linux/fs/btrfs/extent_io.c
<<
>>
Prefs
   1#include <linux/bitops.h>
   2#include <linux/slab.h>
   3#include <linux/bio.h>
   4#include <linux/mm.h>
   5#include <linux/pagemap.h>
   6#include <linux/page-flags.h>
   7#include <linux/spinlock.h>
   8#include <linux/blkdev.h>
   9#include <linux/swap.h>
  10#include <linux/writeback.h>
  11#include <linux/pagevec.h>
  12#include <linux/prefetch.h>
  13#include <linux/cleancache.h>
  14#include "extent_io.h"
  15#include "extent_map.h"
  16#include "compat.h"
  17#include "ctree.h"
  18#include "btrfs_inode.h"
  19#include "volumes.h"
  20#include "check-integrity.h"
  21#include "locking.h"
  22#include "rcu-string.h"
  23
  24static struct kmem_cache *extent_state_cache;
  25static struct kmem_cache *extent_buffer_cache;
  26static struct bio_set *btrfs_bioset;
  27
  28#ifdef CONFIG_BTRFS_DEBUG
  29static LIST_HEAD(buffers);
  30static LIST_HEAD(states);
  31
  32static DEFINE_SPINLOCK(leak_lock);
  33
  34static inline
  35void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
  36{
  37        unsigned long flags;
  38
  39        spin_lock_irqsave(&leak_lock, flags);
  40        list_add(new, head);
  41        spin_unlock_irqrestore(&leak_lock, flags);
  42}
  43
  44static inline
  45void btrfs_leak_debug_del(struct list_head *entry)
  46{
  47        unsigned long flags;
  48
  49        spin_lock_irqsave(&leak_lock, flags);
  50        list_del(entry);
  51        spin_unlock_irqrestore(&leak_lock, flags);
  52}
  53
  54static inline
  55void btrfs_leak_debug_check(void)
  56{
  57        struct extent_state *state;
  58        struct extent_buffer *eb;
  59
  60        while (!list_empty(&states)) {
  61                state = list_entry(states.next, struct extent_state, leak_list);
  62                printk(KERN_ERR "btrfs state leak: start %llu end %llu "
  63                       "state %lu in tree %p refs %d\n",
  64                       (unsigned long long)state->start,
  65                       (unsigned long long)state->end,
  66                       state->state, state->tree, atomic_read(&state->refs));
  67                list_del(&state->leak_list);
  68                kmem_cache_free(extent_state_cache, state);
  69        }
  70
  71        while (!list_empty(&buffers)) {
  72                eb = list_entry(buffers.next, struct extent_buffer, leak_list);
  73                printk(KERN_ERR "btrfs buffer leak start %llu len %lu "
  74                       "refs %d\n", (unsigned long long)eb->start,
  75                       eb->len, atomic_read(&eb->refs));
  76                list_del(&eb->leak_list);
  77                kmem_cache_free(extent_buffer_cache, eb);
  78        }
  79}
  80#else
  81#define btrfs_leak_debug_add(new, head) do {} while (0)
  82#define btrfs_leak_debug_del(entry)     do {} while (0)
  83#define btrfs_leak_debug_check()        do {} while (0)
  84#endif
  85
  86#define BUFFER_LRU_MAX 64
  87
  88struct tree_entry {
  89        u64 start;
  90        u64 end;
  91        struct rb_node rb_node;
  92};
  93
  94struct extent_page_data {
  95        struct bio *bio;
  96        struct extent_io_tree *tree;
  97        get_extent_t *get_extent;
  98        unsigned long bio_flags;
  99
 100        /* tells writepage not to lock the state bits for this range
 101         * it still does the unlocking
 102         */
 103        unsigned int extent_locked:1;
 104
 105        /* tells the submit_bio code to use a WRITE_SYNC */
 106        unsigned int sync_io:1;
 107};
 108
 109static noinline void flush_write_bio(void *data);
 110static inline struct btrfs_fs_info *
 111tree_fs_info(struct extent_io_tree *tree)
 112{
 113        return btrfs_sb(tree->mapping->host->i_sb);
 114}
 115
 116int __init extent_io_init(void)
 117{
 118        extent_state_cache = kmem_cache_create("btrfs_extent_state",
 119                        sizeof(struct extent_state), 0,
 120                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 121        if (!extent_state_cache)
 122                return -ENOMEM;
 123
 124        extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
 125                        sizeof(struct extent_buffer), 0,
 126                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
 127        if (!extent_buffer_cache)
 128                goto free_state_cache;
 129
 130        btrfs_bioset = bioset_create(BIO_POOL_SIZE,
 131                                     offsetof(struct btrfs_io_bio, bio));
 132        if (!btrfs_bioset)
 133                goto free_buffer_cache;
 134        return 0;
 135
 136free_buffer_cache:
 137        kmem_cache_destroy(extent_buffer_cache);
 138        extent_buffer_cache = NULL;
 139
 140free_state_cache:
 141        kmem_cache_destroy(extent_state_cache);
 142        extent_state_cache = NULL;
 143        return -ENOMEM;
 144}
 145
 146void extent_io_exit(void)
 147{
 148        btrfs_leak_debug_check();
 149
 150        /*
 151         * Make sure all delayed rcu free are flushed before we
 152         * destroy caches.
 153         */
 154        rcu_barrier();
 155        if (extent_state_cache)
 156                kmem_cache_destroy(extent_state_cache);
 157        if (extent_buffer_cache)
 158                kmem_cache_destroy(extent_buffer_cache);
 159        if (btrfs_bioset)
 160                bioset_free(btrfs_bioset);
 161}
 162
 163void extent_io_tree_init(struct extent_io_tree *tree,
 164                         struct address_space *mapping)
 165{
 166        tree->state = RB_ROOT;
 167        INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC);
 168        tree->ops = NULL;
 169        tree->dirty_bytes = 0;
 170        spin_lock_init(&tree->lock);
 171        spin_lock_init(&tree->buffer_lock);
 172        tree->mapping = mapping;
 173}
 174
 175static struct extent_state *alloc_extent_state(gfp_t mask)
 176{
 177        struct extent_state *state;
 178
 179        state = kmem_cache_alloc(extent_state_cache, mask);
 180        if (!state)
 181                return state;
 182        state->state = 0;
 183        state->private = 0;
 184        state->tree = NULL;
 185        btrfs_leak_debug_add(&state->leak_list, &states);
 186        atomic_set(&state->refs, 1);
 187        init_waitqueue_head(&state->wq);
 188        trace_alloc_extent_state(state, mask, _RET_IP_);
 189        return state;
 190}
 191
 192void free_extent_state(struct extent_state *state)
 193{
 194        if (!state)
 195                return;
 196        if (atomic_dec_and_test(&state->refs)) {
 197                WARN_ON(state->tree);
 198                btrfs_leak_debug_del(&state->leak_list);
 199                trace_free_extent_state(state, _RET_IP_);
 200                kmem_cache_free(extent_state_cache, state);
 201        }
 202}
 203
 204static struct rb_node *tree_insert(struct rb_root *root, u64 offset,
 205                                   struct rb_node *node)
 206{
 207        struct rb_node **p = &root->rb_node;
 208        struct rb_node *parent = NULL;
 209        struct tree_entry *entry;
 210
 211        while (*p) {
 212                parent = *p;
 213                entry = rb_entry(parent, struct tree_entry, rb_node);
 214
 215                if (offset < entry->start)
 216                        p = &(*p)->rb_left;
 217                else if (offset > entry->end)
 218                        p = &(*p)->rb_right;
 219                else
 220                        return parent;
 221        }
 222
 223        rb_link_node(node, parent, p);
 224        rb_insert_color(node, root);
 225        return NULL;
 226}
 227
 228static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
 229                                     struct rb_node **prev_ret,
 230                                     struct rb_node **next_ret)
 231{
 232        struct rb_root *root = &tree->state;
 233        struct rb_node *n = root->rb_node;
 234        struct rb_node *prev = NULL;
 235        struct rb_node *orig_prev = NULL;
 236        struct tree_entry *entry;
 237        struct tree_entry *prev_entry = NULL;
 238
 239        while (n) {
 240                entry = rb_entry(n, struct tree_entry, rb_node);
 241                prev = n;
 242                prev_entry = entry;
 243
 244                if (offset < entry->start)
 245                        n = n->rb_left;
 246                else if (offset > entry->end)
 247                        n = n->rb_right;
 248                else
 249                        return n;
 250        }
 251
 252        if (prev_ret) {
 253                orig_prev = prev;
 254                while (prev && offset > prev_entry->end) {
 255                        prev = rb_next(prev);
 256                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 257                }
 258                *prev_ret = prev;
 259                prev = orig_prev;
 260        }
 261
 262        if (next_ret) {
 263                prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 264                while (prev && offset < prev_entry->start) {
 265                        prev = rb_prev(prev);
 266                        prev_entry = rb_entry(prev, struct tree_entry, rb_node);
 267                }
 268                *next_ret = prev;
 269        }
 270        return NULL;
 271}
 272
 273static inline struct rb_node *tree_search(struct extent_io_tree *tree,
 274                                          u64 offset)
 275{
 276        struct rb_node *prev = NULL;
 277        struct rb_node *ret;
 278
 279        ret = __etree_search(tree, offset, &prev, NULL);
 280        if (!ret)
 281                return prev;
 282        return ret;
 283}
 284
 285static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
 286                     struct extent_state *other)
 287{
 288        if (tree->ops && tree->ops->merge_extent_hook)
 289                tree->ops->merge_extent_hook(tree->mapping->host, new,
 290                                             other);
 291}
 292
 293/*
 294 * utility function to look for merge candidates inside a given range.
 295 * Any extents with matching state are merged together into a single
 296 * extent in the tree.  Extents with EXTENT_IO in their state field
 297 * are not merged because the end_io handlers need to be able to do
 298 * operations on them without sleeping (or doing allocations/splits).
 299 *
 300 * This should be called with the tree lock held.
 301 */
 302static void merge_state(struct extent_io_tree *tree,
 303                        struct extent_state *state)
 304{
 305        struct extent_state *other;
 306        struct rb_node *other_node;
 307
 308        if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 309                return;
 310
 311        other_node = rb_prev(&state->rb_node);
 312        if (other_node) {
 313                other = rb_entry(other_node, struct extent_state, rb_node);
 314                if (other->end == state->start - 1 &&
 315                    other->state == state->state) {
 316                        merge_cb(tree, state, other);
 317                        state->start = other->start;
 318                        other->tree = NULL;
 319                        rb_erase(&other->rb_node, &tree->state);
 320                        free_extent_state(other);
 321                }
 322        }
 323        other_node = rb_next(&state->rb_node);
 324        if (other_node) {
 325                other = rb_entry(other_node, struct extent_state, rb_node);
 326                if (other->start == state->end + 1 &&
 327                    other->state == state->state) {
 328                        merge_cb(tree, state, other);
 329                        state->end = other->end;
 330                        other->tree = NULL;
 331                        rb_erase(&other->rb_node, &tree->state);
 332                        free_extent_state(other);
 333                }
 334        }
 335}
 336
 337static void set_state_cb(struct extent_io_tree *tree,
 338                         struct extent_state *state, unsigned long *bits)
 339{
 340        if (tree->ops && tree->ops->set_bit_hook)
 341                tree->ops->set_bit_hook(tree->mapping->host, state, bits);
 342}
 343
 344static void clear_state_cb(struct extent_io_tree *tree,
 345                           struct extent_state *state, unsigned long *bits)
 346{
 347        if (tree->ops && tree->ops->clear_bit_hook)
 348                tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
 349}
 350
 351static void set_state_bits(struct extent_io_tree *tree,
 352                           struct extent_state *state, unsigned long *bits);
 353
 354/*
 355 * insert an extent_state struct into the tree.  'bits' are set on the
 356 * struct before it is inserted.
 357 *
 358 * This may return -EEXIST if the extent is already there, in which case the
 359 * state struct is freed.
 360 *
 361 * The tree lock is not taken internally.  This is a utility function and
 362 * probably isn't what you want to call (see set/clear_extent_bit).
 363 */
 364static int insert_state(struct extent_io_tree *tree,
 365                        struct extent_state *state, u64 start, u64 end,
 366                        unsigned long *bits)
 367{
 368        struct rb_node *node;
 369
 370        if (end < start)
 371                WARN(1, KERN_ERR "btrfs end < start %llu %llu\n",
 372                       (unsigned long long)end,
 373                       (unsigned long long)start);
 374        state->start = start;
 375        state->end = end;
 376
 377        set_state_bits(tree, state, bits);
 378
 379        node = tree_insert(&tree->state, end, &state->rb_node);
 380        if (node) {
 381                struct extent_state *found;
 382                found = rb_entry(node, struct extent_state, rb_node);
 383                printk(KERN_ERR "btrfs found node %llu %llu on insert of "
 384                       "%llu %llu\n", (unsigned long long)found->start,
 385                       (unsigned long long)found->end,
 386                       (unsigned long long)start, (unsigned long long)end);
 387                return -EEXIST;
 388        }
 389        state->tree = tree;
 390        merge_state(tree, state);
 391        return 0;
 392}
 393
 394static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
 395                     u64 split)
 396{
 397        if (tree->ops && tree->ops->split_extent_hook)
 398                tree->ops->split_extent_hook(tree->mapping->host, orig, split);
 399}
 400
 401/*
 402 * split a given extent state struct in two, inserting the preallocated
 403 * struct 'prealloc' as the newly created second half.  'split' indicates an
 404 * offset inside 'orig' where it should be split.
 405 *
 406 * Before calling,
 407 * the tree has 'orig' at [orig->start, orig->end].  After calling, there
 408 * are two extent state structs in the tree:
 409 * prealloc: [orig->start, split - 1]
 410 * orig: [ split, orig->end ]
 411 *
 412 * The tree locks are not taken by this function. They need to be held
 413 * by the caller.
 414 */
 415static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
 416                       struct extent_state *prealloc, u64 split)
 417{
 418        struct rb_node *node;
 419
 420        split_cb(tree, orig, split);
 421
 422        prealloc->start = orig->start;
 423        prealloc->end = split - 1;
 424        prealloc->state = orig->state;
 425        orig->start = split;
 426
 427        node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node);
 428        if (node) {
 429                free_extent_state(prealloc);
 430                return -EEXIST;
 431        }
 432        prealloc->tree = tree;
 433        return 0;
 434}
 435
 436static struct extent_state *next_state(struct extent_state *state)
 437{
 438        struct rb_node *next = rb_next(&state->rb_node);
 439        if (next)
 440                return rb_entry(next, struct extent_state, rb_node);
 441        else
 442                return NULL;
 443}
 444
 445/*
 446 * utility function to clear some bits in an extent state struct.
 447 * it will optionally wake up any one waiting on this state (wake == 1).
 448 *
 449 * If no bits are set on the state struct after clearing things, the
 450 * struct is freed and removed from the tree
 451 */
 452static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
 453                                            struct extent_state *state,
 454                                            unsigned long *bits, int wake)
 455{
 456        struct extent_state *next;
 457        unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
 458
 459        if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
 460                u64 range = state->end - state->start + 1;
 461                WARN_ON(range > tree->dirty_bytes);
 462                tree->dirty_bytes -= range;
 463        }
 464        clear_state_cb(tree, state, bits);
 465        state->state &= ~bits_to_clear;
 466        if (wake)
 467                wake_up(&state->wq);
 468        if (state->state == 0) {
 469                next = next_state(state);
 470                if (state->tree) {
 471                        rb_erase(&state->rb_node, &tree->state);
 472                        state->tree = NULL;
 473                        free_extent_state(state);
 474                } else {
 475                        WARN_ON(1);
 476                }
 477        } else {
 478                merge_state(tree, state);
 479                next = next_state(state);
 480        }
 481        return next;
 482}
 483
 484static struct extent_state *
 485alloc_extent_state_atomic(struct extent_state *prealloc)
 486{
 487        if (!prealloc)
 488                prealloc = alloc_extent_state(GFP_ATOMIC);
 489
 490        return prealloc;
 491}
 492
 493static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
 494{
 495        btrfs_panic(tree_fs_info(tree), err, "Locking error: "
 496                    "Extent tree was modified by another "
 497                    "thread while locked.");
 498}
 499
 500/*
 501 * clear some bits on a range in the tree.  This may require splitting
 502 * or inserting elements in the tree, so the gfp mask is used to
 503 * indicate which allocations or sleeping are allowed.
 504 *
 505 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
 506 * the given range from the tree regardless of state (ie for truncate).
 507 *
 508 * the range [start, end] is inclusive.
 509 *
 510 * This takes the tree lock, and returns 0 on success and < 0 on error.
 511 */
 512int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 513                     unsigned long bits, int wake, int delete,
 514                     struct extent_state **cached_state,
 515                     gfp_t mask)
 516{
 517        struct extent_state *state;
 518        struct extent_state *cached;
 519        struct extent_state *prealloc = NULL;
 520        struct rb_node *node;
 521        u64 last_end;
 522        int err;
 523        int clear = 0;
 524
 525        if (delete)
 526                bits |= ~EXTENT_CTLBITS;
 527        bits |= EXTENT_FIRST_DELALLOC;
 528
 529        if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
 530                clear = 1;
 531again:
 532        if (!prealloc && (mask & __GFP_WAIT)) {
 533                prealloc = alloc_extent_state(mask);
 534                if (!prealloc)
 535                        return -ENOMEM;
 536        }
 537
 538        spin_lock(&tree->lock);
 539        if (cached_state) {
 540                cached = *cached_state;
 541
 542                if (clear) {
 543                        *cached_state = NULL;
 544                        cached_state = NULL;
 545                }
 546
 547                if (cached && cached->tree && cached->start <= start &&
 548                    cached->end > start) {
 549                        if (clear)
 550                                atomic_dec(&cached->refs);
 551                        state = cached;
 552                        goto hit_next;
 553                }
 554                if (clear)
 555                        free_extent_state(cached);
 556        }
 557        /*
 558         * this search will find the extents that end after
 559         * our range starts
 560         */
 561        node = tree_search(tree, start);
 562        if (!node)
 563                goto out;
 564        state = rb_entry(node, struct extent_state, rb_node);
 565hit_next:
 566        if (state->start > end)
 567                goto out;
 568        WARN_ON(state->end < start);
 569        last_end = state->end;
 570
 571        /* the state doesn't have the wanted bits, go ahead */
 572        if (!(state->state & bits)) {
 573                state = next_state(state);
 574                goto next;
 575        }
 576
 577        /*
 578         *     | ---- desired range ---- |
 579         *  | state | or
 580         *  | ------------- state -------------- |
 581         *
 582         * We need to split the extent we found, and may flip
 583         * bits on second half.
 584         *
 585         * If the extent we found extends past our range, we
 586         * just split and search again.  It'll get split again
 587         * the next time though.
 588         *
 589         * If the extent we found is inside our range, we clear
 590         * the desired bit on it.
 591         */
 592
 593        if (state->start < start) {
 594                prealloc = alloc_extent_state_atomic(prealloc);
 595                BUG_ON(!prealloc);
 596                err = split_state(tree, state, prealloc, start);
 597                if (err)
 598                        extent_io_tree_panic(tree, err);
 599
 600                prealloc = NULL;
 601                if (err)
 602                        goto out;
 603                if (state->end <= end) {
 604                        state = clear_state_bit(tree, state, &bits, wake);
 605                        goto next;
 606                }
 607                goto search_again;
 608        }
 609        /*
 610         * | ---- desired range ---- |
 611         *                        | state |
 612         * We need to split the extent, and clear the bit
 613         * on the first half
 614         */
 615        if (state->start <= end && state->end > end) {
 616                prealloc = alloc_extent_state_atomic(prealloc);
 617                BUG_ON(!prealloc);
 618                err = split_state(tree, state, prealloc, end + 1);
 619                if (err)
 620                        extent_io_tree_panic(tree, err);
 621
 622                if (wake)
 623                        wake_up(&state->wq);
 624
 625                clear_state_bit(tree, prealloc, &bits, wake);
 626
 627                prealloc = NULL;
 628                goto out;
 629        }
 630
 631        state = clear_state_bit(tree, state, &bits, wake);
 632next:
 633        if (last_end == (u64)-1)
 634                goto out;
 635        start = last_end + 1;
 636        if (start <= end && state && !need_resched())
 637                goto hit_next;
 638        goto search_again;
 639
 640out:
 641        spin_unlock(&tree->lock);
 642        if (prealloc)
 643                free_extent_state(prealloc);
 644
 645        return 0;
 646
 647search_again:
 648        if (start > end)
 649                goto out;
 650        spin_unlock(&tree->lock);
 651        if (mask & __GFP_WAIT)
 652                cond_resched();
 653        goto again;
 654}
 655
 656static void wait_on_state(struct extent_io_tree *tree,
 657                          struct extent_state *state)
 658                __releases(tree->lock)
 659                __acquires(tree->lock)
 660{
 661        DEFINE_WAIT(wait);
 662        prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
 663        spin_unlock(&tree->lock);
 664        schedule();
 665        spin_lock(&tree->lock);
 666        finish_wait(&state->wq, &wait);
 667}
 668
 669/*
 670 * waits for one or more bits to clear on a range in the state tree.
 671 * The range [start, end] is inclusive.
 672 * The tree lock is taken by this function
 673 */
 674static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 675                            unsigned long bits)
 676{
 677        struct extent_state *state;
 678        struct rb_node *node;
 679
 680        spin_lock(&tree->lock);
 681again:
 682        while (1) {
 683                /*
 684                 * this search will find all the extents that end after
 685                 * our range starts
 686                 */
 687                node = tree_search(tree, start);
 688                if (!node)
 689                        break;
 690
 691                state = rb_entry(node, struct extent_state, rb_node);
 692
 693                if (state->start > end)
 694                        goto out;
 695
 696                if (state->state & bits) {
 697                        start = state->start;
 698                        atomic_inc(&state->refs);
 699                        wait_on_state(tree, state);
 700                        free_extent_state(state);
 701                        goto again;
 702                }
 703                start = state->end + 1;
 704
 705                if (start > end)
 706                        break;
 707
 708                cond_resched_lock(&tree->lock);
 709        }
 710out:
 711        spin_unlock(&tree->lock);
 712}
 713
 714static void set_state_bits(struct extent_io_tree *tree,
 715                           struct extent_state *state,
 716                           unsigned long *bits)
 717{
 718        unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
 719
 720        set_state_cb(tree, state, bits);
 721        if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
 722                u64 range = state->end - state->start + 1;
 723                tree->dirty_bytes += range;
 724        }
 725        state->state |= bits_to_set;
 726}
 727
 728static void cache_state(struct extent_state *state,
 729                        struct extent_state **cached_ptr)
 730{
 731        if (cached_ptr && !(*cached_ptr)) {
 732                if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
 733                        *cached_ptr = state;
 734                        atomic_inc(&state->refs);
 735                }
 736        }
 737}
 738
 739static void uncache_state(struct extent_state **cached_ptr)
 740{
 741        if (cached_ptr && (*cached_ptr)) {
 742                struct extent_state *state = *cached_ptr;
 743                *cached_ptr = NULL;
 744                free_extent_state(state);
 745        }
 746}
 747
 748/*
 749 * set some bits on a range in the tree.  This may require allocations or
 750 * sleeping, so the gfp mask is used to indicate what is allowed.
 751 *
 752 * If any of the exclusive bits are set, this will fail with -EEXIST if some
 753 * part of the range already has the desired bits set.  The start of the
 754 * existing range is returned in failed_start in this case.
 755 *
 756 * [start, end] is inclusive This takes the tree lock.
 757 */
 758
 759static int __must_check
 760__set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 761                 unsigned long bits, unsigned long exclusive_bits,
 762                 u64 *failed_start, struct extent_state **cached_state,
 763                 gfp_t mask)
 764{
 765        struct extent_state *state;
 766        struct extent_state *prealloc = NULL;
 767        struct rb_node *node;
 768        int err = 0;
 769        u64 last_start;
 770        u64 last_end;
 771
 772        bits |= EXTENT_FIRST_DELALLOC;
 773again:
 774        if (!prealloc && (mask & __GFP_WAIT)) {
 775                prealloc = alloc_extent_state(mask);
 776                BUG_ON(!prealloc);
 777        }
 778
 779        spin_lock(&tree->lock);
 780        if (cached_state && *cached_state) {
 781                state = *cached_state;
 782                if (state->start <= start && state->end > start &&
 783                    state->tree) {
 784                        node = &state->rb_node;
 785                        goto hit_next;
 786                }
 787        }
 788        /*
 789         * this search will find all the extents that end after
 790         * our range starts.
 791         */
 792        node = tree_search(tree, start);
 793        if (!node) {
 794                prealloc = alloc_extent_state_atomic(prealloc);
 795                BUG_ON(!prealloc);
 796                err = insert_state(tree, prealloc, start, end, &bits);
 797                if (err)
 798                        extent_io_tree_panic(tree, err);
 799
 800                prealloc = NULL;
 801                goto out;
 802        }
 803        state = rb_entry(node, struct extent_state, rb_node);
 804hit_next:
 805        last_start = state->start;
 806        last_end = state->end;
 807
 808        /*
 809         * | ---- desired range ---- |
 810         * | state |
 811         *
 812         * Just lock what we found and keep going
 813         */
 814        if (state->start == start && state->end <= end) {
 815                if (state->state & exclusive_bits) {
 816                        *failed_start = state->start;
 817                        err = -EEXIST;
 818                        goto out;
 819                }
 820
 821                set_state_bits(tree, state, &bits);
 822                cache_state(state, cached_state);
 823                merge_state(tree, state);
 824                if (last_end == (u64)-1)
 825                        goto out;
 826                start = last_end + 1;
 827                state = next_state(state);
 828                if (start < end && state && state->start == start &&
 829                    !need_resched())
 830                        goto hit_next;
 831                goto search_again;
 832        }
 833
 834        /*
 835         *     | ---- desired range ---- |
 836         * | state |
 837         *   or
 838         * | ------------- state -------------- |
 839         *
 840         * We need to split the extent we found, and may flip bits on
 841         * second half.
 842         *
 843         * If the extent we found extends past our
 844         * range, we just split and search again.  It'll get split
 845         * again the next time though.
 846         *
 847         * If the extent we found is inside our range, we set the
 848         * desired bit on it.
 849         */
 850        if (state->start < start) {
 851                if (state->state & exclusive_bits) {
 852                        *failed_start = start;
 853                        err = -EEXIST;
 854                        goto out;
 855                }
 856
 857                prealloc = alloc_extent_state_atomic(prealloc);
 858                BUG_ON(!prealloc);
 859                err = split_state(tree, state, prealloc, start);
 860                if (err)
 861                        extent_io_tree_panic(tree, err);
 862
 863                prealloc = NULL;
 864                if (err)
 865                        goto out;
 866                if (state->end <= end) {
 867                        set_state_bits(tree, state, &bits);
 868                        cache_state(state, cached_state);
 869                        merge_state(tree, state);
 870                        if (last_end == (u64)-1)
 871                                goto out;
 872                        start = last_end + 1;
 873                        state = next_state(state);
 874                        if (start < end && state && state->start == start &&
 875                            !need_resched())
 876                                goto hit_next;
 877                }
 878                goto search_again;
 879        }
 880        /*
 881         * | ---- desired range ---- |
 882         *     | state | or               | state |
 883         *
 884         * There's a hole, we need to insert something in it and
 885         * ignore the extent we found.
 886         */
 887        if (state->start > start) {
 888                u64 this_end;
 889                if (end < last_start)
 890                        this_end = end;
 891                else
 892                        this_end = last_start - 1;
 893
 894                prealloc = alloc_extent_state_atomic(prealloc);
 895                BUG_ON(!prealloc);
 896
 897                /*
 898                 * Avoid to free 'prealloc' if it can be merged with
 899                 * the later extent.
 900                 */
 901                err = insert_state(tree, prealloc, start, this_end,
 902                                   &bits);
 903                if (err)
 904                        extent_io_tree_panic(tree, err);
 905
 906                cache_state(prealloc, cached_state);
 907                prealloc = NULL;
 908                start = this_end + 1;
 909                goto search_again;
 910        }
 911        /*
 912         * | ---- desired range ---- |
 913         *                        | state |
 914         * We need to split the extent, and set the bit
 915         * on the first half
 916         */
 917        if (state->start <= end && state->end > end) {
 918                if (state->state & exclusive_bits) {
 919                        *failed_start = start;
 920                        err = -EEXIST;
 921                        goto out;
 922                }
 923
 924                prealloc = alloc_extent_state_atomic(prealloc);
 925                BUG_ON(!prealloc);
 926                err = split_state(tree, state, prealloc, end + 1);
 927                if (err)
 928                        extent_io_tree_panic(tree, err);
 929
 930                set_state_bits(tree, prealloc, &bits);
 931                cache_state(prealloc, cached_state);
 932                merge_state(tree, prealloc);
 933                prealloc = NULL;
 934                goto out;
 935        }
 936
 937        goto search_again;
 938
 939out:
 940        spin_unlock(&tree->lock);
 941        if (prealloc)
 942                free_extent_state(prealloc);
 943
 944        return err;
 945
 946search_again:
 947        if (start > end)
 948                goto out;
 949        spin_unlock(&tree->lock);
 950        if (mask & __GFP_WAIT)
 951                cond_resched();
 952        goto again;
 953}
 954
 955int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 956                   unsigned long bits, u64 * failed_start,
 957                   struct extent_state **cached_state, gfp_t mask)
 958{
 959        return __set_extent_bit(tree, start, end, bits, 0, failed_start,
 960                                cached_state, mask);
 961}
 962
 963
 964/**
 965 * convert_extent_bit - convert all bits in a given range from one bit to
 966 *                      another
 967 * @tree:       the io tree to search
 968 * @start:      the start offset in bytes
 969 * @end:        the end offset in bytes (inclusive)
 970 * @bits:       the bits to set in this range
 971 * @clear_bits: the bits to clear in this range
 972 * @cached_state:       state that we're going to cache
 973 * @mask:       the allocation mask
 974 *
 975 * This will go through and set bits for the given range.  If any states exist
 976 * already in this range they are set with the given bit and cleared of the
 977 * clear_bits.  This is only meant to be used by things that are mergeable, ie
 978 * converting from say DELALLOC to DIRTY.  This is not meant to be used with
 979 * boundary bits like LOCK.
 980 */
 981int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
 982                       unsigned long bits, unsigned long clear_bits,
 983                       struct extent_state **cached_state, gfp_t mask)
 984{
 985        struct extent_state *state;
 986        struct extent_state *prealloc = NULL;
 987        struct rb_node *node;
 988        int err = 0;
 989        u64 last_start;
 990        u64 last_end;
 991
 992again:
 993        if (!prealloc && (mask & __GFP_WAIT)) {
 994                prealloc = alloc_extent_state(mask);
 995                if (!prealloc)
 996                        return -ENOMEM;
 997        }
 998
 999        spin_lock(&tree->lock);
1000        if (cached_state && *cached_state) {
1001                state = *cached_state;
1002                if (state->start <= start && state->end > start &&
1003                    state->tree) {
1004                        node = &state->rb_node;
1005                        goto hit_next;
1006                }
1007        }
1008
1009        /*
1010         * this search will find all the extents that end after
1011         * our range starts.
1012         */
1013        node = tree_search(tree, start);
1014        if (!node) {
1015                prealloc = alloc_extent_state_atomic(prealloc);
1016                if (!prealloc) {
1017                        err = -ENOMEM;
1018                        goto out;
1019                }
1020                err = insert_state(tree, prealloc, start, end, &bits);
1021                prealloc = NULL;
1022                if (err)
1023                        extent_io_tree_panic(tree, err);
1024                goto out;
1025        }
1026        state = rb_entry(node, struct extent_state, rb_node);
1027hit_next:
1028        last_start = state->start;
1029        last_end = state->end;
1030
1031        /*
1032         * | ---- desired range ---- |
1033         * | state |
1034         *
1035         * Just lock what we found and keep going
1036         */
1037        if (state->start == start && state->end <= end) {
1038                set_state_bits(tree, state, &bits);
1039                cache_state(state, cached_state);
1040                state = clear_state_bit(tree, state, &clear_bits, 0);
1041                if (last_end == (u64)-1)
1042                        goto out;
1043                start = last_end + 1;
1044                if (start < end && state && state->start == start &&
1045                    !need_resched())
1046                        goto hit_next;
1047                goto search_again;
1048        }
1049
1050        /*
1051         *     | ---- desired range ---- |
1052         * | state |
1053         *   or
1054         * | ------------- state -------------- |
1055         *
1056         * We need to split the extent we found, and may flip bits on
1057         * second half.
1058         *
1059         * If the extent we found extends past our
1060         * range, we just split and search again.  It'll get split
1061         * again the next time though.
1062         *
1063         * If the extent we found is inside our range, we set the
1064         * desired bit on it.
1065         */
1066        if (state->start < start) {
1067                prealloc = alloc_extent_state_atomic(prealloc);
1068                if (!prealloc) {
1069                        err = -ENOMEM;
1070                        goto out;
1071                }
1072                err = split_state(tree, state, prealloc, start);
1073                if (err)
1074                        extent_io_tree_panic(tree, err);
1075                prealloc = NULL;
1076                if (err)
1077                        goto out;
1078                if (state->end <= end) {
1079                        set_state_bits(tree, state, &bits);
1080                        cache_state(state, cached_state);
1081                        state = clear_state_bit(tree, state, &clear_bits, 0);
1082                        if (last_end == (u64)-1)
1083                                goto out;
1084                        start = last_end + 1;
1085                        if (start < end && state && state->start == start &&
1086                            !need_resched())
1087                                goto hit_next;
1088                }
1089                goto search_again;
1090        }
1091        /*
1092         * | ---- desired range ---- |
1093         *     | state | or               | state |
1094         *
1095         * There's a hole, we need to insert something in it and
1096         * ignore the extent we found.
1097         */
1098        if (state->start > start) {
1099                u64 this_end;
1100                if (end < last_start)
1101                        this_end = end;
1102                else
1103                        this_end = last_start - 1;
1104
1105                prealloc = alloc_extent_state_atomic(prealloc);
1106                if (!prealloc) {
1107                        err = -ENOMEM;
1108                        goto out;
1109                }
1110
1111                /*
1112                 * Avoid to free 'prealloc' if it can be merged with
1113                 * the later extent.
1114                 */
1115                err = insert_state(tree, prealloc, start, this_end,
1116                                   &bits);
1117                if (err)
1118                        extent_io_tree_panic(tree, err);
1119                cache_state(prealloc, cached_state);
1120                prealloc = NULL;
1121                start = this_end + 1;
1122                goto search_again;
1123        }
1124        /*
1125         * | ---- desired range ---- |
1126         *                        | state |
1127         * We need to split the extent, and set the bit
1128         * on the first half
1129         */
1130        if (state->start <= end && state->end > end) {
1131                prealloc = alloc_extent_state_atomic(prealloc);
1132                if (!prealloc) {
1133                        err = -ENOMEM;
1134                        goto out;
1135                }
1136
1137                err = split_state(tree, state, prealloc, end + 1);
1138                if (err)
1139                        extent_io_tree_panic(tree, err);
1140
1141                set_state_bits(tree, prealloc, &bits);
1142                cache_state(prealloc, cached_state);
1143                clear_state_bit(tree, prealloc, &clear_bits, 0);
1144                prealloc = NULL;
1145                goto out;
1146        }
1147
1148        goto search_again;
1149
1150out:
1151        spin_unlock(&tree->lock);
1152        if (prealloc)
1153                free_extent_state(prealloc);
1154
1155        return err;
1156
1157search_again:
1158        if (start > end)
1159                goto out;
1160        spin_unlock(&tree->lock);
1161        if (mask & __GFP_WAIT)
1162                cond_resched();
1163        goto again;
1164}
1165
1166/* wrappers around set/clear extent bit */
1167int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1168                     gfp_t mask)
1169{
1170        return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1171                              NULL, mask);
1172}
1173
1174int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1175                    unsigned long bits, gfp_t mask)
1176{
1177        return set_extent_bit(tree, start, end, bits, NULL,
1178                              NULL, mask);
1179}
1180
1181int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1182                      unsigned long bits, gfp_t mask)
1183{
1184        return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1185}
1186
1187int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1188                        struct extent_state **cached_state, gfp_t mask)
1189{
1190        return set_extent_bit(tree, start, end,
1191                              EXTENT_DELALLOC | EXTENT_UPTODATE,
1192                              NULL, cached_state, mask);
1193}
1194
1195int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1196                      struct extent_state **cached_state, gfp_t mask)
1197{
1198        return set_extent_bit(tree, start, end,
1199                              EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1200                              NULL, cached_state, mask);
1201}
1202
1203int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1204                       gfp_t mask)
1205{
1206        return clear_extent_bit(tree, start, end,
1207                                EXTENT_DIRTY | EXTENT_DELALLOC |
1208                                EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1209}
1210
1211int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1212                     gfp_t mask)
1213{
1214        return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1215                              NULL, mask);
1216}
1217
1218int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1219                        struct extent_state **cached_state, gfp_t mask)
1220{
1221        return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1222                              cached_state, mask);
1223}
1224
1225int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1226                          struct extent_state **cached_state, gfp_t mask)
1227{
1228        return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1229                                cached_state, mask);
1230}
1231
1232/*
1233 * either insert or lock state struct between start and end use mask to tell
1234 * us if waiting is desired.
1235 */
1236int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1237                     unsigned long bits, struct extent_state **cached_state)
1238{
1239        int err;
1240        u64 failed_start;
1241        while (1) {
1242                err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1243                                       EXTENT_LOCKED, &failed_start,
1244                                       cached_state, GFP_NOFS);
1245                if (err == -EEXIST) {
1246                        wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1247                        start = failed_start;
1248                } else
1249                        break;
1250                WARN_ON(start > end);
1251        }
1252        return err;
1253}
1254
1255int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1256{
1257        return lock_extent_bits(tree, start, end, 0, NULL);
1258}
1259
1260int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1261{
1262        int err;
1263        u64 failed_start;
1264
1265        err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1266                               &failed_start, NULL, GFP_NOFS);
1267        if (err == -EEXIST) {
1268                if (failed_start > start)
1269                        clear_extent_bit(tree, start, failed_start - 1,
1270                                         EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1271                return 0;
1272        }
1273        return 1;
1274}
1275
1276int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1277                         struct extent_state **cached, gfp_t mask)
1278{
1279        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1280                                mask);
1281}
1282
1283int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1284{
1285        return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1286                                GFP_NOFS);
1287}
1288
1289int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1290{
1291        unsigned long index = start >> PAGE_CACHE_SHIFT;
1292        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1293        struct page *page;
1294
1295        while (index <= end_index) {
1296                page = find_get_page(inode->i_mapping, index);
1297                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1298                clear_page_dirty_for_io(page);
1299                page_cache_release(page);
1300                index++;
1301        }
1302        return 0;
1303}
1304
1305int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1306{
1307        unsigned long index = start >> PAGE_CACHE_SHIFT;
1308        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1309        struct page *page;
1310
1311        while (index <= end_index) {
1312                page = find_get_page(inode->i_mapping, index);
1313                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1314                account_page_redirty(page);
1315                __set_page_dirty_nobuffers(page);
1316                page_cache_release(page);
1317                index++;
1318        }
1319        return 0;
1320}
1321
1322/*
1323 * helper function to set both pages and extents in the tree writeback
1324 */
1325static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1326{
1327        unsigned long index = start >> PAGE_CACHE_SHIFT;
1328        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1329        struct page *page;
1330
1331        while (index <= end_index) {
1332                page = find_get_page(tree->mapping, index);
1333                BUG_ON(!page); /* Pages should be in the extent_io_tree */
1334                set_page_writeback(page);
1335                page_cache_release(page);
1336                index++;
1337        }
1338        return 0;
1339}
1340
1341/* find the first state struct with 'bits' set after 'start', and
1342 * return it.  tree->lock must be held.  NULL will returned if
1343 * nothing was found after 'start'
1344 */
1345static struct extent_state *
1346find_first_extent_bit_state(struct extent_io_tree *tree,
1347                            u64 start, unsigned long bits)
1348{
1349        struct rb_node *node;
1350        struct extent_state *state;
1351
1352        /*
1353         * this search will find all the extents that end after
1354         * our range starts.
1355         */
1356        node = tree_search(tree, start);
1357        if (!node)
1358                goto out;
1359
1360        while (1) {
1361                state = rb_entry(node, struct extent_state, rb_node);
1362                if (state->end >= start && (state->state & bits))
1363                        return state;
1364
1365                node = rb_next(node);
1366                if (!node)
1367                        break;
1368        }
1369out:
1370        return NULL;
1371}
1372
1373/*
1374 * find the first offset in the io tree with 'bits' set. zero is
1375 * returned if we find something, and *start_ret and *end_ret are
1376 * set to reflect the state struct that was found.
1377 *
1378 * If nothing was found, 1 is returned. If found something, return 0.
1379 */
1380int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1381                          u64 *start_ret, u64 *end_ret, unsigned long bits,
1382                          struct extent_state **cached_state)
1383{
1384        struct extent_state *state;
1385        struct rb_node *n;
1386        int ret = 1;
1387
1388        spin_lock(&tree->lock);
1389        if (cached_state && *cached_state) {
1390                state = *cached_state;
1391                if (state->end == start - 1 && state->tree) {
1392                        n = rb_next(&state->rb_node);
1393                        while (n) {
1394                                state = rb_entry(n, struct extent_state,
1395                                                 rb_node);
1396                                if (state->state & bits)
1397                                        goto got_it;
1398                                n = rb_next(n);
1399                        }
1400                        free_extent_state(*cached_state);
1401                        *cached_state = NULL;
1402                        goto out;
1403                }
1404                free_extent_state(*cached_state);
1405                *cached_state = NULL;
1406        }
1407
1408        state = find_first_extent_bit_state(tree, start, bits);
1409got_it:
1410        if (state) {
1411                cache_state(state, cached_state);
1412                *start_ret = state->start;
1413                *end_ret = state->end;
1414                ret = 0;
1415        }
1416out:
1417        spin_unlock(&tree->lock);
1418        return ret;
1419}
1420
1421/*
1422 * find a contiguous range of bytes in the file marked as delalloc, not
1423 * more than 'max_bytes'.  start and end are used to return the range,
1424 *
1425 * 1 is returned if we find something, 0 if nothing was in the tree
1426 */
1427static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1428                                        u64 *start, u64 *end, u64 max_bytes,
1429                                        struct extent_state **cached_state)
1430{
1431        struct rb_node *node;
1432        struct extent_state *state;
1433        u64 cur_start = *start;
1434        u64 found = 0;
1435        u64 total_bytes = 0;
1436
1437        spin_lock(&tree->lock);
1438
1439        /*
1440         * this search will find all the extents that end after
1441         * our range starts.
1442         */
1443        node = tree_search(tree, cur_start);
1444        if (!node) {
1445                if (!found)
1446                        *end = (u64)-1;
1447                goto out;
1448        }
1449
1450        while (1) {
1451                state = rb_entry(node, struct extent_state, rb_node);
1452                if (found && (state->start != cur_start ||
1453                              (state->state & EXTENT_BOUNDARY))) {
1454                        goto out;
1455                }
1456                if (!(state->state & EXTENT_DELALLOC)) {
1457                        if (!found)
1458                                *end = state->end;
1459                        goto out;
1460                }
1461                if (!found) {
1462                        *start = state->start;
1463                        *cached_state = state;
1464                        atomic_inc(&state->refs);
1465                }
1466                found++;
1467                *end = state->end;
1468                cur_start = state->end + 1;
1469                node = rb_next(node);
1470                if (!node)
1471                        break;
1472                total_bytes += state->end - state->start + 1;
1473                if (total_bytes >= max_bytes)
1474                        break;
1475        }
1476out:
1477        spin_unlock(&tree->lock);
1478        return found;
1479}
1480
1481static noinline void __unlock_for_delalloc(struct inode *inode,
1482                                           struct page *locked_page,
1483                                           u64 start, u64 end)
1484{
1485        int ret;
1486        struct page *pages[16];
1487        unsigned long index = start >> PAGE_CACHE_SHIFT;
1488        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1489        unsigned long nr_pages = end_index - index + 1;
1490        int i;
1491
1492        if (index == locked_page->index && end_index == index)
1493                return;
1494
1495        while (nr_pages > 0) {
1496                ret = find_get_pages_contig(inode->i_mapping, index,
1497                                     min_t(unsigned long, nr_pages,
1498                                     ARRAY_SIZE(pages)), pages);
1499                for (i = 0; i < ret; i++) {
1500                        if (pages[i] != locked_page)
1501                                unlock_page(pages[i]);
1502                        page_cache_release(pages[i]);
1503                }
1504                nr_pages -= ret;
1505                index += ret;
1506                cond_resched();
1507        }
1508}
1509
1510static noinline int lock_delalloc_pages(struct inode *inode,
1511                                        struct page *locked_page,
1512                                        u64 delalloc_start,
1513                                        u64 delalloc_end)
1514{
1515        unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1516        unsigned long start_index = index;
1517        unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1518        unsigned long pages_locked = 0;
1519        struct page *pages[16];
1520        unsigned long nrpages;
1521        int ret;
1522        int i;
1523
1524        /* the caller is responsible for locking the start index */
1525        if (index == locked_page->index && index == end_index)
1526                return 0;
1527
1528        /* skip the page at the start index */
1529        nrpages = end_index - index + 1;
1530        while (nrpages > 0) {
1531                ret = find_get_pages_contig(inode->i_mapping, index,
1532                                     min_t(unsigned long,
1533                                     nrpages, ARRAY_SIZE(pages)), pages);
1534                if (ret == 0) {
1535                        ret = -EAGAIN;
1536                        goto done;
1537                }
1538                /* now we have an array of pages, lock them all */
1539                for (i = 0; i < ret; i++) {
1540                        /*
1541                         * the caller is taking responsibility for
1542                         * locked_page
1543                         */
1544                        if (pages[i] != locked_page) {
1545                                lock_page(pages[i]);
1546                                if (!PageDirty(pages[i]) ||
1547                                    pages[i]->mapping != inode->i_mapping) {
1548                                        ret = -EAGAIN;
1549                                        unlock_page(pages[i]);
1550                                        page_cache_release(pages[i]);
1551                                        goto done;
1552                                }
1553                        }
1554                        page_cache_release(pages[i]);
1555                        pages_locked++;
1556                }
1557                nrpages -= ret;
1558                index += ret;
1559                cond_resched();
1560        }
1561        ret = 0;
1562done:
1563        if (ret && pages_locked) {
1564                __unlock_for_delalloc(inode, locked_page,
1565                              delalloc_start,
1566                              ((u64)(start_index + pages_locked - 1)) <<
1567                              PAGE_CACHE_SHIFT);
1568        }
1569        return ret;
1570}
1571
1572/*
1573 * find a contiguous range of bytes in the file marked as delalloc, not
1574 * more than 'max_bytes'.  start and end are used to return the range,
1575 *
1576 * 1 is returned if we find something, 0 if nothing was in the tree
1577 */
1578static noinline u64 find_lock_delalloc_range(struct inode *inode,
1579                                             struct extent_io_tree *tree,
1580                                             struct page *locked_page,
1581                                             u64 *start, u64 *end,
1582                                             u64 max_bytes)
1583{
1584        u64 delalloc_start;
1585        u64 delalloc_end;
1586        u64 found;
1587        struct extent_state *cached_state = NULL;
1588        int ret;
1589        int loops = 0;
1590
1591again:
1592        /* step one, find a bunch of delalloc bytes starting at start */
1593        delalloc_start = *start;
1594        delalloc_end = 0;
1595        found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1596                                    max_bytes, &cached_state);
1597        if (!found || delalloc_end <= *start) {
1598                *start = delalloc_start;
1599                *end = delalloc_end;
1600                free_extent_state(cached_state);
1601                return found;
1602        }
1603
1604        /*
1605         * start comes from the offset of locked_page.  We have to lock
1606         * pages in order, so we can't process delalloc bytes before
1607         * locked_page
1608         */
1609        if (delalloc_start < *start)
1610                delalloc_start = *start;
1611
1612        /*
1613         * make sure to limit the number of pages we try to lock down
1614         * if we're looping.
1615         */
1616        if (delalloc_end + 1 - delalloc_start > max_bytes && loops)
1617                delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1;
1618
1619        /* step two, lock all the pages after the page that has start */
1620        ret = lock_delalloc_pages(inode, locked_page,
1621                                  delalloc_start, delalloc_end);
1622        if (ret == -EAGAIN) {
1623                /* some of the pages are gone, lets avoid looping by
1624                 * shortening the size of the delalloc range we're searching
1625                 */
1626                free_extent_state(cached_state);
1627                if (!loops) {
1628                        unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1);
1629                        max_bytes = PAGE_CACHE_SIZE - offset;
1630                        loops = 1;
1631                        goto again;
1632                } else {
1633                        found = 0;
1634                        goto out_failed;
1635                }
1636        }
1637        BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1638
1639        /* step three, lock the state bits for the whole range */
1640        lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1641
1642        /* then test to make sure it is all still delalloc */
1643        ret = test_range_bit(tree, delalloc_start, delalloc_end,
1644                             EXTENT_DELALLOC, 1, cached_state);
1645        if (!ret) {
1646                unlock_extent_cached(tree, delalloc_start, delalloc_end,
1647                                     &cached_state, GFP_NOFS);
1648                __unlock_for_delalloc(inode, locked_page,
1649                              delalloc_start, delalloc_end);
1650                cond_resched();
1651                goto again;
1652        }
1653        free_extent_state(cached_state);
1654        *start = delalloc_start;
1655        *end = delalloc_end;
1656out_failed:
1657        return found;
1658}
1659
1660int extent_clear_unlock_delalloc(struct inode *inode,
1661                                struct extent_io_tree *tree,
1662                                u64 start, u64 end, struct page *locked_page,
1663                                unsigned long op)
1664{
1665        int ret;
1666        struct page *pages[16];
1667        unsigned long index = start >> PAGE_CACHE_SHIFT;
1668        unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1669        unsigned long nr_pages = end_index - index + 1;
1670        int i;
1671        unsigned long clear_bits = 0;
1672
1673        if (op & EXTENT_CLEAR_UNLOCK)
1674                clear_bits |= EXTENT_LOCKED;
1675        if (op & EXTENT_CLEAR_DIRTY)
1676                clear_bits |= EXTENT_DIRTY;
1677
1678        if (op & EXTENT_CLEAR_DELALLOC)
1679                clear_bits |= EXTENT_DELALLOC;
1680
1681        clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1682        if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
1683                    EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK |
1684                    EXTENT_SET_PRIVATE2)))
1685                return 0;
1686
1687        while (nr_pages > 0) {
1688                ret = find_get_pages_contig(inode->i_mapping, index,
1689                                     min_t(unsigned long,
1690                                     nr_pages, ARRAY_SIZE(pages)), pages);
1691                for (i = 0; i < ret; i++) {
1692
1693                        if (op & EXTENT_SET_PRIVATE2)
1694                                SetPagePrivate2(pages[i]);
1695
1696                        if (pages[i] == locked_page) {
1697                                page_cache_release(pages[i]);
1698                                continue;
1699                        }
1700                        if (op & EXTENT_CLEAR_DIRTY)
1701                                clear_page_dirty_for_io(pages[i]);
1702                        if (op & EXTENT_SET_WRITEBACK)
1703                                set_page_writeback(pages[i]);
1704                        if (op & EXTENT_END_WRITEBACK)
1705                                end_page_writeback(pages[i]);
1706                        if (op & EXTENT_CLEAR_UNLOCK_PAGE)
1707                                unlock_page(pages[i]);
1708                        page_cache_release(pages[i]);
1709                }
1710                nr_pages -= ret;
1711                index += ret;
1712                cond_resched();
1713        }
1714        return 0;
1715}
1716
1717/*
1718 * count the number of bytes in the tree that have a given bit(s)
1719 * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1720 * cached.  The total number found is returned.
1721 */
1722u64 count_range_bits(struct extent_io_tree *tree,
1723                     u64 *start, u64 search_end, u64 max_bytes,
1724                     unsigned long bits, int contig)
1725{
1726        struct rb_node *node;
1727        struct extent_state *state;
1728        u64 cur_start = *start;
1729        u64 total_bytes = 0;
1730        u64 last = 0;
1731        int found = 0;
1732
1733        if (search_end <= cur_start) {
1734                WARN_ON(1);
1735                return 0;
1736        }
1737
1738        spin_lock(&tree->lock);
1739        if (cur_start == 0 && bits == EXTENT_DIRTY) {
1740                total_bytes = tree->dirty_bytes;
1741                goto out;
1742        }
1743        /*
1744         * this search will find all the extents that end after
1745         * our range starts.
1746         */
1747        node = tree_search(tree, cur_start);
1748        if (!node)
1749                goto out;
1750
1751        while (1) {
1752                state = rb_entry(node, struct extent_state, rb_node);
1753                if (state->start > search_end)
1754                        break;
1755                if (contig && found && state->start > last + 1)
1756                        break;
1757                if (state->end >= cur_start && (state->state & bits) == bits) {
1758                        total_bytes += min(search_end, state->end) + 1 -
1759                                       max(cur_start, state->start);
1760                        if (total_bytes >= max_bytes)
1761                                break;
1762                        if (!found) {
1763                                *start = max(cur_start, state->start);
1764                                found = 1;
1765                        }
1766                        last = state->end;
1767                } else if (contig && found) {
1768                        break;
1769                }
1770                node = rb_next(node);
1771                if (!node)
1772                        break;
1773        }
1774out:
1775        spin_unlock(&tree->lock);
1776        return total_bytes;
1777}
1778
1779/*
1780 * set the private field for a given byte offset in the tree.  If there isn't
1781 * an extent_state there already, this does nothing.
1782 */
1783int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1784{
1785        struct rb_node *node;
1786        struct extent_state *state;
1787        int ret = 0;
1788
1789        spin_lock(&tree->lock);
1790        /*
1791         * this search will find all the extents that end after
1792         * our range starts.
1793         */
1794        node = tree_search(tree, start);
1795        if (!node) {
1796                ret = -ENOENT;
1797                goto out;
1798        }
1799        state = rb_entry(node, struct extent_state, rb_node);
1800        if (state->start != start) {
1801                ret = -ENOENT;
1802                goto out;
1803        }
1804        state->private = private;
1805out:
1806        spin_unlock(&tree->lock);
1807        return ret;
1808}
1809
1810void extent_cache_csums_dio(struct extent_io_tree *tree, u64 start, u32 csums[],
1811                            int count)
1812{
1813        struct rb_node *node;
1814        struct extent_state *state;
1815
1816        spin_lock(&tree->lock);
1817        /*
1818         * this search will find all the extents that end after
1819         * our range starts.
1820         */
1821        node = tree_search(tree, start);
1822        BUG_ON(!node);
1823
1824        state = rb_entry(node, struct extent_state, rb_node);
1825        BUG_ON(state->start != start);
1826
1827        while (count) {
1828                state->private = *csums++;
1829                count--;
1830                state = next_state(state);
1831        }
1832        spin_unlock(&tree->lock);
1833}
1834
1835static inline u64 __btrfs_get_bio_offset(struct bio *bio, int bio_index)
1836{
1837        struct bio_vec *bvec = bio->bi_io_vec + bio_index;
1838
1839        return page_offset(bvec->bv_page) + bvec->bv_offset;
1840}
1841
1842void extent_cache_csums(struct extent_io_tree *tree, struct bio *bio, int bio_index,
1843                        u32 csums[], int count)
1844{
1845        struct rb_node *node;
1846        struct extent_state *state = NULL;
1847        u64 start;
1848
1849        spin_lock(&tree->lock);
1850        do {
1851                start = __btrfs_get_bio_offset(bio, bio_index);
1852                if (state == NULL || state->start != start) {
1853                        node = tree_search(tree, start);
1854                        BUG_ON(!node);
1855
1856                        state = rb_entry(node, struct extent_state, rb_node);
1857                        BUG_ON(state->start != start);
1858                }
1859                state->private = *csums++;
1860                count--;
1861                bio_index++;
1862
1863                state = next_state(state);
1864        } while (count);
1865        spin_unlock(&tree->lock);
1866}
1867
1868int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1869{
1870        struct rb_node *node;
1871        struct extent_state *state;
1872        int ret = 0;
1873
1874        spin_lock(&tree->lock);
1875        /*
1876         * this search will find all the extents that end after
1877         * our range starts.
1878         */
1879        node = tree_search(tree, start);
1880        if (!node) {
1881                ret = -ENOENT;
1882                goto out;
1883        }
1884        state = rb_entry(node, struct extent_state, rb_node);
1885        if (state->start != start) {
1886                ret = -ENOENT;
1887                goto out;
1888        }
1889        *private = state->private;
1890out:
1891        spin_unlock(&tree->lock);
1892        return ret;
1893}
1894
1895/*
1896 * searches a range in the state tree for a given mask.
1897 * If 'filled' == 1, this returns 1 only if every extent in the tree
1898 * has the bits set.  Otherwise, 1 is returned if any bit in the
1899 * range is found set.
1900 */
1901int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1902                   unsigned long bits, int filled, struct extent_state *cached)
1903{
1904        struct extent_state *state = NULL;
1905        struct rb_node *node;
1906        int bitset = 0;
1907
1908        spin_lock(&tree->lock);
1909        if (cached && cached->tree && cached->start <= start &&
1910            cached->end > start)
1911                node = &cached->rb_node;
1912        else
1913                node = tree_search(tree, start);
1914        while (node && start <= end) {
1915                state = rb_entry(node, struct extent_state, rb_node);
1916
1917                if (filled && state->start > start) {
1918                        bitset = 0;
1919                        break;
1920                }
1921
1922                if (state->start > end)
1923                        break;
1924
1925                if (state->state & bits) {
1926                        bitset = 1;
1927                        if (!filled)
1928                                break;
1929                } else if (filled) {
1930                        bitset = 0;
1931                        break;
1932                }
1933
1934                if (state->end == (u64)-1)
1935                        break;
1936
1937                start = state->end + 1;
1938                if (start > end)
1939                        break;
1940                node = rb_next(node);
1941                if (!node) {
1942                        if (filled)
1943                                bitset = 0;
1944                        break;
1945                }
1946        }
1947        spin_unlock(&tree->lock);
1948        return bitset;
1949}
1950
1951/*
1952 * helper function to set a given page up to date if all the
1953 * extents in the tree for that page are up to date
1954 */
1955static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1956{
1957        u64 start = page_offset(page);
1958        u64 end = start + PAGE_CACHE_SIZE - 1;
1959        if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1960                SetPageUptodate(page);
1961}
1962
1963/*
1964 * When IO fails, either with EIO or csum verification fails, we
1965 * try other mirrors that might have a good copy of the data.  This
1966 * io_failure_record is used to record state as we go through all the
1967 * mirrors.  If another mirror has good data, the page is set up to date
1968 * and things continue.  If a good mirror can't be found, the original
1969 * bio end_io callback is called to indicate things have failed.
1970 */
1971struct io_failure_record {
1972        struct page *page;
1973        u64 start;
1974        u64 len;
1975        u64 logical;
1976        unsigned long bio_flags;
1977        int this_mirror;
1978        int failed_mirror;
1979        int in_validation;
1980};
1981
1982static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1983                                int did_repair)
1984{
1985        int ret;
1986        int err = 0;
1987        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1988
1989        set_state_private(failure_tree, rec->start, 0);
1990        ret = clear_extent_bits(failure_tree, rec->start,
1991                                rec->start + rec->len - 1,
1992                                EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1993        if (ret)
1994                err = ret;
1995
1996        ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1997                                rec->start + rec->len - 1,
1998                                EXTENT_DAMAGED, GFP_NOFS);
1999        if (ret && !err)
2000                err = ret;
2001
2002        kfree(rec);
2003        return err;
2004}
2005
2006static void repair_io_failure_callback(struct bio *bio, int err)
2007{
2008        complete(bio->bi_private);
2009}
2010
2011/*
2012 * this bypasses the standard btrfs submit functions deliberately, as
2013 * the standard behavior is to write all copies in a raid setup. here we only
2014 * want to write the one bad copy. so we do the mapping for ourselves and issue
2015 * submit_bio directly.
2016 * to avoid any synchronization issues, wait for the data after writing, which
2017 * actually prevents the read that triggered the error from finishing.
2018 * currently, there can be no more than two copies of every data bit. thus,
2019 * exactly one rewrite is required.
2020 */
2021int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2022                        u64 length, u64 logical, struct page *page,
2023                        int mirror_num)
2024{
2025        struct bio *bio;
2026        struct btrfs_device *dev;
2027        DECLARE_COMPLETION_ONSTACK(compl);
2028        u64 map_length = 0;
2029        u64 sector;
2030        struct btrfs_bio *bbio = NULL;
2031        struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2032        int ret;
2033
2034        BUG_ON(!mirror_num);
2035
2036        /* we can't repair anything in raid56 yet */
2037        if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2038                return 0;
2039
2040        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2041        if (!bio)
2042                return -EIO;
2043        bio->bi_private = &compl;
2044        bio->bi_end_io = repair_io_failure_callback;
2045        bio->bi_size = 0;
2046        map_length = length;
2047
2048        ret = btrfs_map_block(fs_info, WRITE, logical,
2049                              &map_length, &bbio, mirror_num);
2050        if (ret) {
2051                bio_put(bio);
2052                return -EIO;
2053        }
2054        BUG_ON(mirror_num != bbio->mirror_num);
2055        sector = bbio->stripes[mirror_num-1].physical >> 9;
2056        bio->bi_sector = sector;
2057        dev = bbio->stripes[mirror_num-1].dev;
2058        kfree(bbio);
2059        if (!dev || !dev->bdev || !dev->writeable) {
2060                bio_put(bio);
2061                return -EIO;
2062        }
2063        bio->bi_bdev = dev->bdev;
2064        bio_add_page(bio, page, length, start - page_offset(page));
2065        btrfsic_submit_bio(WRITE_SYNC, bio);
2066        wait_for_completion(&compl);
2067
2068        if (!test_bit(BIO_UPTODATE, &bio->bi_flags)) {
2069                /* try to remap that extent elsewhere? */
2070                bio_put(bio);
2071                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2072                return -EIO;
2073        }
2074
2075        printk_ratelimited_in_rcu(KERN_INFO "btrfs read error corrected: ino %lu off %llu "
2076                      "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2077                      start, rcu_str_deref(dev->name), sector);
2078
2079        bio_put(bio);
2080        return 0;
2081}
2082
2083int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2084                         int mirror_num)
2085{
2086        u64 start = eb->start;
2087        unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2088        int ret = 0;
2089
2090        for (i = 0; i < num_pages; i++) {
2091                struct page *p = extent_buffer_page(eb, i);
2092                ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2093                                        start, p, mirror_num);
2094                if (ret)
2095                        break;
2096                start += PAGE_CACHE_SIZE;
2097        }
2098
2099        return ret;
2100}
2101
2102/*
2103 * each time an IO finishes, we do a fast check in the IO failure tree
2104 * to see if we need to process or clean up an io_failure_record
2105 */
2106static int clean_io_failure(u64 start, struct page *page)
2107{
2108        u64 private;
2109        u64 private_failure;
2110        struct io_failure_record *failrec;
2111        struct btrfs_fs_info *fs_info;
2112        struct extent_state *state;
2113        int num_copies;
2114        int did_repair = 0;
2115        int ret;
2116        struct inode *inode = page->mapping->host;
2117
2118        private = 0;
2119        ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2120                                (u64)-1, 1, EXTENT_DIRTY, 0);
2121        if (!ret)
2122                return 0;
2123
2124        ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2125                                &private_failure);
2126        if (ret)
2127                return 0;
2128
2129        failrec = (struct io_failure_record *)(unsigned long) private_failure;
2130        BUG_ON(!failrec->this_mirror);
2131
2132        if (failrec->in_validation) {
2133                /* there was no real error, just free the record */
2134                pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2135                         failrec->start);
2136                did_repair = 1;
2137                goto out;
2138        }
2139
2140        spin_lock(&BTRFS_I(inode)->io_tree.lock);
2141        state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2142                                            failrec->start,
2143                                            EXTENT_LOCKED);
2144        spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2145
2146        if (state && state->start == failrec->start) {
2147                fs_info = BTRFS_I(inode)->root->fs_info;
2148                num_copies = btrfs_num_copies(fs_info, failrec->logical,
2149                                              failrec->len);
2150                if (num_copies > 1)  {
2151                        ret = repair_io_failure(fs_info, start, failrec->len,
2152                                                failrec->logical, page,
2153                                                failrec->failed_mirror);
2154                        did_repair = !ret;
2155                }
2156                ret = 0;
2157        }
2158
2159out:
2160        if (!ret)
2161                ret = free_io_failure(inode, failrec, did_repair);
2162
2163        return ret;
2164}
2165
2166/*
2167 * this is a generic handler for readpage errors (default
2168 * readpage_io_failed_hook). if other copies exist, read those and write back
2169 * good data to the failed position. does not investigate in remapping the
2170 * failed extent elsewhere, hoping the device will be smart enough to do this as
2171 * needed
2172 */
2173
2174static int bio_readpage_error(struct bio *failed_bio, struct page *page,
2175                                u64 start, u64 end, int failed_mirror,
2176                                struct extent_state *state)
2177{
2178        struct io_failure_record *failrec = NULL;
2179        u64 private;
2180        struct extent_map *em;
2181        struct inode *inode = page->mapping->host;
2182        struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2183        struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2184        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2185        struct bio *bio;
2186        int num_copies;
2187        int ret;
2188        int read_mode;
2189        u64 logical;
2190
2191        BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2192
2193        ret = get_state_private(failure_tree, start, &private);
2194        if (ret) {
2195                failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2196                if (!failrec)
2197                        return -ENOMEM;
2198                failrec->start = start;
2199                failrec->len = end - start + 1;
2200                failrec->this_mirror = 0;
2201                failrec->bio_flags = 0;
2202                failrec->in_validation = 0;
2203
2204                read_lock(&em_tree->lock);
2205                em = lookup_extent_mapping(em_tree, start, failrec->len);
2206                if (!em) {
2207                        read_unlock(&em_tree->lock);
2208                        kfree(failrec);
2209                        return -EIO;
2210                }
2211
2212                if (em->start > start || em->start + em->len < start) {
2213                        free_extent_map(em);
2214                        em = NULL;
2215                }
2216                read_unlock(&em_tree->lock);
2217
2218                if (!em) {
2219                        kfree(failrec);
2220                        return -EIO;
2221                }
2222                logical = start - em->start;
2223                logical = em->block_start + logical;
2224                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2225                        logical = em->block_start;
2226                        failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2227                        extent_set_compress_type(&failrec->bio_flags,
2228                                                 em->compress_type);
2229                }
2230                pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2231                         "len=%llu\n", logical, start, failrec->len);
2232                failrec->logical = logical;
2233                free_extent_map(em);
2234
2235                /* set the bits in the private failure tree */
2236                ret = set_extent_bits(failure_tree, start, end,
2237                                        EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2238                if (ret >= 0)
2239                        ret = set_state_private(failure_tree, start,
2240                                                (u64)(unsigned long)failrec);
2241                /* set the bits in the inode's tree */
2242                if (ret >= 0)
2243                        ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2244                                                GFP_NOFS);
2245                if (ret < 0) {
2246                        kfree(failrec);
2247                        return ret;
2248                }
2249        } else {
2250                failrec = (struct io_failure_record *)(unsigned long)private;
2251                pr_debug("bio_readpage_error: (found) logical=%llu, "
2252                         "start=%llu, len=%llu, validation=%d\n",
2253                         failrec->logical, failrec->start, failrec->len,
2254                         failrec->in_validation);
2255                /*
2256                 * when data can be on disk more than twice, add to failrec here
2257                 * (e.g. with a list for failed_mirror) to make
2258                 * clean_io_failure() clean all those errors at once.
2259                 */
2260        }
2261        num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2262                                      failrec->logical, failrec->len);
2263        if (num_copies == 1) {
2264                /*
2265                 * we only have a single copy of the data, so don't bother with
2266                 * all the retry and error correction code that follows. no
2267                 * matter what the error is, it is very likely to persist.
2268                 */
2269                pr_debug("bio_readpage_error: cannot repair, num_copies == 1. "
2270                         "state=%p, num_copies=%d, next_mirror %d, "
2271                         "failed_mirror %d\n", state, num_copies,
2272                         failrec->this_mirror, failed_mirror);
2273                free_io_failure(inode, failrec, 0);
2274                return -EIO;
2275        }
2276
2277        if (!state) {
2278                spin_lock(&tree->lock);
2279                state = find_first_extent_bit_state(tree, failrec->start,
2280                                                    EXTENT_LOCKED);
2281                if (state && state->start != failrec->start)
2282                        state = NULL;
2283                spin_unlock(&tree->lock);
2284        }
2285
2286        /*
2287         * there are two premises:
2288         *      a) deliver good data to the caller
2289         *      b) correct the bad sectors on disk
2290         */
2291        if (failed_bio->bi_vcnt > 1) {
2292                /*
2293                 * to fulfill b), we need to know the exact failing sectors, as
2294                 * we don't want to rewrite any more than the failed ones. thus,
2295                 * we need separate read requests for the failed bio
2296                 *
2297                 * if the following BUG_ON triggers, our validation request got
2298                 * merged. we need separate requests for our algorithm to work.
2299                 */
2300                BUG_ON(failrec->in_validation);
2301                failrec->in_validation = 1;
2302                failrec->this_mirror = failed_mirror;
2303                read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2304        } else {
2305                /*
2306                 * we're ready to fulfill a) and b) alongside. get a good copy
2307                 * of the failed sector and if we succeed, we have setup
2308                 * everything for repair_io_failure to do the rest for us.
2309                 */
2310                if (failrec->in_validation) {
2311                        BUG_ON(failrec->this_mirror != failed_mirror);
2312                        failrec->in_validation = 0;
2313                        failrec->this_mirror = 0;
2314                }
2315                failrec->failed_mirror = failed_mirror;
2316                failrec->this_mirror++;
2317                if (failrec->this_mirror == failed_mirror)
2318                        failrec->this_mirror++;
2319                read_mode = READ_SYNC;
2320        }
2321
2322        if (!state || failrec->this_mirror > num_copies) {
2323                pr_debug("bio_readpage_error: (fail) state=%p, num_copies=%d, "
2324                         "next_mirror %d, failed_mirror %d\n", state,
2325                         num_copies, failrec->this_mirror, failed_mirror);
2326                free_io_failure(inode, failrec, 0);
2327                return -EIO;
2328        }
2329
2330        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2331        if (!bio) {
2332                free_io_failure(inode, failrec, 0);
2333                return -EIO;
2334        }
2335        bio->bi_private = state;
2336        bio->bi_end_io = failed_bio->bi_end_io;
2337        bio->bi_sector = failrec->logical >> 9;
2338        bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2339        bio->bi_size = 0;
2340
2341        bio_add_page(bio, page, failrec->len, start - page_offset(page));
2342
2343        pr_debug("bio_readpage_error: submitting new read[%#x] to "
2344                 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2345                 failrec->this_mirror, num_copies, failrec->in_validation);
2346
2347        ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2348                                         failrec->this_mirror,
2349                                         failrec->bio_flags, 0);
2350        return ret;
2351}
2352
2353/* lots and lots of room for performance fixes in the end_bio funcs */
2354
2355int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2356{
2357        int uptodate = (err == 0);
2358        struct extent_io_tree *tree;
2359        int ret;
2360
2361        tree = &BTRFS_I(page->mapping->host)->io_tree;
2362
2363        if (tree->ops && tree->ops->writepage_end_io_hook) {
2364                ret = tree->ops->writepage_end_io_hook(page, start,
2365                                               end, NULL, uptodate);
2366                if (ret)
2367                        uptodate = 0;
2368        }
2369
2370        if (!uptodate) {
2371                ClearPageUptodate(page);
2372                SetPageError(page);
2373        }
2374        return 0;
2375}
2376
2377/*
2378 * after a writepage IO is done, we need to:
2379 * clear the uptodate bits on error
2380 * clear the writeback bits in the extent tree for this IO
2381 * end_page_writeback if the page has no more pending IO
2382 *
2383 * Scheduling is not allowed, so the extent state tree is expected
2384 * to have one and only one object corresponding to this IO.
2385 */
2386static void end_bio_extent_writepage(struct bio *bio, int err)
2387{
2388        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2389        struct extent_io_tree *tree;
2390        u64 start;
2391        u64 end;
2392
2393        do {
2394                struct page *page = bvec->bv_page;
2395                tree = &BTRFS_I(page->mapping->host)->io_tree;
2396
2397                /* We always issue full-page reads, but if some block
2398                 * in a page fails to read, blk_update_request() will
2399                 * advance bv_offset and adjust bv_len to compensate.
2400                 * Print a warning for nonzero offsets, and an error
2401                 * if they don't add up to a full page.  */
2402                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2403                        printk("%s page write in btrfs with offset %u and length %u\n",
2404                               bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2405                               ? KERN_ERR "partial" : KERN_INFO "incomplete",
2406                               bvec->bv_offset, bvec->bv_len);
2407
2408                start = page_offset(page);
2409                end = start + bvec->bv_offset + bvec->bv_len - 1;
2410
2411                if (--bvec >= bio->bi_io_vec)
2412                        prefetchw(&bvec->bv_page->flags);
2413
2414                if (end_extent_writepage(page, err, start, end))
2415                        continue;
2416
2417                end_page_writeback(page);
2418        } while (bvec >= bio->bi_io_vec);
2419
2420        bio_put(bio);
2421}
2422
2423/*
2424 * after a readpage IO is done, we need to:
2425 * clear the uptodate bits on error
2426 * set the uptodate bits if things worked
2427 * set the page up to date if all extents in the tree are uptodate
2428 * clear the lock bit in the extent tree
2429 * unlock the page if there are no other extents locked for it
2430 *
2431 * Scheduling is not allowed, so the extent state tree is expected
2432 * to have one and only one object corresponding to this IO.
2433 */
2434static void end_bio_extent_readpage(struct bio *bio, int err)
2435{
2436        int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2437        struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
2438        struct bio_vec *bvec = bio->bi_io_vec;
2439        struct extent_io_tree *tree;
2440        u64 start;
2441        u64 end;
2442        int mirror;
2443        int ret;
2444
2445        if (err)
2446                uptodate = 0;
2447
2448        do {
2449                struct page *page = bvec->bv_page;
2450                struct extent_state *cached = NULL;
2451                struct extent_state *state;
2452                struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2453
2454                pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2455                         "mirror=%lu\n", (u64)bio->bi_sector, err,
2456                         io_bio->mirror_num);
2457                tree = &BTRFS_I(page->mapping->host)->io_tree;
2458
2459                /* We always issue full-page reads, but if some block
2460                 * in a page fails to read, blk_update_request() will
2461                 * advance bv_offset and adjust bv_len to compensate.
2462                 * Print a warning for nonzero offsets, and an error
2463                 * if they don't add up to a full page.  */
2464                if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE)
2465                        printk("%s page read in btrfs with offset %u and length %u\n",
2466                               bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE
2467                               ? KERN_ERR "partial" : KERN_INFO "incomplete",
2468                               bvec->bv_offset, bvec->bv_len);
2469
2470                start = page_offset(page);
2471                end = start + bvec->bv_offset + bvec->bv_len - 1;
2472
2473                if (++bvec <= bvec_end)
2474                        prefetchw(&bvec->bv_page->flags);
2475
2476                spin_lock(&tree->lock);
2477                state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED);
2478                if (state && state->start == start) {
2479                        /*
2480                         * take a reference on the state, unlock will drop
2481                         * the ref
2482                         */
2483                        cache_state(state, &cached);
2484                }
2485                spin_unlock(&tree->lock);
2486
2487                mirror = io_bio->mirror_num;
2488                if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) {
2489                        ret = tree->ops->readpage_end_io_hook(page, start, end,
2490                                                              state, mirror);
2491                        if (ret)
2492                                uptodate = 0;
2493                        else
2494                                clean_io_failure(start, page);
2495                }
2496
2497                if (!uptodate && tree->ops && tree->ops->readpage_io_failed_hook) {
2498                        ret = tree->ops->readpage_io_failed_hook(page, mirror);
2499                        if (!ret && !err &&
2500                            test_bit(BIO_UPTODATE, &bio->bi_flags))
2501                                uptodate = 1;
2502                } else if (!uptodate) {
2503                        /*
2504                         * The generic bio_readpage_error handles errors the
2505                         * following way: If possible, new read requests are
2506                         * created and submitted and will end up in
2507                         * end_bio_extent_readpage as well (if we're lucky, not
2508                         * in the !uptodate case). In that case it returns 0 and
2509                         * we just go on with the next page in our bio. If it
2510                         * can't handle the error it will return -EIO and we
2511                         * remain responsible for that page.
2512                         */
2513                        ret = bio_readpage_error(bio, page, start, end, mirror, NULL);
2514                        if (ret == 0) {
2515                                uptodate =
2516                                        test_bit(BIO_UPTODATE, &bio->bi_flags);
2517                                if (err)
2518                                        uptodate = 0;
2519                                uncache_state(&cached);
2520                                continue;
2521                        }
2522                }
2523
2524                if (uptodate && tree->track_uptodate) {
2525                        set_extent_uptodate(tree, start, end, &cached,
2526                                            GFP_ATOMIC);
2527                }
2528                unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2529
2530                if (uptodate) {
2531                        SetPageUptodate(page);
2532                } else {
2533                        ClearPageUptodate(page);
2534                        SetPageError(page);
2535                }
2536                unlock_page(page);
2537        } while (bvec <= bvec_end);
2538
2539        bio_put(bio);
2540}
2541
2542/*
2543 * this allocates from the btrfs_bioset.  We're returning a bio right now
2544 * but you can call btrfs_io_bio for the appropriate container_of magic
2545 */
2546struct bio *
2547btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2548                gfp_t gfp_flags)
2549{
2550        struct bio *bio;
2551
2552        bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2553
2554        if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2555                while (!bio && (nr_vecs /= 2)) {
2556                        bio = bio_alloc_bioset(gfp_flags,
2557                                               nr_vecs, btrfs_bioset);
2558                }
2559        }
2560
2561        if (bio) {
2562                bio->bi_size = 0;
2563                bio->bi_bdev = bdev;
2564                bio->bi_sector = first_sector;
2565        }
2566        return bio;
2567}
2568
2569struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2570{
2571        return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2572}
2573
2574
2575/* this also allocates from the btrfs_bioset */
2576struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2577{
2578        return bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2579}
2580
2581
2582static int __must_check submit_one_bio(int rw, struct bio *bio,
2583                                       int mirror_num, unsigned long bio_flags)
2584{
2585        int ret = 0;
2586        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2587        struct page *page = bvec->bv_page;
2588        struct extent_io_tree *tree = bio->bi_private;
2589        u64 start;
2590
2591        start = page_offset(page) + bvec->bv_offset;
2592
2593        bio->bi_private = NULL;
2594
2595        bio_get(bio);
2596
2597        if (tree->ops && tree->ops->submit_bio_hook)
2598                ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2599                                           mirror_num, bio_flags, start);
2600        else
2601                btrfsic_submit_bio(rw, bio);
2602
2603        if (bio_flagged(bio, BIO_EOPNOTSUPP))
2604                ret = -EOPNOTSUPP;
2605        bio_put(bio);
2606        return ret;
2607}
2608
2609static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2610                     unsigned long offset, size_t size, struct bio *bio,
2611                     unsigned long bio_flags)
2612{
2613        int ret = 0;
2614        if (tree->ops && tree->ops->merge_bio_hook)
2615                ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2616                                                bio_flags);
2617        BUG_ON(ret < 0);
2618        return ret;
2619
2620}
2621
2622static int submit_extent_page(int rw, struct extent_io_tree *tree,
2623                              struct page *page, sector_t sector,
2624                              size_t size, unsigned long offset,
2625                              struct block_device *bdev,
2626                              struct bio **bio_ret,
2627                              unsigned long max_pages,
2628                              bio_end_io_t end_io_func,
2629                              int mirror_num,
2630                              unsigned long prev_bio_flags,
2631                              unsigned long bio_flags)
2632{
2633        int ret = 0;
2634        struct bio *bio;
2635        int nr;
2636        int contig = 0;
2637        int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2638        int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2639        size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2640
2641        if (bio_ret && *bio_ret) {
2642                bio = *bio_ret;
2643                if (old_compressed)
2644                        contig = bio->bi_sector == sector;
2645                else
2646                        contig = bio_end_sector(bio) == sector;
2647
2648                if (prev_bio_flags != bio_flags || !contig ||
2649                    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2650                    bio_add_page(bio, page, page_size, offset) < page_size) {
2651                        ret = submit_one_bio(rw, bio, mirror_num,
2652                                             prev_bio_flags);
2653                        if (ret < 0)
2654                                return ret;
2655                        bio = NULL;
2656                } else {
2657                        return 0;
2658                }
2659        }
2660        if (this_compressed)
2661                nr = BIO_MAX_PAGES;
2662        else
2663                nr = bio_get_nr_vecs(bdev);
2664
2665        bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2666        if (!bio)
2667                return -ENOMEM;
2668
2669        bio_add_page(bio, page, page_size, offset);
2670        bio->bi_end_io = end_io_func;
2671        bio->bi_private = tree;
2672
2673        if (bio_ret)
2674                *bio_ret = bio;
2675        else
2676                ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2677
2678        return ret;
2679}
2680
2681static void attach_extent_buffer_page(struct extent_buffer *eb,
2682                                      struct page *page)
2683{
2684        if (!PagePrivate(page)) {
2685                SetPagePrivate(page);
2686                page_cache_get(page);
2687                set_page_private(page, (unsigned long)eb);
2688        } else {
2689                WARN_ON(page->private != (unsigned long)eb);
2690        }
2691}
2692
2693void set_page_extent_mapped(struct page *page)
2694{
2695        if (!PagePrivate(page)) {
2696                SetPagePrivate(page);
2697                page_cache_get(page);
2698                set_page_private(page, EXTENT_PAGE_PRIVATE);
2699        }
2700}
2701
2702/*
2703 * basic readpage implementation.  Locked extent state structs are inserted
2704 * into the tree that are removed when the IO is done (by the end_io
2705 * handlers)
2706 * XXX JDM: This needs looking at to ensure proper page locking
2707 */
2708static int __extent_read_full_page(struct extent_io_tree *tree,
2709                                   struct page *page,
2710                                   get_extent_t *get_extent,
2711                                   struct bio **bio, int mirror_num,
2712                                   unsigned long *bio_flags, int rw)
2713{
2714        struct inode *inode = page->mapping->host;
2715        u64 start = page_offset(page);
2716        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2717        u64 end;
2718        u64 cur = start;
2719        u64 extent_offset;
2720        u64 last_byte = i_size_read(inode);
2721        u64 block_start;
2722        u64 cur_end;
2723        sector_t sector;
2724        struct extent_map *em;
2725        struct block_device *bdev;
2726        struct btrfs_ordered_extent *ordered;
2727        int ret;
2728        int nr = 0;
2729        size_t pg_offset = 0;
2730        size_t iosize;
2731        size_t disk_io_size;
2732        size_t blocksize = inode->i_sb->s_blocksize;
2733        unsigned long this_bio_flag = 0;
2734
2735        set_page_extent_mapped(page);
2736
2737        if (!PageUptodate(page)) {
2738                if (cleancache_get_page(page) == 0) {
2739                        BUG_ON(blocksize != PAGE_SIZE);
2740                        goto out;
2741                }
2742        }
2743
2744        end = page_end;
2745        while (1) {
2746                lock_extent(tree, start, end);
2747                ordered = btrfs_lookup_ordered_extent(inode, start);
2748                if (!ordered)
2749                        break;
2750                unlock_extent(tree, start, end);
2751                btrfs_start_ordered_extent(inode, ordered, 1);
2752                btrfs_put_ordered_extent(ordered);
2753        }
2754
2755        if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2756                char *userpage;
2757                size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2758
2759                if (zero_offset) {
2760                        iosize = PAGE_CACHE_SIZE - zero_offset;
2761                        userpage = kmap_atomic(page);
2762                        memset(userpage + zero_offset, 0, iosize);
2763                        flush_dcache_page(page);
2764                        kunmap_atomic(userpage);
2765                }
2766        }
2767        while (cur <= end) {
2768                unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2769
2770                if (cur >= last_byte) {
2771                        char *userpage;
2772                        struct extent_state *cached = NULL;
2773
2774                        iosize = PAGE_CACHE_SIZE - pg_offset;
2775                        userpage = kmap_atomic(page);
2776                        memset(userpage + pg_offset, 0, iosize);
2777                        flush_dcache_page(page);
2778                        kunmap_atomic(userpage);
2779                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2780                                            &cached, GFP_NOFS);
2781                        unlock_extent_cached(tree, cur, cur + iosize - 1,
2782                                             &cached, GFP_NOFS);
2783                        break;
2784                }
2785                em = get_extent(inode, page, pg_offset, cur,
2786                                end - cur + 1, 0);
2787                if (IS_ERR_OR_NULL(em)) {
2788                        SetPageError(page);
2789                        unlock_extent(tree, cur, end);
2790                        break;
2791                }
2792                extent_offset = cur - em->start;
2793                BUG_ON(extent_map_end(em) <= cur);
2794                BUG_ON(end < cur);
2795
2796                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2797                        this_bio_flag = EXTENT_BIO_COMPRESSED;
2798                        extent_set_compress_type(&this_bio_flag,
2799                                                 em->compress_type);
2800                }
2801
2802                iosize = min(extent_map_end(em) - cur, end - cur + 1);
2803                cur_end = min(extent_map_end(em) - 1, end);
2804                iosize = ALIGN(iosize, blocksize);
2805                if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2806                        disk_io_size = em->block_len;
2807                        sector = em->block_start >> 9;
2808                } else {
2809                        sector = (em->block_start + extent_offset) >> 9;
2810                        disk_io_size = iosize;
2811                }
2812                bdev = em->bdev;
2813                block_start = em->block_start;
2814                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2815                        block_start = EXTENT_MAP_HOLE;
2816                free_extent_map(em);
2817                em = NULL;
2818
2819                /* we've found a hole, just zero and go on */
2820                if (block_start == EXTENT_MAP_HOLE) {
2821                        char *userpage;
2822                        struct extent_state *cached = NULL;
2823
2824                        userpage = kmap_atomic(page);
2825                        memset(userpage + pg_offset, 0, iosize);
2826                        flush_dcache_page(page);
2827                        kunmap_atomic(userpage);
2828
2829                        set_extent_uptodate(tree, cur, cur + iosize - 1,
2830                                            &cached, GFP_NOFS);
2831                        unlock_extent_cached(tree, cur, cur + iosize - 1,
2832                                             &cached, GFP_NOFS);
2833                        cur = cur + iosize;
2834                        pg_offset += iosize;
2835                        continue;
2836                }
2837                /* the get_extent function already copied into the page */
2838                if (test_range_bit(tree, cur, cur_end,
2839                                   EXTENT_UPTODATE, 1, NULL)) {
2840                        check_page_uptodate(tree, page);
2841                        unlock_extent(tree, cur, cur + iosize - 1);
2842                        cur = cur + iosize;
2843                        pg_offset += iosize;
2844                        continue;
2845                }
2846                /* we have an inline extent but it didn't get marked up
2847                 * to date.  Error out
2848                 */
2849                if (block_start == EXTENT_MAP_INLINE) {
2850                        SetPageError(page);
2851                        unlock_extent(tree, cur, cur + iosize - 1);
2852                        cur = cur + iosize;
2853                        pg_offset += iosize;
2854                        continue;
2855                }
2856
2857                pnr -= page->index;
2858                ret = submit_extent_page(rw, tree, page,
2859                                         sector, disk_io_size, pg_offset,
2860                                         bdev, bio, pnr,
2861                                         end_bio_extent_readpage, mirror_num,
2862                                         *bio_flags,
2863                                         this_bio_flag);
2864                if (!ret) {
2865                        nr++;
2866                        *bio_flags = this_bio_flag;
2867                } else {
2868                        SetPageError(page);
2869                        unlock_extent(tree, cur, cur + iosize - 1);
2870                }
2871                cur = cur + iosize;
2872                pg_offset += iosize;
2873        }
2874out:
2875        if (!nr) {
2876                if (!PageError(page))
2877                        SetPageUptodate(page);
2878                unlock_page(page);
2879        }
2880        return 0;
2881}
2882
2883int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
2884                            get_extent_t *get_extent, int mirror_num)
2885{
2886        struct bio *bio = NULL;
2887        unsigned long bio_flags = 0;
2888        int ret;
2889
2890        ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
2891                                      &bio_flags, READ);
2892        if (bio)
2893                ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
2894        return ret;
2895}
2896
2897static noinline void update_nr_written(struct page *page,
2898                                      struct writeback_control *wbc,
2899                                      unsigned long nr_written)
2900{
2901        wbc->nr_to_write -= nr_written;
2902        if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
2903            wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
2904                page->mapping->writeback_index = page->index + nr_written;
2905}
2906
2907/*
2908 * the writepage semantics are similar to regular writepage.  extent
2909 * records are inserted to lock ranges in the tree, and as dirty areas
2910 * are found, they are marked writeback.  Then the lock bits are removed
2911 * and the end_io handler clears the writeback ranges
2912 */
2913static int __extent_writepage(struct page *page, struct writeback_control *wbc,
2914                              void *data)
2915{
2916        struct inode *inode = page->mapping->host;
2917        struct extent_page_data *epd = data;
2918        struct extent_io_tree *tree = epd->tree;
2919        u64 start = page_offset(page);
2920        u64 delalloc_start;
2921        u64 page_end = start + PAGE_CACHE_SIZE - 1;
2922        u64 end;
2923        u64 cur = start;
2924        u64 extent_offset;
2925        u64 last_byte = i_size_read(inode);
2926        u64 block_start;
2927        u64 iosize;
2928        sector_t sector;
2929        struct extent_state *cached_state = NULL;
2930        struct extent_map *em;
2931        struct block_device *bdev;
2932        int ret;
2933        int nr = 0;
2934        size_t pg_offset = 0;
2935        size_t blocksize;
2936        loff_t i_size = i_size_read(inode);
2937        unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
2938        u64 nr_delalloc;
2939        u64 delalloc_end;
2940        int page_started;
2941        int compressed;
2942        int write_flags;
2943        unsigned long nr_written = 0;
2944        bool fill_delalloc = true;
2945
2946        if (wbc->sync_mode == WB_SYNC_ALL)
2947                write_flags = WRITE_SYNC;
2948        else
2949                write_flags = WRITE;
2950
2951        trace___extent_writepage(page, inode, wbc);
2952
2953        WARN_ON(!PageLocked(page));
2954
2955        ClearPageError(page);
2956
2957        pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
2958        if (page->index > end_index ||
2959           (page->index == end_index && !pg_offset)) {
2960                page->mapping->a_ops->invalidatepage(page, 0);
2961                unlock_page(page);
2962                return 0;
2963        }
2964
2965        if (page->index == end_index) {
2966                char *userpage;
2967
2968                userpage = kmap_atomic(page);
2969                memset(userpage + pg_offset, 0,
2970                       PAGE_CACHE_SIZE - pg_offset);
2971                kunmap_atomic(userpage);
2972                flush_dcache_page(page);
2973        }
2974        pg_offset = 0;
2975
2976        set_page_extent_mapped(page);
2977
2978        if (!tree->ops || !tree->ops->fill_delalloc)
2979                fill_delalloc = false;
2980
2981        delalloc_start = start;
2982        delalloc_end = 0;
2983        page_started = 0;
2984        if (!epd->extent_locked && fill_delalloc) {
2985                u64 delalloc_to_write = 0;
2986                /*
2987                 * make sure the wbc mapping index is at least updated
2988                 * to this page.
2989                 */
2990                update_nr_written(page, wbc, 0);
2991
2992                while (delalloc_end < page_end) {
2993                        nr_delalloc = find_lock_delalloc_range(inode, tree,
2994                                                       page,
2995                                                       &delalloc_start,
2996                                                       &delalloc_end,
2997                                                       128 * 1024 * 1024);
2998                        if (nr_delalloc == 0) {
2999                                delalloc_start = delalloc_end + 1;
3000                                continue;
3001                        }
3002                        ret = tree->ops->fill_delalloc(inode, page,
3003                                                       delalloc_start,
3004                                                       delalloc_end,
3005                                                       &page_started,
3006                                                       &nr_written);
3007                        /* File system has been set read-only */
3008                        if (ret) {
3009                                SetPageError(page);
3010                                goto done;
3011                        }
3012                        /*
3013                         * delalloc_end is already one less than the total
3014                         * length, so we don't subtract one from
3015                         * PAGE_CACHE_SIZE
3016                         */
3017                        delalloc_to_write += (delalloc_end - delalloc_start +
3018                                              PAGE_CACHE_SIZE) >>
3019                                              PAGE_CACHE_SHIFT;
3020                        delalloc_start = delalloc_end + 1;
3021                }
3022                if (wbc->nr_to_write < delalloc_to_write) {
3023                        int thresh = 8192;
3024
3025                        if (delalloc_to_write < thresh * 2)
3026                                thresh = delalloc_to_write;
3027                        wbc->nr_to_write = min_t(u64, delalloc_to_write,
3028                                                 thresh);
3029                }
3030
3031                /* did the fill delalloc function already unlock and start
3032                 * the IO?
3033                 */
3034                if (page_started) {
3035                        ret = 0;
3036                        /*
3037                         * we've unlocked the page, so we can't update
3038                         * the mapping's writeback index, just update
3039                         * nr_to_write.
3040                         */
3041                        wbc->nr_to_write -= nr_written;
3042                        goto done_unlocked;
3043                }
3044        }
3045        if (tree->ops && tree->ops->writepage_start_hook) {
3046                ret = tree->ops->writepage_start_hook(page, start,
3047                                                      page_end);
3048                if (ret) {
3049                        /* Fixup worker will requeue */
3050                        if (ret == -EBUSY)
3051                                wbc->pages_skipped++;
3052                        else
3053                                redirty_page_for_writepage(wbc, page);
3054                        update_nr_written(page, wbc, nr_written);
3055                        unlock_page(page);
3056                        ret = 0;
3057                        goto done_unlocked;
3058                }
3059        }
3060
3061        /*
3062         * we don't want to touch the inode after unlocking the page,
3063         * so we update the mapping writeback index now
3064         */
3065        update_nr_written(page, wbc, nr_written + 1);
3066
3067        end = page_end;
3068        if (last_byte <= start) {
3069                if (tree->ops && tree->ops->writepage_end_io_hook)
3070                        tree->ops->writepage_end_io_hook(page, start,
3071                                                         page_end, NULL, 1);
3072                goto done;
3073        }
3074
3075        blocksize = inode->i_sb->s_blocksize;
3076
3077        while (cur <= end) {
3078                if (cur >= last_byte) {
3079                        if (tree->ops && tree->ops->writepage_end_io_hook)
3080                                tree->ops->writepage_end_io_hook(page, cur,
3081                                                         page_end, NULL, 1);
3082                        break;
3083                }
3084                em = epd->get_extent(inode, page, pg_offset, cur,
3085                                     end - cur + 1, 1);
3086                if (IS_ERR_OR_NULL(em)) {
3087                        SetPageError(page);
3088                        break;
3089                }
3090
3091                extent_offset = cur - em->start;
3092                BUG_ON(extent_map_end(em) <= cur);
3093                BUG_ON(end < cur);
3094                iosize = min(extent_map_end(em) - cur, end - cur + 1);
3095                iosize = ALIGN(iosize, blocksize);
3096                sector = (em->block_start + extent_offset) >> 9;
3097                bdev = em->bdev;
3098                block_start = em->block_start;
3099                compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3100                free_extent_map(em);
3101                em = NULL;
3102
3103                /*
3104                 * compressed and inline extents are written through other
3105                 * paths in the FS
3106                 */
3107                if (compressed || block_start == EXTENT_MAP_HOLE ||
3108                    block_start == EXTENT_MAP_INLINE) {
3109                        /*
3110                         * end_io notification does not happen here for
3111                         * compressed extents
3112                         */
3113                        if (!compressed && tree->ops &&
3114                            tree->ops->writepage_end_io_hook)
3115                                tree->ops->writepage_end_io_hook(page, cur,
3116                                                         cur + iosize - 1,
3117                                                         NULL, 1);
3118                        else if (compressed) {
3119                                /* we don't want to end_page_writeback on
3120                                 * a compressed extent.  this happens
3121                                 * elsewhere
3122                                 */
3123                                nr++;
3124                        }
3125
3126                        cur += iosize;
3127                        pg_offset += iosize;
3128                        continue;
3129                }
3130                /* leave this out until we have a page_mkwrite call */
3131                if (0 && !test_range_bit(tree, cur, cur + iosize - 1,
3132                                   EXTENT_DIRTY, 0, NULL)) {
3133                        cur = cur + iosize;
3134                        pg_offset += iosize;
3135                        continue;
3136                }
3137
3138                if (tree->ops && tree->ops->writepage_io_hook) {
3139                        ret = tree->ops->writepage_io_hook(page, cur,
3140                                                cur + iosize - 1);
3141                } else {
3142                        ret = 0;
3143                }
3144                if (ret) {
3145                        SetPageError(page);
3146                } else {
3147                        unsigned long max_nr = end_index + 1;
3148
3149                        set_range_writeback(tree, cur, cur + iosize - 1);
3150                        if (!PageWriteback(page)) {
3151                                printk(KERN_ERR "btrfs warning page %lu not "
3152                                       "writeback, cur %llu end %llu\n",
3153                                       page->index, (unsigned long long)cur,
3154                                       (unsigned long long)end);
3155                        }
3156
3157                        ret = submit_extent_page(write_flags, tree, page,
3158                                                 sector, iosize, pg_offset,
3159                                                 bdev, &epd->bio, max_nr,
3160                                                 end_bio_extent_writepage,
3161                                                 0, 0, 0);
3162                        if (ret)
3163                                SetPageError(page);
3164                }
3165                cur = cur + iosize;
3166                pg_offset += iosize;
3167                nr++;
3168        }
3169done:
3170        if (nr == 0) {
3171                /* make sure the mapping tag for page dirty gets cleared */
3172                set_page_writeback(page);
3173                end_page_writeback(page);
3174        }
3175        unlock_page(page);
3176
3177done_unlocked:
3178
3179        /* drop our reference on any cached states */
3180        free_extent_state(cached_state);
3181        return 0;
3182}
3183
3184static int eb_wait(void *word)
3185{
3186        io_schedule();
3187        return 0;
3188}
3189
3190void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3191{
3192        wait_on_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK, eb_wait,
3193                    TASK_UNINTERRUPTIBLE);
3194}
3195
3196static int lock_extent_buffer_for_io(struct extent_buffer *eb,
3197                                     struct btrfs_fs_info *fs_info,
3198                                     struct extent_page_data *epd)
3199{
3200        unsigned long i, num_pages;
3201        int flush = 0;
3202        int ret = 0;
3203
3204        if (!btrfs_try_tree_write_lock(eb)) {
3205                flush = 1;
3206                flush_write_bio(epd);
3207                btrfs_tree_lock(eb);
3208        }
3209
3210        if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3211                btrfs_tree_unlock(eb);
3212                if (!epd->sync_io)
3213                        return 0;
3214                if (!flush) {
3215                        flush_write_bio(epd);
3216                        flush = 1;
3217                }
3218                while (1) {
3219                        wait_on_extent_buffer_writeback(eb);
3220                        btrfs_tree_lock(eb);
3221                        if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3222                                break;
3223                        btrfs_tree_unlock(eb);
3224                }
3225        }
3226
3227        /*
3228         * We need to do this to prevent races in people who check if the eb is
3229         * under IO since we can end up having no IO bits set for a short period
3230         * of time.
3231         */
3232        spin_lock(&eb->refs_lock);
3233        if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3234                set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3235                spin_unlock(&eb->refs_lock);
3236                btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3237                __percpu_counter_add(&fs_info->dirty_metadata_bytes,
3238                                     -eb->len,
3239                                     fs_info->dirty_metadata_batch);
3240                ret = 1;
3241        } else {
3242                spin_unlock(&eb->refs_lock);
3243        }
3244
3245        btrfs_tree_unlock(eb);
3246
3247        if (!ret)
3248                return ret;
3249
3250        num_pages = num_extent_pages(eb->start, eb->len);
3251        for (i = 0; i < num_pages; i++) {
3252                struct page *p = extent_buffer_page(eb, i);
3253
3254                if (!trylock_page(p)) {
3255                        if (!flush) {
3256                                flush_write_bio(epd);
3257                                flush = 1;
3258                        }
3259                        lock_page(p);
3260                }
3261        }
3262
3263        return ret;
3264}
3265
3266static void end_extent_buffer_writeback(struct extent_buffer *eb)
3267{
3268        clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3269        smp_mb__after_clear_bit();
3270        wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3271}
3272
3273static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3274{
3275        int uptodate = err == 0;
3276        struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
3277        struct extent_buffer *eb;
3278        int done;
3279
3280        do {
3281                struct page *page = bvec->bv_page;
3282
3283                bvec--;
3284                eb = (struct extent_buffer *)page->private;
3285                BUG_ON(!eb);
3286                done = atomic_dec_and_test(&eb->io_pages);
3287
3288                if (!uptodate || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3289                        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3290                        ClearPageUptodate(page);
3291                        SetPageError(page);
3292                }
3293
3294                end_page_writeback(page);
3295
3296                if (!done)
3297                        continue;
3298
3299                end_extent_buffer_writeback(eb);
3300        } while (bvec >= bio->bi_io_vec);
3301
3302        bio_put(bio);
3303
3304}
3305
3306static int write_one_eb(struct extent_buffer *eb,
3307                        struct btrfs_fs_info *fs_info,
3308                        struct writeback_control *wbc,
3309                        struct extent_page_data *epd)
3310{
3311        struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3312        u64 offset = eb->start;
3313        unsigned long i, num_pages;
3314        unsigned long bio_flags = 0;
3315        int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3316        int ret = 0;
3317
3318        clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3319        num_pages = num_extent_pages(eb->start, eb->len);
3320        atomic_set(&eb->io_pages, num_pages);
3321        if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3322                bio_flags = EXTENT_BIO_TREE_LOG;
3323
3324        for (i = 0; i < num_pages; i++) {
3325                struct page *p = extent_buffer_page(eb, i);
3326
3327                clear_page_dirty_for_io(p);
3328                set_page_writeback(p);
3329                ret = submit_extent_page(rw, eb->tree, p, offset >> 9,
3330                                         PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3331                                         -1, end_bio_extent_buffer_writepage,
3332                                         0, epd->bio_flags, bio_flags);
3333                epd->bio_flags = bio_flags;
3334                if (ret) {
3335                        set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3336                        SetPageError(p);
3337                        if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3338                                end_extent_buffer_writeback(eb);
3339                        ret = -EIO;
3340                        break;
3341                }
3342                offset += PAGE_CACHE_SIZE;
3343                update_nr_written(p, wbc, 1);
3344                unlock_page(p);
3345        }
3346
3347        if (unlikely(ret)) {
3348                for (; i < num_pages; i++) {
3349                        struct page *p = extent_buffer_page(eb, i);
3350                        unlock_page(p);
3351                }
3352        }
3353
3354        return ret;
3355}
3356
3357int btree_write_cache_pages(struct address_space *mapping,
3358                                   struct writeback_control *wbc)
3359{
3360        struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3361        struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3362        struct extent_buffer *eb, *prev_eb = NULL;
3363        struct extent_page_data epd = {
3364                .bio = NULL,
3365                .tree = tree,
3366                .extent_locked = 0,
3367                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3368                .bio_flags = 0,
3369        };
3370        int ret = 0;
3371        int done = 0;
3372        int nr_to_write_done = 0;
3373        struct pagevec pvec;
3374        int nr_pages;
3375        pgoff_t index;
3376        pgoff_t end;            /* Inclusive */
3377        int scanned = 0;
3378        int tag;
3379
3380        pagevec_init(&pvec, 0);
3381        if (wbc->range_cyclic) {
3382                index = mapping->writeback_index; /* Start from prev offset */
3383                end = -1;
3384        } else {
3385                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3386                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3387                scanned = 1;
3388        }
3389        if (wbc->sync_mode == WB_SYNC_ALL)
3390                tag = PAGECACHE_TAG_TOWRITE;
3391        else
3392                tag = PAGECACHE_TAG_DIRTY;
3393retry:
3394        if (wbc->sync_mode == WB_SYNC_ALL)
3395                tag_pages_for_writeback(mapping, index, end);
3396        while (!done && !nr_to_write_done && (index <= end) &&
3397               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3398                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3399                unsigned i;
3400
3401                scanned = 1;
3402                for (i = 0; i < nr_pages; i++) {
3403                        struct page *page = pvec.pages[i];
3404
3405                        if (!PagePrivate(page))
3406                                continue;
3407
3408                        if (!wbc->range_cyclic && page->index > end) {
3409                                done = 1;
3410                                break;
3411                        }
3412
3413                        spin_lock(&mapping->private_lock);
3414                        if (!PagePrivate(page)) {
3415                                spin_unlock(&mapping->private_lock);
3416                                continue;
3417                        }
3418
3419                        eb = (struct extent_buffer *)page->private;
3420
3421                        /*
3422                         * Shouldn't happen and normally this would be a BUG_ON
3423                         * but no sense in crashing the users box for something
3424                         * we can survive anyway.
3425                         */
3426                        if (!eb) {
3427                                spin_unlock(&mapping->private_lock);
3428                                WARN_ON(1);
3429                                continue;
3430                        }
3431
3432                        if (eb == prev_eb) {
3433                                spin_unlock(&mapping->private_lock);
3434                                continue;
3435                        }
3436
3437                        ret = atomic_inc_not_zero(&eb->refs);
3438                        spin_unlock(&mapping->private_lock);
3439                        if (!ret)
3440                                continue;
3441
3442                        prev_eb = eb;
3443                        ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3444                        if (!ret) {
3445                                free_extent_buffer(eb);
3446                                continue;
3447                        }
3448
3449                        ret = write_one_eb(eb, fs_info, wbc, &epd);
3450                        if (ret) {
3451                                done = 1;
3452                                free_extent_buffer(eb);
3453                                break;
3454                        }
3455                        free_extent_buffer(eb);
3456
3457                        /*
3458                         * the filesystem may choose to bump up nr_to_write.
3459                         * We have to make sure to honor the new nr_to_write
3460                         * at any time
3461                         */
3462                        nr_to_write_done = wbc->nr_to_write <= 0;
3463                }
3464                pagevec_release(&pvec);
3465                cond_resched();
3466        }
3467        if (!scanned && !done) {
3468                /*
3469                 * We hit the last page and there is more work to be done: wrap
3470                 * back to the start of the file
3471                 */
3472                scanned = 1;
3473                index = 0;
3474                goto retry;
3475        }
3476        flush_write_bio(&epd);
3477        return ret;
3478}
3479
3480/**
3481 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3482 * @mapping: address space structure to write
3483 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3484 * @writepage: function called for each page
3485 * @data: data passed to writepage function
3486 *
3487 * If a page is already under I/O, write_cache_pages() skips it, even
3488 * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3489 * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3490 * and msync() need to guarantee that all the data which was dirty at the time
3491 * the call was made get new I/O started against them.  If wbc->sync_mode is
3492 * WB_SYNC_ALL then we were called for data integrity and we must wait for
3493 * existing IO to complete.
3494 */
3495static int extent_write_cache_pages(struct extent_io_tree *tree,
3496                             struct address_space *mapping,
3497                             struct writeback_control *wbc,
3498                             writepage_t writepage, void *data,
3499                             void (*flush_fn)(void *))
3500{
3501        struct inode *inode = mapping->host;
3502        int ret = 0;
3503        int done = 0;
3504        int nr_to_write_done = 0;
3505        struct pagevec pvec;
3506        int nr_pages;
3507        pgoff_t index;
3508        pgoff_t end;            /* Inclusive */
3509        int scanned = 0;
3510        int tag;
3511
3512        /*
3513         * We have to hold onto the inode so that ordered extents can do their
3514         * work when the IO finishes.  The alternative to this is failing to add
3515         * an ordered extent if the igrab() fails there and that is a huge pain
3516         * to deal with, so instead just hold onto the inode throughout the
3517         * writepages operation.  If it fails here we are freeing up the inode
3518         * anyway and we'd rather not waste our time writing out stuff that is
3519         * going to be truncated anyway.
3520         */
3521        if (!igrab(inode))
3522                return 0;
3523
3524        pagevec_init(&pvec, 0);
3525        if (wbc->range_cyclic) {
3526                index = mapping->writeback_index; /* Start from prev offset */
3527                end = -1;
3528        } else {
3529                index = wbc->range_start >> PAGE_CACHE_SHIFT;
3530                end = wbc->range_end >> PAGE_CACHE_SHIFT;
3531                scanned = 1;
3532        }
3533        if (wbc->sync_mode == WB_SYNC_ALL)
3534                tag = PAGECACHE_TAG_TOWRITE;
3535        else
3536                tag = PAGECACHE_TAG_DIRTY;
3537retry:
3538        if (wbc->sync_mode == WB_SYNC_ALL)
3539                tag_pages_for_writeback(mapping, index, end);
3540        while (!done && !nr_to_write_done && (index <= end) &&
3541               (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3542                        min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3543                unsigned i;
3544
3545                scanned = 1;
3546                for (i = 0; i < nr_pages; i++) {
3547                        struct page *page = pvec.pages[i];
3548
3549                        /*
3550                         * At this point we hold neither mapping->tree_lock nor
3551                         * lock on the page itself: the page may be truncated or
3552                         * invalidated (changing page->mapping to NULL), or even
3553                         * swizzled back from swapper_space to tmpfs file
3554                         * mapping
3555                         */
3556                        if (!trylock_page(page)) {
3557                                flush_fn(data);
3558                                lock_page(page);
3559                        }
3560
3561                        if (unlikely(page->mapping != mapping)) {
3562                                unlock_page(page);
3563                                continue;
3564                        }
3565
3566                        if (!wbc->range_cyclic && page->index > end) {
3567                                done = 1;
3568                                unlock_page(page);
3569                                continue;
3570                        }
3571
3572                        if (wbc->sync_mode != WB_SYNC_NONE) {
3573                                if (PageWriteback(page))
3574                                        flush_fn(data);
3575                                wait_on_page_writeback(page);
3576                        }
3577
3578                        if (PageWriteback(page) ||
3579                            !clear_page_dirty_for_io(page)) {
3580                                unlock_page(page);
3581                                continue;
3582                        }
3583
3584                        ret = (*writepage)(page, wbc, data);
3585
3586                        if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3587                                unlock_page(page);
3588                                ret = 0;
3589                        }
3590                        if (ret)
3591                                done = 1;
3592
3593                        /*
3594                         * the filesystem may choose to bump up nr_to_write.
3595                         * We have to make sure to honor the new nr_to_write
3596                         * at any time
3597                         */
3598                        nr_to_write_done = wbc->nr_to_write <= 0;
3599                }
3600                pagevec_release(&pvec);
3601                cond_resched();
3602        }
3603        if (!scanned && !done) {
3604                /*
3605                 * We hit the last page and there is more work to be done: wrap
3606                 * back to the start of the file
3607                 */
3608                scanned = 1;
3609                index = 0;
3610                goto retry;
3611        }
3612        btrfs_add_delayed_iput(inode);
3613        return ret;
3614}
3615
3616static void flush_epd_write_bio(struct extent_page_data *epd)
3617{
3618        if (epd->bio) {
3619                int rw = WRITE;
3620                int ret;
3621
3622                if (epd->sync_io)
3623                        rw = WRITE_SYNC;
3624
3625                ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3626                BUG_ON(ret < 0); /* -ENOMEM */
3627                epd->bio = NULL;
3628        }
3629}
3630
3631static noinline void flush_write_bio(void *data)
3632{
3633        struct extent_page_data *epd = data;
3634        flush_epd_write_bio(epd);
3635}
3636
3637int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3638                          get_extent_t *get_extent,
3639                          struct writeback_control *wbc)
3640{
3641        int ret;
3642        struct extent_page_data epd = {
3643                .bio = NULL,
3644                .tree = tree,
3645                .get_extent = get_extent,
3646                .extent_locked = 0,
3647                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3648                .bio_flags = 0,
3649        };
3650
3651        ret = __extent_writepage(page, wbc, &epd);
3652
3653        flush_epd_write_bio(&epd);
3654        return ret;
3655}
3656
3657int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3658                              u64 start, u64 end, get_extent_t *get_extent,
3659                              int mode)
3660{
3661        int ret = 0;
3662        struct address_space *mapping = inode->i_mapping;
3663        struct page *page;
3664        unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3665                PAGE_CACHE_SHIFT;
3666
3667        struct extent_page_data epd = {
3668                .bio = NULL,
3669                .tree = tree,
3670                .get_extent = get_extent,
3671                .extent_locked = 1,
3672                .sync_io = mode == WB_SYNC_ALL,
3673                .bio_flags = 0,
3674        };
3675        struct writeback_control wbc_writepages = {
3676                .sync_mode      = mode,
3677                .nr_to_write    = nr_pages * 2,
3678                .range_start    = start,
3679                .range_end      = end + 1,
3680        };
3681
3682        while (start <= end) {
3683                page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3684                if (clear_page_dirty_for_io(page))
3685                        ret = __extent_writepage(page, &wbc_writepages, &epd);
3686                else {
3687                        if (tree->ops && tree->ops->writepage_end_io_hook)
3688                                tree->ops->writepage_end_io_hook(page, start,
3689                                                 start + PAGE_CACHE_SIZE - 1,
3690                                                 NULL, 1);
3691                        unlock_page(page);
3692                }
3693                page_cache_release(page);
3694                start += PAGE_CACHE_SIZE;
3695        }
3696
3697        flush_epd_write_bio(&epd);
3698        return ret;
3699}
3700
3701int extent_writepages(struct extent_io_tree *tree,
3702                      struct address_space *mapping,
3703                      get_extent_t *get_extent,
3704                      struct writeback_control *wbc)
3705{
3706        int ret = 0;
3707        struct extent_page_data epd = {
3708                .bio = NULL,
3709                .tree = tree,
3710                .get_extent = get_extent,
3711                .extent_locked = 0,
3712                .sync_io = wbc->sync_mode == WB_SYNC_ALL,
3713                .bio_flags = 0,
3714        };
3715
3716        ret = extent_write_cache_pages(tree, mapping, wbc,
3717                                       __extent_writepage, &epd,
3718                                       flush_write_bio);
3719        flush_epd_write_bio(&epd);
3720        return ret;
3721}
3722
3723int extent_readpages(struct extent_io_tree *tree,
3724                     struct address_space *mapping,
3725                     struct list_head *pages, unsigned nr_pages,
3726                     get_extent_t get_extent)
3727{
3728        struct bio *bio = NULL;
3729        unsigned page_idx;
3730        unsigned long bio_flags = 0;
3731        struct page *pagepool[16];
3732        struct page *page;
3733        int i = 0;
3734        int nr = 0;
3735
3736        for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3737                page = list_entry(pages->prev, struct page, lru);
3738
3739                prefetchw(&page->flags);
3740                list_del(&page->lru);
3741                if (add_to_page_cache_lru(page, mapping,
3742                                        page->index, GFP_NOFS)) {
3743                        page_cache_release(page);
3744                        continue;
3745                }
3746
3747                pagepool[nr++] = page;
3748                if (nr < ARRAY_SIZE(pagepool))
3749                        continue;
3750                for (i = 0; i < nr; i++) {
3751                        __extent_read_full_page(tree, pagepool[i], get_extent,
3752                                        &bio, 0, &bio_flags, READ);
3753                        page_cache_release(pagepool[i]);
3754                }
3755                nr = 0;
3756        }
3757        for (i = 0; i < nr; i++) {
3758                __extent_read_full_page(tree, pagepool[i], get_extent,
3759                                        &bio, 0, &bio_flags, READ);
3760                page_cache_release(pagepool[i]);
3761        }
3762
3763        BUG_ON(!list_empty(pages));
3764        if (bio)
3765                return submit_one_bio(READ, bio, 0, bio_flags);
3766        return 0;
3767}
3768
3769/*
3770 * basic invalidatepage code, this waits on any locked or writeback
3771 * ranges corresponding to the page, and then deletes any extent state
3772 * records from the tree
3773 */
3774int extent_invalidatepage(struct extent_io_tree *tree,
3775                          struct page *page, unsigned long offset)
3776{
3777        struct extent_state *cached_state = NULL;
3778        u64 start = page_offset(page);
3779        u64 end = start + PAGE_CACHE_SIZE - 1;
3780        size_t blocksize = page->mapping->host->i_sb->s_blocksize;
3781
3782        start += ALIGN(offset, blocksize);
3783        if (start > end)
3784                return 0;
3785
3786        lock_extent_bits(tree, start, end, 0, &cached_state);
3787        wait_on_page_writeback(page);
3788        clear_extent_bit(tree, start, end,
3789                         EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
3790                         EXTENT_DO_ACCOUNTING,
3791                         1, 1, &cached_state, GFP_NOFS);
3792        return 0;
3793}
3794
3795/*
3796 * a helper for releasepage, this tests for areas of the page that
3797 * are locked or under IO and drops the related state bits if it is safe
3798 * to drop the page.
3799 */
3800static int try_release_extent_state(struct extent_map_tree *map,
3801                                    struct extent_io_tree *tree,
3802                                    struct page *page, gfp_t mask)
3803{
3804        u64 start = page_offset(page);
3805        u64 end = start + PAGE_CACHE_SIZE - 1;
3806        int ret = 1;
3807
3808        if (test_range_bit(tree, start, end,
3809                           EXTENT_IOBITS, 0, NULL))
3810                ret = 0;
3811        else {
3812                if ((mask & GFP_NOFS) == GFP_NOFS)
3813                        mask = GFP_NOFS;
3814                /*
3815                 * at this point we can safely clear everything except the
3816                 * locked bit and the nodatasum bit
3817                 */
3818                ret = clear_extent_bit(tree, start, end,
3819                                 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
3820                                 0, 0, NULL, mask);
3821
3822                /* if clear_extent_bit failed for enomem reasons,
3823                 * we can't allow the release to continue.
3824                 */
3825                if (ret < 0)
3826                        ret = 0;
3827                else
3828                        ret = 1;
3829        }
3830        return ret;
3831}
3832
3833/*
3834 * a helper for releasepage.  As long as there are no locked extents
3835 * in the range corresponding to the page, both state records and extent
3836 * map records are removed
3837 */
3838int try_release_extent_mapping(struct extent_map_tree *map,
3839                               struct extent_io_tree *tree, struct page *page,
3840                               gfp_t mask)
3841{
3842        struct extent_map *em;
3843        u64 start = page_offset(page);
3844        u64 end = start + PAGE_CACHE_SIZE - 1;
3845
3846        if ((mask & __GFP_WAIT) &&
3847            page->mapping->host->i_size > 16 * 1024 * 1024) {
3848                u64 len;
3849                while (start <= end) {
3850                        len = end - start + 1;
3851                        write_lock(&map->lock);
3852                        em = lookup_extent_mapping(map, start, len);
3853                        if (!em) {
3854                                write_unlock(&map->lock);
3855                                break;
3856                        }
3857                        if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
3858                            em->start != start) {
3859                                write_unlock(&map->lock);
3860                                free_extent_map(em);
3861                                break;
3862                        }
3863                        if (!test_range_bit(tree, em->start,
3864                                            extent_map_end(em) - 1,
3865                                            EXTENT_LOCKED | EXTENT_WRITEBACK,
3866                                            0, NULL)) {
3867                                remove_extent_mapping(map, em);
3868                                /* once for the rb tree */
3869                                free_extent_map(em);
3870                        }
3871                        start = extent_map_end(em);
3872                        write_unlock(&map->lock);
3873
3874                        /* once for us */
3875                        free_extent_map(em);
3876                }
3877        }
3878        return try_release_extent_state(map, tree, page, mask);
3879}
3880
3881/*
3882 * helper function for fiemap, which doesn't want to see any holes.
3883 * This maps until we find something past 'last'
3884 */
3885static struct extent_map *get_extent_skip_holes(struct inode *inode,
3886                                                u64 offset,
3887                                                u64 last,
3888                                                get_extent_t *get_extent)
3889{
3890        u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
3891        struct extent_map *em;
3892        u64 len;
3893
3894        if (offset >= last)
3895                return NULL;
3896
3897        while(1) {
3898                len = last - offset;
3899                if (len == 0)
3900                        break;
3901                len = ALIGN(len, sectorsize);
3902                em = get_extent(inode, NULL, 0, offset, len, 0);
3903                if (IS_ERR_OR_NULL(em))
3904                        return em;
3905
3906                /* if this isn't a hole return it */
3907                if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
3908                    em->block_start != EXTENT_MAP_HOLE) {
3909                        return em;
3910                }
3911
3912                /* this is a hole, advance to the next extent */
3913                offset = extent_map_end(em);
3914                free_extent_map(em);
3915                if (offset >= last)
3916                        break;
3917        }
3918        return NULL;
3919}
3920
3921int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
3922                __u64 start, __u64 len, get_extent_t *get_extent)
3923{
3924        int ret = 0;
3925        u64 off = start;
3926        u64 max = start + len;
3927        u32 flags = 0;
3928        u32 found_type;
3929        u64 last;
3930        u64 last_for_get_extent = 0;
3931        u64 disko = 0;
3932        u64 isize = i_size_read(inode);
3933        struct btrfs_key found_key;
3934        struct extent_map *em = NULL;
3935        struct extent_state *cached_state = NULL;
3936        struct btrfs_path *path;
3937        struct btrfs_file_extent_item *item;
3938        int end = 0;
3939        u64 em_start = 0;
3940        u64 em_len = 0;
3941        u64 em_end = 0;
3942        unsigned long emflags;
3943
3944        if (len == 0)
3945                return -EINVAL;
3946
3947        path = btrfs_alloc_path();
3948        if (!path)
3949                return -ENOMEM;
3950        path->leave_spinning = 1;
3951
3952        start = ALIGN(start, BTRFS_I(inode)->root->sectorsize);
3953        len = ALIGN(len, BTRFS_I(inode)->root->sectorsize);
3954
3955        /*
3956         * lookup the last file extent.  We're not using i_size here
3957         * because there might be preallocation past i_size
3958         */
3959        ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
3960                                       path, btrfs_ino(inode), -1, 0);
3961        if (ret < 0) {
3962                btrfs_free_path(path);
3963                return ret;
3964        }
3965        WARN_ON(!ret);
3966        path->slots[0]--;
3967        item = btrfs_item_ptr(path->nodes[0], path->slots[0],
3968                              struct btrfs_file_extent_item);
3969        btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
3970        found_type = btrfs_key_type(&found_key);
3971
3972        /* No extents, but there might be delalloc bits */
3973        if (found_key.objectid != btrfs_ino(inode) ||
3974            found_type != BTRFS_EXTENT_DATA_KEY) {
3975                /* have to trust i_size as the end */
3976                last = (u64)-1;
3977                last_for_get_extent = isize;
3978        } else {
3979                /*
3980                 * remember the start of the last extent.  There are a
3981                 * bunch of different factors that go into the length of the
3982                 * extent, so its much less complex to remember where it started
3983                 */
3984                last = found_key.offset;
3985                last_for_get_extent = last + 1;
3986        }
3987        btrfs_free_path(path);
3988
3989        /*
3990         * we might have some extents allocated but more delalloc past those
3991         * extents.  so, we trust isize unless the start of the last extent is
3992         * beyond isize
3993         */
3994        if (last < isize) {
3995                last = (u64)-1;
3996                last_for_get_extent = isize;
3997        }
3998
3999        lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4000                         &cached_state);
4001
4002        em = get_extent_skip_holes(inode, start, last_for_get_extent,
4003                                   get_extent);
4004        if (!em)
4005                goto out;
4006        if (IS_ERR(em)) {
4007                ret = PTR_ERR(em);
4008                goto out;
4009        }
4010
4011        while (!end) {
4012                u64 offset_in_extent;
4013
4014                /* break if the extent we found is outside the range */
4015                if (em->start >= max || extent_map_end(em) < off)
4016                        break;
4017
4018                /*
4019                 * get_extent may return an extent that starts before our
4020                 * requested range.  We have to make sure the ranges
4021                 * we return to fiemap always move forward and don't
4022                 * overlap, so adjust the offsets here
4023                 */
4024                em_start = max(em->start, off);
4025
4026                /*
4027                 * record the offset from the start of the extent
4028                 * for adjusting the disk offset below
4029                 */
4030                offset_in_extent = em_start - em->start;
4031                em_end = extent_map_end(em);
4032                em_len = em_end - em_start;
4033                emflags = em->flags;
4034                disko = 0;
4035                flags = 0;
4036
4037                /*
4038                 * bump off for our next call to get_extent
4039                 */
4040                off = extent_map_end(em);
4041                if (off >= max)
4042                        end = 1;
4043
4044                if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4045                        end = 1;
4046                        flags |= FIEMAP_EXTENT_LAST;
4047                } else if (em->block_start == EXTENT_MAP_INLINE) {
4048                        flags |= (FIEMAP_EXTENT_DATA_INLINE |
4049                                  FIEMAP_EXTENT_NOT_ALIGNED);
4050                } else if (em->block_start == EXTENT_MAP_DELALLOC) {
4051                        flags |= (FIEMAP_EXTENT_DELALLOC |
4052                                  FIEMAP_EXTENT_UNKNOWN);
4053                } else {
4054                        disko = em->block_start + offset_in_extent;
4055                }
4056                if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4057                        flags |= FIEMAP_EXTENT_ENCODED;
4058
4059                free_extent_map(em);
4060                em = NULL;
4061                if ((em_start >= last) || em_len == (u64)-1 ||
4062                   (last == (u64)-1 && isize <= em_end)) {
4063                        flags |= FIEMAP_EXTENT_LAST;
4064                        end = 1;
4065                }
4066
4067                /* now scan forward to see if this is really the last extent. */
4068                em = get_extent_skip_holes(inode, off, last_for_get_extent,
4069                                           get_extent);
4070                if (IS_ERR(em)) {
4071                        ret = PTR_ERR(em);
4072                        goto out;
4073                }
4074                if (!em) {
4075                        flags |= FIEMAP_EXTENT_LAST;
4076                        end = 1;
4077                }
4078                ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4079                                              em_len, flags);
4080                if (ret)
4081                        goto out_free;
4082        }
4083out_free:
4084        free_extent_map(em);
4085out:
4086        unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4087                             &cached_state, GFP_NOFS);
4088        return ret;
4089}
4090
4091static void __free_extent_buffer(struct extent_buffer *eb)
4092{
4093        btrfs_leak_debug_del(&eb->leak_list);
4094        kmem_cache_free(extent_buffer_cache, eb);
4095}
4096
4097static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree,
4098                                                   u64 start,
4099                                                   unsigned long len,
4100                                                   gfp_t mask)
4101{
4102        struct extent_buffer *eb = NULL;
4103
4104        eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4105        if (eb == NULL)
4106                return NULL;
4107        eb->start = start;
4108        eb->len = len;
4109        eb->tree = tree;
4110        eb->bflags = 0;
4111        rwlock_init(&eb->lock);
4112        atomic_set(&eb->write_locks, 0);
4113        atomic_set(&eb->read_locks, 0);
4114        atomic_set(&eb->blocking_readers, 0);
4115        atomic_set(&eb->blocking_writers, 0);
4116        atomic_set(&eb->spinning_readers, 0);
4117        atomic_set(&eb->spinning_writers, 0);
4118        eb->lock_nested = 0;
4119        init_waitqueue_head(&eb->write_lock_wq);
4120        init_waitqueue_head(&eb->read_lock_wq);
4121
4122        btrfs_leak_debug_add(&eb->leak_list, &buffers);
4123
4124        spin_lock_init(&eb->refs_lock);
4125        atomic_set(&eb->refs, 1);
4126        atomic_set(&eb->io_pages, 0);
4127
4128        /*
4129         * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4130         */
4131        BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4132                > MAX_INLINE_EXTENT_BUFFER_SIZE);
4133        BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4134
4135        return eb;
4136}
4137
4138struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4139{
4140        unsigned long i;
4141        struct page *p;
4142        struct extent_buffer *new;
4143        unsigned long num_pages = num_extent_pages(src->start, src->len);
4144
4145        new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_ATOMIC);
4146        if (new == NULL)
4147                return NULL;
4148
4149        for (i = 0; i < num_pages; i++) {
4150                p = alloc_page(GFP_ATOMIC);
4151                BUG_ON(!p);
4152                attach_extent_buffer_page(new, p);
4153                WARN_ON(PageDirty(p));
4154                SetPageUptodate(p);
4155                new->pages[i] = p;
4156        }
4157
4158        copy_extent_buffer(new, src, 0, 0, src->len);
4159        set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4160        set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4161
4162        return new;
4163}
4164
4165struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4166{
4167        struct extent_buffer *eb;
4168        unsigned long num_pages = num_extent_pages(0, len);
4169        unsigned long i;
4170
4171        eb = __alloc_extent_buffer(NULL, start, len, GFP_ATOMIC);
4172        if (!eb)
4173                return NULL;
4174
4175        for (i = 0; i < num_pages; i++) {
4176                eb->pages[i] = alloc_page(GFP_ATOMIC);
4177                if (!eb->pages[i])
4178                        goto err;
4179        }
4180        set_extent_buffer_uptodate(eb);
4181        btrfs_set_header_nritems(eb, 0);
4182        set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4183
4184        return eb;
4185err:
4186        for (; i > 0; i--)
4187                __free_page(eb->pages[i - 1]);
4188        __free_extent_buffer(eb);
4189        return NULL;
4190}
4191
4192static int extent_buffer_under_io(struct extent_buffer *eb)
4193{
4194        return (atomic_read(&eb->io_pages) ||
4195                test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4196                test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4197}
4198
4199/*
4200 * Helper for releasing extent buffer page.
4201 */
4202static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4203                                                unsigned long start_idx)
4204{
4205        unsigned long index;
4206        unsigned long num_pages;
4207        struct page *page;
4208        int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4209
4210        BUG_ON(extent_buffer_under_io(eb));
4211
4212        num_pages = num_extent_pages(eb->start, eb->len);
4213        index = start_idx + num_pages;
4214        if (start_idx >= index)
4215                return;
4216
4217        do {
4218                index--;
4219                page = extent_buffer_page(eb, index);
4220                if (page && mapped) {
4221                        spin_lock(&page->mapping->private_lock);
4222                        /*
4223                         * We do this since we'll remove the pages after we've
4224                         * removed the eb from the radix tree, so we could race
4225                         * and have this page now attached to the new eb.  So
4226                         * only clear page_private if it's still connected to
4227                         * this eb.
4228                         */
4229                        if (PagePrivate(page) &&
4230                            page->private == (unsigned long)eb) {
4231                                BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4232                                BUG_ON(PageDirty(page));
4233                                BUG_ON(PageWriteback(page));
4234                                /*
4235                                 * We need to make sure we haven't be attached
4236                                 * to a new eb.
4237                                 */
4238                                ClearPagePrivate(page);
4239                                set_page_private(page, 0);
4240                                /* One for the page private */
4241                                page_cache_release(page);
4242                        }
4243                        spin_unlock(&page->mapping->private_lock);
4244
4245                }
4246                if (page) {
4247                        /* One for when we alloced the page */
4248                        page_cache_release(page);
4249                }
4250        } while (index != start_idx);
4251}
4252
4253/*
4254 * Helper for releasing the extent buffer.
4255 */
4256static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4257{
4258        btrfs_release_extent_buffer_page(eb, 0);
4259        __free_extent_buffer(eb);
4260}
4261
4262static void check_buffer_tree_ref(struct extent_buffer *eb)
4263{
4264        int refs;
4265        /* the ref bit is tricky.  We have to make sure it is set
4266         * if we have the buffer dirty.   Otherwise the
4267         * code to free a buffer can end up dropping a dirty
4268         * page
4269         *
4270         * Once the ref bit is set, it won't go away while the
4271         * buffer is dirty or in writeback, and it also won't
4272         * go away while we have the reference count on the
4273         * eb bumped.
4274         *
4275         * We can't just set the ref bit without bumping the
4276         * ref on the eb because free_extent_buffer might
4277         * see the ref bit and try to clear it.  If this happens
4278         * free_extent_buffer might end up dropping our original
4279         * ref by mistake and freeing the page before we are able
4280         * to add one more ref.
4281         *
4282         * So bump the ref count first, then set the bit.  If someone
4283         * beat us to it, drop the ref we added.
4284         */
4285        refs = atomic_read(&eb->refs);
4286        if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4287                return;
4288
4289        spin_lock(&eb->refs_lock);
4290        if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4291                atomic_inc(&eb->refs);
4292        spin_unlock(&eb->refs_lock);
4293}
4294
4295static void mark_extent_buffer_accessed(struct extent_buffer *eb)
4296{
4297        unsigned long num_pages, i;
4298
4299        check_buffer_tree_ref(eb);
4300
4301        num_pages = num_extent_pages(eb->start, eb->len);
4302        for (i = 0; i < num_pages; i++) {
4303                struct page *p = extent_buffer_page(eb, i);
4304                mark_page_accessed(p);
4305        }
4306}
4307
4308struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree,
4309                                          u64 start, unsigned long len)
4310{
4311        unsigned long num_pages = num_extent_pages(start, len);
4312        unsigned long i;
4313        unsigned long index = start >> PAGE_CACHE_SHIFT;
4314        struct extent_buffer *eb;
4315        struct extent_buffer *exists = NULL;
4316        struct page *p;
4317        struct address_space *mapping = tree->mapping;
4318        int uptodate = 1;
4319        int ret;
4320
4321        rcu_read_lock();
4322        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4323        if (eb && atomic_inc_not_zero(&eb->refs)) {
4324                rcu_read_unlock();
4325                mark_extent_buffer_accessed(eb);
4326                return eb;
4327        }
4328        rcu_read_unlock();
4329
4330        eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS);
4331        if (!eb)
4332                return NULL;
4333
4334        for (i = 0; i < num_pages; i++, index++) {
4335                p = find_or_create_page(mapping, index, GFP_NOFS);
4336                if (!p)
4337                        goto free_eb;
4338
4339                spin_lock(&mapping->private_lock);
4340                if (PagePrivate(p)) {
4341                        /*
4342                         * We could have already allocated an eb for this page
4343                         * and attached one so lets see if we can get a ref on
4344                         * the existing eb, and if we can we know it's good and
4345                         * we can just return that one, else we know we can just
4346                         * overwrite page->private.
4347                         */
4348                        exists = (struct extent_buffer *)p->private;
4349                        if (atomic_inc_not_zero(&exists->refs)) {
4350                                spin_unlock(&mapping->private_lock);
4351                                unlock_page(p);
4352                                page_cache_release(p);
4353                                mark_extent_buffer_accessed(exists);
4354                                goto free_eb;
4355                        }
4356
4357                        /*
4358                         * Do this so attach doesn't complain and we need to
4359                         * drop the ref the old guy had.
4360                         */
4361                        ClearPagePrivate(p);
4362                        WARN_ON(PageDirty(p));
4363                        page_cache_release(p);
4364                }
4365                attach_extent_buffer_page(eb, p);
4366                spin_unlock(&mapping->private_lock);
4367                WARN_ON(PageDirty(p));
4368                mark_page_accessed(p);
4369                eb->pages[i] = p;
4370                if (!PageUptodate(p))
4371                        uptodate = 0;
4372
4373                /*
4374                 * see below about how we avoid a nasty race with release page
4375                 * and why we unlock later
4376                 */
4377        }
4378        if (uptodate)
4379                set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4380again:
4381        ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4382        if (ret)
4383                goto free_eb;
4384
4385        spin_lock(&tree->buffer_lock);
4386        ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb);
4387        if (ret == -EEXIST) {
4388                exists = radix_tree_lookup(&tree->buffer,
4389                                                start >> PAGE_CACHE_SHIFT);
4390                if (!atomic_inc_not_zero(&exists->refs)) {
4391                        spin_unlock(&tree->buffer_lock);
4392                        radix_tree_preload_end();
4393                        exists = NULL;
4394                        goto again;
4395                }
4396                spin_unlock(&tree->buffer_lock);
4397                radix_tree_preload_end();
4398                mark_extent_buffer_accessed(exists);
4399                goto free_eb;
4400        }
4401        /* add one reference for the tree */
4402        check_buffer_tree_ref(eb);
4403        spin_unlock(&tree->buffer_lock);
4404        radix_tree_preload_end();
4405
4406        /*
4407         * there is a race where release page may have
4408         * tried to find this extent buffer in the radix
4409         * but failed.  It will tell the VM it is safe to
4410         * reclaim the, and it will clear the page private bit.
4411         * We must make sure to set the page private bit properly
4412         * after the extent buffer is in the radix tree so
4413         * it doesn't get lost
4414         */
4415        SetPageChecked(eb->pages[0]);
4416        for (i = 1; i < num_pages; i++) {
4417                p = extent_buffer_page(eb, i);
4418                ClearPageChecked(p);
4419                unlock_page(p);
4420        }
4421        unlock_page(eb->pages[0]);
4422        return eb;
4423
4424free_eb:
4425        for (i = 0; i < num_pages; i++) {
4426                if (eb->pages[i])
4427                        unlock_page(eb->pages[i]);
4428        }
4429
4430        WARN_ON(!atomic_dec_and_test(&eb->refs));
4431        btrfs_release_extent_buffer(eb);
4432        return exists;
4433}
4434
4435struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree,
4436                                         u64 start, unsigned long len)
4437{
4438        struct extent_buffer *eb;
4439
4440        rcu_read_lock();
4441        eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT);
4442        if (eb && atomic_inc_not_zero(&eb->refs)) {
4443                rcu_read_unlock();
4444                mark_extent_buffer_accessed(eb);
4445                return eb;
4446        }
4447        rcu_read_unlock();
4448
4449        return NULL;
4450}
4451
4452static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4453{
4454        struct extent_buffer *eb =
4455                        container_of(head, struct extent_buffer, rcu_head);
4456
4457        __free_extent_buffer(eb);
4458}
4459
4460/* Expects to have eb->eb_lock already held */
4461static int release_extent_buffer(struct extent_buffer *eb)
4462{
4463        WARN_ON(atomic_read(&eb->refs) == 0);
4464        if (atomic_dec_and_test(&eb->refs)) {
4465                if (test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) {
4466                        spin_unlock(&eb->refs_lock);
4467                } else {
4468                        struct extent_io_tree *tree = eb->tree;
4469
4470                        spin_unlock(&eb->refs_lock);
4471
4472                        spin_lock(&tree->buffer_lock);
4473                        radix_tree_delete(&tree->buffer,
4474                                          eb->start >> PAGE_CACHE_SHIFT);
4475                        spin_unlock(&tree->buffer_lock);
4476                }
4477
4478                /* Should be safe to release our pages at this point */
4479                btrfs_release_extent_buffer_page(eb, 0);
4480                call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4481                return 1;
4482        }
4483        spin_unlock(&eb->refs_lock);
4484
4485        return 0;
4486}
4487
4488void free_extent_buffer(struct extent_buffer *eb)
4489{
4490        int refs;
4491        int old;
4492        if (!eb)
4493                return;
4494
4495        while (1) {
4496                refs = atomic_read(&eb->refs);
4497                if (refs <= 3)
4498                        break;
4499                old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4500                if (old == refs)
4501                        return;
4502        }
4503
4504        spin_lock(&eb->refs_lock);
4505        if (atomic_read(&eb->refs) == 2 &&
4506            test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4507                atomic_dec(&eb->refs);
4508
4509        if (atomic_read(&eb->refs) == 2 &&
4510            test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4511            !extent_buffer_under_io(eb) &&
4512            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4513                atomic_dec(&eb->refs);
4514
4515        /*
4516         * I know this is terrible, but it's temporary until we stop tracking
4517         * the uptodate bits and such for the extent buffers.
4518         */
4519        release_extent_buffer(eb);
4520}
4521
4522void free_extent_buffer_stale(struct extent_buffer *eb)
4523{
4524        if (!eb)
4525                return;
4526
4527        spin_lock(&eb->refs_lock);
4528        set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4529
4530        if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4531            test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4532                atomic_dec(&eb->refs);
4533        release_extent_buffer(eb);
4534}
4535
4536void clear_extent_buffer_dirty(struct extent_buffer *eb)
4537{
4538        unsigned long i;
4539        unsigned long num_pages;
4540        struct page *page;
4541
4542        num_pages = num_extent_pages(eb->start, eb->len);
4543
4544        for (i = 0; i < num_pages; i++) {
4545                page = extent_buffer_page(eb, i);
4546                if (!PageDirty(page))
4547                        continue;
4548
4549                lock_page(page);
4550                WARN_ON(!PagePrivate(page));
4551
4552                clear_page_dirty_for_io(page);
4553                spin_lock_irq(&page->mapping->tree_lock);
4554                if (!PageDirty(page)) {
4555                        radix_tree_tag_clear(&page->mapping->page_tree,
4556                                                page_index(page),
4557                                                PAGECACHE_TAG_DIRTY);
4558                }
4559                spin_unlock_irq(&page->mapping->tree_lock);
4560                ClearPageError(page);
4561                unlock_page(page);
4562        }
4563        WARN_ON(atomic_read(&eb->refs) == 0);
4564}
4565
4566int set_extent_buffer_dirty(struct extent_buffer *eb)
4567{
4568        unsigned long i;
4569        unsigned long num_pages;
4570        int was_dirty = 0;
4571
4572        check_buffer_tree_ref(eb);
4573
4574        was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4575
4576        num_pages = num_extent_pages(eb->start, eb->len);
4577        WARN_ON(atomic_read(&eb->refs) == 0);
4578        WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4579
4580        for (i = 0; i < num_pages; i++)
4581                set_page_dirty(extent_buffer_page(eb, i));
4582        return was_dirty;
4583}
4584
4585int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4586{
4587        unsigned long i;
4588        struct page *page;
4589        unsigned long num_pages;
4590
4591        clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4592        num_pages = num_extent_pages(eb->start, eb->len);
4593        for (i = 0; i < num_pages; i++) {
4594                page = extent_buffer_page(eb, i);
4595                if (page)
4596                        ClearPageUptodate(page);
4597        }
4598        return 0;
4599}
4600
4601int set_extent_buffer_uptodate(struct extent_buffer *eb)
4602{
4603        unsigned long i;
4604        struct page *page;
4605        unsigned long num_pages;
4606
4607        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4608        num_pages = num_extent_pages(eb->start, eb->len);
4609        for (i = 0; i < num_pages; i++) {
4610                page = extent_buffer_page(eb, i);
4611                SetPageUptodate(page);
4612        }
4613        return 0;
4614}
4615
4616int extent_buffer_uptodate(struct extent_buffer *eb)
4617{
4618        return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4619}
4620
4621int read_extent_buffer_pages(struct extent_io_tree *tree,
4622                             struct extent_buffer *eb, u64 start, int wait,
4623                             get_extent_t *get_extent, int mirror_num)
4624{
4625        unsigned long i;
4626        unsigned long start_i;
4627        struct page *page;
4628        int err;
4629        int ret = 0;
4630        int locked_pages = 0;
4631        int all_uptodate = 1;
4632        unsigned long num_pages;
4633        unsigned long num_reads = 0;
4634        struct bio *bio = NULL;
4635        unsigned long bio_flags = 0;
4636
4637        if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4638                return 0;
4639
4640        if (start) {
4641                WARN_ON(start < eb->start);
4642                start_i = (start >> PAGE_CACHE_SHIFT) -
4643                        (eb->start >> PAGE_CACHE_SHIFT);
4644        } else {
4645                start_i = 0;
4646        }
4647
4648        num_pages = num_extent_pages(eb->start, eb->len);
4649        for (i = start_i; i < num_pages; i++) {
4650                page = extent_buffer_page(eb, i);
4651                if (wait == WAIT_NONE) {
4652                        if (!trylock_page(page))
4653                                goto unlock_exit;
4654                } else {
4655                        lock_page(page);
4656                }
4657                locked_pages++;
4658                if (!PageUptodate(page)) {
4659                        num_reads++;
4660                        all_uptodate = 0;
4661                }
4662        }
4663        if (all_uptodate) {
4664                if (start_i == 0)
4665                        set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4666                goto unlock_exit;
4667        }
4668
4669        clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4670        eb->read_mirror = 0;
4671        atomic_set(&eb->io_pages, num_reads);
4672        for (i = start_i; i < num_pages; i++) {
4673                page = extent_buffer_page(eb, i);
4674                if (!PageUptodate(page)) {
4675                        ClearPageError(page);
4676                        err = __extent_read_full_page(tree, page,
4677                                                      get_extent, &bio,
4678                                                      mirror_num, &bio_flags,
4679                                                      READ | REQ_META);
4680                        if (err)
4681                                ret = err;
4682                } else {
4683                        unlock_page(page);
4684                }
4685        }
4686
4687        if (bio) {
4688                err = submit_one_bio(READ | REQ_META, bio, mirror_num,
4689                                     bio_flags);
4690                if (err)
4691                        return err;
4692        }
4693
4694        if (ret || wait != WAIT_COMPLETE)
4695                return ret;
4696
4697        for (i = start_i; i < num_pages; i++) {
4698                page = extent_buffer_page(eb, i);
4699                wait_on_page_locked(page);
4700                if (!PageUptodate(page))
4701                        ret = -EIO;
4702        }
4703
4704        return ret;
4705
4706unlock_exit:
4707        i = start_i;
4708        while (locked_pages > 0) {
4709                page = extent_buffer_page(eb, i);
4710                i++;
4711                unlock_page(page);
4712                locked_pages--;
4713        }
4714        return ret;
4715}
4716
4717void read_extent_buffer(struct extent_buffer *eb, void *dstv,
4718                        unsigned long start,
4719                        unsigned long len)
4720{
4721        size_t cur;
4722        size_t offset;
4723        struct page *page;
4724        char *kaddr;
4725        char *dst = (char *)dstv;
4726        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4727        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4728
4729        WARN_ON(start > eb->len);
4730        WARN_ON(start + len > eb->start + eb->len);
4731
4732        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4733
4734        while (len > 0) {
4735                page = extent_buffer_page(eb, i);
4736
4737                cur = min(len, (PAGE_CACHE_SIZE - offset));
4738                kaddr = page_address(page);
4739                memcpy(dst, kaddr + offset, cur);
4740
4741                dst += cur;
4742                len -= cur;
4743                offset = 0;
4744                i++;
4745        }
4746}
4747
4748int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
4749                               unsigned long min_len, char **map,
4750                               unsigned long *map_start,
4751                               unsigned long *map_len)
4752{
4753        size_t offset = start & (PAGE_CACHE_SIZE - 1);
4754        char *kaddr;
4755        struct page *p;
4756        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4757        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4758        unsigned long end_i = (start_offset + start + min_len - 1) >>
4759                PAGE_CACHE_SHIFT;
4760
4761        if (i != end_i)
4762                return -EINVAL;
4763
4764        if (i == 0) {
4765                offset = start_offset;
4766                *map_start = 0;
4767        } else {
4768                offset = 0;
4769                *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
4770        }
4771
4772        if (start + min_len > eb->len) {
4773                WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
4774                       "wanted %lu %lu\n", (unsigned long long)eb->start,
4775                       eb->len, start, min_len);
4776                return -EINVAL;
4777        }
4778
4779        p = extent_buffer_page(eb, i);
4780        kaddr = page_address(p);
4781        *map = kaddr + offset;
4782        *map_len = PAGE_CACHE_SIZE - offset;
4783        return 0;
4784}
4785
4786int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
4787                          unsigned long start,
4788                          unsigned long len)
4789{
4790        size_t cur;
4791        size_t offset;
4792        struct page *page;
4793        char *kaddr;
4794        char *ptr = (char *)ptrv;
4795        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4796        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4797        int ret = 0;
4798
4799        WARN_ON(start > eb->len);
4800        WARN_ON(start + len > eb->start + eb->len);
4801
4802        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4803
4804        while (len > 0) {
4805                page = extent_buffer_page(eb, i);
4806
4807                cur = min(len, (PAGE_CACHE_SIZE - offset));
4808
4809                kaddr = page_address(page);
4810                ret = memcmp(ptr, kaddr + offset, cur);
4811                if (ret)
4812                        break;
4813
4814                ptr += cur;
4815                len -= cur;
4816                offset = 0;
4817                i++;
4818        }
4819        return ret;
4820}
4821
4822void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
4823                         unsigned long start, unsigned long len)
4824{
4825        size_t cur;
4826        size_t offset;
4827        struct page *page;
4828        char *kaddr;
4829        char *src = (char *)srcv;
4830        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4831        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4832
4833        WARN_ON(start > eb->len);
4834        WARN_ON(start + len > eb->start + eb->len);
4835
4836        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4837
4838        while (len > 0) {
4839                page = extent_buffer_page(eb, i);
4840                WARN_ON(!PageUptodate(page));
4841
4842                cur = min(len, PAGE_CACHE_SIZE - offset);
4843                kaddr = page_address(page);
4844                memcpy(kaddr + offset, src, cur);
4845
4846                src += cur;
4847                len -= cur;
4848                offset = 0;
4849                i++;
4850        }
4851}
4852
4853void memset_extent_buffer(struct extent_buffer *eb, char c,
4854                          unsigned long start, unsigned long len)
4855{
4856        size_t cur;
4857        size_t offset;
4858        struct page *page;
4859        char *kaddr;
4860        size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
4861        unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
4862
4863        WARN_ON(start > eb->len);
4864        WARN_ON(start + len > eb->start + eb->len);
4865
4866        offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1);
4867
4868        while (len > 0) {
4869                page = extent_buffer_page(eb, i);
4870                WARN_ON(!PageUptodate(page));
4871
4872                cur = min(len, PAGE_CACHE_SIZE - offset);
4873                kaddr = page_address(page);
4874                memset(kaddr + offset, c, cur);
4875
4876                len -= cur;
4877                offset = 0;
4878                i++;
4879        }
4880}
4881
4882void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
4883                        unsigned long dst_offset, unsigned long src_offset,
4884                        unsigned long len)
4885{
4886        u64 dst_len = dst->len;
4887        size_t cur;
4888        size_t offset;
4889        struct page *page;
4890        char *kaddr;
4891        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4892        unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4893
4894        WARN_ON(src->len != dst_len);
4895
4896        offset = (start_offset + dst_offset) &
4897                ((unsigned long)PAGE_CACHE_SIZE - 1);
4898
4899        while (len > 0) {
4900                page = extent_buffer_page(dst, i);
4901                WARN_ON(!PageUptodate(page));
4902
4903                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
4904
4905                kaddr = page_address(page);
4906                read_extent_buffer(src, kaddr + offset, src_offset, cur);
4907
4908                src_offset += cur;
4909                len -= cur;
4910                offset = 0;
4911                i++;
4912        }
4913}
4914
4915static void move_pages(struct page *dst_page, struct page *src_page,
4916                       unsigned long dst_off, unsigned long src_off,
4917                       unsigned long len)
4918{
4919        char *dst_kaddr = page_address(dst_page);
4920        if (dst_page == src_page) {
4921                memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len);
4922        } else {
4923                char *src_kaddr = page_address(src_page);
4924                char *p = dst_kaddr + dst_off + len;
4925                char *s = src_kaddr + src_off + len;
4926
4927                while (len--)
4928                        *--p = *--s;
4929        }
4930}
4931
4932static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
4933{
4934        unsigned long distance = (src > dst) ? src - dst : dst - src;
4935        return distance < len;
4936}
4937
4938static void copy_pages(struct page *dst_page, struct page *src_page,
4939                       unsigned long dst_off, unsigned long src_off,
4940                       unsigned long len)
4941{
4942        char *dst_kaddr = page_address(dst_page);
4943        char *src_kaddr;
4944        int must_memmove = 0;
4945
4946        if (dst_page != src_page) {
4947                src_kaddr = page_address(src_page);
4948        } else {
4949                src_kaddr = dst_kaddr;
4950                if (areas_overlap(src_off, dst_off, len))
4951                        must_memmove = 1;
4952        }
4953
4954        if (must_memmove)
4955                memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
4956        else
4957                memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
4958}
4959
4960void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
4961                           unsigned long src_offset, unsigned long len)
4962{
4963        size_t cur;
4964        size_t dst_off_in_page;
4965        size_t src_off_in_page;
4966        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
4967        unsigned long dst_i;
4968        unsigned long src_i;
4969
4970        if (src_offset + len > dst->len) {
4971                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
4972                       "len %lu dst len %lu\n", src_offset, len, dst->len);
4973                BUG_ON(1);
4974        }
4975        if (dst_offset + len > dst->len) {
4976                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
4977                       "len %lu dst len %lu\n", dst_offset, len, dst->len);
4978                BUG_ON(1);
4979        }
4980
4981        while (len > 0) {
4982                dst_off_in_page = (start_offset + dst_offset) &
4983                        ((unsigned long)PAGE_CACHE_SIZE - 1);
4984                src_off_in_page = (start_offset + src_offset) &
4985                        ((unsigned long)PAGE_CACHE_SIZE - 1);
4986
4987                dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
4988                src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
4989
4990                cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
4991                                               src_off_in_page));
4992                cur = min_t(unsigned long, cur,
4993                        (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
4994
4995                copy_pages(extent_buffer_page(dst, dst_i),
4996                           extent_buffer_page(dst, src_i),
4997                           dst_off_in_page, src_off_in_page, cur);
4998
4999                src_offset += cur;
5000                dst_offset += cur;
5001                len -= cur;
5002        }
5003}
5004
5005void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5006                           unsigned long src_offset, unsigned long len)
5007{
5008        size_t cur;
5009        size_t dst_off_in_page;
5010        size_t src_off_in_page;
5011        unsigned long dst_end = dst_offset + len - 1;
5012        unsigned long src_end = src_offset + len - 1;
5013        size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5014        unsigned long dst_i;
5015        unsigned long src_i;
5016
5017        if (src_offset + len > dst->len) {
5018                printk(KERN_ERR "btrfs memmove bogus src_offset %lu move "
5019                       "len %lu len %lu\n", src_offset, len, dst->len);
5020                BUG_ON(1);
5021        }
5022        if (dst_offset + len > dst->len) {
5023                printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move "
5024                       "len %lu len %lu\n", dst_offset, len, dst->len);
5025                BUG_ON(1);
5026        }
5027        if (dst_offset < src_offset) {
5028                memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5029                return;
5030        }
5031        while (len > 0) {
5032                dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5033                src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5034
5035                dst_off_in_page = (start_offset + dst_end) &
5036                        ((unsigned long)PAGE_CACHE_SIZE - 1);
5037                src_off_in_page = (start_offset + src_end) &
5038                        ((unsigned long)PAGE_CACHE_SIZE - 1);
5039
5040                cur = min_t(unsigned long, len, src_off_in_page + 1);
5041                cur = min(cur, dst_off_in_page + 1);
5042                move_pages(extent_buffer_page(dst, dst_i),
5043                           extent_buffer_page(dst, src_i),
5044                           dst_off_in_page - cur + 1,
5045                           src_off_in_page - cur + 1, cur);
5046
5047                dst_end -= cur;
5048                src_end -= cur;
5049                len -= cur;
5050        }
5051}
5052
5053int try_release_extent_buffer(struct page *page)
5054{
5055        struct extent_buffer *eb;
5056
5057        /*
5058         * We need to make sure noboody is attaching this page to an eb right
5059         * now.
5060         */
5061        spin_lock(&page->mapping->private_lock);
5062        if (!PagePrivate(page)) {
5063                spin_unlock(&page->mapping->private_lock);
5064                return 1;
5065        }
5066
5067        eb = (struct extent_buffer *)page->private;
5068        BUG_ON(!eb);
5069
5070        /*
5071         * This is a little awful but should be ok, we need to make sure that
5072         * the eb doesn't disappear out from under us while we're looking at
5073         * this page.
5074         */
5075        spin_lock(&eb->refs_lock);
5076        if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5077                spin_unlock(&eb->refs_lock);
5078                spin_unlock(&page->mapping->private_lock);
5079                return 0;
5080        }
5081        spin_unlock(&page->mapping->private_lock);
5082
5083        /*
5084         * If tree ref isn't set then we know the ref on this eb is a real ref,
5085         * so just return, this page will likely be freed soon anyway.
5086         */
5087        if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5088                spin_unlock(&eb->refs_lock);
5089                return 0;
5090        }
5091
5092        return release_extent_buffer(eb);
5093}
5094