocating resources such as I/O mappings and urb
 346 * memory (except maybe memory used by USB controller drivers).
 347 *
 348 * The request must be issued using usb_sg_wait(), which waits for the I/O to
 349 * complete (or to be canceled) and then cleans up all resources allocated by
 350 * usb_sg_init().
 351 *
 352 * The request may be canceled with usb_sg_cancel(), either before or after
 353 * usb_sg_wait() is called.
 354 */
 355int usb_sg_init(struct usb_sg_request *io, struct usb_device *dev,
 356                unsigned pipe, unsigned period, struct scatterlist *sg,
 357                int nents, size_t length, gfp_t mem_flags)
 358{
 359        int i;
 360        int urb_flags;
 361        int use_sg;
 362
 363        if (!io || !dev || !sg
 364                        || usb_pipecontrol(pipe)
 365                        || usb_pipeisoc(pipe)
 366                        || nents <= 0)
 367                return -EINVAL;
 368
 369        spin_lock_init(&io->lock);
 370        io->dev = dev;
 371        io->pipe = pipe;
 372
 373        if (dev->bus->sg_tablesize > 0) {
 374                use_sg = true;
 375                io->entries = 1;
 376        } else {
 377                use_sg = false;
 378                io->entries = nents;
 379        }
 380
 381        /* initialize all the urbs we'll use */
 382        io->urbs = kmalloc(io->entries * sizeof *io->urbs, mem_flags);
 383        if (!io->urbs)
 384                goto nomem;
 385
 386        urb_flags = URB_NO_INTERRUPT;
 387        if (usb_pipein(pipe))
 388                urb_flags |= URB_SHORT_NOT_OK;
 389
 390        for_each_sg(sg, sg, io->entries, i) {
 391                struct urb *urb;
 392                unsigned len;
 393
 394                urb = usb_alloc_urb(0, mem_flags);
 395                if (!urb) {
 396                        io->entries = i;
 397                        goto nomem;
 398                }
 399                io->urbs[i] = urb;
 400
 401                urb->dev = NULL;
 402                urb->pipe = pipe;
 403                urb->interval = period;
 404                urb->transfer_flags = urb_flags;
 405                urb->complete = sg_complete;
 406                urb->context = io;
 407                urb->sg = sg;
 408
 409                if (use_sg) {
 410                        /* There is no single transfer buffer */
 411                        urb->transfer_buffer = NULL;
 412                        urb->num_sgs = nents;
 413
 414                        /* A length of zero means transfer the whole sg list */
 415                        len = length;
 416                        if (len == 0) {
 417                                struct scatterlist      *sg2;
 418                                int                     j;
 419
 420                                for_each_sg(sg, sg2, nents, j)
 421                                        len += sg2->length;
 422                        }
 423                } else {
 424                        /*
 425                         * Some systems can't use DMA; they use PIO instead.
 426                         * For their sakes, transfer_buffer is set whenever
 427                         * possible.
 428                         */
 429                        if (!PageHighMem(sg_page(sg)))
 430                                urb->transfer_buffer = sg_virt(sg);
 431                        else
 432                                urb->transfer_buffer = NULL;
 433
 434                        len = sg->length;
 435                        if (length) {
 436                                len = min_t(size_t, len, length);
 437                                length -= len;
 438                                if (length == 0)
 439                                        io->entries = i + 1;
 440                        }
 441                }
 442                urb->transfer_buffer_length = len;
 443        }
 444        io->urbs[--i]->transfer_flags &= ~URB_NO_INTERRUPT;
 445
 446        /* transaction state */
 447        io->count = io->entries;
 448        io->status = 0;
 449        io->bytes = 0;
 450        init_completion(&io->complete);
 451        return 0;
 452
 453nomem:
 454        sg_clean(io);
 455        return -ENOMEM;
 456}
 457EXPORT_SYMBOL_GPL(usb_sg_init);
 458
 459/**
 460 * usb_sg_wait - synchronously execute scatter/gather request
 461 * @io: request block handle, as initialized with usb_sg_init().
 462 *      some fields become accessible when this call returns.
 463 * Context: !in_interrupt ()
 464 *
 465 * This function blocks until the specified I/O operation completes.  It
 466 * leverages the grouping of the related I/O requests to get good transfer
 467 * rates, by queueing the requests.  At higher speeds, such queuing can
 468 * significantly improve USB throughput.
 469 *
 470 * There are three kinds of completion for this function.
 471 * (1) success, where io->status is zero.  The number of io->bytes
 472 *     transferred is as requested.
 473 * (2) error, where io->status is a negative errno value.  The number
 474 *     of io->bytes transferred before the error is usually less
 475 *     than requested, and can be nonzero.
 476 * (3) cancellation, a type of error with status -ECONNRESET that
 477 *     is initiated by usb_sg_cancel().
 478 *
 479 * When this function returns, all memory allocated through usb_sg_init() or
 480 * this call will have been freed.  The request block parameter may still be
 481 * passed to usb_sg_cancel(), or it may be freed.  It could also be
 482 * reinitialized and then reused.
 483 *
 484 * Data Transfer Rates:
 485 *
 486 * Bulk transfers are valid for full or high speed endpoints.
 487 * The best full speed data rate is 19 packets of 64 bytes each
 488 * per frame, or 1216 bytes per millisecond.
 489 * The best high speed data rate is 13 packets of 512 bytes each
 490 * per microframe, or 52 KBytes per millisecond.
 491 *
 492 * The reason to use interrupt transfers through this API would most likely
 493 * be to reserve high speed bandwidth, where up to 24 KBytes per millisecond
 494 * could be transferred.  That capability is less useful for low or full
 495 * speed interrupt endpoints, which allow at most one packet per millisecond,
 496 * of at most 8 or 64 bytes (respectively).
 497 *
 498 * It is not necessary to call this function to reserve bandwidth for devices
 499 * under an xHCI host controller, as the bandwidth is reserved when the
 500 * configuration or interface alt setting is selected.
 501 */
 502void usb_sg_wait(struct usb_sg_request *io)
 503{
 504        int i;
 505        int entries = io->entries;
 506
 507        /* queue the urbs.  */
 508        spin_lock_irq(&io->lock);
 509        i = 0;
 510        while (i < entries && !io->status) {
 511                int retval;
 512
 513                io->urbs[i]->dev = io->dev;
 514                retval = usb_submit_urb(io->urbs [i], GFP_ATOMIC);
 515
 516                /* after we submit, let completions or cancelations fire;
 517                 * we handshake using io->status.
 518                 */
 519                spin_unlock_irq(&io->lock);
 520                switch (retval) {
 521                        /* maybe we retrying will recover */
 522                case -ENXIO:    /* hc didn't queue this one */
 523                case -EAGAIN:
 524                case -ENOMEM:
 525                        retval = 0;
 526                        yield();
 527                        break;
 528
 529                        /* no error? continue immediately.
 530                         *
 531                         * NOTE: to work better with UHCI (4K I/O buffer may
 532                         * need 3K of TDs) it may be good to limit how many
 533                         * URBs are queued at once; N milliseconds?
 534                         */
 535                case 0:
 536                        ++i;
 537                        cpu_relax();
 538                        break;
 539
 540                        /* fail any uncompleted urbs */
 541                default:
 542                        io->urbs[i]->status = retval;
 543                        dev_dbg(&io->dev->dev, "%s, submit --> %d\n",
 544                                __func__, retval);
 545                        usb_sg_cancel(io);
 546                }
 547                spin_lock_irq(&io->lock);
 548                if (retval && (io->status == 0 || io->status == -ECONNRESET))
 549                        io->status = retval;
 550        }
 551        io->count -= entries - i;
 552        if (io->count == 0)
 553                complete(&io->complete);
 554        spin_unlock_irq(&io->lock);
 555
 556        /* OK, yes, this could be packaged as non-blocking.
 557         * So could the submit loop above ... but it's easier to
 558         * solve neither problem than to solve both!
 559         */
 560        wait_for_completion(&io->complete);
 561
 562        sg_clean(io);
 563}
 564EXPORT_SYMBOL_GPL(usb_sg_wait);
 565
 566/**
 567 * usb_sg_cancel - stop scatter/gather i/o issued by usb_sg_wait()
 568 * @io: request block, initialized with usb_sg_init()
 569 *
 570 * This stops a request after it has been started by usb_sg_wait().
 571 * It can also prevents one initialized by usb_sg_init() from starting,
 572 * so that call just frees resources allocated to the request.
 573 */
 574void usb_sg_cancel(struct usb_sg_request *io)
 575{
 576        unsigned long flags;
 577
 578        spin_lock_irqsave(&io->lock, flags);
 579
 580        /* shut everything down, if it didn't already */
 581        if (!io->status) {
 582                int i;
 583
 584                io->status = -ECONNRESET;
 585                spin_unlock(&io->lock);
 586                for (i = 0; i < io->entries; i++) {
 587                        int retval;
 588
 589                        if (!io->urbs [i]->dev)
 590                                continue;
 591                        retval = usb_unlink_urb(io->urbs [i]);
 592                        if (retval != -EINPROGRESS
 593                                        && retval != -ENODEV
 594                                        && retval != -EBUSY
 595                                        && retval != -EIDRM)
 596                                dev_warn(&io->dev->dev, "%s, unlink --> %d\n",
 597                                        __func__, retval);
 598                }
 599                spin_lock(&io->lock);
 600        }
 601        spin_unlock_irqrestore(&io->lock, flags);
 602}
 603EXPORT_SYMBOL_GPL(usb_sg_cancel);
 604
 605/*-------------------------------------------------------------------*/
 606
 607/**
 608 * usb_get_descriptor - issues a generic GET_DESCRIPTOR request
 609 * @dev: the device whose descriptor is being retrieved
 610 * @type: the descriptor type (USB_DT_*)
 611 * @index: the number of the descriptor
 612 * @buf: where to put the descriptor
 613 * @size: how big is "buf"?
 614 * Context: !in_interrupt ()
 615 *
 616 * Gets a USB descriptor.  Convenience functions exist to simplify
 617 * getting some types of descriptors.  Use
 618 * usb_get_string() or usb_string() for USB_DT_STRING.
 619 * Device (USB_DT_DEVICE) and configuration descriptors (USB_DT_CONFIG)
 620 * are part of the device structure.
 621 * In addition to a number of USB-standard descriptors, some
 622 * devices also use class-specific or vendor-specific descriptors.
 623 *
 624 * This call is synchronous, and may not be used in an interrupt context.
 625 *
 626 * Returns the number of bytes received on success, or else the status code
 627 * returned by the underlying usb_control_msg() call.
 628 */
 629int usb_get_descriptor(struct usb_device *dev, unsigned char type,
 630                       unsigned char index, void *buf, int size)
 631{
 632        int i;
 633        int result;
 634
 635        memset(buf, 0, size);   /* Make sure we parse really received data */
 636
 637        for (i = 0; i < 3; ++i) {
 638                /* retry on length 0 or error; some devices are flakey */
 639                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 640                                USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 641                                (type << 8) + index, 0, buf, size,
 642                                USB_CTRL_GET_TIMEOUT);
 643                if (result <= 0 && result != -ETIMEDOUT)
 644                        continue;
 645                if (result > 1 && ((u8 *)buf)[1] != type) {
 646                        result = -ENODATA;
 647                        continue;
 648                }
 649                break;
 650        }
 651        return result;
 652}
 653EXPORT_SYMBOL_GPL(usb_get_descriptor);
 654
 655/**
 656 * usb_get_string - gets a string descriptor
 657 * @dev: the device whose string descriptor is being retrieved
 658 * @langid: code for language chosen (from string descriptor zero)
 659 * @index: the number of the descriptor
 660 * @buf: where to put the string
 661 * @size: how big is "buf"?
 662 * Context: !in_interrupt ()
 663 *
 664 * Retrieves a string, encoded using UTF-16LE (Unicode, 16 bits per character,
 665 * in little-endian byte order).
 666 * The usb_string() function will often be a convenient way to turn
 667 * these strings into kernel-printable form.
 668 *
 669 * Strings may be referenced in device, configuration, interface, or other
 670 * descriptors, and could also be used in vendor-specific ways.
 671 *
 672 * This call is synchronous, and may not be used in an interrupt context.
 673 *
 674 * Returns the number of bytes received on success, or else the status code
 675 * returned by the underlying usb_control_msg() call.
 676 */
 677static int usb_get_string(struct usb_device *dev, unsigned short langid,
 678                          unsigned char index, void *buf, int size)
 679{
 680        int i;
 681        int result;
 682
 683        for (i = 0; i < 3; ++i) {
 684                /* retry on length 0 or stall; some devices are flakey */
 685                result = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 686                        USB_REQ_GET_DESCRIPTOR, USB_DIR_IN,
 687                        (USB_DT_STRING << 8) + index, langid, buf, size,
 688                        USB_CTRL_GET_TIMEOUT);
 689                if (result == 0 || result == -EPIPE)
 690                        continue;
 691                if (result > 1 && ((u8 *) buf)[1] != USB_DT_STRING) {
 692                        result = -ENODATA;
 693                        continue;
 694                }
 695                break;
 696        }
 697        return result;
 698}
 699
 700static void usb_try_string_workarounds(unsigned char *buf, int *length)
 701{
 702        int newlength, oldlength = *length;
 703
 704        for (newlength = 2; newlength + 1 < oldlength; newlength += 2)
 705                if (!isprint(buf[newlength]) || buf[newlength + 1])
 706                        break;
 707
 708        if (newlength > 2) {
 709                buf[0] = newlength;
 710                *length = newlength;
 711        }
 712}
 713
 714static int usb_string_sub(struct usb_device *dev, unsigned int langid,
 715                          unsigned int index, unsigned char *buf)
 716{
 717        int rc;
 718
 719        /* Try to read the string descriptor by asking for the maximum
 720         * possible number of bytes */
 721        if (dev->quirks & USB_QUIRK_STRING_FETCH_255)
 722                rc = -EIO;
 723        else
 724                rc = usb_get_string(dev, langid, index, buf, 255);
 725
 726        /* If that failed try to read the descriptor length, then
 727         * ask for just that many bytes */
 728        if (rc < 2) {
 729                rc = usb_get_string(dev, langid, index, buf, 2);
 730                if (rc == 2)
 731                        rc = usb_get_string(dev, langid, index, buf, buf[0]);
 732        }
 733
 734        if (rc >= 2) {
 735                if (!buf[0] && !buf[1])
 736                        usb_try_string_workarounds(buf, &rc);
 737
 738                /* There might be extra junk at the end of the descriptor */
 739                if (buf[0] < rc)
 740                        rc = buf[0];
 741
 742                rc = rc - (rc & 1); /* force a multiple of two */
 743        }
 744
 745        if (rc < 2)
 746                rc = (rc < 0 ? rc : -EINVAL);
 747
 748        return rc;
 749}
 750
 751static int usb_get_langid(struct usb_device *dev, unsigned char *tbuf)
 752{
 753        int err;
 754
 755        if (dev->have_langid)
 756                return 0;
 757
 758        if (dev->string_langid < 0)
 759                return -EPIPE;
 760
 761        err = usb_string_sub(dev, 0, 0, tbuf);
 762
 763        /* If the string was reported but is malformed, default to english
 764         * (0x0409) */
 765        if (err == -ENODATA || (err > 0 && err < 4)) {
 766                dev->string_langid = 0x0409;
 767                dev->have_langid = 1;
 768                dev_err(&dev->dev,
 769                        "string descriptor 0 malformed (err = %d), "
 770                        "defaulting to 0x%04x\n",
 771                                err, dev->string_langid);
 772                return 0;
 773        }
 774
 775        /* In case of all other errors, we assume the device is not able to
 776         * deal with strings at all. Set string_langid to -1 in order to
 777         * prevent any string to be retrieved from the device */
 778        if (err < 0) {
 779                dev_err(&dev->dev, "string descriptor 0 read error: %d\n",
 780                                        err);
 781                dev->string_langid = -1;
 782                return -EPIPE;
 783        }
 784
 785        /* always use the first langid listed */
 786        dev->string_langid = tbuf[2] | (tbuf[3] << 8);
 787        dev->have_langid = 1;
 788        dev_dbg(&dev->dev, "default language 0x%04x\n",
 789                                dev->string_langid);
 790        return 0;
 791}
 792
 793/**
 794 * usb_string - returns UTF-8 version of a string descriptor
 795 * @dev: the device whose string descriptor is being retrieved
 796 * @index: the number of the descriptor
 797 * @buf: where to put the string
 798 * @size: how big is "buf"?
 799 * Context: !in_interrupt ()
 800 *
 801 * This converts the UTF-16LE encoded strings returned by devices, from
 802 * usb_get_string_descriptor(), to null-terminated UTF-8 encoded ones
 803 * that are more usable in most kernel contexts.  Note that this function
 804 * chooses strings in the first language supported by the device.
 805 *
 806 * This call is synchronous, and may not be used in an interrupt context.
 807 *
 808 * Returns length of the string (>= 0) or usb_control_msg status (< 0).
 809 */
 810int usb_string(struct usb_device *dev, int index, char *buf, size_t size)
 811{
 812        unsigned char *tbuf;
 813        int err;
 814
 815        if (dev->state == USB_STATE_SUSPENDED)
 816                return -EHOSTUNREACH;
 817        if (size <= 0 || !buf || !index)
 818                return -EINVAL;
 819        buf[0] = 0;
 820        tbuf = kmalloc(256, GFP_NOIO);
 821        if (!tbuf)
 822                return -ENOMEM;
 823
 824        err = usb_get_langid(dev, tbuf);
 825        if (err < 0)
 826                goto errout;
 827
 828        err = usb_string_sub(dev, dev->string_langid, index, tbuf);
 829        if (err < 0)
 830                goto errout;
 831
 832        size--;         /* leave room for trailing NULL char in output buffer */
 833        err = utf16s_to_utf8s((wchar_t *) &tbuf[2], (err - 2) / 2,
 834                        UTF16_LITTLE_ENDIAN, buf, size);
 835        buf[err] = 0;
 836
 837        if (tbuf[1] != USB_DT_STRING)
 838                dev_dbg(&dev->dev,
 839                        "wrong descriptor type %02x for string %d (\"%s\")\n",
 840                        tbuf[1], index, buf);
 841
 842 errout:
 843        kfree(tbuf);
 844        return err;
 845}
 846EXPORT_SYMBOL_GPL(usb_string);
 847
 848/* one UTF-8-encoded 16-bit character has at most three bytes */
 849#define MAX_USB_STRING_SIZE (127 * 3 + 1)
 850
 851/**
 852 * usb_cache_string - read a string descriptor and cache it for later use
 853 * @udev: the device whose string descriptor is being read
 854 * @index: the descriptor index
 855 *
 856 * Returns a pointer to a kmalloc'ed buffer containing the descriptor string,
 857 * or NULL if the index is 0 or the string could not be read.
 858 */
 859char *usb_cache_string(struct usb_device *udev, int index)
 860{
 861        char *buf;
 862        char *smallbuf = NULL;
 863        int len;
 864
 865        if (index <= 0)
 866                return NULL;
 867
 868        buf = kmalloc(MAX_USB_STRING_SIZE, GFP_NOIO);
 869        if (buf) {
 870                len = usb_string(udev, index, buf, MAX_USB_STRING_SIZE);
 871                if (len > 0) {
 872                        smallbuf = kmalloc(++len, GFP_NOIO);
 873                        if (!smallbuf)
 874                                return buf;
 875                        memcpy(smallbuf, buf, len);
 876                }
 877                kfree(buf);
 878        }
 879        return smallbuf;
 880}
 881
 882/*
 883 * usb_get_device_descriptor - (re)reads the device descriptor (usbcore)
 884 * @dev: the device whose device descriptor is being updated
 885 * @size: how much of the descriptor to read
 886 * Context: !in_interrupt ()
 887 *
 888 * Updates the copy of the device descriptor stored in the device structure,
 889 * which dedicates space for this purpose.
 890 *
 891 * Not exported, only for use by the core.  If drivers really want to read
 892 * the device descriptor directly, they can call usb_get_descriptor() with
 893 * type = USB_DT_DEVICE and index = 0.
 894 *
 895 * This call is synchronous, and may not be used in an interrupt context.
 896 *
 897 * Returns the number of bytes received on success, or else the status code
 898 * returned by the underlying usb_control_msg() call.
 899 */
 900int usb_get_device_descriptor(struct usb_device *dev, unsigned int size)
 901{
 902        struct usb_device_descriptor *desc;
 903        int ret;
 904
 905        if (size > sizeof(*desc))
 906                return -EINVAL;
 907        desc = kmalloc(sizeof(*desc), GFP_NOIO);
 908        if (!desc)
 909                return -ENOMEM;
 910
 911        ret = usb_get_descriptor(dev, USB_DT_DEVICE, 0, desc, size);
 912        if (ret >= 0)
 913                memcpy(&dev->descriptor, desc, size);
 914        kfree(desc);
 915        return ret;
 916}
 917
 918/**
 919 * usb_get_status - issues a GET_STATUS call
 920 * @dev: the device whose status is being checked
 921 * @type: USB_RECIP_*; for device, interface, or endpoint
 922 * @target: zero (for device), else interface or endpoint number
 923 * @data: pointer to two bytes of bitmap data
 924 * Context: !in_interrupt ()
 925 *
 926 * Returns device, interface, or endpoint status.  Normally only of
 927 * interest to see if the device is self powered, or has enabled the
 928 * remote wakeup facility; or whether a bulk or interrupt endpoint
 929 * is halted ("stalled").
 930 *
 931 * Bits in these status bitmaps are set using the SET_FEATURE request,
 932 * and cleared using the CLEAR_FEATURE request.  The usb_clear_halt()
 933 * function should be used to clear halt ("stall") status.
 934 *
 935 * This call is synchronous, and may not be used in an interrupt context.
 936 *
 937 * Returns the number of bytes received on success, or else the status code
 938 * returned by the underlying usb_control_msg() call.
 939 */
 940int usb_get_status(struct usb_device *dev, int type, int target, void *data)
 941{
 942        int ret;
 943        u16 *status = kmalloc(sizeof(*status), GFP_KERNEL);
 944
 945        if (!status)
 946                return -ENOMEM;
 947
 948        ret = usb_control_msg(dev, usb_rcvctrlpipe(dev, 0),
 949                USB_REQ_GET_STATUS, USB_DIR_IN | type, 0, target, status,
 950                sizeof(*status), USB_CTRL_GET_TIMEOUT);
 951
 952        *(u16 *)data = *status;
 953        kfree(status);
 954        return ret;
 955}
 956EXPORT_SYMBOL_GPL(usb_get_status);
 957
 958/**
 959 * usb_clear_halt - tells device to clear endpoint halt/stall condition
 960 * @dev: device whose endpoint is halted
 961 * @pipe: endpoint "pipe" being cleared
 962 * Context: !in_interrupt ()
 963 *
 964 * This is used to clear halt conditions for bulk and interrupt endpoints,
 965 * as reported by URB completion status.  Endpoints that are halted are
 966 * sometimes referred to as being "stalled".  Such endpoints are unable
 967 * to transmit or receive data until the halt status is cleared.  Any URBs
 968 * queued for such an endpoint should normally be unlinked by the driver
 969 * before clearing the halt condition, as described in sections 5.7.5
 970 * and 5.8.5 of the USB 2.0 spec.
 971 *
 972 * Note that control and isochronous endpoints don't halt, although control
 973 * endpoints report "protocol stall" (for unsupported requests) using the
 974 * same status code used to report a true stall.
 975 *
 976 * This call is synchronous, and may not be used in an interrupt context.
 977 *
 978 * Returns zero on success, or else the status code returned by the
 979 * underlying usb_control_msg() call.
 980 */
 981int usb_clear_halt(struct usb_device *dev, int pipe)
 982{
 983        int result;
 984        int endp = usb_pipeendpoint(pipe);
 985
 986        if (usb_pipein(pipe))
 987                endp |= USB_DIR_IN;
 988
 989        /* we don't care if it wasn't halted first. in fact some devices
 990         * (like some ibmcam model 1 units) seem to expect hosts to make
 991         * this request for iso endpoints, which can't halt!
 992         */
 993        result = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
 994                USB_REQ_CLEAR_FEATURE, USB_RECIP_ENDPOINT,
 995                USB_ENDPOINT_HALT, endp, NULL, 0,
 996                USB_CTRL_SET_TIMEOUT);
 997
 998        /* don't un-halt or force to DATA0 except on success */
 999        if (result < 0)
1000                return result;
1001
1002        /* NOTE:  seems like Microsoft and Apple don't bother verifying
1003         * the clear "took", so some devices could lock up if you check...
1004         * such as the Hagiwara FlashGate DUAL.  So we won't bother.
1005         *
1006         * NOTE:  make sure the logic here doesn't diverge much from
1007         * the copy in usb-storage, for as long as we need two copies.
1008         */
1009
1010        usb_reset_endpoint(dev, endp);
1011
1012        return 0;
1013}
1014EXPORT_SYMBOL_GPL(usb_clear_halt);
1015
1016static int create_intf_ep_devs(struct usb_interface *intf)
1017{
1018        struct usb_device *udev = interface_to_usbdev(intf);
1019        struct usb_host_interface *alt = intf->cur_altsetting;
1020        int i;
1021
1022        if (intf->ep_devs_created || intf->unregistering)
1023                return 0;
1024
1025        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1026                (void) usb_create_ep_devs(&intf->dev, &alt->endpoint[i], udev);
1027        intf->ep_devs_created = 1;
1028        return 0;
1029}
1030
1031static void remove_intf_ep_devs(struct usb_interface *intf)
1032{
1033        struct usb_host_interface *alt = intf->cur_altsetting;
1034        int i;
1035
1036        if (!intf->ep_devs_created)
1037                return;
1038
1039        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1040                usb_remove_ep_devs(&alt->endpoint[i]);
1041        intf->ep_devs_created = 0;
1042}
1043
1044/**
1045 * usb_disable_endpoint -- Disable an endpoint by address
1046 * @dev: the device whose endpoint is being disabled
1047 * @epaddr: the endpoint's address.  Endpoint number for output,
1048 *      endpoint number + USB_DIR_IN for input
1049 * @reset_hardware: flag to erase any endpoint state stored in the
1050 *      controller hardware
1051 *
1052 * Disables the endpoint for URB submission and nukes all pending URBs.
1053 * If @reset_hardware is set then also deallocates hcd/hardware state
1054 * for the endpoint.
1055 */
1056void usb_disable_endpoint(struct usb_device *dev, unsigned int epaddr,
1057                bool reset_hardware)
1058{
1059        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1060        struct usb_host_endpoint *ep;
1061
1062        if (!dev)
1063                return;
1064
1065        if (usb_endpoint_out(epaddr)) {
1066                ep = dev->ep_out[epnum];
1067                if (reset_hardware)
1068                        dev->ep_out[epnum] = NULL;
1069        } else {
1070                ep = dev->ep_in[epnum];
1071                if (reset_hardware)
1072                        dev->ep_in[epnum] = NULL;
1073        }
1074        if (ep) {
1075                ep->enabled = 0;
1076                usb_hcd_flush_endpoint(dev, ep);
1077                if (reset_hardware)
1078                        usb_hcd_disable_endpoint(dev, ep);
1079        }
1080}
1081
1082/**
1083 * usb_reset_endpoint - Reset an endpoint's state.
1084 * @dev: the device whose endpoint is to be reset
1085 * @epaddr: the endpoint's address.  Endpoint number for output,
1086 *      endpoint number + USB_DIR_IN for input
1087 *
1088 * Resets any host-side endpoint state such as the toggle bit,
1089 * sequence number or current window.
1090 */
1091void usb_reset_endpoint(struct usb_device *dev, unsigned int epaddr)
1092{
1093        unsigned int epnum = epaddr & USB_ENDPOINT_NUMBER_MASK;
1094        struct usb_host_endpoint *ep;
1095
1096        if (usb_endpoint_out(epaddr))
1097                ep = dev->ep_out[epnum];
1098        else
1099                ep = dev->ep_in[epnum];
1100        if (ep)
1101                usb_hcd_reset_endpoint(dev, ep);
1102}
1103EXPORT_SYMBOL_GPL(usb_reset_endpoint);
1104
1105
1106/**
1107 * usb_disable_interface -- Disable all endpoints for an interface
1108 * @dev: the device whose interface is being disabled
1109 * @intf: pointer to the interface descriptor
1110 * @reset_hardware: flag to erase any endpoint state stored in the
1111 *      controller hardware
1112 *
1113 * Disables all the endpoints for the interface's current altsetting.
1114 */
1115void usb_disable_interface(struct usb_device *dev, struct usb_interface *intf,
1116                bool reset_hardware)
1117{
1118        struct usb_host_interface *alt = intf->cur_altsetting;
1119        int i;
1120
1121        for (i = 0; i < alt->desc.bNumEndpoints; ++i) {
1122                usb_disable_endpoint(dev,
1123                                alt->endpoint[i].desc.bEndpointAddress,
1124                                reset_hardware);
1125        }
1126}
1127
1128/**
1129 * usb_disable_device - Disable all the endpoints for a USB device
1130 * @dev: the device whose endpoints are being disabled
1131 * @skip_ep0: 0 to disable endpoint 0, 1 to skip it.
1132 *
1133 * Disables all the device's endpoints, potentially including endpoint 0.
1134 * Deallocates hcd/hardware state for the endpoints (nuking all or most
1135 * pending urbs) and usbcore state for the interfaces, so that usbcore
1136 * must usb_set_configuration() before any interfaces could be used.
1137 */
1138void usb_disable_device(struct usb_device *dev, int skip_ep0)
1139{
1140        int i;
1141        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1142
1143        /* getting rid of interfaces will disconnect
1144         * any drivers bound to them (a key side effect)
1145         */
1146        if (dev->actconfig) {
1147                /*
1148                 * FIXME: In order to avoid self-deadlock involving the
1149                 * bandwidth_mutex, we have to mark all the interfaces
1150                 * before unregistering any of them.
1151                 */
1152                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++)
1153                        dev->actconfig->interface[i]->unregistering = 1;
1154
1155                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1156                        struct usb_interface    *interface;
1157
1158                        /* remove this interface if it has been registered */
1159                        interface = dev->actconfig->interface[i];
1160                        if (!device_is_registered(&interface->dev))
1161                                continue;
1162                        dev_dbg(&dev->dev, "unregistering interface %s\n",
1163                                dev_name(&interface->dev));
1164                        remove_intf_ep_devs(interface);
1165                        device_del(&interface->dev);
1166                }
1167
1168                /* Now that the interfaces are unbound, nobody should
1169                 * try to access them.
1170                 */
1171                for (i = 0; i < dev->actconfig->desc.bNumInterfaces; i++) {
1172                        put_device(&dev->actconfig->interface[i]->dev);
1173                        dev->actconfig->interface[i] = NULL;
1174                }
1175                usb_unlocked_disable_lpm(dev);
1176                usb_disable_ltm(dev);
1177                dev->actconfig = NULL;
1178                if (dev->state == USB_STATE_CONFIGURED)
1179                        usb_set_device_state(dev, USB_STATE_ADDRESS);
1180        }
1181
1182        dev_dbg(&dev->dev, "%s nuking %s URBs\n", __func__,
1183                skip_ep0 ? "non-ep0" : "all");
1184        if (hcd->driver->check_bandwidth) {
1185                /* First pass: Cancel URBs, leave endpoint pointers intact. */
1186                for (i = skip_ep0; i < 16; ++i) {
1187                        usb_disable_endpoint(dev, i, false);
1188                        usb_disable_endpoint(dev, i + USB_DIR_IN, false);
1189                }
1190                /* Remove endpoints from the host controller internal state */
1191                mutex_lock(hcd->bandwidth_mutex);
1192                usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1193                mutex_unlock(hcd->bandwidth_mutex);
1194                /* Second pass: remove endpoint pointers */
1195        }
1196        for (i = skip_ep0; i < 16; ++i) {
1197                usb_disable_endpoint(dev, i, true);
1198                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1199        }
1200}
1201
1202/**
1203 * usb_enable_endpoint - Enable an endpoint for USB communications
1204 * @dev: the device whose interface is being enabled
1205 * @ep: the endpoint
1206 * @reset_ep: flag to reset the endpoint state
1207 *
1208 * Resets the endpoint state if asked, and sets dev->ep_{in,out} pointers.
1209 * For control endpoints, both the input and output sides are handled.
1210 */
1211void usb_enable_endpoint(struct usb_device *dev, struct usb_host_endpoint *ep,
1212                bool reset_ep)
1213{
1214        int epnum = usb_endpoint_num(&ep->desc);
1215        int is_out = usb_endpoint_dir_out(&ep->desc);
1216        int is_control = usb_endpoint_xfer_control(&ep->desc);
1217
1218        if (reset_ep)
1219                usb_hcd_reset_endpoint(dev, ep);
1220        if (is_out || is_control)
1221                dev->ep_out[epnum] = ep;
1222        if (!is_out || is_control)
1223                dev->ep_in[epnum] = ep;
1224        ep->enabled = 1;
1225}
1226
1227/**
1228 * usb_enable_interface - Enable all the endpoints for an interface
1229 * @dev: the device whose interface is being enabled
1230 * @intf: pointer to the interface descriptor
1231 * @reset_eps: flag to reset the endpoints' state
1232 *
1233 * Enables all the endpoints for the interface's current altsetting.
1234 */
1235void usb_enable_interface(struct usb_device *dev,
1236                struct usb_interface *intf, bool reset_eps)
1237{
1238        struct usb_host_interface *alt = intf->cur_altsetting;
1239        int i;
1240
1241        for (i = 0; i < alt->desc.bNumEndpoints; ++i)
1242                usb_enable_endpoint(dev, &alt->endpoint[i], reset_eps);
1243}
1244
1245/**
1246 * usb_set_interface - Makes a particular alternate setting be current
1247 * @dev: the device whose interface is being updated
1248 * @interface: the interface being updated
1249 * @alternate: the setting being chosen.
1250 * Context: !in_interrupt ()
1251 *
1252 * This is used to enable data transfers on interfaces that may not
1253 * be enabled by default.  Not all devices support such configurability.
1254 * Only the driver bound to an interface may change its setting.
1255 *
1256 * Within any given configuration, each interface may have several
1257 * alternative settings.  These are often used to control levels of
1258 * bandwidth consumption.  For example, the default setting for a high
1259 * speed interrupt endpoint may not send more than 64 bytes per microframe,
1260 * while interrupt transfers of up to 3KBytes per microframe are legal.
1261 * Also, isochronous endpoints may never be part of an
1262 * interface's default setting.  To access such bandwidth, alternate
1263 * interface settings must be made current.
1264 *
1265 * Note that in the Linux USB subsystem, bandwidth associated with
1266 * an endpoint in a given alternate setting is not reserved until an URB
1267 * is submitted that needs that bandwidth.  Some other operating systems
1268 * allocate bandwidth early, when a configuration is chosen.
1269 *
1270 * This call is synchronous, and may not be used in an interrupt context.
1271 * Also, drivers must not change altsettings while urbs are scheduled for
1272 * endpoints in that interface; all such urbs must first be completed
1273 * (perhaps forced by unlinking).
1274 *
1275 * Returns zero on success, or else the status code returned by the
1276 * underlying usb_control_msg() call.
1277 */
1278int usb_set_interface(struct usb_device *dev, int interface, int alternate)
1279{
1280        struct usb_interface *iface;
1281        struct usb_host_interface *alt;
1282        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1283        int ret;
1284        int manual = 0;
1285        unsigned int epaddr;
1286        unsigned int pipe;
1287
1288        if (dev->state == USB_STATE_SUSPENDED)
1289                return -EHOSTUNREACH;
1290
1291        iface = usb_ifnum_to_if(dev, interface);
1292        if (!iface) {
1293                dev_dbg(&dev->dev, "selecting invalid interface %d\n",
1294                        interface);
1295                return -EINVAL;
1296        }
1297        if (iface->unregistering)
1298                return -ENODEV;
1299
1300        alt = usb_altnum_to_altsetting(iface, alternate);
1301        if (!alt) {
1302                dev_warn(&dev->dev, "selecting invalid altsetting %d\n",
1303                         alternate);
1304                return -EINVAL;
1305        }
1306
1307        /* Make sure we have enough bandwidth for this alternate interface.
1308         * Remove the current alt setting and add the new alt setting.
1309         */
1310        mutex_lock(hcd->bandwidth_mutex);
1311        /* Disable LPM, and re-enable it once the new alt setting is installed,
1312         * so that the xHCI driver can recalculate the U1/U2 timeouts.
1313         */
1314        if (usb_disable_lpm(dev)) {
1315                dev_err(&iface->dev, "%s Failed to disable LPM\n.", __func__);
1316                mutex_unlock(hcd->bandwidth_mutex);
1317                return -ENOMEM;
1318        }
1319        ret = usb_hcd_alloc_bandwidth(dev, NULL, iface->cur_altsetting, alt);
1320        if (ret < 0) {
1321                dev_info(&dev->dev, "Not enough bandwidth for altsetting %d\n",
1322                                alternate);
1323                usb_enable_lpm(dev);
1324                mutex_unlock(hcd->bandwidth_mutex);
1325                return ret;
1326        }
1327
1328        if (dev->quirks & USB_QUIRK_NO_SET_INTF)
1329                ret = -EPIPE;
1330        else
1331                ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1332                                   USB_REQ_SET_INTERFACE, USB_RECIP_INTERFACE,
1333                                   alternate, interface, NULL, 0, 5000);
1334
1335        /* 9.4.10 says devices don't need this and are free to STALL the
1336         * request if the interface only has one alternate setting.
1337         */
1338        if (ret == -EPIPE && iface->num_altsetting == 1) {
1339                dev_dbg(&dev->dev,
1340                        "manual set_interface for iface %d, alt %d\n",
1341                        interface, alternate);
1342                manual = 1;
1343        } else if (ret < 0) {
1344                /* Re-instate the old alt setting */
1345                usb_hcd_alloc_bandwidth(dev, NULL, alt, iface->cur_altsetting);
1346                usb_enable_lpm(dev);
1347                mutex_unlock(hcd->bandwidth_mutex);
1348                return ret;
1349        }
1350        mutex_unlock(hcd->bandwidth_mutex);
1351
1352        /* FIXME drivers shouldn't need to replicate/bugfix the logic here
1353         * when they implement async or easily-killable versions of this or
1354         * other "should-be-internal" functions (like clear_halt).
1355         * should hcd+usbcore postprocess control requests?
1356         */
1357
1358        /* prevent submissions using previous endpoint settings */
1359        if (iface->cur_altsetting != alt) {
1360                remove_intf_ep_devs(iface);
1361                usb_remove_sysfs_intf_files(iface);
1362        }
1363        usb_disable_interface(dev, iface, true);
1364
1365        iface->cur_altsetting = alt;
1366
1367        /* Now that the interface is installed, re-enable LPM. */
1368        usb_unlocked_enable_lpm(dev);
1369
1370        /* If the interface only has one altsetting and the device didn't
1371         * accept the request, we attempt to carry out the equivalent action
1372         * by manually clearing the HALT feature for each endpoint in the
1373         * new altsetting.
1374         */
1375        if (manual) {
1376                int i;
1377
1378                for (i = 0; i < alt->desc.bNumEndpoints; i++) {
1379                        epaddr = alt->endpoint[i].desc.bEndpointAddress;
1380                        pipe = __create_pipe(dev,
1381                                        USB_ENDPOINT_NUMBER_MASK & epaddr) |
1382                                        (usb_endpoint_out(epaddr) ?
1383                                        USB_DIR_OUT : USB_DIR_IN);
1384
1385                        usb_clear_halt(dev, pipe);
1386                }
1387        }
1388
1389        /* 9.1.1.5: reset toggles for all endpoints in the new altsetting
1390         *
1391         * Note:
1392         * Despite EP0 is always present in all interfaces/AS, the list of
1393         * endpoints from the descriptor does not contain EP0. Due to its
1394         * omnipresence one might expect EP0 being considered "affected" by
1395         * any SetInterface request and hence assume toggles need to be reset.
1396         * However, EP0 toggles are re-synced for every individual transfer
1397         * during the SETUP stage - hence EP0 toggles are "don't care" here.
1398         * (Likewise, EP0 never "halts" on well designed devices.)
1399         */
1400        usb_enable_interface(dev, iface, true);
1401        if (device_is_registered(&iface->dev)) {
1402                usb_create_sysfs_intf_files(iface);
1403                create_intf_ep_devs(iface);
1404        }
1405        return 0;
1406}
1407EXPORT_SYMBOL_GPL(usb_set_interface);
1408
1409/**
1410 * usb_reset_configuration - lightweight device reset
1411 * @dev: the device whose configuration is being reset
1412 *
1413 * This issues a standard SET_CONFIGURATION request to the device using
1414 * the current configuration.  The effect is to reset most USB-related
1415 * state in the device, including interface altsettings (reset to zero),
1416 * endpoint halts (cleared), and endpoint state (only for bulk and interrupt
1417 * endpoints).  Other usbcore state is unchanged, including bindings of
1418 * usb device drivers to interfaces.
1419 *
1420 * Because this affects multiple interfaces, avoid using this with composite
1421 * (multi-interface) devices.  Instead, the driver for each interface may
1422 * use usb_set_interface() on the interfaces it claims.  Be careful though;
1423 * some devices don't support the SET_INTERFACE request, and others won't
1424 * reset all the interface state (notably endpoint state).  Resetting the whole
1425 * configuration would affect other drivers' interfaces.
1426 *
1427 * The caller must own the device lock.
1428 *
1429 * Returns zero on success, else a negative error code.
1430 */
1431int usb_reset_configuration(struct usb_device *dev)
1432{
1433        int                     i, retval;
1434        struct usb_host_config  *config;
1435        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1436
1437        if (dev->state == USB_STATE_SUSPENDED)
1438                return -EHOSTUNREACH;
1439
1440        /* caller must have locked the device and must own
1441         * the usb bus readlock (so driver bindings are stable);
1442         * calls during probe() are fine
1443         */
1444
1445        for (i = 1; i < 16; ++i) {
1446                usb_disable_endpoint(dev, i, true);
1447                usb_disable_endpoint(dev, i + USB_DIR_IN, true);
1448        }
1449
1450        config = dev->actconfig;
1451        retval = 0;
1452        mutex_lock(hcd->bandwidth_mutex);
1453        /* Disable LPM, and re-enable it once the configuration is reset, so
1454         * that the xHCI driver can recalculate the U1/U2 timeouts.
1455         */
1456        if (usb_disable_lpm(dev)) {
1457                dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1458                mutex_unlock(hcd->bandwidth_mutex);
1459                return -ENOMEM;
1460        }
1461        /* Make sure we have enough bandwidth for each alternate setting 0 */
1462        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1463                struct usb_interface *intf = config->interface[i];
1464                struct usb_host_interface *alt;
1465
1466                alt = usb_altnum_to_altsetting(intf, 0);
1467                if (!alt)
1468                        alt = &intf->altsetting[0];
1469                if (alt != intf->cur_altsetting)
1470                        retval = usb_hcd_alloc_bandwidth(dev, NULL,
1471                                        intf->cur_altsetting, alt);
1472                if (retval < 0)
1473                        break;
1474        }
1475        /* If not, reinstate the old alternate settings */
1476        if (retval < 0) {
1477reset_old_alts:
1478                for (i--; i >= 0; i--) {
1479                        struct usb_interface *intf = config->interface[i];
1480                        struct usb_host_interface *alt;
1481
1482                        alt = usb_altnum_to_altsetting(intf, 0);
1483                        if (!alt)
1484                                alt = &intf->altsetting[0];
1485                        if (alt != intf->cur_altsetting)
1486                                usb_hcd_alloc_bandwidth(dev, NULL,
1487                                                alt, intf->cur_altsetting);
1488                }
1489                usb_enable_lpm(dev);
1490                mutex_unlock(hcd->bandwidth_mutex);
1491                return retval;
1492        }
1493        retval = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1494                        USB_REQ_SET_CONFIGURATION, 0,
1495                        config->desc.bConfigurationValue, 0,
1496                        NULL, 0, USB_CTRL_SET_TIMEOUT);
1497        if (retval < 0)
1498                goto reset_old_alts;
1499        mutex_unlock(hcd->bandwidth_mutex);
1500
1501        /* re-init hc/hcd interface/endpoint state */
1502        for (i = 0; i < config->desc.bNumInterfaces; i++) {
1503                struct usb_interface *intf = config->interface[i];
1504                struct usb_host_interface *alt;
1505
1506                alt = usb_altnum_to_altsetting(intf, 0);
1507
1508                /* No altsetting 0?  We'll assume the first altsetting.
1509                 * We could use a GetInterface call, but if a device is
1510                 * so non-compliant that it doesn't have altsetting 0
1511                 * then I wouldn't trust its reply anyway.
1512                 */
1513                if (!alt)
1514                        alt = &intf->altsetting[0];
1515
1516                if (alt != intf->cur_altsetting) {
1517                        remove_intf_ep_devs(intf);
1518                        usb_remove_sysfs_intf_files(intf);
1519                }
1520                intf->cur_altsetting = alt;
1521                usb_enable_interface(dev, intf, true);
1522                if (device_is_registered(&intf->dev)) {
1523                        usb_create_sysfs_intf_files(intf);
1524                        create_intf_ep_devs(intf);
1525                }
1526        }
1527        /* Now that the interfaces are installed, re-enable LPM. */
1528        usb_unlocked_enable_lpm(dev);
1529        return 0;
1530}
1531EXPORT_SYMBOL_GPL(usb_reset_configuration);
1532
1533static void usb_release_interface(struct device *dev)
1534{
1535        struct usb_interface *intf = to_usb_interface(dev);
1536        struct usb_interface_cache *intfc =
1537                        altsetting_to_usb_interface_cache(intf->altsetting);
1538
1539        kref_put(&intfc->ref, usb_release_interface_cache);
1540        kfree(intf);
1541}
1542
1543static int usb_if_uevent(struct device *dev, struct kobj_uevent_env *env)
1544{
1545        struct usb_device *usb_dev;
1546        struct usb_interface *intf;
1547        struct usb_host_interface *alt;
1548
1549        intf = to_usb_interface(dev);
1550        usb_dev = interface_to_usbdev(intf);
1551        alt = intf->cur_altsetting;
1552
1553        if (add_uevent_var(env, "INTERFACE=%d/%d/%d",
1554                   alt->desc.bInterfaceClass,
1555                   alt->desc.bInterfaceSubClass,
1556                   alt->desc.bInterfaceProtocol))
1557                return -ENOMEM;
1558
1559        if (add_uevent_var(env,
1560                   "MODALIAS=usb:"
1561                   "v%04Xp%04Xd%04Xdc%02Xdsc%02Xdp%02Xic%02Xisc%02Xip%02Xin%02X",
1562                   le16_to_cpu(usb_dev->descriptor.idVendor),
1563                   le16_to_cpu(usb_dev->descriptor.idProduct),
1564                   le16_to_cpu(usb_dev->descriptor.bcdDevice),
1565                   usb_dev->descriptor.bDeviceClass,
1566                   usb_dev->descriptor.bDeviceSubClass,
1567                   usb_dev->descriptor.bDeviceProtocol,
1568                   alt->desc.bInterfaceClass,
1569                   alt->desc.bInterfaceSubClass,
1570                   alt->desc.bInterfaceProtocol,
1571                   alt->desc.bInterfaceNumber))
1572                return -ENOMEM;
1573
1574        return 0;
1575}
1576
1577struct device_type usb_if_device_type = {
1578        .name =         "usb_interface",
1579        .release =      usb_release_interface,
1580        .uevent =       usb_if_uevent,
1581};
1582
1583static struct usb_interface_assoc_descriptor *find_iad(struct usb_device *dev,
1584                                                struct usb_host_config *config,
1585                                                u8 inum)
1586{
1587        struct usb_interface_assoc_descriptor *retval = NULL;
1588        struct usb_interface_assoc_descriptor *intf_assoc;
1589        int first_intf;
1590        int last_intf;
1591        int i;
1592
1593        for (i = 0; (i < USB_MAXIADS && config->intf_assoc[i]); i++) {
1594                intf_assoc = config->intf_assoc[i];
1595                if (intf_assoc->bInterfaceCount == 0)
1596                        continue;
1597
1598                first_intf = intf_assoc->bFirstInterface;
1599                last_intf = first_intf + (intf_assoc->bInterfaceCount - 1);
1600                if (inum >= first_intf && inum <= last_intf) {
1601                        if (!retval)
1602                                retval = intf_assoc;
1603                        else
1604                                dev_err(&dev->dev, "Interface #%d referenced"
1605                                        " by multiple IADs\n", inum);
1606                }
1607        }
1608
1609        return retval;
1610}
1611
1612
1613/*
1614 * Internal function to queue a device reset
1615 *
1616 * This is initialized into the workstruct in 'struct
1617 * usb_device->reset_ws' that is launched by
1618 * message.c:usb_set_configuration() when initializing each 'struct
1619 * usb_interface'.
1620 *
1621 * It is safe to get the USB device without reference counts because
1622 * the life cycle of @iface is bound to the life cycle of @udev. Then,
1623 * this function will be ran only if @iface is alive (and before
1624 * freeing it any scheduled instances of it will have been cancelled).
1625 *
1626 * We need to set a flag (usb_dev->reset_running) because when we call
1627 * the reset, the interfaces might be unbound. The current interface
1628 * cannot try to remove the queued work as it would cause a deadlock
1629 * (you cannot remove your work from within your executing
1630 * workqueue). This flag lets it know, so that
1631 * usb_cancel_queued_reset() doesn't try to do it.
1632 *
1633 * See usb_queue_reset_device() for more details
1634 */
1635static void __usb_queue_reset_device(struct work_struct *ws)
1636{
1637        int rc;
1638        struct usb_interface *iface =
1639                container_of(ws, struct usb_interface, reset_ws);
1640        struct usb_device *udev = interface_to_usbdev(iface);
1641
1642        rc = usb_lock_device_for_reset(udev, iface);
1643        if (rc >= 0) {
1644                iface->reset_running = 1;
1645                usb_reset_device(udev);
1646                iface->reset_running = 0;
1647                usb_unlock_device(udev);
1648        }
1649}
1650
1651
1652/*
1653 * usb_set_configuration - Makes a particular device setting be current
1654 * @dev: the device whose configuration is being updated
1655 * @configuration: the configuration being chosen.
1656 * Context: !in_interrupt(), caller owns the device lock
1657 *
1658 * This is used to enable non-default device modes.  Not all devices
1659 * use this kind of configurability; many devices only have one
1660 * configuration.
1661 *
1662 * @configuration is the value of the configuration to be installed.
1663 * According to the USB spec (e.g. section 9.1.1.5), configuration values
1664 * must be non-zero; a value of zero indicates that the device in
1665 * unconfigured.  However some devices erroneously use 0 as one of their
1666 * configuration values.  To help manage such devices, this routine will
1667 * accept @configuration = -1 as indicating the device should be put in
1668 * an unconfigured state.
1669 *
1670 * USB device configurations may affect Linux interoperability,
1671 * power consumption and the functionality available.  For example,
1672 * the default configuration is limited to using 100mA of bus power,
1673 * so that when certain device functionality requires more power,
1674 * and the device is bus powered, that functionality should be in some
1675 * non-default device configuration.  Other device modes may also be
1676 * reflected as configuration options, such as whether two ISDN
1677 * channels are available independently; and choosing between open
1678 * standard device protocols (like CDC) or proprietary ones.
1679 *
1680 * Note that a non-authorized device (dev->authorized == 0) will only
1681 * be put in unconfigured mode.
1682 *
1683 * Note that USB has an additional level of device configurability,
1684 * associated with interfaces.  That configurability is accessed using
1685 * usb_set_interface().
1686 *
1687 * This call is synchronous. The calling context must be able to sleep,
1688 * must own the device lock, and must not hold the driver model's USB
1689 * bus mutex; usb interface driver probe() methods cannot use this routine.
1690 *
1691 * Returns zero on success, or else the status code returned by the
1692 * underlying call that failed.  On successful completion, each interface
1693 * in the original device configuration has been destroyed, and each one
1694 * in the new configuration has been probed by all relevant usb device
1695 * drivers currently known to the kernel.
1696 */
1697int usb_set_configuration(struct usb_device *dev, int configuration)
1698{
1699        int i, ret;
1700        struct usb_host_config *cp = NULL;
1701        struct usb_interface **new_interfaces = NULL;
1702        struct usb_hcd *hcd = bus_to_hcd(dev->bus);
1703        int n, nintf;
1704
1705        if (dev->authorized == 0 || configuration == -1)
1706                configuration = 0;
1707        else {
1708                for (i = 0; i < dev->descriptor.bNumConfigurations; i++) {
1709                        if (dev->config[i].desc.bConfigurationValue ==
1710                                        configuration) {
1711                                cp = &dev->config[i];
1712                                break;
1713                        }
1714                }
1715        }
1716        if ((!cp && configuration != 0))
1717                return -EINVAL;
1718
1719        /* The USB spec says configuration 0 means unconfigured.
1720         * But if a device includes a configuration numbered 0,
1721         * we will accept it as a correctly configured state.
1722         * Use -1 if you really want to unconfigure the device.
1723         */
1724        if (cp && configuration == 0)
1725                dev_warn(&dev->dev, "config 0 descriptor??\n");
1726
1727        /* Allocate memory for new interfaces before doing anything else,
1728         * so that if we run out then nothing will have changed. */
1729        n = nintf = 0;
1730        if (cp) {
1731                nintf = cp->desc.bNumInterfaces;
1732                new_interfaces = kmalloc(nintf * sizeof(*new_interfaces),
1733                                GFP_NOIO);
1734                if (!new_interfaces) {
1735                        dev_err(&dev->dev, "Out of memory\n");
1736                        return -ENOMEM;
1737                }
1738
1739                for (; n < nintf; ++n) {
1740                        new_interfaces[n] = kzalloc(
1741                                        sizeof(struct usb_interface),
1742                                        GFP_NOIO);
1743                        if (!new_interfaces[n]) {
1744                                dev_err(&dev->dev, "Out of memory\n");
1745                                ret = -ENOMEM;
1746free_interfaces:
1747                                while (--n >= 0)
1748                                        kfree(new_interfaces[n]);
1749                                kfree(new_interfaces);
1750                                return ret;
1751                        }
1752                }
1753
1754                i = dev->bus_mA - usb_get_max_power(dev, cp);
1755                if (i < 0)
1756                        dev_warn(&dev->dev, "new config #%d exceeds power "
1757                                        "limit by %dmA\n",
1758                                        configuration, -i);
1759        }
1760
1761        /* Wake up the device so we can send it the Set-Config request */
1762        ret = usb_autoresume_device(dev);
1763        if (ret)
1764                goto free_interfaces;
1765
1766        /* if it's already configured, clear out old state first.
1767         * getting rid of old interfaces means unbinding their drivers.
1768         */
1769        if (dev->state != USB_STATE_ADDRESS)
1770                usb_disable_device(dev, 1);     /* Skip ep0 */
1771
1772        /* Get rid of pending async Set-Config requests for this device */
1773        cancel_async_set_config(dev);
1774
1775        /* Make sure we have bandwidth (and available HCD resources) for this
1776         * configuration.  Remove endpoints from the schedule if we're dropping
1777         * this configuration to set configuration 0.  After this point, the
1778         * host controller will not allow submissions to dropped endpoints.  If
1779         * this call fails, the device state is unchanged.
1780         */
1781        mutex_lock(hcd->bandwidth_mutex);
1782        /* Disable LPM, and re-enable it once the new configuration is
1783         * installed, so that the xHCI driver can recalculate the U1/U2
1784         * timeouts.
1785         */
1786        if (dev->actconfig && usb_disable_lpm(dev)) {
1787                dev_err(&dev->dev, "%s Failed to disable LPM\n.", __func__);
1788                mutex_unlock(hcd->bandwidth_mutex);
1789                ret = -ENOMEM;
1790                goto free_interfaces;
1791        }
1792        ret = usb_hcd_alloc_bandwidth(dev, cp, NULL, NULL);
1793        if (ret < 0) {
1794                if (dev->actconfig)
1795                        usb_enable_lpm(dev);
1796                mutex_unlock(hcd->bandwidth_mutex);
1797                usb_autosuspend_device(dev);
1798                goto free_interfaces;
1799        }
1800
1801        /*
1802         * Initialize the new interface structures and the
1803         * hc/hcd/usbcore interface/endpoint state.
1804         */
1805        for (i = 0; i < nintf; ++i) {
1806                struct usb_interface_cache *intfc;
1807                struct usb_interface *intf;
1808                struct usb_host_interface *alt;
1809
1810                cp->interface[i] = intf = new_interfaces[i];
1811                intfc = cp->intf_cache[i];
1812                intf->altsetting = intfc->altsetting;
1813                intf->num_altsetting = intfc->num_altsetting;
1814                kref_get(&intfc->ref);
1815
1816                alt = usb_altnum_to_altsetting(intf, 0);
1817
1818                /* No altsetting 0?  We'll assume the first altsetting.
1819                 * We could use a GetInterface call, but if a device is
1820                 * so non-compliant that it doesn't have altsetting 0
1821                 * then I wouldn't trust its reply anyway.
1822                 */
1823                if (!alt)
1824                        alt = &intf->altsetting[0];
1825
1826                intf->intf_assoc =
1827                        find_iad(dev, cp, alt->desc.bInterfaceNumber);
1828                intf->cur_altsetting = alt;
1829                usb_enable_interface(dev, intf, true);
1830                intf->dev.parent = &dev->dev;
1831                intf->dev.driver = NULL;
1832                intf->dev.bus = &usb_bus_type;
1833                intf->dev.type = &usb_if_device_type;
1834                intf->dev.groups = usb_interface_groups;
1835                intf->dev.dma_mask = dev->dev.dma_mask;
1836                INIT_WORK(&intf->reset_ws, __usb_queue_reset_device);
1837                intf->minor = -1;
1838                device_initialize(&intf->dev);
1839                pm_runtime_no_callbacks(&intf->dev);
1840                dev_set_name(&intf->dev, "%d-%s:%d.%d",
1841                        dev->bus->busnum, dev->devpath,
1842                        configuration, alt->desc.bInterfaceNumber);
1843        }
1844        kfree(new_interfaces);
1845
1846        ret = usb_control_msg(dev, usb_sndctrlpipe(dev, 0),
1847                              USB_REQ_SET_CONFIGURATION, 0, configuration, 0,
1848                              NULL, 0, USB_CTRL_SET_TIMEOUT);
1849        if (ret < 0 && cp) {
1850                /*
1851                 * All the old state is gone, so what else can we do?
1852                 * The device is probably useless now anyway.
1853                 */
1854                usb_hcd_alloc_bandwidth(dev, NULL, NULL, NULL);
1855                for (i = 0; i < nintf; ++i) {
1856                        usb_disable_interface(dev, cp->interface[i], true);
1857                        put_device(&cp->interface[i]->dev);
1858                        cp->interface[i] = NULL;
1859                }
1860                cp = NULL;
1861        }
1862
1863        dev->actconfig = cp;
1864        mutex_unlock(hcd->bandwidth_mutex);
1865
1866        if (!cp) {
1867                usb_set_device_state(dev, USB_STATE_ADDRESS);
1868
1869                /* Leave LPM disabled while the device is unconfigured. */
1870                usb_autosuspend_device(dev);
1871                return ret;
1872        }
1873        usb_set_device_state(dev, USB_STATE_CONFIGURED);
1874
1875        if (cp->string == NULL &&
1876                        !(dev->quirks & USB_QUIRK_CONFIG_INTF_STRINGS))
1877                cp->string = usb_cache_string(dev, cp->desc.iConfiguration);
1878
1879        /* Now that the interfaces are installed, re-enable LPM. */
1880        usb_unlocked_enable_lpm(dev);
1881        /* Enable LTM if it was turned off by usb_disable_device. */
1882        usb_enable_ltm(dev);
1883
1884        /* Now that all the interfaces are set up, register them
1885         * to trigger binding of drivers to interfaces.  probe()
1886         * routines may install different altsettings and may
1887         * claim() any interfaces not yet bound.  Many class drivers
1888         * need that: CDC, audio, video, etc.
1889         */
1890        for (i = 0; i < nintf; ++i) {
1891                struct usb_interface *intf = cp->interface[i];
1892
1893                dev_dbg(&dev->dev,
1894                        "adding %s (config #%d, interface %d)\n",
1895                        dev_name(&intf->dev), configuration,
1896                        intf->cur_altsetting->desc.bInterfaceNumber);
1897                device_enable_async_suspend(&intf->dev);
1898                ret = device_add(&intf->dev);
1899                if (ret != 0) {
1900                        dev_err(&dev->dev, "device_add(%s) --> %d\n",
1901                                dev_name(&intf->dev), ret);
1902                        continue;
1903                }
1904                create_intf_ep_devs(intf);
1905        }
1906
1907        usb_autosuspend_device(dev);
1908        return 0;
1909}
1910
1911static LIST_HEAD(set_config_list);
1912static DEFINE_SPINLOCK(set_config_lock);
1913
1914struct set_config_request {
1915        struct usb_device       *udev;
1916        int                     config;
1917        struct work_struct      work;
1918        struct list_head        node;
1919};
1920
1921/* Worker routine for usb_driver_set_configuration() */
1922static void driver_set_config_work(struct work_struct *work)
1923{
1924        struct set_config_request *req =
1925                container_of(work, struct set_config_request, work);
1926        struct usb_device *udev = req->udev;
1927
1928        usb_lock_device(udev);
1929        spin_lock(&set_config_lock);
1930        list_del(&req->node);
1931        spin_unlock(&set_config_lock);
1932
1933        if (req->config >= -1)          /* Is req still valid? */
1934                usb_set_configuration(udev, req->config);
1935        usb_unlock_device(udev);
1936        usb_put_dev(udev);
1937        kfree(req);
1938}
1939
1940/* Cancel pending Set-Config requests for a device whose configuration
1941 * was just changed
1942 */
1943static void cancel_async_set_config(struct usb_device *udev)
1944{
1945        struct set_config_request *req;
1946
1947        spin_lock(&set_config_lock);
1948        list_for_each_entry(req, &set_config_list, node) {
1949                if (req->udev == udev)
1950                        req->config = -999;     /* Mark as cancelled */
1951        }
1952        spin_unlock(&set_config_lock);
1953}
1954
1955/**
1956 * usb_driver_set_configuration - Provide a way for drivers to change device configurations
1957 * @udev: the device whose configuration is being updated
1958 * @config: the configuration being chosen.
1959 * Context: In process context, must be able to sleep
1960 *
1961 * Device interface drivers are not allowed to change device configurations.
1962 * This is because changing configurations will destroy the interface the
1963 * driver is bound to and create new ones; it would be like a floppy-disk
1964 * driver telling the computer to replace the floppy-disk drive with a
1965 * tape drive!
1966 *
1967 * Still, in certain specialized circumstances the need may arise.  This
1968 * routine gets around the normal restrictions by using a work thread to
1969 * submit the change-config request.
1970 *
1971 * Returns 0 if the request was successfully queued, error code otherwise.
1972 * The caller has no way to know whether the queued request will eventually
1973 * succeed.
1974 */
1975int usb_driver_set_configuration(struct usb_device *udev, int config)
1976{
1977        struct set_config_request *req;
1978
1979        req = kmalloc(sizeof(*req), GFP_KERNEL);
1980        if (!req)
1981                return -ENOMEM;
1982        req->udev = udev;
1983        req->config = config;
1984        INIT_WORK(&req->work, driver_set_config_work);
1985
1986        spin_lock(&set_config_lock);
1987        list_add(&req->node, &set_config_list);
1988        spin_unlock(&set_config_lock);
1989
1990        usb_get_dev(udev);
1991        schedule_work(&req->work);
1992        return 0;
1993}
1994EXPORT_SYMBOL_GPL(usb_driver_set_configuration);
1995