linux/fs/btrfs/backref.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/vmalloc.h>
  20#include "ctree.h"
  21#include "disk-io.h"
  22#include "backref.h"
  23#include "ulist.h"
  24#include "transaction.h"
  25#include "delayed-ref.h"
  26#include "locking.h"
  27
  28struct extent_inode_elem {
  29        u64 inum;
  30        u64 offset;
  31        struct extent_inode_elem *next;
  32};
  33
  34static int check_extent_in_eb(struct btrfs_key *key, struct extent_buffer *eb,
  35                                struct btrfs_file_extent_item *fi,
  36                                u64 extent_item_pos,
  37                                struct extent_inode_elem **eie)
  38{
  39        u64 data_offset;
  40        u64 data_len;
  41        struct extent_inode_elem *e;
  42
  43        data_offset = btrfs_file_extent_offset(eb, fi);
  44        data_len = btrfs_file_extent_num_bytes(eb, fi);
  45
  46        if (extent_item_pos < data_offset ||
  47            extent_item_pos >= data_offset + data_len)
  48                return 1;
  49
  50        e = kmalloc(sizeof(*e), GFP_NOFS);
  51        if (!e)
  52                return -ENOMEM;
  53
  54        e->next = *eie;
  55        e->inum = key->objectid;
  56        e->offset = key->offset + (extent_item_pos - data_offset);
  57        *eie = e;
  58
  59        return 0;
  60}
  61
  62static int find_extent_in_eb(struct extent_buffer *eb, u64 wanted_disk_byte,
  63                                u64 extent_item_pos,
  64                                struct extent_inode_elem **eie)
  65{
  66        u64 disk_byte;
  67        struct btrfs_key key;
  68        struct btrfs_file_extent_item *fi;
  69        int slot;
  70        int nritems;
  71        int extent_type;
  72        int ret;
  73
  74        /*
  75         * from the shared data ref, we only have the leaf but we need
  76         * the key. thus, we must look into all items and see that we
  77         * find one (some) with a reference to our extent item.
  78         */
  79        nritems = btrfs_header_nritems(eb);
  80        for (slot = 0; slot < nritems; ++slot) {
  81                btrfs_item_key_to_cpu(eb, &key, slot);
  82                if (key.type != BTRFS_EXTENT_DATA_KEY)
  83                        continue;
  84                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
  85                extent_type = btrfs_file_extent_type(eb, fi);
  86                if (extent_type == BTRFS_FILE_EXTENT_INLINE)
  87                        continue;
  88                /* don't skip BTRFS_FILE_EXTENT_PREALLOC, we can handle that */
  89                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
  90                if (disk_byte != wanted_disk_byte)
  91                        continue;
  92
  93                ret = check_extent_in_eb(&key, eb, fi, extent_item_pos, eie);
  94                if (ret < 0)
  95                        return ret;
  96        }
  97
  98        return 0;
  99}
 100
 101/*
 102 * this structure records all encountered refs on the way up to the root
 103 */
 104struct __prelim_ref {
 105        struct list_head list;
 106        u64 root_id;
 107        struct btrfs_key key_for_search;
 108        int level;
 109        int count;
 110        struct extent_inode_elem *inode_list;
 111        u64 parent;
 112        u64 wanted_disk_byte;
 113};
 114
 115/*
 116 * the rules for all callers of this function are:
 117 * - obtaining the parent is the goal
 118 * - if you add a key, you must know that it is a correct key
 119 * - if you cannot add the parent or a correct key, then we will look into the
 120 *   block later to set a correct key
 121 *
 122 * delayed refs
 123 * ============
 124 *        backref type | shared | indirect | shared | indirect
 125 * information         |   tree |     tree |   data |     data
 126 * --------------------+--------+----------+--------+----------
 127 *      parent logical |    y   |     -    |    -   |     -
 128 *      key to resolve |    -   |     y    |    y   |     y
 129 *  tree block logical |    -   |     -    |    -   |     -
 130 *  root for resolving |    y   |     y    |    y   |     y
 131 *
 132 * - column 1:       we've the parent -> done
 133 * - column 2, 3, 4: we use the key to find the parent
 134 *
 135 * on disk refs (inline or keyed)
 136 * ==============================
 137 *        backref type | shared | indirect | shared | indirect
 138 * information         |   tree |     tree |   data |     data
 139 * --------------------+--------+----------+--------+----------
 140 *      parent logical |    y   |     -    |    y   |     -
 141 *      key to resolve |    -   |     -    |    -   |     y
 142 *  tree block logical |    y   |     y    |    y   |     y
 143 *  root for resolving |    -   |     y    |    y   |     y
 144 *
 145 * - column 1, 3: we've the parent -> done
 146 * - column 2:    we take the first key from the block to find the parent
 147 *                (see __add_missing_keys)
 148 * - column 4:    we use the key to find the parent
 149 *
 150 * additional information that's available but not required to find the parent
 151 * block might help in merging entries to gain some speed.
 152 */
 153
 154static int __add_prelim_ref(struct list_head *head, u64 root_id,
 155                            struct btrfs_key *key, int level,
 156                            u64 parent, u64 wanted_disk_byte, int count)
 157{
 158        struct __prelim_ref *ref;
 159
 160        /* in case we're adding delayed refs, we're holding the refs spinlock */
 161        ref = kmalloc(sizeof(*ref), GFP_ATOMIC);
 162        if (!ref)
 163                return -ENOMEM;
 164
 165        ref->root_id = root_id;
 166        if (key)
 167                ref->key_for_search = *key;
 168        else
 169                memset(&ref->key_for_search, 0, sizeof(ref->key_for_search));
 170
 171        ref->inode_list = NULL;
 172        ref->level = level;
 173        ref->count = count;
 174        ref->parent = parent;
 175        ref->wanted_disk_byte = wanted_disk_byte;
 176        list_add_tail(&ref->list, head);
 177
 178        return 0;
 179}
 180
 181static int add_all_parents(struct btrfs_root *root, struct btrfs_path *path,
 182                                struct ulist *parents, int level,
 183                                struct btrfs_key *key_for_search, u64 time_seq,
 184                                u64 wanted_disk_byte,
 185                                const u64 *extent_item_pos)
 186{
 187        int ret = 0;
 188        int slot;
 189        struct extent_buffer *eb;
 190        struct btrfs_key key;
 191        struct btrfs_file_extent_item *fi;
 192        struct extent_inode_elem *eie = NULL;
 193        u64 disk_byte;
 194
 195        if (level != 0) {
 196                eb = path->nodes[level];
 197                ret = ulist_add(parents, eb->start, 0, GFP_NOFS);
 198                if (ret < 0)
 199                        return ret;
 200                return 0;
 201        }
 202
 203        /*
 204         * We normally enter this function with the path already pointing to
 205         * the first item to check. But sometimes, we may enter it with
 206         * slot==nritems. In that case, go to the next leaf before we continue.
 207         */
 208        if (path->slots[0] >= btrfs_header_nritems(path->nodes[0]))
 209                ret = btrfs_next_old_leaf(root, path, time_seq);
 210
 211        while (!ret) {
 212                eb = path->nodes[0];
 213                slot = path->slots[0];
 214
 215                btrfs_item_key_to_cpu(eb, &key, slot);
 216
 217                if (key.objectid != key_for_search->objectid ||
 218                    key.type != BTRFS_EXTENT_DATA_KEY)
 219                        break;
 220
 221                fi = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
 222                disk_byte = btrfs_file_extent_disk_bytenr(eb, fi);
 223
 224                if (disk_byte == wanted_disk_byte) {
 225                        eie = NULL;
 226                        if (extent_item_pos) {
 227                                ret = check_extent_in_eb(&key, eb, fi,
 228                                                *extent_item_pos,
 229                                                &eie);
 230                                if (ret < 0)
 231                                        break;
 232                        }
 233                        if (!ret) {
 234                                ret = ulist_add(parents, eb->start,
 235                                                (uintptr_t)eie, GFP_NOFS);
 236                                if (ret < 0)
 237                                        break;
 238                                if (!extent_item_pos) {
 239                                        ret = btrfs_next_old_leaf(root, path,
 240                                                        time_seq);
 241                                        continue;
 242                                }
 243                        }
 244                }
 245                ret = btrfs_next_old_item(root, path, time_seq);
 246        }
 247
 248        if (ret > 0)
 249                ret = 0;
 250        return ret;
 251}
 252
 253/*
 254 * resolve an indirect backref in the form (root_id, key, level)
 255 * to a logical address
 256 */
 257static int __resolve_indirect_ref(struct btrfs_fs_info *fs_info,
 258                                        int search_commit_root,
 259                                        u64 time_seq,
 260                                        struct __prelim_ref *ref,
 261                                        struct ulist *parents,
 262                                        const u64 *extent_item_pos)
 263{
 264        struct btrfs_path *path;
 265        struct btrfs_root *root;
 266        struct btrfs_key root_key;
 267        struct extent_buffer *eb;
 268        int ret = 0;
 269        int root_level;
 270        int level = ref->level;
 271
 272        path = btrfs_alloc_path();
 273        if (!path)
 274                return -ENOMEM;
 275        path->search_commit_root = !!search_commit_root;
 276
 277        root_key.objectid = ref->root_id;
 278        root_key.type = BTRFS_ROOT_ITEM_KEY;
 279        root_key.offset = (u64)-1;
 280        root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 281        if (IS_ERR(root)) {
 282                ret = PTR_ERR(root);
 283                goto out;
 284        }
 285
 286        root_level = btrfs_old_root_level(root, time_seq);
 287
 288        if (root_level + 1 == level)
 289                goto out;
 290
 291        path->lowest_level = level;
 292        ret = btrfs_search_old_slot(root, &ref->key_for_search, path, time_seq);
 293        pr_debug("search slot in root %llu (level %d, ref count %d) returned "
 294                 "%d for key (%llu %u %llu)\n",
 295                 (unsigned long long)ref->root_id, level, ref->count, ret,
 296                 (unsigned long long)ref->key_for_search.objectid,
 297                 ref->key_for_search.type,
 298                 (unsigned long long)ref->key_for_search.offset);
 299        if (ret < 0)
 300                goto out;
 301
 302        eb = path->nodes[level];
 303        while (!eb) {
 304                if (!level) {
 305                        WARN_ON(1);
 306                        ret = 1;
 307                        goto out;
 308                }
 309                level--;
 310                eb = path->nodes[level];
 311        }
 312
 313        ret = add_all_parents(root, path, parents, level, &ref->key_for_search,
 314                                time_seq, ref->wanted_disk_byte,
 315                                extent_item_pos);
 316out:
 317        btrfs_free_path(path);
 318        return ret;
 319}
 320
 321/*
 322 * resolve all indirect backrefs from the list
 323 */
 324static int __resolve_indirect_refs(struct btrfs_fs_info *fs_info,
 325                                   int search_commit_root, u64 time_seq,
 326                                   struct list_head *head,
 327                                   const u64 *extent_item_pos)
 328{
 329        int err;
 330        int ret = 0;
 331        struct __prelim_ref *ref;
 332        struct __prelim_ref *ref_safe;
 333        struct __prelim_ref *new_ref;
 334        struct ulist *parents;
 335        struct ulist_node *node;
 336        struct ulist_iterator uiter;
 337
 338        parents = ulist_alloc(GFP_NOFS);
 339        if (!parents)
 340                return -ENOMEM;
 341
 342        /*
 343         * _safe allows us to insert directly after the current item without
 344         * iterating over the newly inserted items.
 345         * we're also allowed to re-assign ref during iteration.
 346         */
 347        list_for_each_entry_safe(ref, ref_safe, head, list) {
 348                if (ref->parent)        /* already direct */
 349                        continue;
 350                if (ref->count == 0)
 351                        continue;
 352                err = __resolve_indirect_ref(fs_info, search_commit_root,
 353                                             time_seq, ref, parents,
 354                                             extent_item_pos);
 355                if (err == -ENOMEM)
 356                        goto out;
 357                if (err)
 358                        continue;
 359
 360                /* we put the first parent into the ref at hand */
 361                ULIST_ITER_INIT(&uiter);
 362                node = ulist_next(parents, &uiter);
 363                ref->parent = node ? node->val : 0;
 364                ref->inode_list = node ?
 365                        (struct extent_inode_elem *)(uintptr_t)node->aux : 0;
 366
 367                /* additional parents require new refs being added here */
 368                while ((node = ulist_next(parents, &uiter))) {
 369                        new_ref = kmalloc(sizeof(*new_ref), GFP_NOFS);
 370                        if (!new_ref) {
 371                                ret = -ENOMEM;
 372                                goto out;
 373                        }
 374                        memcpy(new_ref, ref, sizeof(*ref));
 375                        new_ref->parent = node->val;
 376                        new_ref->inode_list = (struct extent_inode_elem *)
 377                                                        (uintptr_t)node->aux;
 378                        list_add(&new_ref->list, &ref->list);
 379                }
 380                ulist_reinit(parents);
 381        }
 382out:
 383        ulist_free(parents);
 384        return ret;
 385}
 386
 387static inline int ref_for_same_block(struct __prelim_ref *ref1,
 388                                     struct __prelim_ref *ref2)
 389{
 390        if (ref1->level != ref2->level)
 391                return 0;
 392        if (ref1->root_id != ref2->root_id)
 393                return 0;
 394        if (ref1->key_for_search.type != ref2->key_for_search.type)
 395                return 0;
 396        if (ref1->key_for_search.objectid != ref2->key_for_search.objectid)
 397                return 0;
 398        if (ref1->key_for_search.offset != ref2->key_for_search.offset)
 399                return 0;
 400        if (ref1->parent != ref2->parent)
 401                return 0;
 402
 403        return 1;
 404}
 405
 406/*
 407 * read tree blocks and add keys where required.
 408 */
 409static int __add_missing_keys(struct btrfs_fs_info *fs_info,
 410                              struct list_head *head)
 411{
 412        struct list_head *pos;
 413        struct extent_buffer *eb;
 414
 415        list_for_each(pos, head) {
 416                struct __prelim_ref *ref;
 417                ref = list_entry(pos, struct __prelim_ref, list);
 418
 419                if (ref->parent)
 420                        continue;
 421                if (ref->key_for_search.type)
 422                        continue;
 423                BUG_ON(!ref->wanted_disk_byte);
 424                eb = read_tree_block(fs_info->tree_root, ref->wanted_disk_byte,
 425                                     fs_info->tree_root->leafsize, 0);
 426                if (!eb || !extent_buffer_uptodate(eb)) {
 427                        free_extent_buffer(eb);
 428                        return -EIO;
 429                }
 430                btrfs_tree_read_lock(eb);
 431                if (btrfs_header_level(eb) == 0)
 432                        btrfs_item_key_to_cpu(eb, &ref->key_for_search, 0);
 433                else
 434                        btrfs_node_key_to_cpu(eb, &ref->key_for_search, 0);
 435                btrfs_tree_read_unlock(eb);
 436                free_extent_buffer(eb);
 437        }
 438        return 0;
 439}
 440
 441/*
 442 * merge two lists of backrefs and adjust counts accordingly
 443 *
 444 * mode = 1: merge identical keys, if key is set
 445 *    FIXME: if we add more keys in __add_prelim_ref, we can merge more here.
 446 *           additionally, we could even add a key range for the blocks we
 447 *           looked into to merge even more (-> replace unresolved refs by those
 448 *           having a parent).
 449 * mode = 2: merge identical parents
 450 */
 451static void __merge_refs(struct list_head *head, int mode)
 452{
 453        struct list_head *pos1;
 454
 455        list_for_each(pos1, head) {
 456                struct list_head *n2;
 457                struct list_head *pos2;
 458                struct __prelim_ref *ref1;
 459
 460                ref1 = list_entry(pos1, struct __prelim_ref, list);
 461
 462                for (pos2 = pos1->next, n2 = pos2->next; pos2 != head;
 463                     pos2 = n2, n2 = pos2->next) {
 464                        struct __prelim_ref *ref2;
 465                        struct __prelim_ref *xchg;
 466                        struct extent_inode_elem *eie;
 467
 468                        ref2 = list_entry(pos2, struct __prelim_ref, list);
 469
 470                        if (mode == 1) {
 471                                if (!ref_for_same_block(ref1, ref2))
 472                                        continue;
 473                                if (!ref1->parent && ref2->parent) {
 474                                        xchg = ref1;
 475                                        ref1 = ref2;
 476                                        ref2 = xchg;
 477                                }
 478                        } else {
 479                                if (ref1->parent != ref2->parent)
 480                                        continue;
 481                        }
 482
 483                        eie = ref1->inode_list;
 484                        while (eie && eie->next)
 485                                eie = eie->next;
 486                        if (eie)
 487                                eie->next = ref2->inode_list;
 488                        else
 489                                ref1->inode_list = ref2->inode_list;
 490                        ref1->count += ref2->count;
 491
 492                        list_del(&ref2->list);
 493                        kfree(ref2);
 494                }
 495
 496        }
 497}
 498
 499/*
 500 * add all currently queued delayed refs from this head whose seq nr is
 501 * smaller or equal that seq to the list
 502 */
 503static int __add_delayed_refs(struct btrfs_delayed_ref_head *head, u64 seq,
 504                              struct list_head *prefs)
 505{
 506        struct btrfs_delayed_extent_op *extent_op = head->extent_op;
 507        struct rb_node *n = &head->node.rb_node;
 508        struct btrfs_key key;
 509        struct btrfs_key op_key = {0};
 510        int sgn;
 511        int ret = 0;
 512
 513        if (extent_op && extent_op->update_key)
 514                btrfs_disk_key_to_cpu(&op_key, &extent_op->key);
 515
 516        while ((n = rb_prev(n))) {
 517                struct btrfs_delayed_ref_node *node;
 518                node = rb_entry(n, struct btrfs_delayed_ref_node,
 519                                rb_node);
 520                if (node->bytenr != head->node.bytenr)
 521                        break;
 522                WARN_ON(node->is_head);
 523
 524                if (node->seq > seq)
 525                        continue;
 526
 527                switch (node->action) {
 528                case BTRFS_ADD_DELAYED_EXTENT:
 529                case BTRFS_UPDATE_DELAYED_HEAD:
 530                        WARN_ON(1);
 531                        continue;
 532                case BTRFS_ADD_DELAYED_REF:
 533                        sgn = 1;
 534                        break;
 535                case BTRFS_DROP_DELAYED_REF:
 536                        sgn = -1;
 537                        break;
 538                default:
 539                        BUG_ON(1);
 540                }
 541                switch (node->type) {
 542                case BTRFS_TREE_BLOCK_REF_KEY: {
 543                        struct btrfs_delayed_tree_ref *ref;
 544
 545                        ref = btrfs_delayed_node_to_tree_ref(node);
 546                        ret = __add_prelim_ref(prefs, ref->root, &op_key,
 547                                               ref->level + 1, 0, node->bytenr,
 548                                               node->ref_mod * sgn);
 549                        break;
 550                }
 551                case BTRFS_SHARED_BLOCK_REF_KEY: {
 552                        struct btrfs_delayed_tree_ref *ref;
 553
 554                        ref = btrfs_delayed_node_to_tree_ref(node);
 555                        ret = __add_prelim_ref(prefs, ref->root, NULL,
 556                                               ref->level + 1, ref->parent,
 557                                               node->bytenr,
 558                                               node->ref_mod * sgn);
 559                        break;
 560                }
 561                case BTRFS_EXTENT_DATA_REF_KEY: {
 562                        struct btrfs_delayed_data_ref *ref;
 563                        ref = btrfs_delayed_node_to_data_ref(node);
 564
 565                        key.objectid = ref->objectid;
 566                        key.type = BTRFS_EXTENT_DATA_KEY;
 567                        key.offset = ref->offset;
 568                        ret = __add_prelim_ref(prefs, ref->root, &key, 0, 0,
 569                                               node->bytenr,
 570                                               node->ref_mod * sgn);
 571                        break;
 572                }
 573                case BTRFS_SHARED_DATA_REF_KEY: {
 574                        struct btrfs_delayed_data_ref *ref;
 575
 576                        ref = btrfs_delayed_node_to_data_ref(node);
 577
 578                        key.objectid = ref->objectid;
 579                        key.type = BTRFS_EXTENT_DATA_KEY;
 580                        key.offset = ref->offset;
 581                        ret = __add_prelim_ref(prefs, ref->root, &key, 0,
 582                                               ref->parent, node->bytenr,
 583                                               node->ref_mod * sgn);
 584                        break;
 585                }
 586                default:
 587                        WARN_ON(1);
 588                }
 589                if (ret)
 590                        return ret;
 591        }
 592
 593        return 0;
 594}
 595
 596/*
 597 * add all inline backrefs for bytenr to the list
 598 */
 599static int __add_inline_refs(struct btrfs_fs_info *fs_info,
 600                             struct btrfs_path *path, u64 bytenr,
 601                             int *info_level, struct list_head *prefs)
 602{
 603        int ret = 0;
 604        int slot;
 605        struct extent_buffer *leaf;
 606        struct btrfs_key key;
 607        unsigned long ptr;
 608        unsigned long end;
 609        struct btrfs_extent_item *ei;
 610        u64 flags;
 611        u64 item_size;
 612
 613        /*
 614         * enumerate all inline refs
 615         */
 616        leaf = path->nodes[0];
 617        slot = path->slots[0];
 618
 619        item_size = btrfs_item_size_nr(leaf, slot);
 620        BUG_ON(item_size < sizeof(*ei));
 621
 622        ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
 623        flags = btrfs_extent_flags(leaf, ei);
 624
 625        ptr = (unsigned long)(ei + 1);
 626        end = (unsigned long)ei + item_size;
 627
 628        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 629                struct btrfs_tree_block_info *info;
 630
 631                info = (struct btrfs_tree_block_info *)ptr;
 632                *info_level = btrfs_tree_block_level(leaf, info);
 633                ptr += sizeof(struct btrfs_tree_block_info);
 634                BUG_ON(ptr > end);
 635        } else {
 636                BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
 637        }
 638
 639        while (ptr < end) {
 640                struct btrfs_extent_inline_ref *iref;
 641                u64 offset;
 642                int type;
 643
 644                iref = (struct btrfs_extent_inline_ref *)ptr;
 645                type = btrfs_extent_inline_ref_type(leaf, iref);
 646                offset = btrfs_extent_inline_ref_offset(leaf, iref);
 647
 648                switch (type) {
 649                case BTRFS_SHARED_BLOCK_REF_KEY:
 650                        ret = __add_prelim_ref(prefs, 0, NULL,
 651                                                *info_level + 1, offset,
 652                                                bytenr, 1);
 653                        break;
 654                case BTRFS_SHARED_DATA_REF_KEY: {
 655                        struct btrfs_shared_data_ref *sdref;
 656                        int count;
 657
 658                        sdref = (struct btrfs_shared_data_ref *)(iref + 1);
 659                        count = btrfs_shared_data_ref_count(leaf, sdref);
 660                        ret = __add_prelim_ref(prefs, 0, NULL, 0, offset,
 661                                               bytenr, count);
 662                        break;
 663                }
 664                case BTRFS_TREE_BLOCK_REF_KEY:
 665                        ret = __add_prelim_ref(prefs, offset, NULL,
 666                                               *info_level + 1, 0,
 667                                               bytenr, 1);
 668                        break;
 669                case BTRFS_EXTENT_DATA_REF_KEY: {
 670                        struct btrfs_extent_data_ref *dref;
 671                        int count;
 672                        u64 root;
 673
 674                        dref = (struct btrfs_extent_data_ref *)(&iref->offset);
 675                        count = btrfs_extent_data_ref_count(leaf, dref);
 676                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
 677                                                                      dref);
 678                        key.type = BTRFS_EXTENT_DATA_KEY;
 679                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 680                        root = btrfs_extent_data_ref_root(leaf, dref);
 681                        ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 682                                               bytenr, count);
 683                        break;
 684                }
 685                default:
 686                        WARN_ON(1);
 687                }
 688                if (ret)
 689                        return ret;
 690                ptr += btrfs_extent_inline_ref_size(type);
 691        }
 692
 693        return 0;
 694}
 695
 696/*
 697 * add all non-inline backrefs for bytenr to the list
 698 */
 699static int __add_keyed_refs(struct btrfs_fs_info *fs_info,
 700                            struct btrfs_path *path, u64 bytenr,
 701                            int info_level, struct list_head *prefs)
 702{
 703        struct btrfs_root *extent_root = fs_info->extent_root;
 704        int ret;
 705        int slot;
 706        struct extent_buffer *leaf;
 707        struct btrfs_key key;
 708
 709        while (1) {
 710                ret = btrfs_next_item(extent_root, path);
 711                if (ret < 0)
 712                        break;
 713                if (ret) {
 714                        ret = 0;
 715                        break;
 716                }
 717
 718                slot = path->slots[0];
 719                leaf = path->nodes[0];
 720                btrfs_item_key_to_cpu(leaf, &key, slot);
 721
 722                if (key.objectid != bytenr)
 723                        break;
 724                if (key.type < BTRFS_TREE_BLOCK_REF_KEY)
 725                        continue;
 726                if (key.type > BTRFS_SHARED_DATA_REF_KEY)
 727                        break;
 728
 729                switch (key.type) {
 730                case BTRFS_SHARED_BLOCK_REF_KEY:
 731                        ret = __add_prelim_ref(prefs, 0, NULL,
 732                                                info_level + 1, key.offset,
 733                                                bytenr, 1);
 734                        break;
 735                case BTRFS_SHARED_DATA_REF_KEY: {
 736                        struct btrfs_shared_data_ref *sdref;
 737                        int count;
 738
 739                        sdref = btrfs_item_ptr(leaf, slot,
 740                                              struct btrfs_shared_data_ref);
 741                        count = btrfs_shared_data_ref_count(leaf, sdref);
 742                        ret = __add_prelim_ref(prefs, 0, NULL, 0, key.offset,
 743                                                bytenr, count);
 744                        break;
 745                }
 746                case BTRFS_TREE_BLOCK_REF_KEY:
 747                        ret = __add_prelim_ref(prefs, key.offset, NULL,
 748                                               info_level + 1, 0,
 749                                               bytenr, 1);
 750                        break;
 751                case BTRFS_EXTENT_DATA_REF_KEY: {
 752                        struct btrfs_extent_data_ref *dref;
 753                        int count;
 754                        u64 root;
 755
 756                        dref = btrfs_item_ptr(leaf, slot,
 757                                              struct btrfs_extent_data_ref);
 758                        count = btrfs_extent_data_ref_count(leaf, dref);
 759                        key.objectid = btrfs_extent_data_ref_objectid(leaf,
 760                                                                      dref);
 761                        key.type = BTRFS_EXTENT_DATA_KEY;
 762                        key.offset = btrfs_extent_data_ref_offset(leaf, dref);
 763                        root = btrfs_extent_data_ref_root(leaf, dref);
 764                        ret = __add_prelim_ref(prefs, root, &key, 0, 0,
 765                                               bytenr, count);
 766                        break;
 767                }
 768                default:
 769                        WARN_ON(1);
 770                }
 771                if (ret)
 772                        return ret;
 773
 774        }
 775
 776        return ret;
 777}
 778
 779/*
 780 * this adds all existing backrefs (inline backrefs, backrefs and delayed
 781 * refs) for the given bytenr to the refs list, merges duplicates and resolves
 782 * indirect refs to their parent bytenr.
 783 * When roots are found, they're added to the roots list
 784 *
 785 * FIXME some caching might speed things up
 786 */
 787static int find_parent_nodes(struct btrfs_trans_handle *trans,
 788                             struct btrfs_fs_info *fs_info, u64 bytenr,
 789                             u64 time_seq, struct ulist *refs,
 790                             struct ulist *roots, const u64 *extent_item_pos)
 791{
 792        struct btrfs_key key;
 793        struct btrfs_path *path;
 794        struct btrfs_delayed_ref_root *delayed_refs = NULL;
 795        struct btrfs_delayed_ref_head *head;
 796        int info_level = 0;
 797        int ret;
 798        int search_commit_root = (trans == BTRFS_BACKREF_SEARCH_COMMIT_ROOT);
 799        struct list_head prefs_delayed;
 800        struct list_head prefs;
 801        struct __prelim_ref *ref;
 802
 803        INIT_LIST_HEAD(&prefs);
 804        INIT_LIST_HEAD(&prefs_delayed);
 805
 806        key.objectid = bytenr;
 807        key.type = BTRFS_EXTENT_ITEM_KEY;
 808        key.offset = (u64)-1;
 809
 810        path = btrfs_alloc_path();
 811        if (!path)
 812                return -ENOMEM;
 813        path->search_commit_root = !!search_commit_root;
 814
 815        /*
 816         * grab both a lock on the path and a lock on the delayed ref head.
 817         * We need both to get a consistent picture of how the refs look
 818         * at a specified point in time
 819         */
 820again:
 821        head = NULL;
 822
 823        ret = btrfs_search_slot(trans, fs_info->extent_root, &key, path, 0, 0);
 824        if (ret < 0)
 825                goto out;
 826        BUG_ON(ret == 0);
 827
 828        if (trans != BTRFS_BACKREF_SEARCH_COMMIT_ROOT) {
 829                /*
 830                 * look if there are updates for this ref queued and lock the
 831                 * head
 832                 */
 833                delayed_refs = &trans->transaction->delayed_refs;
 834                spin_lock(&delayed_refs->lock);
 835                head = btrfs_find_delayed_ref_head(trans, bytenr);
 836                if (head) {
 837                        if (!mutex_trylock(&head->mutex)) {
 838                                atomic_inc(&head->node.refs);
 839                                spin_unlock(&delayed_refs->lock);
 840
 841                                btrfs_release_path(path);
 842
 843                                /*
 844                                 * Mutex was contended, block until it's
 845                                 * released and try again
 846                                 */
 847                                mutex_lock(&head->mutex);
 848                                mutex_unlock(&head->mutex);
 849                                btrfs_put_delayed_ref(&head->node);
 850                                goto again;
 851                        }
 852                        ret = __add_delayed_refs(head, time_seq,
 853                                                 &prefs_delayed);
 854                        mutex_unlock(&head->mutex);
 855                        if (ret) {
 856                                spin_unlock(&delayed_refs->lock);
 857                                goto out;
 858                        }
 859                }
 860                spin_unlock(&delayed_refs->lock);
 861        }
 862
 863        if (path->slots[0]) {
 864                struct extent_buffer *leaf;
 865                int slot;
 866
 867                path->slots[0]--;
 868                leaf = path->nodes[0];
 869                slot = path->slots[0];
 870                btrfs_item_key_to_cpu(leaf, &key, slot);
 871                if (key.objectid == bytenr &&
 872                    key.type == BTRFS_EXTENT_ITEM_KEY) {
 873                        ret = __add_inline_refs(fs_info, path, bytenr,
 874                                                &info_level, &prefs);
 875                        if (ret)
 876                                goto out;
 877                        ret = __add_keyed_refs(fs_info, path, bytenr,
 878                                               info_level, &prefs);
 879                        if (ret)
 880                                goto out;
 881                }
 882        }
 883        btrfs_release_path(path);
 884
 885        list_splice_init(&prefs_delayed, &prefs);
 886
 887        ret = __add_missing_keys(fs_info, &prefs);
 888        if (ret)
 889                goto out;
 890
 891        __merge_refs(&prefs, 1);
 892
 893        ret = __resolve_indirect_refs(fs_info, search_commit_root, time_seq,
 894                                      &prefs, extent_item_pos);
 895        if (ret)
 896                goto out;
 897
 898        __merge_refs(&prefs, 2);
 899
 900        while (!list_empty(&prefs)) {
 901                ref = list_first_entry(&prefs, struct __prelim_ref, list);
 902                list_del(&ref->list);
 903                WARN_ON(ref->count < 0);
 904                if (ref->count && ref->root_id && ref->parent == 0) {
 905                        /* no parent == root of tree */
 906                        ret = ulist_add(roots, ref->root_id, 0, GFP_NOFS);
 907                        if (ret < 0)
 908                                goto out;
 909                }
 910                if (ref->count && ref->parent) {
 911                        struct extent_inode_elem *eie = NULL;
 912                        if (extent_item_pos && !ref->inode_list) {
 913                                u32 bsz;
 914                                struct extent_buffer *eb;
 915                                bsz = btrfs_level_size(fs_info->extent_root,
 916                                                        info_level);
 917                                eb = read_tree_block(fs_info->extent_root,
 918                                                           ref->parent, bsz, 0);
 919                                if (!eb || !extent_buffer_uptodate(eb)) {
 920                                        free_extent_buffer(eb);
 921                                        ret = -EIO;
 922                                        goto out;
 923                                }
 924                                ret = find_extent_in_eb(eb, bytenr,
 925                                                        *extent_item_pos, &eie);
 926                                ref->inode_list = eie;
 927                                free_extent_buffer(eb);
 928                        }
 929                        ret = ulist_add_merge(refs, ref->parent,
 930                                              (uintptr_t)ref->inode_list,
 931                                              (u64 *)&eie, GFP_NOFS);
 932                        if (ret < 0)
 933                                goto out;
 934                        if (!ret && extent_item_pos) {
 935                                /*
 936                                 * we've recorded that parent, so we must extend
 937                                 * its inode list here
 938                                 */
 939                                BUG_ON(!eie);
 940                                while (eie->next)
 941                                        eie = eie->next;
 942                                eie->next = ref->inode_list;
 943                        }
 944                }
 945                kfree(ref);
 946        }
 947
 948out:
 949        btrfs_free_path(path);
 950        while (!list_empty(&prefs)) {
 951                ref = list_first_entry(&prefs, struct __prelim_ref, list);
 952                list_del(&ref->list);
 953                kfree(ref);
 954        }
 955        while (!list_empty(&prefs_delayed)) {
 956                ref = list_first_entry(&prefs_delayed, struct __prelim_ref,
 957                                       list);
 958                list_del(&ref->list);
 959                kfree(ref);
 960        }
 961
 962        return ret;
 963}
 964
 965static void free_leaf_list(struct ulist *blocks)
 966{
 967        struct ulist_node *node = NULL;
 968        struct extent_inode_elem *eie;
 969        struct extent_inode_elem *eie_next;
 970        struct ulist_iterator uiter;
 971
 972        ULIST_ITER_INIT(&uiter);
 973        while ((node = ulist_next(blocks, &uiter))) {
 974                if (!node->aux)
 975                        continue;
 976                eie = (struct extent_inode_elem *)(uintptr_t)node->aux;
 977                for (; eie; eie = eie_next) {
 978                        eie_next = eie->next;
 979                        kfree(eie);
 980                }
 981                node->aux = 0;
 982        }
 983
 984        ulist_free(blocks);
 985}
 986
 987/*
 988 * Finds all leafs with a reference to the specified combination of bytenr and
 989 * offset. key_list_head will point to a list of corresponding keys (caller must
 990 * free each list element). The leafs will be stored in the leafs ulist, which
 991 * must be freed with ulist_free.
 992 *
 993 * returns 0 on success, <0 on error
 994 */
 995static int btrfs_find_all_leafs(struct btrfs_trans_handle *trans,
 996                                struct btrfs_fs_info *fs_info, u64 bytenr,
 997                                u64 time_seq, struct ulist **leafs,
 998                                const u64 *extent_item_pos)
 999{
1000        struct ulist *tmp;
1001        int ret;
1002
1003        tmp = ulist_alloc(GFP_NOFS);
1004        if (!tmp)
1005                return -ENOMEM;
1006        *leafs = ulist_alloc(GFP_NOFS);
1007        if (!*leafs) {
1008                ulist_free(tmp);
1009                return -ENOMEM;
1010        }
1011
1012        ret = find_parent_nodes(trans, fs_info, bytenr,
1013                                time_seq, *leafs, tmp, extent_item_pos);
1014        ulist_free(tmp);
1015
1016        if (ret < 0 && ret != -ENOENT) {
1017                free_leaf_list(*leafs);
1018                return ret;
1019        }
1020
1021        return 0;
1022}
1023
1024/*
1025 * walk all backrefs for a given extent to find all roots that reference this
1026 * extent. Walking a backref means finding all extents that reference this
1027 * extent and in turn walk the backrefs of those, too. Naturally this is a
1028 * recursive process, but here it is implemented in an iterative fashion: We
1029 * find all referencing extents for the extent in question and put them on a
1030 * list. In turn, we find all referencing extents for those, further appending
1031 * to the list. The way we iterate the list allows adding more elements after
1032 * the current while iterating. The process stops when we reach the end of the
1033 * list. Found roots are added to the roots list.
1034 *
1035 * returns 0 on success, < 0 on error.
1036 */
1037int btrfs_find_all_roots(struct btrfs_trans_handle *trans,
1038                                struct btrfs_fs_info *fs_info, u64 bytenr,
1039                                u64 time_seq, struct ulist **roots)
1040{
1041        struct ulist *tmp;
1042        struct ulist_node *node = NULL;
1043        struct ulist_iterator uiter;
1044        int ret;
1045
1046        tmp = ulist_alloc(GFP_NOFS);
1047        if (!tmp)
1048                return -ENOMEM;
1049        *roots = ulist_alloc(GFP_NOFS);
1050        if (!*roots) {
1051                ulist_free(tmp);
1052                return -ENOMEM;
1053        }
1054
1055        ULIST_ITER_INIT(&uiter);
1056        while (1) {
1057                ret = find_parent_nodes(trans, fs_info, bytenr,
1058                                        time_seq, tmp, *roots, NULL);
1059                if (ret < 0 && ret != -ENOENT) {
1060                        ulist_free(tmp);
1061                        ulist_free(*roots);
1062                        return ret;
1063                }
1064                node = ulist_next(tmp, &uiter);
1065                if (!node)
1066                        break;
1067                bytenr = node->val;
1068        }
1069
1070        ulist_free(tmp);
1071        return 0;
1072}
1073
1074
1075static int __inode_info(u64 inum, u64 ioff, u8 key_type,
1076                        struct btrfs_root *fs_root, struct btrfs_path *path,
1077                        struct btrfs_key *found_key)
1078{
1079        int ret;
1080        struct btrfs_key key;
1081        struct extent_buffer *eb;
1082
1083        key.type = key_type;
1084        key.objectid = inum;
1085        key.offset = ioff;
1086
1087        ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1088        if (ret < 0)
1089                return ret;
1090
1091        eb = path->nodes[0];
1092        if (ret && path->slots[0] >= btrfs_header_nritems(eb)) {
1093                ret = btrfs_next_leaf(fs_root, path);
1094                if (ret)
1095                        return ret;
1096                eb = path->nodes[0];
1097        }
1098
1099        btrfs_item_key_to_cpu(eb, found_key, path->slots[0]);
1100        if (found_key->type != key.type || found_key->objectid != key.objectid)
1101                return 1;
1102
1103        return 0;
1104}
1105
1106/*
1107 * this makes the path point to (inum INODE_ITEM ioff)
1108 */
1109int inode_item_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1110                        struct btrfs_path *path)
1111{
1112        struct btrfs_key key;
1113        return __inode_info(inum, ioff, BTRFS_INODE_ITEM_KEY, fs_root, path,
1114                                &key);
1115}
1116
1117static int inode_ref_info(u64 inum, u64 ioff, struct btrfs_root *fs_root,
1118                                struct btrfs_path *path,
1119                                struct btrfs_key *found_key)
1120{
1121        return __inode_info(inum, ioff, BTRFS_INODE_REF_KEY, fs_root, path,
1122                                found_key);
1123}
1124
1125int btrfs_find_one_extref(struct btrfs_root *root, u64 inode_objectid,
1126                          u64 start_off, struct btrfs_path *path,
1127                          struct btrfs_inode_extref **ret_extref,
1128                          u64 *found_off)
1129{
1130        int ret, slot;
1131        struct btrfs_key key;
1132        struct btrfs_key found_key;
1133        struct btrfs_inode_extref *extref;
1134        struct extent_buffer *leaf;
1135        unsigned long ptr;
1136
1137        key.objectid = inode_objectid;
1138        btrfs_set_key_type(&key, BTRFS_INODE_EXTREF_KEY);
1139        key.offset = start_off;
1140
1141        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1142        if (ret < 0)
1143                return ret;
1144
1145        while (1) {
1146                leaf = path->nodes[0];
1147                slot = path->slots[0];
1148                if (slot >= btrfs_header_nritems(leaf)) {
1149                        /*
1150                         * If the item at offset is not found,
1151                         * btrfs_search_slot will point us to the slot
1152                         * where it should be inserted. In our case
1153                         * that will be the slot directly before the
1154                         * next INODE_REF_KEY_V2 item. In the case
1155                         * that we're pointing to the last slot in a
1156                         * leaf, we must move one leaf over.
1157                         */
1158                        ret = btrfs_next_leaf(root, path);
1159                        if (ret) {
1160                                if (ret >= 1)
1161                                        ret = -ENOENT;
1162                                break;
1163                        }
1164                        continue;
1165                }
1166
1167                btrfs_item_key_to_cpu(leaf, &found_key, slot);
1168
1169                /*
1170                 * Check that we're still looking at an extended ref key for
1171                 * this particular objectid. If we have different
1172                 * objectid or type then there are no more to be found
1173                 * in the tree and we can exit.
1174                 */
1175                ret = -ENOENT;
1176                if (found_key.objectid != inode_objectid)
1177                        break;
1178                if (btrfs_key_type(&found_key) != BTRFS_INODE_EXTREF_KEY)
1179                        break;
1180
1181                ret = 0;
1182                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1183                extref = (struct btrfs_inode_extref *)ptr;
1184                *ret_extref = extref;
1185                if (found_off)
1186                        *found_off = found_key.offset;
1187                break;
1188        }
1189
1190        return ret;
1191}
1192
1193/*
1194 * this iterates to turn a name (from iref/extref) into a full filesystem path.
1195 * Elements of the path are separated by '/' and the path is guaranteed to be
1196 * 0-terminated. the path is only given within the current file system.
1197 * Therefore, it never starts with a '/'. the caller is responsible to provide
1198 * "size" bytes in "dest". the dest buffer will be filled backwards. finally,
1199 * the start point of the resulting string is returned. this pointer is within
1200 * dest, normally.
1201 * in case the path buffer would overflow, the pointer is decremented further
1202 * as if output was written to the buffer, though no more output is actually
1203 * generated. that way, the caller can determine how much space would be
1204 * required for the path to fit into the buffer. in that case, the returned
1205 * value will be smaller than dest. callers must check this!
1206 */
1207char *btrfs_ref_to_path(struct btrfs_root *fs_root, struct btrfs_path *path,
1208                        u32 name_len, unsigned long name_off,
1209                        struct extent_buffer *eb_in, u64 parent,
1210                        char *dest, u32 size)
1211{
1212        int slot;
1213        u64 next_inum;
1214        int ret;
1215        s64 bytes_left = ((s64)size) - 1;
1216        struct extent_buffer *eb = eb_in;
1217        struct btrfs_key found_key;
1218        int leave_spinning = path->leave_spinning;
1219        struct btrfs_inode_ref *iref;
1220
1221        if (bytes_left >= 0)
1222                dest[bytes_left] = '\0';
1223
1224        path->leave_spinning = 1;
1225        while (1) {
1226                bytes_left -= name_len;
1227                if (bytes_left >= 0)
1228                        read_extent_buffer(eb, dest + bytes_left,
1229                                           name_off, name_len);
1230                if (eb != eb_in) {
1231                        btrfs_tree_read_unlock_blocking(eb);
1232                        free_extent_buffer(eb);
1233                }
1234                ret = inode_ref_info(parent, 0, fs_root, path, &found_key);
1235                if (ret > 0)
1236                        ret = -ENOENT;
1237                if (ret)
1238                        break;
1239
1240                next_inum = found_key.offset;
1241
1242                /* regular exit ahead */
1243                if (parent == next_inum)
1244                        break;
1245
1246                slot = path->slots[0];
1247                eb = path->nodes[0];
1248                /* make sure we can use eb after releasing the path */
1249                if (eb != eb_in) {
1250                        atomic_inc(&eb->refs);
1251                        btrfs_tree_read_lock(eb);
1252                        btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1253                }
1254                btrfs_release_path(path);
1255                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1256
1257                name_len = btrfs_inode_ref_name_len(eb, iref);
1258                name_off = (unsigned long)(iref + 1);
1259
1260                parent = next_inum;
1261                --bytes_left;
1262                if (bytes_left >= 0)
1263                        dest[bytes_left] = '/';
1264        }
1265
1266        btrfs_release_path(path);
1267        path->leave_spinning = leave_spinning;
1268
1269        if (ret)
1270                return ERR_PTR(ret);
1271
1272        return dest + bytes_left;
1273}
1274
1275/*
1276 * this makes the path point to (logical EXTENT_ITEM *)
1277 * returns BTRFS_EXTENT_FLAG_DATA for data, BTRFS_EXTENT_FLAG_TREE_BLOCK for
1278 * tree blocks and <0 on error.
1279 */
1280int extent_from_logical(struct btrfs_fs_info *fs_info, u64 logical,
1281                        struct btrfs_path *path, struct btrfs_key *found_key,
1282                        u64 *flags_ret)
1283{
1284        int ret;
1285        u64 flags;
1286        u32 item_size;
1287        struct extent_buffer *eb;
1288        struct btrfs_extent_item *ei;
1289        struct btrfs_key key;
1290
1291        key.type = BTRFS_EXTENT_ITEM_KEY;
1292        key.objectid = logical;
1293        key.offset = (u64)-1;
1294
1295        ret = btrfs_search_slot(NULL, fs_info->extent_root, &key, path, 0, 0);
1296        if (ret < 0)
1297                return ret;
1298        ret = btrfs_previous_item(fs_info->extent_root, path,
1299                                        0, BTRFS_EXTENT_ITEM_KEY);
1300        if (ret < 0)
1301                return ret;
1302
1303        btrfs_item_key_to_cpu(path->nodes[0], found_key, path->slots[0]);
1304        if (found_key->type != BTRFS_EXTENT_ITEM_KEY ||
1305            found_key->objectid > logical ||
1306            found_key->objectid + found_key->offset <= logical) {
1307                pr_debug("logical %llu is not within any extent\n",
1308                         (unsigned long long)logical);
1309                return -ENOENT;
1310        }
1311
1312        eb = path->nodes[0];
1313        item_size = btrfs_item_size_nr(eb, path->slots[0]);
1314        BUG_ON(item_size < sizeof(*ei));
1315
1316        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
1317        flags = btrfs_extent_flags(eb, ei);
1318
1319        pr_debug("logical %llu is at position %llu within the extent (%llu "
1320                 "EXTENT_ITEM %llu) flags %#llx size %u\n",
1321                 (unsigned long long)logical,
1322                 (unsigned long long)(logical - found_key->objectid),
1323                 (unsigned long long)found_key->objectid,
1324                 (unsigned long long)found_key->offset,
1325                 (unsigned long long)flags, item_size);
1326
1327        WARN_ON(!flags_ret);
1328        if (flags_ret) {
1329                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1330                        *flags_ret = BTRFS_EXTENT_FLAG_TREE_BLOCK;
1331                else if (flags & BTRFS_EXTENT_FLAG_DATA)
1332                        *flags_ret = BTRFS_EXTENT_FLAG_DATA;
1333                else
1334                        BUG_ON(1);
1335                return 0;
1336        }
1337
1338        return -EIO;
1339}
1340
1341/*
1342 * helper function to iterate extent inline refs. ptr must point to a 0 value
1343 * for the first call and may be modified. it is used to track state.
1344 * if more refs exist, 0 is returned and the next call to
1345 * __get_extent_inline_ref must pass the modified ptr parameter to get the
1346 * next ref. after the last ref was processed, 1 is returned.
1347 * returns <0 on error
1348 */
1349static int __get_extent_inline_ref(unsigned long *ptr, struct extent_buffer *eb,
1350                                struct btrfs_extent_item *ei, u32 item_size,
1351                                struct btrfs_extent_inline_ref **out_eiref,
1352                                int *out_type)
1353{
1354        unsigned long end;
1355        u64 flags;
1356        struct btrfs_tree_block_info *info;
1357
1358        if (!*ptr) {
1359                /* first call */
1360                flags = btrfs_extent_flags(eb, ei);
1361                if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1362                        info = (struct btrfs_tree_block_info *)(ei + 1);
1363                        *out_eiref =
1364                                (struct btrfs_extent_inline_ref *)(info + 1);
1365                } else {
1366                        *out_eiref = (struct btrfs_extent_inline_ref *)(ei + 1);
1367                }
1368                *ptr = (unsigned long)*out_eiref;
1369                if ((void *)*ptr >= (void *)ei + item_size)
1370                        return -ENOENT;
1371        }
1372
1373        end = (unsigned long)ei + item_size;
1374        *out_eiref = (struct btrfs_extent_inline_ref *)*ptr;
1375        *out_type = btrfs_extent_inline_ref_type(eb, *out_eiref);
1376
1377        *ptr += btrfs_extent_inline_ref_size(*out_type);
1378        WARN_ON(*ptr > end);
1379        if (*ptr == end)
1380                return 1; /* last */
1381
1382        return 0;
1383}
1384
1385/*
1386 * reads the tree block backref for an extent. tree level and root are returned
1387 * through out_level and out_root. ptr must point to a 0 value for the first
1388 * call and may be modified (see __get_extent_inline_ref comment).
1389 * returns 0 if data was provided, 1 if there was no more data to provide or
1390 * <0 on error.
1391 */
1392int tree_backref_for_extent(unsigned long *ptr, struct extent_buffer *eb,
1393                                struct btrfs_extent_item *ei, u32 item_size,
1394                                u64 *out_root, u8 *out_level)
1395{
1396        int ret;
1397        int type;
1398        struct btrfs_tree_block_info *info;
1399        struct btrfs_extent_inline_ref *eiref;
1400
1401        if (*ptr == (unsigned long)-1)
1402                return 1;
1403
1404        while (1) {
1405                ret = __get_extent_inline_ref(ptr, eb, ei, item_size,
1406                                                &eiref, &type);
1407                if (ret < 0)
1408                        return ret;
1409
1410                if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1411                    type == BTRFS_SHARED_BLOCK_REF_KEY)
1412                        break;
1413
1414                if (ret == 1)
1415                        return 1;
1416        }
1417
1418        /* we can treat both ref types equally here */
1419        info = (struct btrfs_tree_block_info *)(ei + 1);
1420        *out_root = btrfs_extent_inline_ref_offset(eb, eiref);
1421        *out_level = btrfs_tree_block_level(eb, info);
1422
1423        if (ret == 1)
1424                *ptr = (unsigned long)-1;
1425
1426        return 0;
1427}
1428
1429static int iterate_leaf_refs(struct extent_inode_elem *inode_list,
1430                                u64 root, u64 extent_item_objectid,
1431                                iterate_extent_inodes_t *iterate, void *ctx)
1432{
1433        struct extent_inode_elem *eie;
1434        int ret = 0;
1435
1436        for (eie = inode_list; eie; eie = eie->next) {
1437                pr_debug("ref for %llu resolved, key (%llu EXTEND_DATA %llu), "
1438                         "root %llu\n", extent_item_objectid,
1439                         eie->inum, eie->offset, root);
1440                ret = iterate(eie->inum, eie->offset, root, ctx);
1441                if (ret) {
1442                        pr_debug("stopping iteration for %llu due to ret=%d\n",
1443                                 extent_item_objectid, ret);
1444                        break;
1445                }
1446        }
1447
1448        return ret;
1449}
1450
1451/*
1452 * calls iterate() for every inode that references the extent identified by
1453 * the given parameters.
1454 * when the iterator function returns a non-zero value, iteration stops.
1455 */
1456int iterate_extent_inodes(struct btrfs_fs_info *fs_info,
1457                                u64 extent_item_objectid, u64 extent_item_pos,
1458                                int search_commit_root,
1459                                iterate_extent_inodes_t *iterate, void *ctx)
1460{
1461        int ret;
1462        struct btrfs_trans_handle *trans;
1463        struct ulist *refs = NULL;
1464        struct ulist *roots = NULL;
1465        struct ulist_node *ref_node = NULL;
1466        struct ulist_node *root_node = NULL;
1467        struct seq_list tree_mod_seq_elem = {};
1468        struct ulist_iterator ref_uiter;
1469        struct ulist_iterator root_uiter;
1470
1471        pr_debug("resolving all inodes for extent %llu\n",
1472                        extent_item_objectid);
1473
1474        if (search_commit_root) {
1475                trans = BTRFS_BACKREF_SEARCH_COMMIT_ROOT;
1476        } else {
1477                trans = btrfs_join_transaction(fs_info->extent_root);
1478                if (IS_ERR(trans))
1479                        return PTR_ERR(trans);
1480                btrfs_get_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1481        }
1482
1483        ret = btrfs_find_all_leafs(trans, fs_info, extent_item_objectid,
1484                                   tree_mod_seq_elem.seq, &refs,
1485                                   &extent_item_pos);
1486        if (ret)
1487                goto out;
1488
1489        ULIST_ITER_INIT(&ref_uiter);
1490        while (!ret && (ref_node = ulist_next(refs, &ref_uiter))) {
1491                ret = btrfs_find_all_roots(trans, fs_info, ref_node->val,
1492                                           tree_mod_seq_elem.seq, &roots);
1493                if (ret)
1494                        break;
1495                ULIST_ITER_INIT(&root_uiter);
1496                while (!ret && (root_node = ulist_next(roots, &root_uiter))) {
1497                        pr_debug("root %llu references leaf %llu, data list "
1498                                 "%#llx\n", root_node->val, ref_node->val,
1499                                 (long long)ref_node->aux);
1500                        ret = iterate_leaf_refs((struct extent_inode_elem *)
1501                                                (uintptr_t)ref_node->aux,
1502                                                root_node->val,
1503                                                extent_item_objectid,
1504                                                iterate, ctx);
1505                }
1506                ulist_free(roots);
1507        }
1508
1509        free_leaf_list(refs);
1510out:
1511        if (!search_commit_root) {
1512                btrfs_put_tree_mod_seq(fs_info, &tree_mod_seq_elem);
1513                btrfs_end_transaction(trans, fs_info->extent_root);
1514        }
1515
1516        return ret;
1517}
1518
1519int iterate_inodes_from_logical(u64 logical, struct btrfs_fs_info *fs_info,
1520                                struct btrfs_path *path,
1521                                iterate_extent_inodes_t *iterate, void *ctx)
1522{
1523        int ret;
1524        u64 extent_item_pos;
1525        u64 flags = 0;
1526        struct btrfs_key found_key;
1527        int search_commit_root = path->search_commit_root;
1528
1529        ret = extent_from_logical(fs_info, logical, path, &found_key, &flags);
1530        btrfs_release_path(path);
1531        if (ret < 0)
1532                return ret;
1533        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1534                return -EINVAL;
1535
1536        extent_item_pos = logical - found_key.objectid;
1537        ret = iterate_extent_inodes(fs_info, found_key.objectid,
1538                                        extent_item_pos, search_commit_root,
1539                                        iterate, ctx);
1540
1541        return ret;
1542}
1543
1544typedef int (iterate_irefs_t)(u64 parent, u32 name_len, unsigned long name_off,
1545                              struct extent_buffer *eb, void *ctx);
1546
1547static int iterate_inode_refs(u64 inum, struct btrfs_root *fs_root,
1548                              struct btrfs_path *path,
1549                              iterate_irefs_t *iterate, void *ctx)
1550{
1551        int ret = 0;
1552        int slot;
1553        u32 cur;
1554        u32 len;
1555        u32 name_len;
1556        u64 parent = 0;
1557        int found = 0;
1558        struct extent_buffer *eb;
1559        struct btrfs_item *item;
1560        struct btrfs_inode_ref *iref;
1561        struct btrfs_key found_key;
1562
1563        while (!ret) {
1564                path->leave_spinning = 1;
1565                ret = inode_ref_info(inum, parent ? parent+1 : 0, fs_root, path,
1566                                     &found_key);
1567                if (ret < 0)
1568                        break;
1569                if (ret) {
1570                        ret = found ? 0 : -ENOENT;
1571                        break;
1572                }
1573                ++found;
1574
1575                parent = found_key.offset;
1576                slot = path->slots[0];
1577                eb = path->nodes[0];
1578                /* make sure we can use eb after releasing the path */
1579                atomic_inc(&eb->refs);
1580                btrfs_tree_read_lock(eb);
1581                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1582                btrfs_release_path(path);
1583
1584                item = btrfs_item_nr(eb, slot);
1585                iref = btrfs_item_ptr(eb, slot, struct btrfs_inode_ref);
1586
1587                for (cur = 0; cur < btrfs_item_size(eb, item); cur += len) {
1588                        name_len = btrfs_inode_ref_name_len(eb, iref);
1589                        /* path must be released before calling iterate()! */
1590                        pr_debug("following ref at offset %u for inode %llu in "
1591                                 "tree %llu\n", cur,
1592                                 (unsigned long long)found_key.objectid,
1593                                 (unsigned long long)fs_root->objectid);
1594                        ret = iterate(parent, name_len,
1595                                      (unsigned long)(iref + 1), eb, ctx);
1596                        if (ret)
1597                                break;
1598                        len = sizeof(*iref) + name_len;
1599                        iref = (struct btrfs_inode_ref *)((char *)iref + len);
1600                }
1601                btrfs_tree_read_unlock_blocking(eb);
1602                free_extent_buffer(eb);
1603        }
1604
1605        btrfs_release_path(path);
1606
1607        return ret;
1608}
1609
1610static int iterate_inode_extrefs(u64 inum, struct btrfs_root *fs_root,
1611                                 struct btrfs_path *path,
1612                                 iterate_irefs_t *iterate, void *ctx)
1613{
1614        int ret;
1615        int slot;
1616        u64 offset = 0;
1617        u64 parent;
1618        int found = 0;
1619        struct extent_buffer *eb;
1620        struct btrfs_inode_extref *extref;
1621        struct extent_buffer *leaf;
1622        u32 item_size;
1623        u32 cur_offset;
1624        unsigned long ptr;
1625
1626        while (1) {
1627                ret = btrfs_find_one_extref(fs_root, inum, offset, path, &extref,
1628                                            &offset);
1629                if (ret < 0)
1630                        break;
1631                if (ret) {
1632                        ret = found ? 0 : -ENOENT;
1633                        break;
1634                }
1635                ++found;
1636
1637                slot = path->slots[0];
1638                eb = path->nodes[0];
1639                /* make sure we can use eb after releasing the path */
1640                atomic_inc(&eb->refs);
1641
1642                btrfs_tree_read_lock(eb);
1643                btrfs_set_lock_blocking_rw(eb, BTRFS_READ_LOCK);
1644                btrfs_release_path(path);
1645
1646                leaf = path->nodes[0];
1647                item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1648                ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
1649                cur_offset = 0;
1650
1651                while (cur_offset < item_size) {
1652                        u32 name_len;
1653
1654                        extref = (struct btrfs_inode_extref *)(ptr + cur_offset);
1655                        parent = btrfs_inode_extref_parent(eb, extref);
1656                        name_len = btrfs_inode_extref_name_len(eb, extref);
1657                        ret = iterate(parent, name_len,
1658                                      (unsigned long)&extref->name, eb, ctx);
1659                        if (ret)
1660                                break;
1661
1662                        cur_offset += btrfs_inode_extref_name_len(leaf, extref);
1663                        cur_offset += sizeof(*extref);
1664                }
1665                btrfs_tree_read_unlock_blocking(eb);
1666                free_extent_buffer(eb);
1667
1668                offset++;
1669        }
1670
1671        btrfs_release_path(path);
1672
1673        return ret;
1674}
1675
1676static int iterate_irefs(u64 inum, struct btrfs_root *fs_root,
1677                         struct btrfs_path *path, iterate_irefs_t *iterate,
1678                         void *ctx)
1679{
1680        int ret;
1681        int found_refs = 0;
1682
1683        ret = iterate_inode_refs(inum, fs_root, path, iterate, ctx);
1684        if (!ret)
1685                ++found_refs;
1686        else if (ret != -ENOENT)
1687                return ret;
1688
1689        ret = iterate_inode_extrefs(inum, fs_root, path, iterate, ctx);
1690        if (ret == -ENOENT && found_refs)
1691                return 0;
1692
1693        return ret;
1694}
1695
1696/*
1697 * returns 0 if the path could be dumped (probably truncated)
1698 * returns <0 in case of an error
1699 */
1700static int inode_to_path(u64 inum, u32 name_len, unsigned long name_off,
1701                         struct extent_buffer *eb, void *ctx)
1702{
1703        struct inode_fs_paths *ipath = ctx;
1704        char *fspath;
1705        char *fspath_min;
1706        int i = ipath->fspath->elem_cnt;
1707        const int s_ptr = sizeof(char *);
1708        u32 bytes_left;
1709
1710        bytes_left = ipath->fspath->bytes_left > s_ptr ?
1711                                        ipath->fspath->bytes_left - s_ptr : 0;
1712
1713        fspath_min = (char *)ipath->fspath->val + (i + 1) * s_ptr;
1714        fspath = btrfs_ref_to_path(ipath->fs_root, ipath->btrfs_path, name_len,
1715                                   name_off, eb, inum, fspath_min, bytes_left);
1716        if (IS_ERR(fspath))
1717                return PTR_ERR(fspath);
1718
1719        if (fspath > fspath_min) {
1720                ipath->fspath->val[i] = (u64)(unsigned long)fspath;
1721                ++ipath->fspath->elem_cnt;
1722                ipath->fspath->bytes_left = fspath - fspath_min;
1723        } else {
1724                ++ipath->fspath->elem_missed;
1725                ipath->fspath->bytes_missing += fspath_min - fspath;
1726                ipath->fspath->bytes_left = 0;
1727        }
1728
1729        return 0;
1730}
1731
1732/*
1733 * this dumps all file system paths to the inode into the ipath struct, provided
1734 * is has been created large enough. each path is zero-terminated and accessed
1735 * from ipath->fspath->val[i].
1736 * when it returns, there are ipath->fspath->elem_cnt number of paths available
1737 * in ipath->fspath->val[]. when the allocated space wasn't sufficient, the
1738 * number of missed paths in recored in ipath->fspath->elem_missed, otherwise,
1739 * it's zero. ipath->fspath->bytes_missing holds the number of bytes that would
1740 * have been needed to return all paths.
1741 */
1742int paths_from_inode(u64 inum, struct inode_fs_paths *ipath)
1743{
1744        return iterate_irefs(inum, ipath->fs_root, ipath->btrfs_path,
1745                             inode_to_path, ipath);
1746}
1747
1748struct btrfs_data_container *init_data_container(u32 total_bytes)
1749{
1750        struct btrfs_data_container *data;
1751        size_t alloc_bytes;
1752
1753        alloc_bytes = max_t(size_t, total_bytes, sizeof(*data));
1754        data = vmalloc(alloc_bytes);
1755        if (!data)
1756                return ERR_PTR(-ENOMEM);
1757
1758        if (total_bytes >= sizeof(*data)) {
1759                data->bytes_left = total_bytes - sizeof(*data);
1760                data->bytes_missing = 0;
1761        } else {
1762                data->bytes_missing = sizeof(*data) - total_bytes;
1763                data->bytes_left = 0;
1764        }
1765
1766        data->elem_cnt = 0;
1767        data->elem_missed = 0;
1768
1769        return data;
1770}
1771
1772/*
1773 * allocates space to return multiple file system paths for an inode.
1774 * total_bytes to allocate are passed, note that space usable for actual path
1775 * information will be total_bytes - sizeof(struct inode_fs_paths).
1776 * the returned pointer must be freed with free_ipath() in the end.
1777 */
1778struct inode_fs_paths *init_ipath(s32 total_bytes, struct btrfs_root *fs_root,
1779                                        struct btrfs_path *path)
1780{
1781        struct inode_fs_paths *ifp;
1782        struct btrfs_data_container *fspath;
1783
1784        fspath = init_data_container(total_bytes);
1785        if (IS_ERR(fspath))
1786                return (void *)fspath;
1787
1788        ifp = kmalloc(sizeof(*ifp), GFP_NOFS);
1789        if (!ifp) {
1790                kfree(fspath);
1791                return ERR_PTR(-ENOMEM);
1792        }
1793
1794        ifp->btrfs_path = path;
1795        ifp->fspath = fspath;
1796        ifp->fs_root = fs_root;
1797
1798        return ifp;
1799}
1800
1801void free_ipath(struct inode_fs_paths *ipath)
1802{
1803        if (!ipath)
1804                return;
1805        vfree(ipath->fspath);
1806        kfree(ipath);
1807}
1808