linux/fs/btrfs/inode.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/kernel.h>
  20#include <linux/bio.h>
  21#include <linux/buffer_head.h>
  22#include <linux/file.h>
  23#include <linux/fs.h>
  24#include <linux/pagemap.h>
  25#include <linux/highmem.h>
  26#include <linux/time.h>
  27#include <linux/init.h>
  28#include <linux/string.h>
  29#include <linux/backing-dev.h>
  30#include <linux/mpage.h>
  31#include <linux/swap.h>
  32#include <linux/writeback.h>
  33#include <linux/statfs.h>
  34#include <linux/compat.h>
  35#include <linux/aio.h>
  36#include <linux/bit_spinlock.h>
  37#include <linux/xattr.h>
  38#include <linux/posix_acl.h>
  39#include <linux/falloc.h>
  40#include <linux/slab.h>
  41#include <linux/ratelimit.h>
  42#include <linux/mount.h>
  43#include <linux/btrfs.h>
  44#include <linux/blkdev.h>
  45#include "compat.h"
  46#include "ctree.h"
  47#include "disk-io.h"
  48#include "transaction.h"
  49#include "btrfs_inode.h"
  50#include "print-tree.h"
  51#include "ordered-data.h"
  52#include "xattr.h"
  53#include "tree-log.h"
  54#include "volumes.h"
  55#include "compression.h"
  56#include "locking.h"
  57#include "free-space-cache.h"
  58#include "inode-map.h"
  59#include "backref.h"
  60
  61struct btrfs_iget_args {
  62        u64 ino;
  63        struct btrfs_root *root;
  64};
  65
  66static const struct inode_operations btrfs_dir_inode_operations;
  67static const struct inode_operations btrfs_symlink_inode_operations;
  68static const struct inode_operations btrfs_dir_ro_inode_operations;
  69static const struct inode_operations btrfs_special_inode_operations;
  70static const struct inode_operations btrfs_file_inode_operations;
  71static const struct address_space_operations btrfs_aops;
  72static const struct address_space_operations btrfs_symlink_aops;
  73static const struct file_operations btrfs_dir_file_operations;
  74static struct extent_io_ops btrfs_extent_io_ops;
  75
  76static struct kmem_cache *btrfs_inode_cachep;
  77static struct kmem_cache *btrfs_delalloc_work_cachep;
  78struct kmem_cache *btrfs_trans_handle_cachep;
  79struct kmem_cache *btrfs_transaction_cachep;
  80struct kmem_cache *btrfs_path_cachep;
  81struct kmem_cache *btrfs_free_space_cachep;
  82
  83#define S_SHIFT 12
  84static unsigned char btrfs_type_by_mode[S_IFMT >> S_SHIFT] = {
  85        [S_IFREG >> S_SHIFT]    = BTRFS_FT_REG_FILE,
  86        [S_IFDIR >> S_SHIFT]    = BTRFS_FT_DIR,
  87        [S_IFCHR >> S_SHIFT]    = BTRFS_FT_CHRDEV,
  88        [S_IFBLK >> S_SHIFT]    = BTRFS_FT_BLKDEV,
  89        [S_IFIFO >> S_SHIFT]    = BTRFS_FT_FIFO,
  90        [S_IFSOCK >> S_SHIFT]   = BTRFS_FT_SOCK,
  91        [S_IFLNK >> S_SHIFT]    = BTRFS_FT_SYMLINK,
  92};
  93
  94static int btrfs_setsize(struct inode *inode, struct iattr *attr);
  95static int btrfs_truncate(struct inode *inode);
  96static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent);
  97static noinline int cow_file_range(struct inode *inode,
  98                                   struct page *locked_page,
  99                                   u64 start, u64 end, int *page_started,
 100                                   unsigned long *nr_written, int unlock);
 101static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
 102                                           u64 len, u64 orig_start,
 103                                           u64 block_start, u64 block_len,
 104                                           u64 orig_block_len, u64 ram_bytes,
 105                                           int type);
 106
 107static int btrfs_dirty_inode(struct inode *inode);
 108
 109static int btrfs_init_inode_security(struct btrfs_trans_handle *trans,
 110                                     struct inode *inode,  struct inode *dir,
 111                                     const struct qstr *qstr)
 112{
 113        int err;
 114
 115        err = btrfs_init_acl(trans, inode, dir);
 116        if (!err)
 117                err = btrfs_xattr_security_init(trans, inode, dir, qstr);
 118        return err;
 119}
 120
 121/*
 122 * this does all the hard work for inserting an inline extent into
 123 * the btree.  The caller should have done a btrfs_drop_extents so that
 124 * no overlapping inline items exist in the btree
 125 */
 126static noinline int insert_inline_extent(struct btrfs_trans_handle *trans,
 127                                struct btrfs_root *root, struct inode *inode,
 128                                u64 start, size_t size, size_t compressed_size,
 129                                int compress_type,
 130                                struct page **compressed_pages)
 131{
 132        struct btrfs_key key;
 133        struct btrfs_path *path;
 134        struct extent_buffer *leaf;
 135        struct page *page = NULL;
 136        char *kaddr;
 137        unsigned long ptr;
 138        struct btrfs_file_extent_item *ei;
 139        int err = 0;
 140        int ret;
 141        size_t cur_size = size;
 142        size_t datasize;
 143        unsigned long offset;
 144
 145        if (compressed_size && compressed_pages)
 146                cur_size = compressed_size;
 147
 148        path = btrfs_alloc_path();
 149        if (!path)
 150                return -ENOMEM;
 151
 152        path->leave_spinning = 1;
 153
 154        key.objectid = btrfs_ino(inode);
 155        key.offset = start;
 156        btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
 157        datasize = btrfs_file_extent_calc_inline_size(cur_size);
 158
 159        inode_add_bytes(inode, size);
 160        ret = btrfs_insert_empty_item(trans, root, path, &key,
 161                                      datasize);
 162        if (ret) {
 163                err = ret;
 164                goto fail;
 165        }
 166        leaf = path->nodes[0];
 167        ei = btrfs_item_ptr(leaf, path->slots[0],
 168                            struct btrfs_file_extent_item);
 169        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
 170        btrfs_set_file_extent_type(leaf, ei, BTRFS_FILE_EXTENT_INLINE);
 171        btrfs_set_file_extent_encryption(leaf, ei, 0);
 172        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
 173        btrfs_set_file_extent_ram_bytes(leaf, ei, size);
 174        ptr = btrfs_file_extent_inline_start(ei);
 175
 176        if (compress_type != BTRFS_COMPRESS_NONE) {
 177                struct page *cpage;
 178                int i = 0;
 179                while (compressed_size > 0) {
 180                        cpage = compressed_pages[i];
 181                        cur_size = min_t(unsigned long, compressed_size,
 182                                       PAGE_CACHE_SIZE);
 183
 184                        kaddr = kmap_atomic(cpage);
 185                        write_extent_buffer(leaf, kaddr, ptr, cur_size);
 186                        kunmap_atomic(kaddr);
 187
 188                        i++;
 189                        ptr += cur_size;
 190                        compressed_size -= cur_size;
 191                }
 192                btrfs_set_file_extent_compression(leaf, ei,
 193                                                  compress_type);
 194        } else {
 195                page = find_get_page(inode->i_mapping,
 196                                     start >> PAGE_CACHE_SHIFT);
 197                btrfs_set_file_extent_compression(leaf, ei, 0);
 198                kaddr = kmap_atomic(page);
 199                offset = start & (PAGE_CACHE_SIZE - 1);
 200                write_extent_buffer(leaf, kaddr + offset, ptr, size);
 201                kunmap_atomic(kaddr);
 202                page_cache_release(page);
 203        }
 204        btrfs_mark_buffer_dirty(leaf);
 205        btrfs_free_path(path);
 206
 207        /*
 208         * we're an inline extent, so nobody can
 209         * extend the file past i_size without locking
 210         * a page we already have locked.
 211         *
 212         * We must do any isize and inode updates
 213         * before we unlock the pages.  Otherwise we
 214         * could end up racing with unlink.
 215         */
 216        BTRFS_I(inode)->disk_i_size = inode->i_size;
 217        ret = btrfs_update_inode(trans, root, inode);
 218
 219        return ret;
 220fail:
 221        btrfs_free_path(path);
 222        return err;
 223}
 224
 225
 226/*
 227 * conditionally insert an inline extent into the file.  This
 228 * does the checks required to make sure the data is small enough
 229 * to fit as an inline extent.
 230 */
 231static noinline int cow_file_range_inline(struct btrfs_trans_handle *trans,
 232                                 struct btrfs_root *root,
 233                                 struct inode *inode, u64 start, u64 end,
 234                                 size_t compressed_size, int compress_type,
 235                                 struct page **compressed_pages)
 236{
 237        u64 isize = i_size_read(inode);
 238        u64 actual_end = min(end + 1, isize);
 239        u64 inline_len = actual_end - start;
 240        u64 aligned_end = ALIGN(end, root->sectorsize);
 241        u64 data_len = inline_len;
 242        int ret;
 243
 244        if (compressed_size)
 245                data_len = compressed_size;
 246
 247        if (start > 0 ||
 248            actual_end >= PAGE_CACHE_SIZE ||
 249            data_len >= BTRFS_MAX_INLINE_DATA_SIZE(root) ||
 250            (!compressed_size &&
 251            (actual_end & (root->sectorsize - 1)) == 0) ||
 252            end + 1 < isize ||
 253            data_len > root->fs_info->max_inline) {
 254                return 1;
 255        }
 256
 257        ret = btrfs_drop_extents(trans, root, inode, start, aligned_end, 1);
 258        if (ret)
 259                return ret;
 260
 261        if (isize > actual_end)
 262                inline_len = min_t(u64, isize, actual_end);
 263        ret = insert_inline_extent(trans, root, inode, start,
 264                                   inline_len, compressed_size,
 265                                   compress_type, compressed_pages);
 266        if (ret && ret != -ENOSPC) {
 267                btrfs_abort_transaction(trans, root, ret);
 268                return ret;
 269        } else if (ret == -ENOSPC) {
 270                return 1;
 271        }
 272
 273        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
 274        btrfs_delalloc_release_metadata(inode, end + 1 - start);
 275        btrfs_drop_extent_cache(inode, start, aligned_end - 1, 0);
 276        return 0;
 277}
 278
 279struct async_extent {
 280        u64 start;
 281        u64 ram_size;
 282        u64 compressed_size;
 283        struct page **pages;
 284        unsigned long nr_pages;
 285        int compress_type;
 286        struct list_head list;
 287};
 288
 289struct async_cow {
 290        struct inode *inode;
 291        struct btrfs_root *root;
 292        struct page *locked_page;
 293        u64 start;
 294        u64 end;
 295        struct list_head extents;
 296        struct btrfs_work work;
 297};
 298
 299static noinline int add_async_extent(struct async_cow *cow,
 300                                     u64 start, u64 ram_size,
 301                                     u64 compressed_size,
 302                                     struct page **pages,
 303                                     unsigned long nr_pages,
 304                                     int compress_type)
 305{
 306        struct async_extent *async_extent;
 307
 308        async_extent = kmalloc(sizeof(*async_extent), GFP_NOFS);
 309        BUG_ON(!async_extent); /* -ENOMEM */
 310        async_extent->start = start;
 311        async_extent->ram_size = ram_size;
 312        async_extent->compressed_size = compressed_size;
 313        async_extent->pages = pages;
 314        async_extent->nr_pages = nr_pages;
 315        async_extent->compress_type = compress_type;
 316        list_add_tail(&async_extent->list, &cow->extents);
 317        return 0;
 318}
 319
 320/*
 321 * we create compressed extents in two phases.  The first
 322 * phase compresses a range of pages that have already been
 323 * locked (both pages and state bits are locked).
 324 *
 325 * This is done inside an ordered work queue, and the compression
 326 * is spread across many cpus.  The actual IO submission is step
 327 * two, and the ordered work queue takes care of making sure that
 328 * happens in the same order things were put onto the queue by
 329 * writepages and friends.
 330 *
 331 * If this code finds it can't get good compression, it puts an
 332 * entry onto the work queue to write the uncompressed bytes.  This
 333 * makes sure that both compressed inodes and uncompressed inodes
 334 * are written in the same order that the flusher thread sent them
 335 * down.
 336 */
 337static noinline int compress_file_range(struct inode *inode,
 338                                        struct page *locked_page,
 339                                        u64 start, u64 end,
 340                                        struct async_cow *async_cow,
 341                                        int *num_added)
 342{
 343        struct btrfs_root *root = BTRFS_I(inode)->root;
 344        struct btrfs_trans_handle *trans;
 345        u64 num_bytes;
 346        u64 blocksize = root->sectorsize;
 347        u64 actual_end;
 348        u64 isize = i_size_read(inode);
 349        int ret = 0;
 350        struct page **pages = NULL;
 351        unsigned long nr_pages;
 352        unsigned long nr_pages_ret = 0;
 353        unsigned long total_compressed = 0;
 354        unsigned long total_in = 0;
 355        unsigned long max_compressed = 128 * 1024;
 356        unsigned long max_uncompressed = 128 * 1024;
 357        int i;
 358        int will_compress;
 359        int compress_type = root->fs_info->compress_type;
 360        int redirty = 0;
 361
 362        /* if this is a small write inside eof, kick off a defrag */
 363        if ((end - start + 1) < 16 * 1024 &&
 364            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 365                btrfs_add_inode_defrag(NULL, inode);
 366
 367        actual_end = min_t(u64, isize, end + 1);
 368again:
 369        will_compress = 0;
 370        nr_pages = (end >> PAGE_CACHE_SHIFT) - (start >> PAGE_CACHE_SHIFT) + 1;
 371        nr_pages = min(nr_pages, (128 * 1024UL) / PAGE_CACHE_SIZE);
 372
 373        /*
 374         * we don't want to send crud past the end of i_size through
 375         * compression, that's just a waste of CPU time.  So, if the
 376         * end of the file is before the start of our current
 377         * requested range of bytes, we bail out to the uncompressed
 378         * cleanup code that can deal with all of this.
 379         *
 380         * It isn't really the fastest way to fix things, but this is a
 381         * very uncommon corner.
 382         */
 383        if (actual_end <= start)
 384                goto cleanup_and_bail_uncompressed;
 385
 386        total_compressed = actual_end - start;
 387
 388        /* we want to make sure that amount of ram required to uncompress
 389         * an extent is reasonable, so we limit the total size in ram
 390         * of a compressed extent to 128k.  This is a crucial number
 391         * because it also controls how easily we can spread reads across
 392         * cpus for decompression.
 393         *
 394         * We also want to make sure the amount of IO required to do
 395         * a random read is reasonably small, so we limit the size of
 396         * a compressed extent to 128k.
 397         */
 398        total_compressed = min(total_compressed, max_uncompressed);
 399        num_bytes = ALIGN(end - start + 1, blocksize);
 400        num_bytes = max(blocksize,  num_bytes);
 401        total_in = 0;
 402        ret = 0;
 403
 404        /*
 405         * we do compression for mount -o compress and when the
 406         * inode has not been flagged as nocompress.  This flag can
 407         * change at any time if we discover bad compression ratios.
 408         */
 409        if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS) &&
 410            (btrfs_test_opt(root, COMPRESS) ||
 411             (BTRFS_I(inode)->force_compress) ||
 412             (BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS))) {
 413                WARN_ON(pages);
 414                pages = kzalloc(sizeof(struct page *) * nr_pages, GFP_NOFS);
 415                if (!pages) {
 416                        /* just bail out to the uncompressed code */
 417                        goto cont;
 418                }
 419
 420                if (BTRFS_I(inode)->force_compress)
 421                        compress_type = BTRFS_I(inode)->force_compress;
 422
 423                /*
 424                 * we need to call clear_page_dirty_for_io on each
 425                 * page in the range.  Otherwise applications with the file
 426                 * mmap'd can wander in and change the page contents while
 427                 * we are compressing them.
 428                 *
 429                 * If the compression fails for any reason, we set the pages
 430                 * dirty again later on.
 431                 */
 432                extent_range_clear_dirty_for_io(inode, start, end);
 433                redirty = 1;
 434                ret = btrfs_compress_pages(compress_type,
 435                                           inode->i_mapping, start,
 436                                           total_compressed, pages,
 437                                           nr_pages, &nr_pages_ret,
 438                                           &total_in,
 439                                           &total_compressed,
 440                                           max_compressed);
 441
 442                if (!ret) {
 443                        unsigned long offset = total_compressed &
 444                                (PAGE_CACHE_SIZE - 1);
 445                        struct page *page = pages[nr_pages_ret - 1];
 446                        char *kaddr;
 447
 448                        /* zero the tail end of the last page, we might be
 449                         * sending it down to disk
 450                         */
 451                        if (offset) {
 452                                kaddr = kmap_atomic(page);
 453                                memset(kaddr + offset, 0,
 454                                       PAGE_CACHE_SIZE - offset);
 455                                kunmap_atomic(kaddr);
 456                        }
 457                        will_compress = 1;
 458                }
 459        }
 460cont:
 461        if (start == 0) {
 462                trans = btrfs_join_transaction(root);
 463                if (IS_ERR(trans)) {
 464                        ret = PTR_ERR(trans);
 465                        trans = NULL;
 466                        goto cleanup_and_out;
 467                }
 468                trans->block_rsv = &root->fs_info->delalloc_block_rsv;
 469
 470                /* lets try to make an inline extent */
 471                if (ret || total_in < (actual_end - start)) {
 472                        /* we didn't compress the entire range, try
 473                         * to make an uncompressed inline extent.
 474                         */
 475                        ret = cow_file_range_inline(trans, root, inode,
 476                                                    start, end, 0, 0, NULL);
 477                } else {
 478                        /* try making a compressed inline extent */
 479                        ret = cow_file_range_inline(trans, root, inode,
 480                                                    start, end,
 481                                                    total_compressed,
 482                                                    compress_type, pages);
 483                }
 484                if (ret <= 0) {
 485                        /*
 486                         * inline extent creation worked or returned error,
 487                         * we don't need to create any more async work items.
 488                         * Unlock and free up our temp pages.
 489                         */
 490                        extent_clear_unlock_delalloc(inode,
 491                             &BTRFS_I(inode)->io_tree,
 492                             start, end, NULL,
 493                             EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY |
 494                             EXTENT_CLEAR_DELALLOC |
 495                             EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK);
 496
 497                        btrfs_end_transaction(trans, root);
 498                        goto free_pages_out;
 499                }
 500                btrfs_end_transaction(trans, root);
 501        }
 502
 503        if (will_compress) {
 504                /*
 505                 * we aren't doing an inline extent round the compressed size
 506                 * up to a block size boundary so the allocator does sane
 507                 * things
 508                 */
 509                total_compressed = ALIGN(total_compressed, blocksize);
 510
 511                /*
 512                 * one last check to make sure the compression is really a
 513                 * win, compare the page count read with the blocks on disk
 514                 */
 515                total_in = ALIGN(total_in, PAGE_CACHE_SIZE);
 516                if (total_compressed >= total_in) {
 517                        will_compress = 0;
 518                } else {
 519                        num_bytes = total_in;
 520                }
 521        }
 522        if (!will_compress && pages) {
 523                /*
 524                 * the compression code ran but failed to make things smaller,
 525                 * free any pages it allocated and our page pointer array
 526                 */
 527                for (i = 0; i < nr_pages_ret; i++) {
 528                        WARN_ON(pages[i]->mapping);
 529                        page_cache_release(pages[i]);
 530                }
 531                kfree(pages);
 532                pages = NULL;
 533                total_compressed = 0;
 534                nr_pages_ret = 0;
 535
 536                /* flag the file so we don't compress in the future */
 537                if (!btrfs_test_opt(root, FORCE_COMPRESS) &&
 538                    !(BTRFS_I(inode)->force_compress)) {
 539                        BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
 540                }
 541        }
 542        if (will_compress) {
 543                *num_added += 1;
 544
 545                /* the async work queues will take care of doing actual
 546                 * allocation on disk for these compressed pages,
 547                 * and will submit them to the elevator.
 548                 */
 549                add_async_extent(async_cow, start, num_bytes,
 550                                 total_compressed, pages, nr_pages_ret,
 551                                 compress_type);
 552
 553                if (start + num_bytes < end) {
 554                        start += num_bytes;
 555                        pages = NULL;
 556                        cond_resched();
 557                        goto again;
 558                }
 559        } else {
 560cleanup_and_bail_uncompressed:
 561                /*
 562                 * No compression, but we still need to write the pages in
 563                 * the file we've been given so far.  redirty the locked
 564                 * page if it corresponds to our extent and set things up
 565                 * for the async work queue to run cow_file_range to do
 566                 * the normal delalloc dance
 567                 */
 568                if (page_offset(locked_page) >= start &&
 569                    page_offset(locked_page) <= end) {
 570                        __set_page_dirty_nobuffers(locked_page);
 571                        /* unlocked later on in the async handlers */
 572                }
 573                if (redirty)
 574                        extent_range_redirty_for_io(inode, start, end);
 575                add_async_extent(async_cow, start, end - start + 1,
 576                                 0, NULL, 0, BTRFS_COMPRESS_NONE);
 577                *num_added += 1;
 578        }
 579
 580out:
 581        return ret;
 582
 583free_pages_out:
 584        for (i = 0; i < nr_pages_ret; i++) {
 585                WARN_ON(pages[i]->mapping);
 586                page_cache_release(pages[i]);
 587        }
 588        kfree(pages);
 589
 590        goto out;
 591
 592cleanup_and_out:
 593        extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
 594                                     start, end, NULL,
 595                                     EXTENT_CLEAR_UNLOCK_PAGE |
 596                                     EXTENT_CLEAR_DIRTY |
 597                                     EXTENT_CLEAR_DELALLOC |
 598                                     EXTENT_SET_WRITEBACK |
 599                                     EXTENT_END_WRITEBACK);
 600        if (!trans || IS_ERR(trans))
 601                btrfs_error(root->fs_info, ret, "Failed to join transaction");
 602        else
 603                btrfs_abort_transaction(trans, root, ret);
 604        goto free_pages_out;
 605}
 606
 607/*
 608 * phase two of compressed writeback.  This is the ordered portion
 609 * of the code, which only gets called in the order the work was
 610 * queued.  We walk all the async extents created by compress_file_range
 611 * and send them down to the disk.
 612 */
 613static noinline int submit_compressed_extents(struct inode *inode,
 614                                              struct async_cow *async_cow)
 615{
 616        struct async_extent *async_extent;
 617        u64 alloc_hint = 0;
 618        struct btrfs_trans_handle *trans;
 619        struct btrfs_key ins;
 620        struct extent_map *em;
 621        struct btrfs_root *root = BTRFS_I(inode)->root;
 622        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 623        struct extent_io_tree *io_tree;
 624        int ret = 0;
 625
 626        if (list_empty(&async_cow->extents))
 627                return 0;
 628
 629again:
 630        while (!list_empty(&async_cow->extents)) {
 631                async_extent = list_entry(async_cow->extents.next,
 632                                          struct async_extent, list);
 633                list_del(&async_extent->list);
 634
 635                io_tree = &BTRFS_I(inode)->io_tree;
 636
 637retry:
 638                /* did the compression code fall back to uncompressed IO? */
 639                if (!async_extent->pages) {
 640                        int page_started = 0;
 641                        unsigned long nr_written = 0;
 642
 643                        lock_extent(io_tree, async_extent->start,
 644                                         async_extent->start +
 645                                         async_extent->ram_size - 1);
 646
 647                        /* allocate blocks */
 648                        ret = cow_file_range(inode, async_cow->locked_page,
 649                                             async_extent->start,
 650                                             async_extent->start +
 651                                             async_extent->ram_size - 1,
 652                                             &page_started, &nr_written, 0);
 653
 654                        /* JDM XXX */
 655
 656                        /*
 657                         * if page_started, cow_file_range inserted an
 658                         * inline extent and took care of all the unlocking
 659                         * and IO for us.  Otherwise, we need to submit
 660                         * all those pages down to the drive.
 661                         */
 662                        if (!page_started && !ret)
 663                                extent_write_locked_range(io_tree,
 664                                                  inode, async_extent->start,
 665                                                  async_extent->start +
 666                                                  async_extent->ram_size - 1,
 667                                                  btrfs_get_extent,
 668                                                  WB_SYNC_ALL);
 669                        else if (ret)
 670                                unlock_page(async_cow->locked_page);
 671                        kfree(async_extent);
 672                        cond_resched();
 673                        continue;
 674                }
 675
 676                lock_extent(io_tree, async_extent->start,
 677                            async_extent->start + async_extent->ram_size - 1);
 678
 679                trans = btrfs_join_transaction(root);
 680                if (IS_ERR(trans)) {
 681                        ret = PTR_ERR(trans);
 682                } else {
 683                        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
 684                        ret = btrfs_reserve_extent(trans, root,
 685                                           async_extent->compressed_size,
 686                                           async_extent->compressed_size,
 687                                           0, alloc_hint, &ins, 1);
 688                        if (ret && ret != -ENOSPC)
 689                                btrfs_abort_transaction(trans, root, ret);
 690                        btrfs_end_transaction(trans, root);
 691                }
 692
 693                if (ret) {
 694                        int i;
 695
 696                        for (i = 0; i < async_extent->nr_pages; i++) {
 697                                WARN_ON(async_extent->pages[i]->mapping);
 698                                page_cache_release(async_extent->pages[i]);
 699                        }
 700                        kfree(async_extent->pages);
 701                        async_extent->nr_pages = 0;
 702                        async_extent->pages = NULL;
 703
 704                        if (ret == -ENOSPC)
 705                                goto retry;
 706                        goto out_free;
 707                }
 708
 709                /*
 710                 * here we're doing allocation and writeback of the
 711                 * compressed pages
 712                 */
 713                btrfs_drop_extent_cache(inode, async_extent->start,
 714                                        async_extent->start +
 715                                        async_extent->ram_size - 1, 0);
 716
 717                em = alloc_extent_map();
 718                if (!em) {
 719                        ret = -ENOMEM;
 720                        goto out_free_reserve;
 721                }
 722                em->start = async_extent->start;
 723                em->len = async_extent->ram_size;
 724                em->orig_start = em->start;
 725                em->mod_start = em->start;
 726                em->mod_len = em->len;
 727
 728                em->block_start = ins.objectid;
 729                em->block_len = ins.offset;
 730                em->orig_block_len = ins.offset;
 731                em->ram_bytes = async_extent->ram_size;
 732                em->bdev = root->fs_info->fs_devices->latest_bdev;
 733                em->compress_type = async_extent->compress_type;
 734                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 735                set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
 736                em->generation = -1;
 737
 738                while (1) {
 739                        write_lock(&em_tree->lock);
 740                        ret = add_extent_mapping(em_tree, em, 1);
 741                        write_unlock(&em_tree->lock);
 742                        if (ret != -EEXIST) {
 743                                free_extent_map(em);
 744                                break;
 745                        }
 746                        btrfs_drop_extent_cache(inode, async_extent->start,
 747                                                async_extent->start +
 748                                                async_extent->ram_size - 1, 0);
 749                }
 750
 751                if (ret)
 752                        goto out_free_reserve;
 753
 754                ret = btrfs_add_ordered_extent_compress(inode,
 755                                                async_extent->start,
 756                                                ins.objectid,
 757                                                async_extent->ram_size,
 758                                                ins.offset,
 759                                                BTRFS_ORDERED_COMPRESSED,
 760                                                async_extent->compress_type);
 761                if (ret)
 762                        goto out_free_reserve;
 763
 764                /*
 765                 * clear dirty, set writeback and unlock the pages.
 766                 */
 767                extent_clear_unlock_delalloc(inode,
 768                                &BTRFS_I(inode)->io_tree,
 769                                async_extent->start,
 770                                async_extent->start +
 771                                async_extent->ram_size - 1,
 772                                NULL, EXTENT_CLEAR_UNLOCK_PAGE |
 773                                EXTENT_CLEAR_UNLOCK |
 774                                EXTENT_CLEAR_DELALLOC |
 775                                EXTENT_CLEAR_DIRTY | EXTENT_SET_WRITEBACK);
 776
 777                ret = btrfs_submit_compressed_write(inode,
 778                                    async_extent->start,
 779                                    async_extent->ram_size,
 780                                    ins.objectid,
 781                                    ins.offset, async_extent->pages,
 782                                    async_extent->nr_pages);
 783                alloc_hint = ins.objectid + ins.offset;
 784                kfree(async_extent);
 785                if (ret)
 786                        goto out;
 787                cond_resched();
 788        }
 789        ret = 0;
 790out:
 791        return ret;
 792out_free_reserve:
 793        btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
 794out_free:
 795        extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
 796                                     async_extent->start,
 797                                     async_extent->start +
 798                                     async_extent->ram_size - 1,
 799                                     NULL, EXTENT_CLEAR_UNLOCK_PAGE |
 800                                     EXTENT_CLEAR_UNLOCK |
 801                                     EXTENT_CLEAR_DELALLOC |
 802                                     EXTENT_CLEAR_DIRTY |
 803                                     EXTENT_SET_WRITEBACK |
 804                                     EXTENT_END_WRITEBACK);
 805        kfree(async_extent);
 806        goto again;
 807}
 808
 809static u64 get_extent_allocation_hint(struct inode *inode, u64 start,
 810                                      u64 num_bytes)
 811{
 812        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 813        struct extent_map *em;
 814        u64 alloc_hint = 0;
 815
 816        read_lock(&em_tree->lock);
 817        em = search_extent_mapping(em_tree, start, num_bytes);
 818        if (em) {
 819                /*
 820                 * if block start isn't an actual block number then find the
 821                 * first block in this inode and use that as a hint.  If that
 822                 * block is also bogus then just don't worry about it.
 823                 */
 824                if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
 825                        free_extent_map(em);
 826                        em = search_extent_mapping(em_tree, 0, 0);
 827                        if (em && em->block_start < EXTENT_MAP_LAST_BYTE)
 828                                alloc_hint = em->block_start;
 829                        if (em)
 830                                free_extent_map(em);
 831                } else {
 832                        alloc_hint = em->block_start;
 833                        free_extent_map(em);
 834                }
 835        }
 836        read_unlock(&em_tree->lock);
 837
 838        return alloc_hint;
 839}
 840
 841/*
 842 * when extent_io.c finds a delayed allocation range in the file,
 843 * the call backs end up in this code.  The basic idea is to
 844 * allocate extents on disk for the range, and create ordered data structs
 845 * in ram to track those extents.
 846 *
 847 * locked_page is the page that writepage had locked already.  We use
 848 * it to make sure we don't do extra locks or unlocks.
 849 *
 850 * *page_started is set to one if we unlock locked_page and do everything
 851 * required to start IO on it.  It may be clean and already done with
 852 * IO when we return.
 853 */
 854static noinline int __cow_file_range(struct btrfs_trans_handle *trans,
 855                                     struct inode *inode,
 856                                     struct btrfs_root *root,
 857                                     struct page *locked_page,
 858                                     u64 start, u64 end, int *page_started,
 859                                     unsigned long *nr_written,
 860                                     int unlock)
 861{
 862        u64 alloc_hint = 0;
 863        u64 num_bytes;
 864        unsigned long ram_size;
 865        u64 disk_num_bytes;
 866        u64 cur_alloc_size;
 867        u64 blocksize = root->sectorsize;
 868        struct btrfs_key ins;
 869        struct extent_map *em;
 870        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
 871        int ret = 0;
 872
 873        BUG_ON(btrfs_is_free_space_inode(inode));
 874
 875        num_bytes = ALIGN(end - start + 1, blocksize);
 876        num_bytes = max(blocksize,  num_bytes);
 877        disk_num_bytes = num_bytes;
 878
 879        /* if this is a small write inside eof, kick off defrag */
 880        if (num_bytes < 64 * 1024 &&
 881            (start > 0 || end + 1 < BTRFS_I(inode)->disk_i_size))
 882                btrfs_add_inode_defrag(trans, inode);
 883
 884        if (start == 0) {
 885                /* lets try to make an inline extent */
 886                ret = cow_file_range_inline(trans, root, inode,
 887                                            start, end, 0, 0, NULL);
 888                if (ret == 0) {
 889                        extent_clear_unlock_delalloc(inode,
 890                                     &BTRFS_I(inode)->io_tree,
 891                                     start, end, NULL,
 892                                     EXTENT_CLEAR_UNLOCK_PAGE |
 893                                     EXTENT_CLEAR_UNLOCK |
 894                                     EXTENT_CLEAR_DELALLOC |
 895                                     EXTENT_CLEAR_DIRTY |
 896                                     EXTENT_SET_WRITEBACK |
 897                                     EXTENT_END_WRITEBACK);
 898
 899                        *nr_written = *nr_written +
 900                             (end - start + PAGE_CACHE_SIZE) / PAGE_CACHE_SIZE;
 901                        *page_started = 1;
 902                        goto out;
 903                } else if (ret < 0) {
 904                        btrfs_abort_transaction(trans, root, ret);
 905                        goto out_unlock;
 906                }
 907        }
 908
 909        BUG_ON(disk_num_bytes >
 910               btrfs_super_total_bytes(root->fs_info->super_copy));
 911
 912        alloc_hint = get_extent_allocation_hint(inode, start, num_bytes);
 913        btrfs_drop_extent_cache(inode, start, start + num_bytes - 1, 0);
 914
 915        while (disk_num_bytes > 0) {
 916                unsigned long op;
 917
 918                cur_alloc_size = disk_num_bytes;
 919                ret = btrfs_reserve_extent(trans, root, cur_alloc_size,
 920                                           root->sectorsize, 0, alloc_hint,
 921                                           &ins, 1);
 922                if (ret < 0) {
 923                        btrfs_abort_transaction(trans, root, ret);
 924                        goto out_unlock;
 925                }
 926
 927                em = alloc_extent_map();
 928                if (!em) {
 929                        ret = -ENOMEM;
 930                        goto out_reserve;
 931                }
 932                em->start = start;
 933                em->orig_start = em->start;
 934                ram_size = ins.offset;
 935                em->len = ins.offset;
 936                em->mod_start = em->start;
 937                em->mod_len = em->len;
 938
 939                em->block_start = ins.objectid;
 940                em->block_len = ins.offset;
 941                em->orig_block_len = ins.offset;
 942                em->ram_bytes = ram_size;
 943                em->bdev = root->fs_info->fs_devices->latest_bdev;
 944                set_bit(EXTENT_FLAG_PINNED, &em->flags);
 945                em->generation = -1;
 946
 947                while (1) {
 948                        write_lock(&em_tree->lock);
 949                        ret = add_extent_mapping(em_tree, em, 1);
 950                        write_unlock(&em_tree->lock);
 951                        if (ret != -EEXIST) {
 952                                free_extent_map(em);
 953                                break;
 954                        }
 955                        btrfs_drop_extent_cache(inode, start,
 956                                                start + ram_size - 1, 0);
 957                }
 958                if (ret)
 959                        goto out_reserve;
 960
 961                cur_alloc_size = ins.offset;
 962                ret = btrfs_add_ordered_extent(inode, start, ins.objectid,
 963                                               ram_size, cur_alloc_size, 0);
 964                if (ret)
 965                        goto out_reserve;
 966
 967                if (root->root_key.objectid ==
 968                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
 969                        ret = btrfs_reloc_clone_csums(inode, start,
 970                                                      cur_alloc_size);
 971                        if (ret) {
 972                                btrfs_abort_transaction(trans, root, ret);
 973                                goto out_reserve;
 974                        }
 975                }
 976
 977                if (disk_num_bytes < cur_alloc_size)
 978                        break;
 979
 980                /* we're not doing compressed IO, don't unlock the first
 981                 * page (which the caller expects to stay locked), don't
 982                 * clear any dirty bits and don't set any writeback bits
 983                 *
 984                 * Do set the Private2 bit so we know this page was properly
 985                 * setup for writepage
 986                 */
 987                op = unlock ? EXTENT_CLEAR_UNLOCK_PAGE : 0;
 988                op |= EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
 989                        EXTENT_SET_PRIVATE2;
 990
 991                extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
 992                                             start, start + ram_size - 1,
 993                                             locked_page, op);
 994                disk_num_bytes -= cur_alloc_size;
 995                num_bytes -= cur_alloc_size;
 996                alloc_hint = ins.objectid + ins.offset;
 997                start += cur_alloc_size;
 998        }
 999out:
1000        return ret;
1001
1002out_reserve:
1003        btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
1004out_unlock:
1005        extent_clear_unlock_delalloc(inode,
1006                     &BTRFS_I(inode)->io_tree,
1007                     start, end, locked_page,
1008                     EXTENT_CLEAR_UNLOCK_PAGE |
1009                     EXTENT_CLEAR_UNLOCK |
1010                     EXTENT_CLEAR_DELALLOC |
1011                     EXTENT_CLEAR_DIRTY |
1012                     EXTENT_SET_WRITEBACK |
1013                     EXTENT_END_WRITEBACK);
1014
1015        goto out;
1016}
1017
1018static noinline int cow_file_range(struct inode *inode,
1019                                   struct page *locked_page,
1020                                   u64 start, u64 end, int *page_started,
1021                                   unsigned long *nr_written,
1022                                   int unlock)
1023{
1024        struct btrfs_trans_handle *trans;
1025        struct btrfs_root *root = BTRFS_I(inode)->root;
1026        int ret;
1027
1028        trans = btrfs_join_transaction(root);
1029        if (IS_ERR(trans)) {
1030                extent_clear_unlock_delalloc(inode,
1031                             &BTRFS_I(inode)->io_tree,
1032                             start, end, locked_page,
1033                             EXTENT_CLEAR_UNLOCK_PAGE |
1034                             EXTENT_CLEAR_UNLOCK |
1035                             EXTENT_CLEAR_DELALLOC |
1036                             EXTENT_CLEAR_DIRTY |
1037                             EXTENT_SET_WRITEBACK |
1038                             EXTENT_END_WRITEBACK);
1039                return PTR_ERR(trans);
1040        }
1041        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1042
1043        ret = __cow_file_range(trans, inode, root, locked_page, start, end,
1044                               page_started, nr_written, unlock);
1045
1046        btrfs_end_transaction(trans, root);
1047
1048        return ret;
1049}
1050
1051/*
1052 * work queue call back to started compression on a file and pages
1053 */
1054static noinline void async_cow_start(struct btrfs_work *work)
1055{
1056        struct async_cow *async_cow;
1057        int num_added = 0;
1058        async_cow = container_of(work, struct async_cow, work);
1059
1060        compress_file_range(async_cow->inode, async_cow->locked_page,
1061                            async_cow->start, async_cow->end, async_cow,
1062                            &num_added);
1063        if (num_added == 0) {
1064                btrfs_add_delayed_iput(async_cow->inode);
1065                async_cow->inode = NULL;
1066        }
1067}
1068
1069/*
1070 * work queue call back to submit previously compressed pages
1071 */
1072static noinline void async_cow_submit(struct btrfs_work *work)
1073{
1074        struct async_cow *async_cow;
1075        struct btrfs_root *root;
1076        unsigned long nr_pages;
1077
1078        async_cow = container_of(work, struct async_cow, work);
1079
1080        root = async_cow->root;
1081        nr_pages = (async_cow->end - async_cow->start + PAGE_CACHE_SIZE) >>
1082                PAGE_CACHE_SHIFT;
1083
1084        if (atomic_sub_return(nr_pages, &root->fs_info->async_delalloc_pages) <
1085            5 * 1024 * 1024 &&
1086            waitqueue_active(&root->fs_info->async_submit_wait))
1087                wake_up(&root->fs_info->async_submit_wait);
1088
1089        if (async_cow->inode)
1090                submit_compressed_extents(async_cow->inode, async_cow);
1091}
1092
1093static noinline void async_cow_free(struct btrfs_work *work)
1094{
1095        struct async_cow *async_cow;
1096        async_cow = container_of(work, struct async_cow, work);
1097        if (async_cow->inode)
1098                btrfs_add_delayed_iput(async_cow->inode);
1099        kfree(async_cow);
1100}
1101
1102static int cow_file_range_async(struct inode *inode, struct page *locked_page,
1103                                u64 start, u64 end, int *page_started,
1104                                unsigned long *nr_written)
1105{
1106        struct async_cow *async_cow;
1107        struct btrfs_root *root = BTRFS_I(inode)->root;
1108        unsigned long nr_pages;
1109        u64 cur_end;
1110        int limit = 10 * 1024 * 1024;
1111
1112        clear_extent_bit(&BTRFS_I(inode)->io_tree, start, end, EXTENT_LOCKED,
1113                         1, 0, NULL, GFP_NOFS);
1114        while (start < end) {
1115                async_cow = kmalloc(sizeof(*async_cow), GFP_NOFS);
1116                BUG_ON(!async_cow); /* -ENOMEM */
1117                async_cow->inode = igrab(inode);
1118                async_cow->root = root;
1119                async_cow->locked_page = locked_page;
1120                async_cow->start = start;
1121
1122                if (BTRFS_I(inode)->flags & BTRFS_INODE_NOCOMPRESS)
1123                        cur_end = end;
1124                else
1125                        cur_end = min(end, start + 512 * 1024 - 1);
1126
1127                async_cow->end = cur_end;
1128                INIT_LIST_HEAD(&async_cow->extents);
1129
1130                async_cow->work.func = async_cow_start;
1131                async_cow->work.ordered_func = async_cow_submit;
1132                async_cow->work.ordered_free = async_cow_free;
1133                async_cow->work.flags = 0;
1134
1135                nr_pages = (cur_end - start + PAGE_CACHE_SIZE) >>
1136                        PAGE_CACHE_SHIFT;
1137                atomic_add(nr_pages, &root->fs_info->async_delalloc_pages);
1138
1139                btrfs_queue_worker(&root->fs_info->delalloc_workers,
1140                                   &async_cow->work);
1141
1142                if (atomic_read(&root->fs_info->async_delalloc_pages) > limit) {
1143                        wait_event(root->fs_info->async_submit_wait,
1144                           (atomic_read(&root->fs_info->async_delalloc_pages) <
1145                            limit));
1146                }
1147
1148                while (atomic_read(&root->fs_info->async_submit_draining) &&
1149                      atomic_read(&root->fs_info->async_delalloc_pages)) {
1150                        wait_event(root->fs_info->async_submit_wait,
1151                          (atomic_read(&root->fs_info->async_delalloc_pages) ==
1152                           0));
1153                }
1154
1155                *nr_written += nr_pages;
1156                start = cur_end + 1;
1157        }
1158        *page_started = 1;
1159        return 0;
1160}
1161
1162static noinline int csum_exist_in_range(struct btrfs_root *root,
1163                                        u64 bytenr, u64 num_bytes)
1164{
1165        int ret;
1166        struct btrfs_ordered_sum *sums;
1167        LIST_HEAD(list);
1168
1169        ret = btrfs_lookup_csums_range(root->fs_info->csum_root, bytenr,
1170                                       bytenr + num_bytes - 1, &list, 0);
1171        if (ret == 0 && list_empty(&list))
1172                return 0;
1173
1174        while (!list_empty(&list)) {
1175                sums = list_entry(list.next, struct btrfs_ordered_sum, list);
1176                list_del(&sums->list);
1177                kfree(sums);
1178        }
1179        return 1;
1180}
1181
1182/*
1183 * when nowcow writeback call back.  This checks for snapshots or COW copies
1184 * of the extents that exist in the file, and COWs the file as required.
1185 *
1186 * If no cow copies or snapshots exist, we write directly to the existing
1187 * blocks on disk
1188 */
1189static noinline int run_delalloc_nocow(struct inode *inode,
1190                                       struct page *locked_page,
1191                              u64 start, u64 end, int *page_started, int force,
1192                              unsigned long *nr_written)
1193{
1194        struct btrfs_root *root = BTRFS_I(inode)->root;
1195        struct btrfs_trans_handle *trans;
1196        struct extent_buffer *leaf;
1197        struct btrfs_path *path;
1198        struct btrfs_file_extent_item *fi;
1199        struct btrfs_key found_key;
1200        u64 cow_start;
1201        u64 cur_offset;
1202        u64 extent_end;
1203        u64 extent_offset;
1204        u64 disk_bytenr;
1205        u64 num_bytes;
1206        u64 disk_num_bytes;
1207        u64 ram_bytes;
1208        int extent_type;
1209        int ret, err;
1210        int type;
1211        int nocow;
1212        int check_prev = 1;
1213        bool nolock;
1214        u64 ino = btrfs_ino(inode);
1215
1216        path = btrfs_alloc_path();
1217        if (!path) {
1218                extent_clear_unlock_delalloc(inode,
1219                             &BTRFS_I(inode)->io_tree,
1220                             start, end, locked_page,
1221                             EXTENT_CLEAR_UNLOCK_PAGE |
1222                             EXTENT_CLEAR_UNLOCK |
1223                             EXTENT_CLEAR_DELALLOC |
1224                             EXTENT_CLEAR_DIRTY |
1225                             EXTENT_SET_WRITEBACK |
1226                             EXTENT_END_WRITEBACK);
1227                return -ENOMEM;
1228        }
1229
1230        nolock = btrfs_is_free_space_inode(inode);
1231
1232        if (nolock)
1233                trans = btrfs_join_transaction_nolock(root);
1234        else
1235                trans = btrfs_join_transaction(root);
1236
1237        if (IS_ERR(trans)) {
1238                extent_clear_unlock_delalloc(inode,
1239                             &BTRFS_I(inode)->io_tree,
1240                             start, end, locked_page,
1241                             EXTENT_CLEAR_UNLOCK_PAGE |
1242                             EXTENT_CLEAR_UNLOCK |
1243                             EXTENT_CLEAR_DELALLOC |
1244                             EXTENT_CLEAR_DIRTY |
1245                             EXTENT_SET_WRITEBACK |
1246                             EXTENT_END_WRITEBACK);
1247                btrfs_free_path(path);
1248                return PTR_ERR(trans);
1249        }
1250
1251        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
1252
1253        cow_start = (u64)-1;
1254        cur_offset = start;
1255        while (1) {
1256                ret = btrfs_lookup_file_extent(trans, root, path, ino,
1257                                               cur_offset, 0);
1258                if (ret < 0) {
1259                        btrfs_abort_transaction(trans, root, ret);
1260                        goto error;
1261                }
1262                if (ret > 0 && path->slots[0] > 0 && check_prev) {
1263                        leaf = path->nodes[0];
1264                        btrfs_item_key_to_cpu(leaf, &found_key,
1265                                              path->slots[0] - 1);
1266                        if (found_key.objectid == ino &&
1267                            found_key.type == BTRFS_EXTENT_DATA_KEY)
1268                                path->slots[0]--;
1269                }
1270                check_prev = 0;
1271next_slot:
1272                leaf = path->nodes[0];
1273                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1274                        ret = btrfs_next_leaf(root, path);
1275                        if (ret < 0) {
1276                                btrfs_abort_transaction(trans, root, ret);
1277                                goto error;
1278                        }
1279                        if (ret > 0)
1280                                break;
1281                        leaf = path->nodes[0];
1282                }
1283
1284                nocow = 0;
1285                disk_bytenr = 0;
1286                num_bytes = 0;
1287                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1288
1289                if (found_key.objectid > ino ||
1290                    found_key.type > BTRFS_EXTENT_DATA_KEY ||
1291                    found_key.offset > end)
1292                        break;
1293
1294                if (found_key.offset > cur_offset) {
1295                        extent_end = found_key.offset;
1296                        extent_type = 0;
1297                        goto out_check;
1298                }
1299
1300                fi = btrfs_item_ptr(leaf, path->slots[0],
1301                                    struct btrfs_file_extent_item);
1302                extent_type = btrfs_file_extent_type(leaf, fi);
1303
1304                ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
1305                if (extent_type == BTRFS_FILE_EXTENT_REG ||
1306                    extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1307                        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1308                        extent_offset = btrfs_file_extent_offset(leaf, fi);
1309                        extent_end = found_key.offset +
1310                                btrfs_file_extent_num_bytes(leaf, fi);
1311                        disk_num_bytes =
1312                                btrfs_file_extent_disk_num_bytes(leaf, fi);
1313                        if (extent_end <= start) {
1314                                path->slots[0]++;
1315                                goto next_slot;
1316                        }
1317                        if (disk_bytenr == 0)
1318                                goto out_check;
1319                        if (btrfs_file_extent_compression(leaf, fi) ||
1320                            btrfs_file_extent_encryption(leaf, fi) ||
1321                            btrfs_file_extent_other_encoding(leaf, fi))
1322                                goto out_check;
1323                        if (extent_type == BTRFS_FILE_EXTENT_REG && !force)
1324                                goto out_check;
1325                        if (btrfs_extent_readonly(root, disk_bytenr))
1326                                goto out_check;
1327                        if (btrfs_cross_ref_exist(trans, root, ino,
1328                                                  found_key.offset -
1329                                                  extent_offset, disk_bytenr))
1330                                goto out_check;
1331                        disk_bytenr += extent_offset;
1332                        disk_bytenr += cur_offset - found_key.offset;
1333                        num_bytes = min(end + 1, extent_end) - cur_offset;
1334                        /*
1335                         * force cow if csum exists in the range.
1336                         * this ensure that csum for a given extent are
1337                         * either valid or do not exist.
1338                         */
1339                        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
1340                                goto out_check;
1341                        nocow = 1;
1342                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
1343                        extent_end = found_key.offset +
1344                                btrfs_file_extent_inline_len(leaf, fi);
1345                        extent_end = ALIGN(extent_end, root->sectorsize);
1346                } else {
1347                        BUG_ON(1);
1348                }
1349out_check:
1350                if (extent_end <= start) {
1351                        path->slots[0]++;
1352                        goto next_slot;
1353                }
1354                if (!nocow) {
1355                        if (cow_start == (u64)-1)
1356                                cow_start = cur_offset;
1357                        cur_offset = extent_end;
1358                        if (cur_offset > end)
1359                                break;
1360                        path->slots[0]++;
1361                        goto next_slot;
1362                }
1363
1364                btrfs_release_path(path);
1365                if (cow_start != (u64)-1) {
1366                        ret = __cow_file_range(trans, inode, root, locked_page,
1367                                               cow_start, found_key.offset - 1,
1368                                               page_started, nr_written, 1);
1369                        if (ret) {
1370                                btrfs_abort_transaction(trans, root, ret);
1371                                goto error;
1372                        }
1373                        cow_start = (u64)-1;
1374                }
1375
1376                if (extent_type == BTRFS_FILE_EXTENT_PREALLOC) {
1377                        struct extent_map *em;
1378                        struct extent_map_tree *em_tree;
1379                        em_tree = &BTRFS_I(inode)->extent_tree;
1380                        em = alloc_extent_map();
1381                        BUG_ON(!em); /* -ENOMEM */
1382                        em->start = cur_offset;
1383                        em->orig_start = found_key.offset - extent_offset;
1384                        em->len = num_bytes;
1385                        em->block_len = num_bytes;
1386                        em->block_start = disk_bytenr;
1387                        em->orig_block_len = disk_num_bytes;
1388                        em->ram_bytes = ram_bytes;
1389                        em->bdev = root->fs_info->fs_devices->latest_bdev;
1390                        em->mod_start = em->start;
1391                        em->mod_len = em->len;
1392                        set_bit(EXTENT_FLAG_PINNED, &em->flags);
1393                        set_bit(EXTENT_FLAG_FILLING, &em->flags);
1394                        em->generation = -1;
1395                        while (1) {
1396                                write_lock(&em_tree->lock);
1397                                ret = add_extent_mapping(em_tree, em, 1);
1398                                write_unlock(&em_tree->lock);
1399                                if (ret != -EEXIST) {
1400                                        free_extent_map(em);
1401                                        break;
1402                                }
1403                                btrfs_drop_extent_cache(inode, em->start,
1404                                                em->start + em->len - 1, 0);
1405                        }
1406                        type = BTRFS_ORDERED_PREALLOC;
1407                } else {
1408                        type = BTRFS_ORDERED_NOCOW;
1409                }
1410
1411                ret = btrfs_add_ordered_extent(inode, cur_offset, disk_bytenr,
1412                                               num_bytes, num_bytes, type);
1413                BUG_ON(ret); /* -ENOMEM */
1414
1415                if (root->root_key.objectid ==
1416                    BTRFS_DATA_RELOC_TREE_OBJECTID) {
1417                        ret = btrfs_reloc_clone_csums(inode, cur_offset,
1418                                                      num_bytes);
1419                        if (ret) {
1420                                btrfs_abort_transaction(trans, root, ret);
1421                                goto error;
1422                        }
1423                }
1424
1425                extent_clear_unlock_delalloc(inode, &BTRFS_I(inode)->io_tree,
1426                                cur_offset, cur_offset + num_bytes - 1,
1427                                locked_page, EXTENT_CLEAR_UNLOCK_PAGE |
1428                                EXTENT_CLEAR_UNLOCK | EXTENT_CLEAR_DELALLOC |
1429                                EXTENT_SET_PRIVATE2);
1430                cur_offset = extent_end;
1431                if (cur_offset > end)
1432                        break;
1433        }
1434        btrfs_release_path(path);
1435
1436        if (cur_offset <= end && cow_start == (u64)-1) {
1437                cow_start = cur_offset;
1438                cur_offset = end;
1439        }
1440
1441        if (cow_start != (u64)-1) {
1442                ret = __cow_file_range(trans, inode, root, locked_page,
1443                                       cow_start, end,
1444                                       page_started, nr_written, 1);
1445                if (ret) {
1446                        btrfs_abort_transaction(trans, root, ret);
1447                        goto error;
1448                }
1449        }
1450
1451error:
1452        err = btrfs_end_transaction(trans, root);
1453        if (!ret)
1454                ret = err;
1455
1456        if (ret && cur_offset < end)
1457                extent_clear_unlock_delalloc(inode,
1458                             &BTRFS_I(inode)->io_tree,
1459                             cur_offset, end, locked_page,
1460                             EXTENT_CLEAR_UNLOCK_PAGE |
1461                             EXTENT_CLEAR_UNLOCK |
1462                             EXTENT_CLEAR_DELALLOC |
1463                             EXTENT_CLEAR_DIRTY |
1464                             EXTENT_SET_WRITEBACK |
1465                             EXTENT_END_WRITEBACK);
1466
1467        btrfs_free_path(path);
1468        return ret;
1469}
1470
1471/*
1472 * extent_io.c call back to do delayed allocation processing
1473 */
1474static int run_delalloc_range(struct inode *inode, struct page *locked_page,
1475                              u64 start, u64 end, int *page_started,
1476                              unsigned long *nr_written)
1477{
1478        int ret;
1479        struct btrfs_root *root = BTRFS_I(inode)->root;
1480
1481        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) {
1482                ret = run_delalloc_nocow(inode, locked_page, start, end,
1483                                         page_started, 1, nr_written);
1484        } else if (BTRFS_I(inode)->flags & BTRFS_INODE_PREALLOC) {
1485                ret = run_delalloc_nocow(inode, locked_page, start, end,
1486                                         page_started, 0, nr_written);
1487        } else if (!btrfs_test_opt(root, COMPRESS) &&
1488                   !(BTRFS_I(inode)->force_compress) &&
1489                   !(BTRFS_I(inode)->flags & BTRFS_INODE_COMPRESS)) {
1490                ret = cow_file_range(inode, locked_page, start, end,
1491                                      page_started, nr_written, 1);
1492        } else {
1493                set_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1494                        &BTRFS_I(inode)->runtime_flags);
1495                ret = cow_file_range_async(inode, locked_page, start, end,
1496                                           page_started, nr_written);
1497        }
1498        return ret;
1499}
1500
1501static void btrfs_split_extent_hook(struct inode *inode,
1502                                    struct extent_state *orig, u64 split)
1503{
1504        /* not delalloc, ignore it */
1505        if (!(orig->state & EXTENT_DELALLOC))
1506                return;
1507
1508        spin_lock(&BTRFS_I(inode)->lock);
1509        BTRFS_I(inode)->outstanding_extents++;
1510        spin_unlock(&BTRFS_I(inode)->lock);
1511}
1512
1513/*
1514 * extent_io.c merge_extent_hook, used to track merged delayed allocation
1515 * extents so we can keep track of new extents that are just merged onto old
1516 * extents, such as when we are doing sequential writes, so we can properly
1517 * account for the metadata space we'll need.
1518 */
1519static void btrfs_merge_extent_hook(struct inode *inode,
1520                                    struct extent_state *new,
1521                                    struct extent_state *other)
1522{
1523        /* not delalloc, ignore it */
1524        if (!(other->state & EXTENT_DELALLOC))
1525                return;
1526
1527        spin_lock(&BTRFS_I(inode)->lock);
1528        BTRFS_I(inode)->outstanding_extents--;
1529        spin_unlock(&BTRFS_I(inode)->lock);
1530}
1531
1532/*
1533 * extent_io.c set_bit_hook, used to track delayed allocation
1534 * bytes in this file, and to maintain the list of inodes that
1535 * have pending delalloc work to be done.
1536 */
1537static void btrfs_set_bit_hook(struct inode *inode,
1538                               struct extent_state *state, unsigned long *bits)
1539{
1540
1541        /*
1542         * set_bit and clear bit hooks normally require _irqsave/restore
1543         * but in this case, we are only testing for the DELALLOC
1544         * bit, which is only set or cleared with irqs on
1545         */
1546        if (!(state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1547                struct btrfs_root *root = BTRFS_I(inode)->root;
1548                u64 len = state->end + 1 - state->start;
1549                bool do_list = !btrfs_is_free_space_inode(inode);
1550
1551                if (*bits & EXTENT_FIRST_DELALLOC) {
1552                        *bits &= ~EXTENT_FIRST_DELALLOC;
1553                } else {
1554                        spin_lock(&BTRFS_I(inode)->lock);
1555                        BTRFS_I(inode)->outstanding_extents++;
1556                        spin_unlock(&BTRFS_I(inode)->lock);
1557                }
1558
1559                __percpu_counter_add(&root->fs_info->delalloc_bytes, len,
1560                                     root->fs_info->delalloc_batch);
1561                spin_lock(&BTRFS_I(inode)->lock);
1562                BTRFS_I(inode)->delalloc_bytes += len;
1563                if (do_list && !test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1564                                         &BTRFS_I(inode)->runtime_flags)) {
1565                        spin_lock(&root->fs_info->delalloc_lock);
1566                        if (list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1567                                list_add_tail(&BTRFS_I(inode)->delalloc_inodes,
1568                                              &root->fs_info->delalloc_inodes);
1569                                set_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1570                                        &BTRFS_I(inode)->runtime_flags);
1571                        }
1572                        spin_unlock(&root->fs_info->delalloc_lock);
1573                }
1574                spin_unlock(&BTRFS_I(inode)->lock);
1575        }
1576}
1577
1578/*
1579 * extent_io.c clear_bit_hook, see set_bit_hook for why
1580 */
1581static void btrfs_clear_bit_hook(struct inode *inode,
1582                                 struct extent_state *state,
1583                                 unsigned long *bits)
1584{
1585        /*
1586         * set_bit and clear bit hooks normally require _irqsave/restore
1587         * but in this case, we are only testing for the DELALLOC
1588         * bit, which is only set or cleared with irqs on
1589         */
1590        if ((state->state & EXTENT_DELALLOC) && (*bits & EXTENT_DELALLOC)) {
1591                struct btrfs_root *root = BTRFS_I(inode)->root;
1592                u64 len = state->end + 1 - state->start;
1593                bool do_list = !btrfs_is_free_space_inode(inode);
1594
1595                if (*bits & EXTENT_FIRST_DELALLOC) {
1596                        *bits &= ~EXTENT_FIRST_DELALLOC;
1597                } else if (!(*bits & EXTENT_DO_ACCOUNTING)) {
1598                        spin_lock(&BTRFS_I(inode)->lock);
1599                        BTRFS_I(inode)->outstanding_extents--;
1600                        spin_unlock(&BTRFS_I(inode)->lock);
1601                }
1602
1603                if (*bits & EXTENT_DO_ACCOUNTING)
1604                        btrfs_delalloc_release_metadata(inode, len);
1605
1606                if (root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID
1607                    && do_list)
1608                        btrfs_free_reserved_data_space(inode, len);
1609
1610                __percpu_counter_add(&root->fs_info->delalloc_bytes, -len,
1611                                     root->fs_info->delalloc_batch);
1612                spin_lock(&BTRFS_I(inode)->lock);
1613                BTRFS_I(inode)->delalloc_bytes -= len;
1614                if (do_list && BTRFS_I(inode)->delalloc_bytes == 0 &&
1615                    test_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1616                             &BTRFS_I(inode)->runtime_flags)) {
1617                        spin_lock(&root->fs_info->delalloc_lock);
1618                        if (!list_empty(&BTRFS_I(inode)->delalloc_inodes)) {
1619                                list_del_init(&BTRFS_I(inode)->delalloc_inodes);
1620                                clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
1621                                          &BTRFS_I(inode)->runtime_flags);
1622                        }
1623                        spin_unlock(&root->fs_info->delalloc_lock);
1624                }
1625                spin_unlock(&BTRFS_I(inode)->lock);
1626        }
1627}
1628
1629/*
1630 * extent_io.c merge_bio_hook, this must check the chunk tree to make sure
1631 * we don't create bios that span stripes or chunks
1632 */
1633int btrfs_merge_bio_hook(int rw, struct page *page, unsigned long offset,
1634                         size_t size, struct bio *bio,
1635                         unsigned long bio_flags)
1636{
1637        struct btrfs_root *root = BTRFS_I(page->mapping->host)->root;
1638        u64 logical = (u64)bio->bi_sector << 9;
1639        u64 length = 0;
1640        u64 map_length;
1641        int ret;
1642
1643        if (bio_flags & EXTENT_BIO_COMPRESSED)
1644                return 0;
1645
1646        length = bio->bi_size;
1647        map_length = length;
1648        ret = btrfs_map_block(root->fs_info, rw, logical,
1649                              &map_length, NULL, 0);
1650        /* Will always return 0 with map_multi == NULL */
1651        BUG_ON(ret < 0);
1652        if (map_length < length + size)
1653                return 1;
1654        return 0;
1655}
1656
1657/*
1658 * in order to insert checksums into the metadata in large chunks,
1659 * we wait until bio submission time.   All the pages in the bio are
1660 * checksummed and sums are attached onto the ordered extent record.
1661 *
1662 * At IO completion time the cums attached on the ordered extent record
1663 * are inserted into the btree
1664 */
1665static int __btrfs_submit_bio_start(struct inode *inode, int rw,
1666                                    struct bio *bio, int mirror_num,
1667                                    unsigned long bio_flags,
1668                                    u64 bio_offset)
1669{
1670        struct btrfs_root *root = BTRFS_I(inode)->root;
1671        int ret = 0;
1672
1673        ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1674        BUG_ON(ret); /* -ENOMEM */
1675        return 0;
1676}
1677
1678/*
1679 * in order to insert checksums into the metadata in large chunks,
1680 * we wait until bio submission time.   All the pages in the bio are
1681 * checksummed and sums are attached onto the ordered extent record.
1682 *
1683 * At IO completion time the cums attached on the ordered extent record
1684 * are inserted into the btree
1685 */
1686static int __btrfs_submit_bio_done(struct inode *inode, int rw, struct bio *bio,
1687                          int mirror_num, unsigned long bio_flags,
1688                          u64 bio_offset)
1689{
1690        struct btrfs_root *root = BTRFS_I(inode)->root;
1691        int ret;
1692
1693        ret = btrfs_map_bio(root, rw, bio, mirror_num, 1);
1694        if (ret)
1695                bio_endio(bio, ret);
1696        return ret;
1697}
1698
1699/*
1700 * extent_io.c submission hook. This does the right thing for csum calculation
1701 * on write, or reading the csums from the tree before a read
1702 */
1703static int btrfs_submit_bio_hook(struct inode *inode, int rw, struct bio *bio,
1704                          int mirror_num, unsigned long bio_flags,
1705                          u64 bio_offset)
1706{
1707        struct btrfs_root *root = BTRFS_I(inode)->root;
1708        int ret = 0;
1709        int skip_sum;
1710        int metadata = 0;
1711        int async = !atomic_read(&BTRFS_I(inode)->sync_writers);
1712
1713        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
1714
1715        if (btrfs_is_free_space_inode(inode))
1716                metadata = 2;
1717
1718        if (!(rw & REQ_WRITE)) {
1719                ret = btrfs_bio_wq_end_io(root->fs_info, bio, metadata);
1720                if (ret)
1721                        goto out;
1722
1723                if (bio_flags & EXTENT_BIO_COMPRESSED) {
1724                        ret = btrfs_submit_compressed_read(inode, bio,
1725                                                           mirror_num,
1726                                                           bio_flags);
1727                        goto out;
1728                } else if (!skip_sum) {
1729                        ret = btrfs_lookup_bio_sums(root, inode, bio, NULL);
1730                        if (ret)
1731                                goto out;
1732                }
1733                goto mapit;
1734        } else if (async && !skip_sum) {
1735                /* csum items have already been cloned */
1736                if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
1737                        goto mapit;
1738                /* we're doing a write, do the async checksumming */
1739                ret = btrfs_wq_submit_bio(BTRFS_I(inode)->root->fs_info,
1740                                   inode, rw, bio, mirror_num,
1741                                   bio_flags, bio_offset,
1742                                   __btrfs_submit_bio_start,
1743                                   __btrfs_submit_bio_done);
1744                goto out;
1745        } else if (!skip_sum) {
1746                ret = btrfs_csum_one_bio(root, inode, bio, 0, 0);
1747                if (ret)
1748                        goto out;
1749        }
1750
1751mapit:
1752        ret = btrfs_map_bio(root, rw, bio, mirror_num, 0);
1753
1754out:
1755        if (ret < 0)
1756                bio_endio(bio, ret);
1757        return ret;
1758}
1759
1760/*
1761 * given a list of ordered sums record them in the inode.  This happens
1762 * at IO completion time based on sums calculated at bio submission time.
1763 */
1764static noinline int add_pending_csums(struct btrfs_trans_handle *trans,
1765                             struct inode *inode, u64 file_offset,
1766                             struct list_head *list)
1767{
1768        struct btrfs_ordered_sum *sum;
1769
1770        list_for_each_entry(sum, list, list) {
1771                trans->adding_csums = 1;
1772                btrfs_csum_file_blocks(trans,
1773                       BTRFS_I(inode)->root->fs_info->csum_root, sum);
1774                trans->adding_csums = 0;
1775        }
1776        return 0;
1777}
1778
1779int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
1780                              struct extent_state **cached_state)
1781{
1782        WARN_ON((end & (PAGE_CACHE_SIZE - 1)) == 0);
1783        return set_extent_delalloc(&BTRFS_I(inode)->io_tree, start, end,
1784                                   cached_state, GFP_NOFS);
1785}
1786
1787/* see btrfs_writepage_start_hook for details on why this is required */
1788struct btrfs_writepage_fixup {
1789        struct page *page;
1790        struct btrfs_work work;
1791};
1792
1793static void btrfs_writepage_fixup_worker(struct btrfs_work *work)
1794{
1795        struct btrfs_writepage_fixup *fixup;
1796        struct btrfs_ordered_extent *ordered;
1797        struct extent_state *cached_state = NULL;
1798        struct page *page;
1799        struct inode *inode;
1800        u64 page_start;
1801        u64 page_end;
1802        int ret;
1803
1804        fixup = container_of(work, struct btrfs_writepage_fixup, work);
1805        page = fixup->page;
1806again:
1807        lock_page(page);
1808        if (!page->mapping || !PageDirty(page) || !PageChecked(page)) {
1809                ClearPageChecked(page);
1810                goto out_page;
1811        }
1812
1813        inode = page->mapping->host;
1814        page_start = page_offset(page);
1815        page_end = page_offset(page) + PAGE_CACHE_SIZE - 1;
1816
1817        lock_extent_bits(&BTRFS_I(inode)->io_tree, page_start, page_end, 0,
1818                         &cached_state);
1819
1820        /* already ordered? We're done */
1821        if (PagePrivate2(page))
1822                goto out;
1823
1824        ordered = btrfs_lookup_ordered_extent(inode, page_start);
1825        if (ordered) {
1826                unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start,
1827                                     page_end, &cached_state, GFP_NOFS);
1828                unlock_page(page);
1829                btrfs_start_ordered_extent(inode, ordered, 1);
1830                btrfs_put_ordered_extent(ordered);
1831                goto again;
1832        }
1833
1834        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
1835        if (ret) {
1836                mapping_set_error(page->mapping, ret);
1837                end_extent_writepage(page, ret, page_start, page_end);
1838                ClearPageChecked(page);
1839                goto out;
1840         }
1841
1842        btrfs_set_extent_delalloc(inode, page_start, page_end, &cached_state);
1843        ClearPageChecked(page);
1844        set_page_dirty(page);
1845out:
1846        unlock_extent_cached(&BTRFS_I(inode)->io_tree, page_start, page_end,
1847                             &cached_state, GFP_NOFS);
1848out_page:
1849        unlock_page(page);
1850        page_cache_release(page);
1851        kfree(fixup);
1852}
1853
1854/*
1855 * There are a few paths in the higher layers of the kernel that directly
1856 * set the page dirty bit without asking the filesystem if it is a
1857 * good idea.  This causes problems because we want to make sure COW
1858 * properly happens and the data=ordered rules are followed.
1859 *
1860 * In our case any range that doesn't have the ORDERED bit set
1861 * hasn't been properly setup for IO.  We kick off an async process
1862 * to fix it up.  The async helper will wait for ordered extents, set
1863 * the delalloc bit and make it safe to write the page.
1864 */
1865static int btrfs_writepage_start_hook(struct page *page, u64 start, u64 end)
1866{
1867        struct inode *inode = page->mapping->host;
1868        struct btrfs_writepage_fixup *fixup;
1869        struct btrfs_root *root = BTRFS_I(inode)->root;
1870
1871        /* this page is properly in the ordered list */
1872        if (TestClearPagePrivate2(page))
1873                return 0;
1874
1875        if (PageChecked(page))
1876                return -EAGAIN;
1877
1878        fixup = kzalloc(sizeof(*fixup), GFP_NOFS);
1879        if (!fixup)
1880                return -EAGAIN;
1881
1882        SetPageChecked(page);
1883        page_cache_get(page);
1884        fixup->work.func = btrfs_writepage_fixup_worker;
1885        fixup->page = page;
1886        btrfs_queue_worker(&root->fs_info->fixup_workers, &fixup->work);
1887        return -EBUSY;
1888}
1889
1890static int insert_reserved_file_extent(struct btrfs_trans_handle *trans,
1891                                       struct inode *inode, u64 file_pos,
1892                                       u64 disk_bytenr, u64 disk_num_bytes,
1893                                       u64 num_bytes, u64 ram_bytes,
1894                                       u8 compression, u8 encryption,
1895                                       u16 other_encoding, int extent_type)
1896{
1897        struct btrfs_root *root = BTRFS_I(inode)->root;
1898        struct btrfs_file_extent_item *fi;
1899        struct btrfs_path *path;
1900        struct extent_buffer *leaf;
1901        struct btrfs_key ins;
1902        int ret;
1903
1904        path = btrfs_alloc_path();
1905        if (!path)
1906                return -ENOMEM;
1907
1908        path->leave_spinning = 1;
1909
1910        /*
1911         * we may be replacing one extent in the tree with another.
1912         * The new extent is pinned in the extent map, and we don't want
1913         * to drop it from the cache until it is completely in the btree.
1914         *
1915         * So, tell btrfs_drop_extents to leave this extent in the cache.
1916         * the caller is expected to unpin it and allow it to be merged
1917         * with the others.
1918         */
1919        ret = btrfs_drop_extents(trans, root, inode, file_pos,
1920                                 file_pos + num_bytes, 0);
1921        if (ret)
1922                goto out;
1923
1924        ins.objectid = btrfs_ino(inode);
1925        ins.offset = file_pos;
1926        ins.type = BTRFS_EXTENT_DATA_KEY;
1927        ret = btrfs_insert_empty_item(trans, root, path, &ins, sizeof(*fi));
1928        if (ret)
1929                goto out;
1930        leaf = path->nodes[0];
1931        fi = btrfs_item_ptr(leaf, path->slots[0],
1932                            struct btrfs_file_extent_item);
1933        btrfs_set_file_extent_generation(leaf, fi, trans->transid);
1934        btrfs_set_file_extent_type(leaf, fi, extent_type);
1935        btrfs_set_file_extent_disk_bytenr(leaf, fi, disk_bytenr);
1936        btrfs_set_file_extent_disk_num_bytes(leaf, fi, disk_num_bytes);
1937        btrfs_set_file_extent_offset(leaf, fi, 0);
1938        btrfs_set_file_extent_num_bytes(leaf, fi, num_bytes);
1939        btrfs_set_file_extent_ram_bytes(leaf, fi, ram_bytes);
1940        btrfs_set_file_extent_compression(leaf, fi, compression);
1941        btrfs_set_file_extent_encryption(leaf, fi, encryption);
1942        btrfs_set_file_extent_other_encoding(leaf, fi, other_encoding);
1943
1944        btrfs_mark_buffer_dirty(leaf);
1945        btrfs_release_path(path);
1946
1947        inode_add_bytes(inode, num_bytes);
1948
1949        ins.objectid = disk_bytenr;
1950        ins.offset = disk_num_bytes;
1951        ins.type = BTRFS_EXTENT_ITEM_KEY;
1952        ret = btrfs_alloc_reserved_file_extent(trans, root,
1953                                        root->root_key.objectid,
1954                                        btrfs_ino(inode), file_pos, &ins);
1955out:
1956        btrfs_free_path(path);
1957
1958        return ret;
1959}
1960
1961/* snapshot-aware defrag */
1962struct sa_defrag_extent_backref {
1963        struct rb_node node;
1964        struct old_sa_defrag_extent *old;
1965        u64 root_id;
1966        u64 inum;
1967        u64 file_pos;
1968        u64 extent_offset;
1969        u64 num_bytes;
1970        u64 generation;
1971};
1972
1973struct old_sa_defrag_extent {
1974        struct list_head list;
1975        struct new_sa_defrag_extent *new;
1976
1977        u64 extent_offset;
1978        u64 bytenr;
1979        u64 offset;
1980        u64 len;
1981        int count;
1982};
1983
1984struct new_sa_defrag_extent {
1985        struct rb_root root;
1986        struct list_head head;
1987        struct btrfs_path *path;
1988        struct inode *inode;
1989        u64 file_pos;
1990        u64 len;
1991        u64 bytenr;
1992        u64 disk_len;
1993        u8 compress_type;
1994};
1995
1996static int backref_comp(struct sa_defrag_extent_backref *b1,
1997                        struct sa_defrag_extent_backref *b2)
1998{
1999        if (b1->root_id < b2->root_id)
2000                return -1;
2001        else if (b1->root_id > b2->root_id)
2002                return 1;
2003
2004        if (b1->inum < b2->inum)
2005                return -1;
2006        else if (b1->inum > b2->inum)
2007                return 1;
2008
2009        if (b1->file_pos < b2->file_pos)
2010                return -1;
2011        else if (b1->file_pos > b2->file_pos)
2012                return 1;
2013
2014        /*
2015         * [------------------------------] ===> (a range of space)
2016         *     |<--->|   |<---->| =============> (fs/file tree A)
2017         * |<---------------------------->| ===> (fs/file tree B)
2018         *
2019         * A range of space can refer to two file extents in one tree while
2020         * refer to only one file extent in another tree.
2021         *
2022         * So we may process a disk offset more than one time(two extents in A)
2023         * and locate at the same extent(one extent in B), then insert two same
2024         * backrefs(both refer to the extent in B).
2025         */
2026        return 0;
2027}
2028
2029static void backref_insert(struct rb_root *root,
2030                           struct sa_defrag_extent_backref *backref)
2031{
2032        struct rb_node **p = &root->rb_node;
2033        struct rb_node *parent = NULL;
2034        struct sa_defrag_extent_backref *entry;
2035        int ret;
2036
2037        while (*p) {
2038                parent = *p;
2039                entry = rb_entry(parent, struct sa_defrag_extent_backref, node);
2040
2041                ret = backref_comp(backref, entry);
2042                if (ret < 0)
2043                        p = &(*p)->rb_left;
2044                else
2045                        p = &(*p)->rb_right;
2046        }
2047
2048        rb_link_node(&backref->node, parent, p);
2049        rb_insert_color(&backref->node, root);
2050}
2051
2052/*
2053 * Note the backref might has changed, and in this case we just return 0.
2054 */
2055static noinline int record_one_backref(u64 inum, u64 offset, u64 root_id,
2056                                       void *ctx)
2057{
2058        struct btrfs_file_extent_item *extent;
2059        struct btrfs_fs_info *fs_info;
2060        struct old_sa_defrag_extent *old = ctx;
2061        struct new_sa_defrag_extent *new = old->new;
2062        struct btrfs_path *path = new->path;
2063        struct btrfs_key key;
2064        struct btrfs_root *root;
2065        struct sa_defrag_extent_backref *backref;
2066        struct extent_buffer *leaf;
2067        struct inode *inode = new->inode;
2068        int slot;
2069        int ret;
2070        u64 extent_offset;
2071        u64 num_bytes;
2072
2073        if (BTRFS_I(inode)->root->root_key.objectid == root_id &&
2074            inum == btrfs_ino(inode))
2075                return 0;
2076
2077        key.objectid = root_id;
2078        key.type = BTRFS_ROOT_ITEM_KEY;
2079        key.offset = (u64)-1;
2080
2081        fs_info = BTRFS_I(inode)->root->fs_info;
2082        root = btrfs_read_fs_root_no_name(fs_info, &key);
2083        if (IS_ERR(root)) {
2084                if (PTR_ERR(root) == -ENOENT)
2085                        return 0;
2086                WARN_ON(1);
2087                pr_debug("inum=%llu, offset=%llu, root_id=%llu\n",
2088                         inum, offset, root_id);
2089                return PTR_ERR(root);
2090        }
2091
2092        key.objectid = inum;
2093        key.type = BTRFS_EXTENT_DATA_KEY;
2094        if (offset > (u64)-1 << 32)
2095                key.offset = 0;
2096        else
2097                key.offset = offset;
2098
2099        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2100        if (ret < 0) {
2101                WARN_ON(1);
2102                return ret;
2103        }
2104
2105        while (1) {
2106                cond_resched();
2107
2108                leaf = path->nodes[0];
2109                slot = path->slots[0];
2110
2111                if (slot >= btrfs_header_nritems(leaf)) {
2112                        ret = btrfs_next_leaf(root, path);
2113                        if (ret < 0) {
2114                                goto out;
2115                        } else if (ret > 0) {
2116                                ret = 0;
2117                                goto out;
2118                        }
2119                        continue;
2120                }
2121
2122                path->slots[0]++;
2123
2124                btrfs_item_key_to_cpu(leaf, &key, slot);
2125
2126                if (key.objectid > inum)
2127                        goto out;
2128
2129                if (key.objectid < inum || key.type != BTRFS_EXTENT_DATA_KEY)
2130                        continue;
2131
2132                extent = btrfs_item_ptr(leaf, slot,
2133                                        struct btrfs_file_extent_item);
2134
2135                if (btrfs_file_extent_disk_bytenr(leaf, extent) != old->bytenr)
2136                        continue;
2137
2138                extent_offset = btrfs_file_extent_offset(leaf, extent);
2139                if (key.offset - extent_offset != offset)
2140                        continue;
2141
2142                num_bytes = btrfs_file_extent_num_bytes(leaf, extent);
2143                if (extent_offset >= old->extent_offset + old->offset +
2144                    old->len || extent_offset + num_bytes <=
2145                    old->extent_offset + old->offset)
2146                        continue;
2147
2148                break;
2149        }
2150
2151        backref = kmalloc(sizeof(*backref), GFP_NOFS);
2152        if (!backref) {
2153                ret = -ENOENT;
2154                goto out;
2155        }
2156
2157        backref->root_id = root_id;
2158        backref->inum = inum;
2159        backref->file_pos = offset + extent_offset;
2160        backref->num_bytes = num_bytes;
2161        backref->extent_offset = extent_offset;
2162        backref->generation = btrfs_file_extent_generation(leaf, extent);
2163        backref->old = old;
2164        backref_insert(&new->root, backref);
2165        old->count++;
2166out:
2167        btrfs_release_path(path);
2168        WARN_ON(ret);
2169        return ret;
2170}
2171
2172static noinline bool record_extent_backrefs(struct btrfs_path *path,
2173                                   struct new_sa_defrag_extent *new)
2174{
2175        struct btrfs_fs_info *fs_info = BTRFS_I(new->inode)->root->fs_info;
2176        struct old_sa_defrag_extent *old, *tmp;
2177        int ret;
2178
2179        new->path = path;
2180
2181        list_for_each_entry_safe(old, tmp, &new->head, list) {
2182                ret = iterate_inodes_from_logical(old->bytenr, fs_info,
2183                                                  path, record_one_backref,
2184                                                  old);
2185                BUG_ON(ret < 0 && ret != -ENOENT);
2186
2187                /* no backref to be processed for this extent */
2188                if (!old->count) {
2189                        list_del(&old->list);
2190                        kfree(old);
2191                }
2192        }
2193
2194        if (list_empty(&new->head))
2195                return false;
2196
2197        return true;
2198}
2199
2200static int relink_is_mergable(struct extent_buffer *leaf,
2201                              struct btrfs_file_extent_item *fi,
2202                              u64 disk_bytenr)
2203{
2204        if (btrfs_file_extent_disk_bytenr(leaf, fi) != disk_bytenr)
2205                return 0;
2206
2207        if (btrfs_file_extent_type(leaf, fi) != BTRFS_FILE_EXTENT_REG)
2208                return 0;
2209
2210        if (btrfs_file_extent_compression(leaf, fi) ||
2211            btrfs_file_extent_encryption(leaf, fi) ||
2212            btrfs_file_extent_other_encoding(leaf, fi))
2213                return 0;
2214
2215        return 1;
2216}
2217
2218/*
2219 * Note the backref might has changed, and in this case we just return 0.
2220 */
2221static noinline int relink_extent_backref(struct btrfs_path *path,
2222                                 struct sa_defrag_extent_backref *prev,
2223                                 struct sa_defrag_extent_backref *backref)
2224{
2225        struct btrfs_file_extent_item *extent;
2226        struct btrfs_file_extent_item *item;
2227        struct btrfs_ordered_extent *ordered;
2228        struct btrfs_trans_handle *trans;
2229        struct btrfs_fs_info *fs_info;
2230        struct btrfs_root *root;
2231        struct btrfs_key key;
2232        struct extent_buffer *leaf;
2233        struct old_sa_defrag_extent *old = backref->old;
2234        struct new_sa_defrag_extent *new = old->new;
2235        struct inode *src_inode = new->inode;
2236        struct inode *inode;
2237        struct extent_state *cached = NULL;
2238        int ret = 0;
2239        u64 start;
2240        u64 len;
2241        u64 lock_start;
2242        u64 lock_end;
2243        bool merge = false;
2244        int index;
2245
2246        if (prev && prev->root_id == backref->root_id &&
2247            prev->inum == backref->inum &&
2248            prev->file_pos + prev->num_bytes == backref->file_pos)
2249                merge = true;
2250
2251        /* step 1: get root */
2252        key.objectid = backref->root_id;
2253        key.type = BTRFS_ROOT_ITEM_KEY;
2254        key.offset = (u64)-1;
2255
2256        fs_info = BTRFS_I(src_inode)->root->fs_info;
2257        index = srcu_read_lock(&fs_info->subvol_srcu);
2258
2259        root = btrfs_read_fs_root_no_name(fs_info, &key);
2260        if (IS_ERR(root)) {
2261                srcu_read_unlock(&fs_info->subvol_srcu, index);
2262                if (PTR_ERR(root) == -ENOENT)
2263                        return 0;
2264                return PTR_ERR(root);
2265        }
2266        if (btrfs_root_refs(&root->root_item) == 0) {
2267                srcu_read_unlock(&fs_info->subvol_srcu, index);
2268                /* parse ENOENT to 0 */
2269                return 0;
2270        }
2271
2272        /* step 2: get inode */
2273        key.objectid = backref->inum;
2274        key.type = BTRFS_INODE_ITEM_KEY;
2275        key.offset = 0;
2276
2277        inode = btrfs_iget(fs_info->sb, &key, root, NULL);
2278        if (IS_ERR(inode)) {
2279                srcu_read_unlock(&fs_info->subvol_srcu, index);
2280                return 0;
2281        }
2282
2283        srcu_read_unlock(&fs_info->subvol_srcu, index);
2284
2285        /* step 3: relink backref */
2286        lock_start = backref->file_pos;
2287        lock_end = backref->file_pos + backref->num_bytes - 1;
2288        lock_extent_bits(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2289                         0, &cached);
2290
2291        ordered = btrfs_lookup_first_ordered_extent(inode, lock_end);
2292        if (ordered) {
2293                btrfs_put_ordered_extent(ordered);
2294                goto out_unlock;
2295        }
2296
2297        trans = btrfs_join_transaction(root);
2298        if (IS_ERR(trans)) {
2299                ret = PTR_ERR(trans);
2300                goto out_unlock;
2301        }
2302
2303        key.objectid = backref->inum;
2304        key.type = BTRFS_EXTENT_DATA_KEY;
2305        key.offset = backref->file_pos;
2306
2307        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2308        if (ret < 0) {
2309                goto out_free_path;
2310        } else if (ret > 0) {
2311                ret = 0;
2312                goto out_free_path;
2313        }
2314
2315        extent = btrfs_item_ptr(path->nodes[0], path->slots[0],
2316                                struct btrfs_file_extent_item);
2317
2318        if (btrfs_file_extent_generation(path->nodes[0], extent) !=
2319            backref->generation)
2320                goto out_free_path;
2321
2322        btrfs_release_path(path);
2323
2324        start = backref->file_pos;
2325        if (backref->extent_offset < old->extent_offset + old->offset)
2326                start += old->extent_offset + old->offset -
2327                         backref->extent_offset;
2328
2329        len = min(backref->extent_offset + backref->num_bytes,
2330                  old->extent_offset + old->offset + old->len);
2331        len -= max(backref->extent_offset, old->extent_offset + old->offset);
2332
2333        ret = btrfs_drop_extents(trans, root, inode, start,
2334                                 start + len, 1);
2335        if (ret)
2336                goto out_free_path;
2337again:
2338        key.objectid = btrfs_ino(inode);
2339        key.type = BTRFS_EXTENT_DATA_KEY;
2340        key.offset = start;
2341
2342        path->leave_spinning = 1;
2343        if (merge) {
2344                struct btrfs_file_extent_item *fi;
2345                u64 extent_len;
2346                struct btrfs_key found_key;
2347
2348                ret = btrfs_search_slot(trans, root, &key, path, 1, 1);
2349                if (ret < 0)
2350                        goto out_free_path;
2351
2352                path->slots[0]--;
2353                leaf = path->nodes[0];
2354                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2355
2356                fi = btrfs_item_ptr(leaf, path->slots[0],
2357                                    struct btrfs_file_extent_item);
2358                extent_len = btrfs_file_extent_num_bytes(leaf, fi);
2359
2360                if (relink_is_mergable(leaf, fi, new->bytenr) &&
2361                    extent_len + found_key.offset == start) {
2362                        btrfs_set_file_extent_num_bytes(leaf, fi,
2363                                                        extent_len + len);
2364                        btrfs_mark_buffer_dirty(leaf);
2365                        inode_add_bytes(inode, len);
2366
2367                        ret = 1;
2368                        goto out_free_path;
2369                } else {
2370                        merge = false;
2371                        btrfs_release_path(path);
2372                        goto again;
2373                }
2374        }
2375
2376        ret = btrfs_insert_empty_item(trans, root, path, &key,
2377                                        sizeof(*extent));
2378        if (ret) {
2379                btrfs_abort_transaction(trans, root, ret);
2380                goto out_free_path;
2381        }
2382
2383        leaf = path->nodes[0];
2384        item = btrfs_item_ptr(leaf, path->slots[0],
2385                                struct btrfs_file_extent_item);
2386        btrfs_set_file_extent_disk_bytenr(leaf, item, new->bytenr);
2387        btrfs_set_file_extent_disk_num_bytes(leaf, item, new->disk_len);
2388        btrfs_set_file_extent_offset(leaf, item, start - new->file_pos);
2389        btrfs_set_file_extent_num_bytes(leaf, item, len);
2390        btrfs_set_file_extent_ram_bytes(leaf, item, new->len);
2391        btrfs_set_file_extent_generation(leaf, item, trans->transid);
2392        btrfs_set_file_extent_type(leaf, item, BTRFS_FILE_EXTENT_REG);
2393        btrfs_set_file_extent_compression(leaf, item, new->compress_type);
2394        btrfs_set_file_extent_encryption(leaf, item, 0);
2395        btrfs_set_file_extent_other_encoding(leaf, item, 0);
2396
2397        btrfs_mark_buffer_dirty(leaf);
2398        inode_add_bytes(inode, len);
2399        btrfs_release_path(path);
2400
2401        ret = btrfs_inc_extent_ref(trans, root, new->bytenr,
2402                        new->disk_len, 0,
2403                        backref->root_id, backref->inum,
2404                        new->file_pos, 0);      /* start - extent_offset */
2405        if (ret) {
2406                btrfs_abort_transaction(trans, root, ret);
2407                goto out_free_path;
2408        }
2409
2410        ret = 1;
2411out_free_path:
2412        btrfs_release_path(path);
2413        path->leave_spinning = 0;
2414        btrfs_end_transaction(trans, root);
2415out_unlock:
2416        unlock_extent_cached(&BTRFS_I(inode)->io_tree, lock_start, lock_end,
2417                             &cached, GFP_NOFS);
2418        iput(inode);
2419        return ret;
2420}
2421
2422static void relink_file_extents(struct new_sa_defrag_extent *new)
2423{
2424        struct btrfs_path *path;
2425        struct old_sa_defrag_extent *old, *tmp;
2426        struct sa_defrag_extent_backref *backref;
2427        struct sa_defrag_extent_backref *prev = NULL;
2428        struct inode *inode;
2429        struct btrfs_root *root;
2430        struct rb_node *node;
2431        int ret;
2432
2433        inode = new->inode;
2434        root = BTRFS_I(inode)->root;
2435
2436        path = btrfs_alloc_path();
2437        if (!path)
2438                return;
2439
2440        if (!record_extent_backrefs(path, new)) {
2441                btrfs_free_path(path);
2442                goto out;
2443        }
2444        btrfs_release_path(path);
2445
2446        while (1) {
2447                node = rb_first(&new->root);
2448                if (!node)
2449                        break;
2450                rb_erase(node, &new->root);
2451
2452                backref = rb_entry(node, struct sa_defrag_extent_backref, node);
2453
2454                ret = relink_extent_backref(path, prev, backref);
2455                WARN_ON(ret < 0);
2456
2457                kfree(prev);
2458
2459                if (ret == 1)
2460                        prev = backref;
2461                else
2462                        prev = NULL;
2463                cond_resched();
2464        }
2465        kfree(prev);
2466
2467        btrfs_free_path(path);
2468
2469        list_for_each_entry_safe(old, tmp, &new->head, list) {
2470                list_del(&old->list);
2471                kfree(old);
2472        }
2473out:
2474        atomic_dec(&root->fs_info->defrag_running);
2475        wake_up(&root->fs_info->transaction_wait);
2476
2477        kfree(new);
2478}
2479
2480static struct new_sa_defrag_extent *
2481record_old_file_extents(struct inode *inode,
2482                        struct btrfs_ordered_extent *ordered)
2483{
2484        struct btrfs_root *root = BTRFS_I(inode)->root;
2485        struct btrfs_path *path;
2486        struct btrfs_key key;
2487        struct old_sa_defrag_extent *old, *tmp;
2488        struct new_sa_defrag_extent *new;
2489        int ret;
2490
2491        new = kmalloc(sizeof(*new), GFP_NOFS);
2492        if (!new)
2493                return NULL;
2494
2495        new->inode = inode;
2496        new->file_pos = ordered->file_offset;
2497        new->len = ordered->len;
2498        new->bytenr = ordered->start;
2499        new->disk_len = ordered->disk_len;
2500        new->compress_type = ordered->compress_type;
2501        new->root = RB_ROOT;
2502        INIT_LIST_HEAD(&new->head);
2503
2504        path = btrfs_alloc_path();
2505        if (!path)
2506                goto out_kfree;
2507
2508        key.objectid = btrfs_ino(inode);
2509        key.type = BTRFS_EXTENT_DATA_KEY;
2510        key.offset = new->file_pos;
2511
2512        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2513        if (ret < 0)
2514                goto out_free_path;
2515        if (ret > 0 && path->slots[0] > 0)
2516                path->slots[0]--;
2517
2518        /* find out all the old extents for the file range */
2519        while (1) {
2520                struct btrfs_file_extent_item *extent;
2521                struct extent_buffer *l;
2522                int slot;
2523                u64 num_bytes;
2524                u64 offset;
2525                u64 end;
2526                u64 disk_bytenr;
2527                u64 extent_offset;
2528
2529                l = path->nodes[0];
2530                slot = path->slots[0];
2531
2532                if (slot >= btrfs_header_nritems(l)) {
2533                        ret = btrfs_next_leaf(root, path);
2534                        if (ret < 0)
2535                                goto out_free_list;
2536                        else if (ret > 0)
2537                                break;
2538                        continue;
2539                }
2540
2541                btrfs_item_key_to_cpu(l, &key, slot);
2542
2543                if (key.objectid != btrfs_ino(inode))
2544                        break;
2545                if (key.type != BTRFS_EXTENT_DATA_KEY)
2546                        break;
2547                if (key.offset >= new->file_pos + new->len)
2548                        break;
2549
2550                extent = btrfs_item_ptr(l, slot, struct btrfs_file_extent_item);
2551
2552                num_bytes = btrfs_file_extent_num_bytes(l, extent);
2553                if (key.offset + num_bytes < new->file_pos)
2554                        goto next;
2555
2556                disk_bytenr = btrfs_file_extent_disk_bytenr(l, extent);
2557                if (!disk_bytenr)
2558                        goto next;
2559
2560                extent_offset = btrfs_file_extent_offset(l, extent);
2561
2562                old = kmalloc(sizeof(*old), GFP_NOFS);
2563                if (!old)
2564                        goto out_free_list;
2565
2566                offset = max(new->file_pos, key.offset);
2567                end = min(new->file_pos + new->len, key.offset + num_bytes);
2568
2569                old->bytenr = disk_bytenr;
2570                old->extent_offset = extent_offset;
2571                old->offset = offset - key.offset;
2572                old->len = end - offset;
2573                old->new = new;
2574                old->count = 0;
2575                list_add_tail(&old->list, &new->head);
2576next:
2577                path->slots[0]++;
2578                cond_resched();
2579        }
2580
2581        btrfs_free_path(path);
2582        atomic_inc(&root->fs_info->defrag_running);
2583
2584        return new;
2585
2586out_free_list:
2587        list_for_each_entry_safe(old, tmp, &new->head, list) {
2588                list_del(&old->list);
2589                kfree(old);
2590        }
2591out_free_path:
2592        btrfs_free_path(path);
2593out_kfree:
2594        kfree(new);
2595        return NULL;
2596}
2597
2598/*
2599 * helper function for btrfs_finish_ordered_io, this
2600 * just reads in some of the csum leaves to prime them into ram
2601 * before we start the transaction.  It limits the amount of btree
2602 * reads required while inside the transaction.
2603 */
2604/* as ordered data IO finishes, this gets called so we can finish
2605 * an ordered extent if the range of bytes in the file it covers are
2606 * fully written.
2607 */
2608static int btrfs_finish_ordered_io(struct btrfs_ordered_extent *ordered_extent)
2609{
2610        struct inode *inode = ordered_extent->inode;
2611        struct btrfs_root *root = BTRFS_I(inode)->root;
2612        struct btrfs_trans_handle *trans = NULL;
2613        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2614        struct extent_state *cached_state = NULL;
2615        struct new_sa_defrag_extent *new = NULL;
2616        int compress_type = 0;
2617        int ret;
2618        bool nolock;
2619
2620        nolock = btrfs_is_free_space_inode(inode);
2621
2622        if (test_bit(BTRFS_ORDERED_IOERR, &ordered_extent->flags)) {
2623                ret = -EIO;
2624                goto out;
2625        }
2626
2627        if (test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags)) {
2628                BUG_ON(!list_empty(&ordered_extent->list)); /* Logic error */
2629                btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2630                if (nolock)
2631                        trans = btrfs_join_transaction_nolock(root);
2632                else
2633                        trans = btrfs_join_transaction(root);
2634                if (IS_ERR(trans)) {
2635                        ret = PTR_ERR(trans);
2636                        trans = NULL;
2637                        goto out;
2638                }
2639                trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2640                ret = btrfs_update_inode_fallback(trans, root, inode);
2641                if (ret) /* -ENOMEM or corruption */
2642                        btrfs_abort_transaction(trans, root, ret);
2643                goto out;
2644        }
2645
2646        lock_extent_bits(io_tree, ordered_extent->file_offset,
2647                         ordered_extent->file_offset + ordered_extent->len - 1,
2648                         0, &cached_state);
2649
2650        ret = test_range_bit(io_tree, ordered_extent->file_offset,
2651                        ordered_extent->file_offset + ordered_extent->len - 1,
2652                        EXTENT_DEFRAG, 1, cached_state);
2653        if (ret) {
2654                u64 last_snapshot = btrfs_root_last_snapshot(&root->root_item);
2655                if (last_snapshot >= BTRFS_I(inode)->generation)
2656                        /* the inode is shared */
2657                        new = record_old_file_extents(inode, ordered_extent);
2658
2659                clear_extent_bit(io_tree, ordered_extent->file_offset,
2660                        ordered_extent->file_offset + ordered_extent->len - 1,
2661                        EXTENT_DEFRAG, 0, 0, &cached_state, GFP_NOFS);
2662        }
2663
2664        if (nolock)
2665                trans = btrfs_join_transaction_nolock(root);
2666        else
2667                trans = btrfs_join_transaction(root);
2668        if (IS_ERR(trans)) {
2669                ret = PTR_ERR(trans);
2670                trans = NULL;
2671                goto out_unlock;
2672        }
2673        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
2674
2675        if (test_bit(BTRFS_ORDERED_COMPRESSED, &ordered_extent->flags))
2676                compress_type = ordered_extent->compress_type;
2677        if (test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags)) {
2678                BUG_ON(compress_type);
2679                ret = btrfs_mark_extent_written(trans, inode,
2680                                                ordered_extent->file_offset,
2681                                                ordered_extent->file_offset +
2682                                                ordered_extent->len);
2683        } else {
2684                BUG_ON(root == root->fs_info->tree_root);
2685                ret = insert_reserved_file_extent(trans, inode,
2686                                                ordered_extent->file_offset,
2687                                                ordered_extent->start,
2688                                                ordered_extent->disk_len,
2689                                                ordered_extent->len,
2690                                                ordered_extent->len,
2691                                                compress_type, 0, 0,
2692                                                BTRFS_FILE_EXTENT_REG);
2693        }
2694        unpin_extent_cache(&BTRFS_I(inode)->extent_tree,
2695                           ordered_extent->file_offset, ordered_extent->len,
2696                           trans->transid);
2697        if (ret < 0) {
2698                btrfs_abort_transaction(trans, root, ret);
2699                goto out_unlock;
2700        }
2701
2702        add_pending_csums(trans, inode, ordered_extent->file_offset,
2703                          &ordered_extent->list);
2704
2705        btrfs_ordered_update_i_size(inode, 0, ordered_extent);
2706        ret = btrfs_update_inode_fallback(trans, root, inode);
2707        if (ret) { /* -ENOMEM or corruption */
2708                btrfs_abort_transaction(trans, root, ret);
2709                goto out_unlock;
2710        }
2711        ret = 0;
2712out_unlock:
2713        unlock_extent_cached(io_tree, ordered_extent->file_offset,
2714                             ordered_extent->file_offset +
2715                             ordered_extent->len - 1, &cached_state, GFP_NOFS);
2716out:
2717        if (root != root->fs_info->tree_root)
2718                btrfs_delalloc_release_metadata(inode, ordered_extent->len);
2719        if (trans)
2720                btrfs_end_transaction(trans, root);
2721
2722        if (ret) {
2723                clear_extent_uptodate(io_tree, ordered_extent->file_offset,
2724                                      ordered_extent->file_offset +
2725                                      ordered_extent->len - 1, NULL, GFP_NOFS);
2726
2727                /*
2728                 * If the ordered extent had an IOERR or something else went
2729                 * wrong we need to return the space for this ordered extent
2730                 * back to the allocator.
2731                 */
2732                if (!test_bit(BTRFS_ORDERED_NOCOW, &ordered_extent->flags) &&
2733                    !test_bit(BTRFS_ORDERED_PREALLOC, &ordered_extent->flags))
2734                        btrfs_free_reserved_extent(root, ordered_extent->start,
2735                                                   ordered_extent->disk_len);
2736        }
2737
2738
2739        /*
2740         * This needs to be done to make sure anybody waiting knows we are done
2741         * updating everything for this ordered extent.
2742         */
2743        btrfs_remove_ordered_extent(inode, ordered_extent);
2744
2745        /* for snapshot-aware defrag */
2746        if (new)
2747                relink_file_extents(new);
2748
2749        /* once for us */
2750        btrfs_put_ordered_extent(ordered_extent);
2751        /* once for the tree */
2752        btrfs_put_ordered_extent(ordered_extent);
2753
2754        return ret;
2755}
2756
2757static void finish_ordered_fn(struct btrfs_work *work)
2758{
2759        struct btrfs_ordered_extent *ordered_extent;
2760        ordered_extent = container_of(work, struct btrfs_ordered_extent, work);
2761        btrfs_finish_ordered_io(ordered_extent);
2762}
2763
2764static int btrfs_writepage_end_io_hook(struct page *page, u64 start, u64 end,
2765                                struct extent_state *state, int uptodate)
2766{
2767        struct inode *inode = page->mapping->host;
2768        struct btrfs_root *root = BTRFS_I(inode)->root;
2769        struct btrfs_ordered_extent *ordered_extent = NULL;
2770        struct btrfs_workers *workers;
2771
2772        trace_btrfs_writepage_end_io_hook(page, start, end, uptodate);
2773
2774        ClearPagePrivate2(page);
2775        if (!btrfs_dec_test_ordered_pending(inode, &ordered_extent, start,
2776                                            end - start + 1, uptodate))
2777                return 0;
2778
2779        ordered_extent->work.func = finish_ordered_fn;
2780        ordered_extent->work.flags = 0;
2781
2782        if (btrfs_is_free_space_inode(inode))
2783                workers = &root->fs_info->endio_freespace_worker;
2784        else
2785                workers = &root->fs_info->endio_write_workers;
2786        btrfs_queue_worker(workers, &ordered_extent->work);
2787
2788        return 0;
2789}
2790
2791/*
2792 * when reads are done, we need to check csums to verify the data is correct
2793 * if there's a match, we allow the bio to finish.  If not, the code in
2794 * extent_io.c will try to find good copies for us.
2795 */
2796static int btrfs_readpage_end_io_hook(struct page *page, u64 start, u64 end,
2797                               struct extent_state *state, int mirror)
2798{
2799        size_t offset = start - page_offset(page);
2800        struct inode *inode = page->mapping->host;
2801        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
2802        char *kaddr;
2803        u64 private = ~(u32)0;
2804        int ret;
2805        struct btrfs_root *root = BTRFS_I(inode)->root;
2806        u32 csum = ~(u32)0;
2807        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
2808                                      DEFAULT_RATELIMIT_BURST);
2809
2810        if (PageChecked(page)) {
2811                ClearPageChecked(page);
2812                goto good;
2813        }
2814
2815        if (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)
2816                goto good;
2817
2818        if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID &&
2819            test_range_bit(io_tree, start, end, EXTENT_NODATASUM, 1, NULL)) {
2820                clear_extent_bits(io_tree, start, end, EXTENT_NODATASUM,
2821                                  GFP_NOFS);
2822                return 0;
2823        }
2824
2825        if (state && state->start == start) {
2826                private = state->private;
2827                ret = 0;
2828        } else {
2829                ret = get_state_private(io_tree, start, &private);
2830        }
2831        kaddr = kmap_atomic(page);
2832        if (ret)
2833                goto zeroit;
2834
2835        csum = btrfs_csum_data(kaddr + offset, csum,  end - start + 1);
2836        btrfs_csum_final(csum, (char *)&csum);
2837        if (csum != private)
2838                goto zeroit;
2839
2840        kunmap_atomic(kaddr);
2841good:
2842        return 0;
2843
2844zeroit:
2845        if (__ratelimit(&_rs))
2846                btrfs_info(root->fs_info, "csum failed ino %llu off %llu csum %u private %llu",
2847                        (unsigned long long)btrfs_ino(page->mapping->host),
2848                        (unsigned long long)start, csum,
2849                        (unsigned long long)private);
2850        memset(kaddr + offset, 1, end - start + 1);
2851        flush_dcache_page(page);
2852        kunmap_atomic(kaddr);
2853        if (private == 0)
2854                return 0;
2855        return -EIO;
2856}
2857
2858struct delayed_iput {
2859        struct list_head list;
2860        struct inode *inode;
2861};
2862
2863/* JDM: If this is fs-wide, why can't we add a pointer to
2864 * btrfs_inode instead and avoid the allocation? */
2865void btrfs_add_delayed_iput(struct inode *inode)
2866{
2867        struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2868        struct delayed_iput *delayed;
2869
2870        if (atomic_add_unless(&inode->i_count, -1, 1))
2871                return;
2872
2873        delayed = kmalloc(sizeof(*delayed), GFP_NOFS | __GFP_NOFAIL);
2874        delayed->inode = inode;
2875
2876        spin_lock(&fs_info->delayed_iput_lock);
2877        list_add_tail(&delayed->list, &fs_info->delayed_iputs);
2878        spin_unlock(&fs_info->delayed_iput_lock);
2879}
2880
2881void btrfs_run_delayed_iputs(struct btrfs_root *root)
2882{
2883        LIST_HEAD(list);
2884        struct btrfs_fs_info *fs_info = root->fs_info;
2885        struct delayed_iput *delayed;
2886        int empty;
2887
2888        spin_lock(&fs_info->delayed_iput_lock);
2889        empty = list_empty(&fs_info->delayed_iputs);
2890        spin_unlock(&fs_info->delayed_iput_lock);
2891        if (empty)
2892                return;
2893
2894        spin_lock(&fs_info->delayed_iput_lock);
2895        list_splice_init(&fs_info->delayed_iputs, &list);
2896        spin_unlock(&fs_info->delayed_iput_lock);
2897
2898        while (!list_empty(&list)) {
2899                delayed = list_entry(list.next, struct delayed_iput, list);
2900                list_del(&delayed->list);
2901                iput(delayed->inode);
2902                kfree(delayed);
2903        }
2904}
2905
2906/*
2907 * This is called in transaction commit time. If there are no orphan
2908 * files in the subvolume, it removes orphan item and frees block_rsv
2909 * structure.
2910 */
2911void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
2912                              struct btrfs_root *root)
2913{
2914        struct btrfs_block_rsv *block_rsv;
2915        int ret;
2916
2917        if (atomic_read(&root->orphan_inodes) ||
2918            root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE)
2919                return;
2920
2921        spin_lock(&root->orphan_lock);
2922        if (atomic_read(&root->orphan_inodes)) {
2923                spin_unlock(&root->orphan_lock);
2924                return;
2925        }
2926
2927        if (root->orphan_cleanup_state != ORPHAN_CLEANUP_DONE) {
2928                spin_unlock(&root->orphan_lock);
2929                return;
2930        }
2931
2932        block_rsv = root->orphan_block_rsv;
2933        root->orphan_block_rsv = NULL;
2934        spin_unlock(&root->orphan_lock);
2935
2936        if (root->orphan_item_inserted &&
2937            btrfs_root_refs(&root->root_item) > 0) {
2938                ret = btrfs_del_orphan_item(trans, root->fs_info->tree_root,
2939                                            root->root_key.objectid);
2940                BUG_ON(ret);
2941                root->orphan_item_inserted = 0;
2942        }
2943
2944        if (block_rsv) {
2945                WARN_ON(block_rsv->size > 0);
2946                btrfs_free_block_rsv(root, block_rsv);
2947        }
2948}
2949
2950/*
2951 * This creates an orphan entry for the given inode in case something goes
2952 * wrong in the middle of an unlink/truncate.
2953 *
2954 * NOTE: caller of this function should reserve 5 units of metadata for
2955 *       this function.
2956 */
2957int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode)
2958{
2959        struct btrfs_root *root = BTRFS_I(inode)->root;
2960        struct btrfs_block_rsv *block_rsv = NULL;
2961        int reserve = 0;
2962        int insert = 0;
2963        int ret;
2964
2965        if (!root->orphan_block_rsv) {
2966                block_rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
2967                if (!block_rsv)
2968                        return -ENOMEM;
2969        }
2970
2971        spin_lock(&root->orphan_lock);
2972        if (!root->orphan_block_rsv) {
2973                root->orphan_block_rsv = block_rsv;
2974        } else if (block_rsv) {
2975                btrfs_free_block_rsv(root, block_rsv);
2976                block_rsv = NULL;
2977        }
2978
2979        if (!test_and_set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
2980                              &BTRFS_I(inode)->runtime_flags)) {
2981#if 0
2982                /*
2983                 * For proper ENOSPC handling, we should do orphan
2984                 * cleanup when mounting. But this introduces backward
2985                 * compatibility issue.
2986                 */
2987                if (!xchg(&root->orphan_item_inserted, 1))
2988                        insert = 2;
2989                else
2990                        insert = 1;
2991#endif
2992                insert = 1;
2993                atomic_inc(&root->orphan_inodes);
2994        }
2995
2996        if (!test_and_set_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
2997                              &BTRFS_I(inode)->runtime_flags))
2998                reserve = 1;
2999        spin_unlock(&root->orphan_lock);
3000
3001        /* grab metadata reservation from transaction handle */
3002        if (reserve) {
3003                ret = btrfs_orphan_reserve_metadata(trans, inode);
3004                BUG_ON(ret); /* -ENOSPC in reservation; Logic error? JDM */
3005        }
3006
3007        /* insert an orphan item to track this unlinked/truncated file */
3008        if (insert >= 1) {
3009                ret = btrfs_insert_orphan_item(trans, root, btrfs_ino(inode));
3010                if (ret && ret != -EEXIST) {
3011                        clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3012                                  &BTRFS_I(inode)->runtime_flags);
3013                        btrfs_abort_transaction(trans, root, ret);
3014                        return ret;
3015                }
3016                ret = 0;
3017        }
3018
3019        /* insert an orphan item to track subvolume contains orphan files */
3020        if (insert >= 2) {
3021                ret = btrfs_insert_orphan_item(trans, root->fs_info->tree_root,
3022                                               root->root_key.objectid);
3023                if (ret && ret != -EEXIST) {
3024                        btrfs_abort_transaction(trans, root, ret);
3025                        return ret;
3026                }
3027        }
3028        return 0;
3029}
3030
3031/*
3032 * We have done the truncate/delete so we can go ahead and remove the orphan
3033 * item for this particular inode.
3034 */
3035static int btrfs_orphan_del(struct btrfs_trans_handle *trans,
3036                            struct inode *inode)
3037{
3038        struct btrfs_root *root = BTRFS_I(inode)->root;
3039        int delete_item = 0;
3040        int release_rsv = 0;
3041        int ret = 0;
3042
3043        spin_lock(&root->orphan_lock);
3044        if (test_and_clear_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3045                               &BTRFS_I(inode)->runtime_flags))
3046                delete_item = 1;
3047
3048        if (test_and_clear_bit(BTRFS_INODE_ORPHAN_META_RESERVED,
3049                               &BTRFS_I(inode)->runtime_flags))
3050                release_rsv = 1;
3051        spin_unlock(&root->orphan_lock);
3052
3053        if (trans && delete_item) {
3054                ret = btrfs_del_orphan_item(trans, root, btrfs_ino(inode));
3055                BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3056        }
3057
3058        if (release_rsv) {
3059                btrfs_orphan_release_metadata(inode);
3060                atomic_dec(&root->orphan_inodes);
3061        }
3062
3063        return 0;
3064}
3065
3066/*
3067 * this cleans up any orphans that may be left on the list from the last use
3068 * of this root.
3069 */
3070int btrfs_orphan_cleanup(struct btrfs_root *root)
3071{
3072        struct btrfs_path *path;
3073        struct extent_buffer *leaf;
3074        struct btrfs_key key, found_key;
3075        struct btrfs_trans_handle *trans;
3076        struct inode *inode;
3077        u64 last_objectid = 0;
3078        int ret = 0, nr_unlink = 0, nr_truncate = 0;
3079
3080        if (cmpxchg(&root->orphan_cleanup_state, 0, ORPHAN_CLEANUP_STARTED))
3081                return 0;
3082
3083        path = btrfs_alloc_path();
3084        if (!path) {
3085                ret = -ENOMEM;
3086                goto out;
3087        }
3088        path->reada = -1;
3089
3090        key.objectid = BTRFS_ORPHAN_OBJECTID;
3091        btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
3092        key.offset = (u64)-1;
3093
3094        while (1) {
3095                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3096                if (ret < 0)
3097                        goto out;
3098
3099                /*
3100                 * if ret == 0 means we found what we were searching for, which
3101                 * is weird, but possible, so only screw with path if we didn't
3102                 * find the key and see if we have stuff that matches
3103                 */
3104                if (ret > 0) {
3105                        ret = 0;
3106                        if (path->slots[0] == 0)
3107                                break;
3108                        path->slots[0]--;
3109                }
3110
3111                /* pull out the item */
3112                leaf = path->nodes[0];
3113                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
3114
3115                /* make sure the item matches what we want */
3116                if (found_key.objectid != BTRFS_ORPHAN_OBJECTID)
3117                        break;
3118                if (btrfs_key_type(&found_key) != BTRFS_ORPHAN_ITEM_KEY)
3119                        break;
3120
3121                /* release the path since we're done with it */
3122                btrfs_release_path(path);
3123
3124                /*
3125                 * this is where we are basically btrfs_lookup, without the
3126                 * crossing root thing.  we store the inode number in the
3127                 * offset of the orphan item.
3128                 */
3129
3130                if (found_key.offset == last_objectid) {
3131                        btrfs_err(root->fs_info,
3132                                "Error removing orphan entry, stopping orphan cleanup");
3133                        ret = -EINVAL;
3134                        goto out;
3135                }
3136
3137                last_objectid = found_key.offset;
3138
3139                found_key.objectid = found_key.offset;
3140                found_key.type = BTRFS_INODE_ITEM_KEY;
3141                found_key.offset = 0;
3142                inode = btrfs_iget(root->fs_info->sb, &found_key, root, NULL);
3143                ret = PTR_RET(inode);
3144                if (ret && ret != -ESTALE)
3145                        goto out;
3146
3147                if (ret == -ESTALE && root == root->fs_info->tree_root) {
3148                        struct btrfs_root *dead_root;
3149                        struct btrfs_fs_info *fs_info = root->fs_info;
3150                        int is_dead_root = 0;
3151
3152                        /*
3153                         * this is an orphan in the tree root. Currently these
3154                         * could come from 2 sources:
3155                         *  a) a snapshot deletion in progress
3156                         *  b) a free space cache inode
3157                         * We need to distinguish those two, as the snapshot
3158                         * orphan must not get deleted.
3159                         * find_dead_roots already ran before us, so if this
3160                         * is a snapshot deletion, we should find the root
3161                         * in the dead_roots list
3162                         */
3163                        spin_lock(&fs_info->trans_lock);
3164                        list_for_each_entry(dead_root, &fs_info->dead_roots,
3165                                            root_list) {
3166                                if (dead_root->root_key.objectid ==
3167                                    found_key.objectid) {
3168                                        is_dead_root = 1;
3169                                        break;
3170                                }
3171                        }
3172                        spin_unlock(&fs_info->trans_lock);
3173                        if (is_dead_root) {
3174                                /* prevent this orphan from being found again */
3175                                key.offset = found_key.objectid - 1;
3176                                continue;
3177                        }
3178                }
3179                /*
3180                 * Inode is already gone but the orphan item is still there,
3181                 * kill the orphan item.
3182                 */
3183                if (ret == -ESTALE) {
3184                        trans = btrfs_start_transaction(root, 1);
3185                        if (IS_ERR(trans)) {
3186                                ret = PTR_ERR(trans);
3187                                goto out;
3188                        }
3189                        btrfs_debug(root->fs_info, "auto deleting %Lu",
3190                                found_key.objectid);
3191                        ret = btrfs_del_orphan_item(trans, root,
3192                                                    found_key.objectid);
3193                        BUG_ON(ret); /* -ENOMEM or corruption (JDM: Recheck) */
3194                        btrfs_end_transaction(trans, root);
3195                        continue;
3196                }
3197
3198                /*
3199                 * add this inode to the orphan list so btrfs_orphan_del does
3200                 * the proper thing when we hit it
3201                 */
3202                set_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
3203                        &BTRFS_I(inode)->runtime_flags);
3204                atomic_inc(&root->orphan_inodes);
3205
3206                /* if we have links, this was a truncate, lets do that */
3207                if (inode->i_nlink) {
3208                        if (!S_ISREG(inode->i_mode)) {
3209                                WARN_ON(1);
3210                                iput(inode);
3211                                continue;
3212                        }
3213                        nr_truncate++;
3214
3215                        /* 1 for the orphan item deletion. */
3216                        trans = btrfs_start_transaction(root, 1);
3217                        if (IS_ERR(trans)) {
3218                                ret = PTR_ERR(trans);
3219                                goto out;
3220                        }
3221                        ret = btrfs_orphan_add(trans, inode);
3222                        btrfs_end_transaction(trans, root);
3223                        if (ret)
3224                                goto out;
3225
3226                        ret = btrfs_truncate(inode);
3227                        if (ret)
3228                                btrfs_orphan_del(NULL, inode);
3229                } else {
3230                        nr_unlink++;
3231                }
3232
3233                /* this will do delete_inode and everything for us */
3234                iput(inode);
3235                if (ret)
3236                        goto out;
3237        }
3238        /* release the path since we're done with it */
3239        btrfs_release_path(path);
3240
3241        root->orphan_cleanup_state = ORPHAN_CLEANUP_DONE;
3242
3243        if (root->orphan_block_rsv)
3244                btrfs_block_rsv_release(root, root->orphan_block_rsv,
3245                                        (u64)-1);
3246
3247        if (root->orphan_block_rsv || root->orphan_item_inserted) {
3248                trans = btrfs_join_transaction(root);
3249                if (!IS_ERR(trans))
3250                        btrfs_end_transaction(trans, root);
3251        }
3252
3253        if (nr_unlink)
3254                btrfs_debug(root->fs_info, "unlinked %d orphans", nr_unlink);
3255        if (nr_truncate)
3256                btrfs_debug(root->fs_info, "truncated %d orphans", nr_truncate);
3257
3258out:
3259        if (ret)
3260                btrfs_crit(root->fs_info,
3261                        "could not do orphan cleanup %d", ret);
3262        btrfs_free_path(path);
3263        return ret;
3264}
3265
3266/*
3267 * very simple check to peek ahead in the leaf looking for xattrs.  If we
3268 * don't find any xattrs, we know there can't be any acls.
3269 *
3270 * slot is the slot the inode is in, objectid is the objectid of the inode
3271 */
3272static noinline int acls_after_inode_item(struct extent_buffer *leaf,
3273                                          int slot, u64 objectid)
3274{
3275        u32 nritems = btrfs_header_nritems(leaf);
3276        struct btrfs_key found_key;
3277        int scanned = 0;
3278
3279        slot++;
3280        while (slot < nritems) {
3281                btrfs_item_key_to_cpu(leaf, &found_key, slot);
3282
3283                /* we found a different objectid, there must not be acls */
3284                if (found_key.objectid != objectid)
3285                        return 0;
3286
3287                /* we found an xattr, assume we've got an acl */
3288                if (found_key.type == BTRFS_XATTR_ITEM_KEY)
3289                        return 1;
3290
3291                /*
3292                 * we found a key greater than an xattr key, there can't
3293                 * be any acls later on
3294                 */
3295                if (found_key.type > BTRFS_XATTR_ITEM_KEY)
3296                        return 0;
3297
3298                slot++;
3299                scanned++;
3300
3301                /*
3302                 * it goes inode, inode backrefs, xattrs, extents,
3303                 * so if there are a ton of hard links to an inode there can
3304                 * be a lot of backrefs.  Don't waste time searching too hard,
3305                 * this is just an optimization
3306                 */
3307                if (scanned >= 8)
3308                        break;
3309        }
3310        /* we hit the end of the leaf before we found an xattr or
3311         * something larger than an xattr.  We have to assume the inode
3312         * has acls
3313         */
3314        return 1;
3315}
3316
3317/*
3318 * read an inode from the btree into the in-memory inode
3319 */
3320static void btrfs_read_locked_inode(struct inode *inode)
3321{
3322        struct btrfs_path *path;
3323        struct extent_buffer *leaf;
3324        struct btrfs_inode_item *inode_item;
3325        struct btrfs_timespec *tspec;
3326        struct btrfs_root *root = BTRFS_I(inode)->root;
3327        struct btrfs_key location;
3328        int maybe_acls;
3329        u32 rdev;
3330        int ret;
3331        bool filled = false;
3332
3333        ret = btrfs_fill_inode(inode, &rdev);
3334        if (!ret)
3335                filled = true;
3336
3337        path = btrfs_alloc_path();
3338        if (!path)
3339                goto make_bad;
3340
3341        path->leave_spinning = 1;
3342        memcpy(&location, &BTRFS_I(inode)->location, sizeof(location));
3343
3344        ret = btrfs_lookup_inode(NULL, root, path, &location, 0);
3345        if (ret)
3346                goto make_bad;
3347
3348        leaf = path->nodes[0];
3349
3350        if (filled)
3351                goto cache_acl;
3352
3353        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3354                                    struct btrfs_inode_item);
3355        inode->i_mode = btrfs_inode_mode(leaf, inode_item);
3356        set_nlink(inode, btrfs_inode_nlink(leaf, inode_item));
3357        i_uid_write(inode, btrfs_inode_uid(leaf, inode_item));
3358        i_gid_write(inode, btrfs_inode_gid(leaf, inode_item));
3359        btrfs_i_size_write(inode, btrfs_inode_size(leaf, inode_item));
3360
3361        tspec = btrfs_inode_atime(inode_item);
3362        inode->i_atime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3363        inode->i_atime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3364
3365        tspec = btrfs_inode_mtime(inode_item);
3366        inode->i_mtime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3367        inode->i_mtime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3368
3369        tspec = btrfs_inode_ctime(inode_item);
3370        inode->i_ctime.tv_sec = btrfs_timespec_sec(leaf, tspec);
3371        inode->i_ctime.tv_nsec = btrfs_timespec_nsec(leaf, tspec);
3372
3373        inode_set_bytes(inode, btrfs_inode_nbytes(leaf, inode_item));
3374        BTRFS_I(inode)->generation = btrfs_inode_generation(leaf, inode_item);
3375        BTRFS_I(inode)->last_trans = btrfs_inode_transid(leaf, inode_item);
3376
3377        /*
3378         * If we were modified in the current generation and evicted from memory
3379         * and then re-read we need to do a full sync since we don't have any
3380         * idea about which extents were modified before we were evicted from
3381         * cache.
3382         */
3383        if (BTRFS_I(inode)->last_trans == root->fs_info->generation)
3384                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3385                        &BTRFS_I(inode)->runtime_flags);
3386
3387        inode->i_version = btrfs_inode_sequence(leaf, inode_item);
3388        inode->i_generation = BTRFS_I(inode)->generation;
3389        inode->i_rdev = 0;
3390        rdev = btrfs_inode_rdev(leaf, inode_item);
3391
3392        BTRFS_I(inode)->index_cnt = (u64)-1;
3393        BTRFS_I(inode)->flags = btrfs_inode_flags(leaf, inode_item);
3394cache_acl:
3395        /*
3396         * try to precache a NULL acl entry for files that don't have
3397         * any xattrs or acls
3398         */
3399        maybe_acls = acls_after_inode_item(leaf, path->slots[0],
3400                                           btrfs_ino(inode));
3401        if (!maybe_acls)
3402                cache_no_acl(inode);
3403
3404        btrfs_free_path(path);
3405
3406        switch (inode->i_mode & S_IFMT) {
3407        case S_IFREG:
3408                inode->i_mapping->a_ops = &btrfs_aops;
3409                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3410                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
3411                inode->i_fop = &btrfs_file_operations;
3412                inode->i_op = &btrfs_file_inode_operations;
3413                break;
3414        case S_IFDIR:
3415                inode->i_fop = &btrfs_dir_file_operations;
3416                if (root == root->fs_info->tree_root)
3417                        inode->i_op = &btrfs_dir_ro_inode_operations;
3418                else
3419                        inode->i_op = &btrfs_dir_inode_operations;
3420                break;
3421        case S_IFLNK:
3422                inode->i_op = &btrfs_symlink_inode_operations;
3423                inode->i_mapping->a_ops = &btrfs_symlink_aops;
3424                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
3425                break;
3426        default:
3427                inode->i_op = &btrfs_special_inode_operations;
3428                init_special_inode(inode, inode->i_mode, rdev);
3429                break;
3430        }
3431
3432        btrfs_update_iflags(inode);
3433        return;
3434
3435make_bad:
3436        btrfs_free_path(path);
3437        make_bad_inode(inode);
3438}
3439
3440/*
3441 * given a leaf and an inode, copy the inode fields into the leaf
3442 */
3443static void fill_inode_item(struct btrfs_trans_handle *trans,
3444                            struct extent_buffer *leaf,
3445                            struct btrfs_inode_item *item,
3446                            struct inode *inode)
3447{
3448        struct btrfs_map_token token;
3449
3450        btrfs_init_map_token(&token);
3451
3452        btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
3453        btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
3454        btrfs_set_token_inode_size(leaf, item, BTRFS_I(inode)->disk_i_size,
3455                                   &token);
3456        btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
3457        btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
3458
3459        btrfs_set_token_timespec_sec(leaf, btrfs_inode_atime(item),
3460                                     inode->i_atime.tv_sec, &token);
3461        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_atime(item),
3462                                      inode->i_atime.tv_nsec, &token);
3463
3464        btrfs_set_token_timespec_sec(leaf, btrfs_inode_mtime(item),
3465                                     inode->i_mtime.tv_sec, &token);
3466        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_mtime(item),
3467                                      inode->i_mtime.tv_nsec, &token);
3468
3469        btrfs_set_token_timespec_sec(leaf, btrfs_inode_ctime(item),
3470                                     inode->i_ctime.tv_sec, &token);
3471        btrfs_set_token_timespec_nsec(leaf, btrfs_inode_ctime(item),
3472                                      inode->i_ctime.tv_nsec, &token);
3473
3474        btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
3475                                     &token);
3476        btrfs_set_token_inode_generation(leaf, item, BTRFS_I(inode)->generation,
3477                                         &token);
3478        btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
3479        btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
3480        btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
3481        btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
3482        btrfs_set_token_inode_block_group(leaf, item, 0, &token);
3483}
3484
3485/*
3486 * copy everything in the in-memory inode into the btree.
3487 */
3488static noinline int btrfs_update_inode_item(struct btrfs_trans_handle *trans,
3489                                struct btrfs_root *root, struct inode *inode)
3490{
3491        struct btrfs_inode_item *inode_item;
3492        struct btrfs_path *path;
3493        struct extent_buffer *leaf;
3494        int ret;
3495
3496        path = btrfs_alloc_path();
3497        if (!path)
3498                return -ENOMEM;
3499
3500        path->leave_spinning = 1;
3501        ret = btrfs_lookup_inode(trans, root, path, &BTRFS_I(inode)->location,
3502                                 1);
3503        if (ret) {
3504                if (ret > 0)
3505                        ret = -ENOENT;
3506                goto failed;
3507        }
3508
3509        btrfs_unlock_up_safe(path, 1);
3510        leaf = path->nodes[0];
3511        inode_item = btrfs_item_ptr(leaf, path->slots[0],
3512                                    struct btrfs_inode_item);
3513
3514        fill_inode_item(trans, leaf, inode_item, inode);
3515        btrfs_mark_buffer_dirty(leaf);
3516        btrfs_set_inode_last_trans(trans, inode);
3517        ret = 0;
3518failed:
3519        btrfs_free_path(path);
3520        return ret;
3521}
3522
3523/*
3524 * copy everything in the in-memory inode into the btree.
3525 */
3526noinline int btrfs_update_inode(struct btrfs_trans_handle *trans,
3527                                struct btrfs_root *root, struct inode *inode)
3528{
3529        int ret;
3530
3531        /*
3532         * If the inode is a free space inode, we can deadlock during commit
3533         * if we put it into the delayed code.
3534         *
3535         * The data relocation inode should also be directly updated
3536         * without delay
3537         */
3538        if (!btrfs_is_free_space_inode(inode)
3539            && root->root_key.objectid != BTRFS_DATA_RELOC_TREE_OBJECTID) {
3540                btrfs_update_root_times(trans, root);
3541
3542                ret = btrfs_delayed_update_inode(trans, root, inode);
3543                if (!ret)
3544                        btrfs_set_inode_last_trans(trans, inode);
3545                return ret;
3546        }
3547
3548        return btrfs_update_inode_item(trans, root, inode);
3549}
3550
3551noinline int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3552                                         struct btrfs_root *root,
3553                                         struct inode *inode)
3554{
3555        int ret;
3556
3557        ret = btrfs_update_inode(trans, root, inode);
3558        if (ret == -ENOSPC)
3559                return btrfs_update_inode_item(trans, root, inode);
3560        return ret;
3561}
3562
3563/*
3564 * unlink helper that gets used here in inode.c and in the tree logging
3565 * recovery code.  It remove a link in a directory with a given name, and
3566 * also drops the back refs in the inode to the directory
3567 */
3568static int __btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3569                                struct btrfs_root *root,
3570                                struct inode *dir, struct inode *inode,
3571                                const char *name, int name_len)
3572{
3573        struct btrfs_path *path;
3574        int ret = 0;
3575        struct extent_buffer *leaf;
3576        struct btrfs_dir_item *di;
3577        struct btrfs_key key;
3578        u64 index;
3579        u64 ino = btrfs_ino(inode);
3580        u64 dir_ino = btrfs_ino(dir);
3581
3582        path = btrfs_alloc_path();
3583        if (!path) {
3584                ret = -ENOMEM;
3585                goto out;
3586        }
3587
3588        path->leave_spinning = 1;
3589        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3590                                    name, name_len, -1);
3591        if (IS_ERR(di)) {
3592                ret = PTR_ERR(di);
3593                goto err;
3594        }
3595        if (!di) {
3596                ret = -ENOENT;
3597                goto err;
3598        }
3599        leaf = path->nodes[0];
3600        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3601        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3602        if (ret)
3603                goto err;
3604        btrfs_release_path(path);
3605
3606        ret = btrfs_del_inode_ref(trans, root, name, name_len, ino,
3607                                  dir_ino, &index);
3608        if (ret) {
3609                btrfs_info(root->fs_info,
3610                        "failed to delete reference to %.*s, inode %llu parent %llu",
3611                        name_len, name,
3612                        (unsigned long long)ino, (unsigned long long)dir_ino);
3613                btrfs_abort_transaction(trans, root, ret);
3614                goto err;
3615        }
3616
3617        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3618        if (ret) {
3619                btrfs_abort_transaction(trans, root, ret);
3620                goto err;
3621        }
3622
3623        ret = btrfs_del_inode_ref_in_log(trans, root, name, name_len,
3624                                         inode, dir_ino);
3625        if (ret != 0 && ret != -ENOENT) {
3626                btrfs_abort_transaction(trans, root, ret);
3627                goto err;
3628        }
3629
3630        ret = btrfs_del_dir_entries_in_log(trans, root, name, name_len,
3631                                           dir, index);
3632        if (ret == -ENOENT)
3633                ret = 0;
3634        else if (ret)
3635                btrfs_abort_transaction(trans, root, ret);
3636err:
3637        btrfs_free_path(path);
3638        if (ret)
3639                goto out;
3640
3641        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3642        inode_inc_iversion(inode);
3643        inode_inc_iversion(dir);
3644        inode->i_ctime = dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3645        ret = btrfs_update_inode(trans, root, dir);
3646out:
3647        return ret;
3648}
3649
3650int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3651                       struct btrfs_root *root,
3652                       struct inode *dir, struct inode *inode,
3653                       const char *name, int name_len)
3654{
3655        int ret;
3656        ret = __btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
3657        if (!ret) {
3658                btrfs_drop_nlink(inode);
3659                ret = btrfs_update_inode(trans, root, inode);
3660        }
3661        return ret;
3662}
3663                
3664
3665/* helper to check if there is any shared block in the path */
3666static int check_path_shared(struct btrfs_root *root,
3667                             struct btrfs_path *path)
3668{
3669        struct extent_buffer *eb;
3670        int level;
3671        u64 refs = 1;
3672
3673        for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
3674                int ret;
3675
3676                if (!path->nodes[level])
3677                        break;
3678                eb = path->nodes[level];
3679                if (!btrfs_block_can_be_shared(root, eb))
3680                        continue;
3681                ret = btrfs_lookup_extent_info(NULL, root, eb->start, level, 1,
3682                                               &refs, NULL);
3683                if (refs > 1)
3684                        return 1;
3685        }
3686        return 0;
3687}
3688
3689/*
3690 * helper to start transaction for unlink and rmdir.
3691 *
3692 * unlink and rmdir are special in btrfs, they do not always free space.
3693 * so in enospc case, we should make sure they will free space before
3694 * allowing them to use the global metadata reservation.
3695 */
3696static struct btrfs_trans_handle *__unlink_start_trans(struct inode *dir,
3697                                                       struct dentry *dentry)
3698{
3699        struct btrfs_trans_handle *trans;
3700        struct btrfs_root *root = BTRFS_I(dir)->root;
3701        struct btrfs_path *path;
3702        struct btrfs_dir_item *di;
3703        struct inode *inode = dentry->d_inode;
3704        u64 index;
3705        int check_link = 1;
3706        int err = -ENOSPC;
3707        int ret;
3708        u64 ino = btrfs_ino(inode);
3709        u64 dir_ino = btrfs_ino(dir);
3710
3711        /*
3712         * 1 for the possible orphan item
3713         * 1 for the dir item
3714         * 1 for the dir index
3715         * 1 for the inode ref
3716         * 1 for the inode
3717         */
3718        trans = btrfs_start_transaction(root, 5);
3719        if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
3720                return trans;
3721
3722        if (ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
3723                return ERR_PTR(-ENOSPC);
3724
3725        /* check if there is someone else holds reference */
3726        if (S_ISDIR(inode->i_mode) && atomic_read(&inode->i_count) > 1)
3727                return ERR_PTR(-ENOSPC);
3728
3729        if (atomic_read(&inode->i_count) > 2)
3730                return ERR_PTR(-ENOSPC);
3731
3732        if (xchg(&root->fs_info->enospc_unlink, 1))
3733                return ERR_PTR(-ENOSPC);
3734
3735        path = btrfs_alloc_path();
3736        if (!path) {
3737                root->fs_info->enospc_unlink = 0;
3738                return ERR_PTR(-ENOMEM);
3739        }
3740
3741        /* 1 for the orphan item */
3742        trans = btrfs_start_transaction(root, 1);
3743        if (IS_ERR(trans)) {
3744                btrfs_free_path(path);
3745                root->fs_info->enospc_unlink = 0;
3746                return trans;
3747        }
3748
3749        path->skip_locking = 1;
3750        path->search_commit_root = 1;
3751
3752        ret = btrfs_lookup_inode(trans, root, path,
3753                                &BTRFS_I(dir)->location, 0);
3754        if (ret < 0) {
3755                err = ret;
3756                goto out;
3757        }
3758        if (ret == 0) {
3759                if (check_path_shared(root, path))
3760                        goto out;
3761        } else {
3762                check_link = 0;
3763        }
3764        btrfs_release_path(path);
3765
3766        ret = btrfs_lookup_inode(trans, root, path,
3767                                &BTRFS_I(inode)->location, 0);
3768        if (ret < 0) {
3769                err = ret;
3770                goto out;
3771        }
3772        if (ret == 0) {
3773                if (check_path_shared(root, path))
3774                        goto out;
3775        } else {
3776                check_link = 0;
3777        }
3778        btrfs_release_path(path);
3779
3780        if (ret == 0 && S_ISREG(inode->i_mode)) {
3781                ret = btrfs_lookup_file_extent(trans, root, path,
3782                                               ino, (u64)-1, 0);
3783                if (ret < 0) {
3784                        err = ret;
3785                        goto out;
3786                }
3787                BUG_ON(ret == 0); /* Corruption */
3788                if (check_path_shared(root, path))
3789                        goto out;
3790                btrfs_release_path(path);
3791        }
3792
3793        if (!check_link) {
3794                err = 0;
3795                goto out;
3796        }
3797
3798        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3799                                dentry->d_name.name, dentry->d_name.len, 0);
3800        if (IS_ERR(di)) {
3801                err = PTR_ERR(di);
3802                goto out;
3803        }
3804        if (di) {
3805                if (check_path_shared(root, path))
3806                        goto out;
3807        } else {
3808                err = 0;
3809                goto out;
3810        }
3811        btrfs_release_path(path);
3812
3813        ret = btrfs_get_inode_ref_index(trans, root, path, dentry->d_name.name,
3814                                        dentry->d_name.len, ino, dir_ino, 0,
3815                                        &index);
3816        if (ret) {
3817                err = ret;
3818                goto out;
3819        }
3820
3821        if (check_path_shared(root, path))
3822                goto out;
3823
3824        btrfs_release_path(path);
3825
3826        /*
3827         * This is a commit root search, if we can lookup inode item and other
3828         * relative items in the commit root, it means the transaction of
3829         * dir/file creation has been committed, and the dir index item that we
3830         * delay to insert has also been inserted into the commit root. So
3831         * we needn't worry about the delayed insertion of the dir index item
3832         * here.
3833         */
3834        di = btrfs_lookup_dir_index_item(trans, root, path, dir_ino, index,
3835                                dentry->d_name.name, dentry->d_name.len, 0);
3836        if (IS_ERR(di)) {
3837                err = PTR_ERR(di);
3838                goto out;
3839        }
3840        BUG_ON(ret == -ENOENT);
3841        if (check_path_shared(root, path))
3842                goto out;
3843
3844        err = 0;
3845out:
3846        btrfs_free_path(path);
3847        /* Migrate the orphan reservation over */
3848        if (!err)
3849                err = btrfs_block_rsv_migrate(trans->block_rsv,
3850                                &root->fs_info->global_block_rsv,
3851                                trans->bytes_reserved);
3852
3853        if (err) {
3854                btrfs_end_transaction(trans, root);
3855                root->fs_info->enospc_unlink = 0;
3856                return ERR_PTR(err);
3857        }
3858
3859        trans->block_rsv = &root->fs_info->global_block_rsv;
3860        return trans;
3861}
3862
3863static void __unlink_end_trans(struct btrfs_trans_handle *trans,
3864                               struct btrfs_root *root)
3865{
3866        if (trans->block_rsv->type == BTRFS_BLOCK_RSV_GLOBAL) {
3867                btrfs_block_rsv_release(root, trans->block_rsv,
3868                                        trans->bytes_reserved);
3869                trans->block_rsv = &root->fs_info->trans_block_rsv;
3870                BUG_ON(!root->fs_info->enospc_unlink);
3871                root->fs_info->enospc_unlink = 0;
3872        }
3873        btrfs_end_transaction(trans, root);
3874}
3875
3876static int btrfs_unlink(struct inode *dir, struct dentry *dentry)
3877{
3878        struct btrfs_root *root = BTRFS_I(dir)->root;
3879        struct btrfs_trans_handle *trans;
3880        struct inode *inode = dentry->d_inode;
3881        int ret;
3882
3883        trans = __unlink_start_trans(dir, dentry);
3884        if (IS_ERR(trans))
3885                return PTR_ERR(trans);
3886
3887        btrfs_record_unlink_dir(trans, dir, dentry->d_inode, 0);
3888
3889        ret = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
3890                                 dentry->d_name.name, dentry->d_name.len);
3891        if (ret)
3892                goto out;
3893
3894        if (inode->i_nlink == 0) {
3895                ret = btrfs_orphan_add(trans, inode);
3896                if (ret)
3897                        goto out;
3898        }
3899
3900out:
3901        __unlink_end_trans(trans, root);
3902        btrfs_btree_balance_dirty(root);
3903        return ret;
3904}
3905
3906int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3907                        struct btrfs_root *root,
3908                        struct inode *dir, u64 objectid,
3909                        const char *name, int name_len)
3910{
3911        struct btrfs_path *path;
3912        struct extent_buffer *leaf;
3913        struct btrfs_dir_item *di;
3914        struct btrfs_key key;
3915        u64 index;
3916        int ret;
3917        u64 dir_ino = btrfs_ino(dir);
3918
3919        path = btrfs_alloc_path();
3920        if (!path)
3921                return -ENOMEM;
3922
3923        di = btrfs_lookup_dir_item(trans, root, path, dir_ino,
3924                                   name, name_len, -1);
3925        if (IS_ERR_OR_NULL(di)) {
3926                if (!di)
3927                        ret = -ENOENT;
3928                else
3929                        ret = PTR_ERR(di);
3930                goto out;
3931        }
3932
3933        leaf = path->nodes[0];
3934        btrfs_dir_item_key_to_cpu(leaf, di, &key);
3935        WARN_ON(key.type != BTRFS_ROOT_ITEM_KEY || key.objectid != objectid);
3936        ret = btrfs_delete_one_dir_name(trans, root, path, di);
3937        if (ret) {
3938                btrfs_abort_transaction(trans, root, ret);
3939                goto out;
3940        }
3941        btrfs_release_path(path);
3942
3943        ret = btrfs_del_root_ref(trans, root->fs_info->tree_root,
3944                                 objectid, root->root_key.objectid,
3945                                 dir_ino, &index, name, name_len);
3946        if (ret < 0) {
3947                if (ret != -ENOENT) {
3948                        btrfs_abort_transaction(trans, root, ret);
3949                        goto out;
3950                }
3951                di = btrfs_search_dir_index_item(root, path, dir_ino,
3952                                                 name, name_len);
3953                if (IS_ERR_OR_NULL(di)) {
3954                        if (!di)
3955                                ret = -ENOENT;
3956                        else
3957                                ret = PTR_ERR(di);
3958                        btrfs_abort_transaction(trans, root, ret);
3959                        goto out;
3960                }
3961
3962                leaf = path->nodes[0];
3963                btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3964                btrfs_release_path(path);
3965                index = key.offset;
3966        }
3967        btrfs_release_path(path);
3968
3969        ret = btrfs_delete_delayed_dir_index(trans, root, dir, index);
3970        if (ret) {
3971                btrfs_abort_transaction(trans, root, ret);
3972                goto out;
3973        }
3974
3975        btrfs_i_size_write(dir, dir->i_size - name_len * 2);
3976        inode_inc_iversion(dir);
3977        dir->i_mtime = dir->i_ctime = CURRENT_TIME;
3978        ret = btrfs_update_inode_fallback(trans, root, dir);
3979        if (ret)
3980                btrfs_abort_transaction(trans, root, ret);
3981out:
3982        btrfs_free_path(path);
3983        return ret;
3984}
3985
3986static int btrfs_rmdir(struct inode *dir, struct dentry *dentry)
3987{
3988        struct inode *inode = dentry->d_inode;
3989        int err = 0;
3990        struct btrfs_root *root = BTRFS_I(dir)->root;
3991        struct btrfs_trans_handle *trans;
3992
3993        if (inode->i_size > BTRFS_EMPTY_DIR_SIZE)
3994                return -ENOTEMPTY;
3995        if (btrfs_ino(inode) == BTRFS_FIRST_FREE_OBJECTID)
3996                return -EPERM;
3997
3998        trans = __unlink_start_trans(dir, dentry);
3999        if (IS_ERR(trans))
4000                return PTR_ERR(trans);
4001
4002        if (unlikely(btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
4003                err = btrfs_unlink_subvol(trans, root, dir,
4004                                          BTRFS_I(inode)->location.objectid,
4005                                          dentry->d_name.name,
4006                                          dentry->d_name.len);
4007                goto out;
4008        }
4009
4010        err = btrfs_orphan_add(trans, inode);
4011        if (err)
4012                goto out;
4013
4014        /* now the directory is empty */
4015        err = btrfs_unlink_inode(trans, root, dir, dentry->d_inode,
4016                                 dentry->d_name.name, dentry->d_name.len);
4017        if (!err)
4018                btrfs_i_size_write(inode, 0);
4019out:
4020        __unlink_end_trans(trans, root);
4021        btrfs_btree_balance_dirty(root);
4022
4023        return err;
4024}
4025
4026/*
4027 * this can truncate away extent items, csum items and directory items.
4028 * It starts at a high offset and removes keys until it can't find
4029 * any higher than new_size
4030 *
4031 * csum items that cross the new i_size are truncated to the new size
4032 * as well.
4033 *
4034 * min_type is the minimum key type to truncate down to.  If set to 0, this
4035 * will kill all the items on this inode, including the INODE_ITEM_KEY.
4036 */
4037int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
4038                               struct btrfs_root *root,
4039                               struct inode *inode,
4040                               u64 new_size, u32 min_type)
4041{
4042        struct btrfs_path *path;
4043        struct extent_buffer *leaf;
4044        struct btrfs_file_extent_item *fi;
4045        struct btrfs_key key;
4046        struct btrfs_key found_key;
4047        u64 extent_start = 0;
4048        u64 extent_num_bytes = 0;
4049        u64 extent_offset = 0;
4050        u64 item_end = 0;
4051        u32 found_type = (u8)-1;
4052        int found_extent;
4053        int del_item;
4054        int pending_del_nr = 0;
4055        int pending_del_slot = 0;
4056        int extent_type = -1;
4057        int ret;
4058        int err = 0;
4059        u64 ino = btrfs_ino(inode);
4060
4061        BUG_ON(new_size > 0 && min_type != BTRFS_EXTENT_DATA_KEY);
4062
4063        path = btrfs_alloc_path();
4064        if (!path)
4065                return -ENOMEM;
4066        path->reada = -1;
4067
4068        /*
4069         * We want to drop from the next block forward in case this new size is
4070         * not block aligned since we will be keeping the last block of the
4071         * extent just the way it is.
4072         */
4073        if (root->ref_cows || root == root->fs_info->tree_root)
4074                btrfs_drop_extent_cache(inode, ALIGN(new_size,
4075                                        root->sectorsize), (u64)-1, 0);
4076
4077        /*
4078         * This function is also used to drop the items in the log tree before
4079         * we relog the inode, so if root != BTRFS_I(inode)->root, it means
4080         * it is used to drop the loged items. So we shouldn't kill the delayed
4081         * items.
4082         */
4083        if (min_type == 0 && root == BTRFS_I(inode)->root)
4084                btrfs_kill_delayed_inode_items(inode);
4085
4086        key.objectid = ino;
4087        key.offset = (u64)-1;
4088        key.type = (u8)-1;
4089
4090search_again:
4091        path->leave_spinning = 1;
4092        ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
4093        if (ret < 0) {
4094                err = ret;
4095                goto out;
4096        }
4097
4098        if (ret > 0) {
4099                /* there are no items in the tree for us to truncate, we're
4100                 * done
4101                 */
4102                if (path->slots[0] == 0)
4103                        goto out;
4104                path->slots[0]--;
4105        }
4106
4107        while (1) {
4108                fi = NULL;
4109                leaf = path->nodes[0];
4110                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
4111                found_type = btrfs_key_type(&found_key);
4112
4113                if (found_key.objectid != ino)
4114                        break;
4115
4116                if (found_type < min_type)
4117                        break;
4118
4119                item_end = found_key.offset;
4120                if (found_type == BTRFS_EXTENT_DATA_KEY) {
4121                        fi = btrfs_item_ptr(leaf, path->slots[0],
4122                                            struct btrfs_file_extent_item);
4123                        extent_type = btrfs_file_extent_type(leaf, fi);
4124                        if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4125                                item_end +=
4126                                    btrfs_file_extent_num_bytes(leaf, fi);
4127                        } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4128                                item_end += btrfs_file_extent_inline_len(leaf,
4129                                                                         fi);
4130                        }
4131                        item_end--;
4132                }
4133                if (found_type > min_type) {
4134                        del_item = 1;
4135                } else {
4136                        if (item_end < new_size)
4137                                break;
4138                        if (found_key.offset >= new_size)
4139                                del_item = 1;
4140                        else
4141                                del_item = 0;
4142                }
4143                found_extent = 0;
4144                /* FIXME, shrink the extent if the ref count is only 1 */
4145                if (found_type != BTRFS_EXTENT_DATA_KEY)
4146                        goto delete;
4147
4148                if (extent_type != BTRFS_FILE_EXTENT_INLINE) {
4149                        u64 num_dec;
4150                        extent_start = btrfs_file_extent_disk_bytenr(leaf, fi);
4151                        if (!del_item) {
4152                                u64 orig_num_bytes =
4153                                        btrfs_file_extent_num_bytes(leaf, fi);
4154                                extent_num_bytes = ALIGN(new_size -
4155                                                found_key.offset,
4156                                                root->sectorsize);
4157                                btrfs_set_file_extent_num_bytes(leaf, fi,
4158                                                         extent_num_bytes);
4159                                num_dec = (orig_num_bytes -
4160                                           extent_num_bytes);
4161                                if (root->ref_cows && extent_start != 0)
4162                                        inode_sub_bytes(inode, num_dec);
4163                                btrfs_mark_buffer_dirty(leaf);
4164                        } else {
4165                                extent_num_bytes =
4166                                        btrfs_file_extent_disk_num_bytes(leaf,
4167                                                                         fi);
4168                                extent_offset = found_key.offset -
4169                                        btrfs_file_extent_offset(leaf, fi);
4170
4171                                /* FIXME blocksize != 4096 */
4172                                num_dec = btrfs_file_extent_num_bytes(leaf, fi);
4173                                if (extent_start != 0) {
4174                                        found_extent = 1;
4175                                        if (root->ref_cows)
4176                                                inode_sub_bytes(inode, num_dec);
4177                                }
4178                        }
4179                } else if (extent_type == BTRFS_FILE_EXTENT_INLINE) {
4180                        /*
4181                         * we can't truncate inline items that have had
4182                         * special encodings
4183                         */
4184                        if (!del_item &&
4185                            btrfs_file_extent_compression(leaf, fi) == 0 &&
4186                            btrfs_file_extent_encryption(leaf, fi) == 0 &&
4187                            btrfs_file_extent_other_encoding(leaf, fi) == 0) {
4188                                u32 size = new_size - found_key.offset;
4189
4190                                if (root->ref_cows) {
4191                                        inode_sub_bytes(inode, item_end + 1 -
4192                                                        new_size);
4193                                }
4194                                size =
4195                                    btrfs_file_extent_calc_inline_size(size);
4196                                btrfs_truncate_item(root, path, size, 1);
4197                        } else if (root->ref_cows) {
4198                                inode_sub_bytes(inode, item_end + 1 -
4199                                                found_key.offset);
4200                        }
4201                }
4202delete:
4203                if (del_item) {
4204                        if (!pending_del_nr) {
4205                                /* no pending yet, add ourselves */
4206                                pending_del_slot = path->slots[0];
4207                                pending_del_nr = 1;
4208                        } else if (pending_del_nr &&
4209                                   path->slots[0] + 1 == pending_del_slot) {
4210                                /* hop on the pending chunk */
4211                                pending_del_nr++;
4212                                pending_del_slot = path->slots[0];
4213                        } else {
4214                                BUG();
4215                        }
4216                } else {
4217                        break;
4218                }
4219                if (found_extent && (root->ref_cows ||
4220                                     root == root->fs_info->tree_root)) {
4221                        btrfs_set_path_blocking(path);
4222                        ret = btrfs_free_extent(trans, root, extent_start,
4223                                                extent_num_bytes, 0,
4224                                                btrfs_header_owner(leaf),
4225                                                ino, extent_offset, 0);
4226                        BUG_ON(ret);
4227                }
4228
4229                if (found_type == BTRFS_INODE_ITEM_KEY)
4230                        break;
4231
4232                if (path->slots[0] == 0 ||
4233                    path->slots[0] != pending_del_slot) {
4234                        if (pending_del_nr) {
4235                                ret = btrfs_del_items(trans, root, path,
4236                                                pending_del_slot,
4237                                                pending_del_nr);
4238                                if (ret) {
4239                                        btrfs_abort_transaction(trans,
4240                                                                root, ret);
4241                                        goto error;
4242                                }
4243                                pending_del_nr = 0;
4244                        }
4245                        btrfs_release_path(path);
4246                        goto search_again;
4247                } else {
4248                        path->slots[0]--;
4249                }
4250        }
4251out:
4252        if (pending_del_nr) {
4253                ret = btrfs_del_items(trans, root, path, pending_del_slot,
4254                                      pending_del_nr);
4255                if (ret)
4256                        btrfs_abort_transaction(trans, root, ret);
4257        }
4258error:
4259        btrfs_free_path(path);
4260        return err;
4261}
4262
4263/*
4264 * btrfs_truncate_page - read, zero a chunk and write a page
4265 * @inode - inode that we're zeroing
4266 * @from - the offset to start zeroing
4267 * @len - the length to zero, 0 to zero the entire range respective to the
4268 *      offset
4269 * @front - zero up to the offset instead of from the offset on
4270 *
4271 * This will find the page for the "from" offset and cow the page and zero the
4272 * part we want to zero.  This is used with truncate and hole punching.
4273 */
4274int btrfs_truncate_page(struct inode *inode, loff_t from, loff_t len,
4275                        int front)
4276{
4277        struct address_space *mapping = inode->i_mapping;
4278        struct btrfs_root *root = BTRFS_I(inode)->root;
4279        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4280        struct btrfs_ordered_extent *ordered;
4281        struct extent_state *cached_state = NULL;
4282        char *kaddr;
4283        u32 blocksize = root->sectorsize;
4284        pgoff_t index = from >> PAGE_CACHE_SHIFT;
4285        unsigned offset = from & (PAGE_CACHE_SIZE-1);
4286        struct page *page;
4287        gfp_t mask = btrfs_alloc_write_mask(mapping);
4288        int ret = 0;
4289        u64 page_start;
4290        u64 page_end;
4291
4292        if ((offset & (blocksize - 1)) == 0 &&
4293            (!len || ((len & (blocksize - 1)) == 0)))
4294                goto out;
4295        ret = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
4296        if (ret)
4297                goto out;
4298
4299again:
4300        page = find_or_create_page(mapping, index, mask);
4301        if (!page) {
4302                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4303                ret = -ENOMEM;
4304                goto out;
4305        }
4306
4307        page_start = page_offset(page);
4308        page_end = page_start + PAGE_CACHE_SIZE - 1;
4309
4310        if (!PageUptodate(page)) {
4311                ret = btrfs_readpage(NULL, page);
4312                lock_page(page);
4313                if (page->mapping != mapping) {
4314                        unlock_page(page);
4315                        page_cache_release(page);
4316                        goto again;
4317                }
4318                if (!PageUptodate(page)) {
4319                        ret = -EIO;
4320                        goto out_unlock;
4321                }
4322        }
4323        wait_on_page_writeback(page);
4324
4325        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
4326        set_page_extent_mapped(page);
4327
4328        ordered = btrfs_lookup_ordered_extent(inode, page_start);
4329        if (ordered) {
4330                unlock_extent_cached(io_tree, page_start, page_end,
4331                                     &cached_state, GFP_NOFS);
4332                unlock_page(page);
4333                page_cache_release(page);
4334                btrfs_start_ordered_extent(inode, ordered, 1);
4335                btrfs_put_ordered_extent(ordered);
4336                goto again;
4337        }
4338
4339        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
4340                          EXTENT_DIRTY | EXTENT_DELALLOC |
4341                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
4342                          0, 0, &cached_state, GFP_NOFS);
4343
4344        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
4345                                        &cached_state);
4346        if (ret) {
4347                unlock_extent_cached(io_tree, page_start, page_end,
4348                                     &cached_state, GFP_NOFS);
4349                goto out_unlock;
4350        }
4351
4352        if (offset != PAGE_CACHE_SIZE) {
4353                if (!len)
4354                        len = PAGE_CACHE_SIZE - offset;
4355                kaddr = kmap(page);
4356                if (front)
4357                        memset(kaddr, 0, offset);
4358                else
4359                        memset(kaddr + offset, 0, len);
4360                flush_dcache_page(page);
4361                kunmap(page);
4362        }
4363        ClearPageChecked(page);
4364        set_page_dirty(page);
4365        unlock_extent_cached(io_tree, page_start, page_end, &cached_state,
4366                             GFP_NOFS);
4367
4368out_unlock:
4369        if (ret)
4370                btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
4371        unlock_page(page);
4372        page_cache_release(page);
4373out:
4374        return ret;
4375}
4376
4377/*
4378 * This function puts in dummy file extents for the area we're creating a hole
4379 * for.  So if we are truncating this file to a larger size we need to insert
4380 * these file extents so that btrfs_get_extent will return a EXTENT_MAP_HOLE for
4381 * the range between oldsize and size
4382 */
4383int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size)
4384{
4385        struct btrfs_trans_handle *trans;
4386        struct btrfs_root *root = BTRFS_I(inode)->root;
4387        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
4388        struct extent_map *em = NULL;
4389        struct extent_state *cached_state = NULL;
4390        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
4391        u64 hole_start = ALIGN(oldsize, root->sectorsize);
4392        u64 block_end = ALIGN(size, root->sectorsize);
4393        u64 last_byte;
4394        u64 cur_offset;
4395        u64 hole_size;
4396        int err = 0;
4397
4398        if (size <= hole_start)
4399                return 0;
4400
4401        while (1) {
4402                struct btrfs_ordered_extent *ordered;
4403                btrfs_wait_ordered_range(inode, hole_start,
4404                                         block_end - hole_start);
4405                lock_extent_bits(io_tree, hole_start, block_end - 1, 0,
4406                                 &cached_state);
4407                ordered = btrfs_lookup_ordered_extent(inode, hole_start);
4408                if (!ordered)
4409                        break;
4410                unlock_extent_cached(io_tree, hole_start, block_end - 1,
4411                                     &cached_state, GFP_NOFS);
4412                btrfs_put_ordered_extent(ordered);
4413        }
4414
4415        cur_offset = hole_start;
4416        while (1) {
4417                em = btrfs_get_extent(inode, NULL, 0, cur_offset,
4418                                block_end - cur_offset, 0);
4419                if (IS_ERR(em)) {
4420                        err = PTR_ERR(em);
4421                        em = NULL;
4422                        break;
4423                }
4424                last_byte = min(extent_map_end(em), block_end);
4425                last_byte = ALIGN(last_byte , root->sectorsize);
4426                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) {
4427                        struct extent_map *hole_em;
4428                        hole_size = last_byte - cur_offset;
4429
4430                        trans = btrfs_start_transaction(root, 3);
4431                        if (IS_ERR(trans)) {
4432                                err = PTR_ERR(trans);
4433                                break;
4434                        }
4435
4436                        err = btrfs_drop_extents(trans, root, inode,
4437                                                 cur_offset,
4438                                                 cur_offset + hole_size, 1);
4439                        if (err) {
4440                                btrfs_abort_transaction(trans, root, err);
4441                                btrfs_end_transaction(trans, root);
4442                                break;
4443                        }
4444
4445                        err = btrfs_insert_file_extent(trans, root,
4446                                        btrfs_ino(inode), cur_offset, 0,
4447                                        0, hole_size, 0, hole_size,
4448                                        0, 0, 0);
4449                        if (err) {
4450                                btrfs_abort_transaction(trans, root, err);
4451                                btrfs_end_transaction(trans, root);
4452                                break;
4453                        }
4454
4455                        btrfs_drop_extent_cache(inode, cur_offset,
4456                                                cur_offset + hole_size - 1, 0);
4457                        hole_em = alloc_extent_map();
4458                        if (!hole_em) {
4459                                set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
4460                                        &BTRFS_I(inode)->runtime_flags);
4461                                goto next;
4462                        }
4463                        hole_em->start = cur_offset;
4464                        hole_em->len = hole_size;
4465                        hole_em->orig_start = cur_offset;
4466
4467                        hole_em->block_start = EXTENT_MAP_HOLE;
4468                        hole_em->block_len = 0;
4469                        hole_em->orig_block_len = 0;
4470                        hole_em->ram_bytes = hole_size;
4471                        hole_em->bdev = root->fs_info->fs_devices->latest_bdev;
4472                        hole_em->compress_type = BTRFS_COMPRESS_NONE;
4473                        hole_em->generation = trans->transid;
4474
4475                        while (1) {
4476                                write_lock(&em_tree->lock);
4477                                err = add_extent_mapping(em_tree, hole_em, 1);
4478                                write_unlock(&em_tree->lock);
4479                                if (err != -EEXIST)
4480                                        break;
4481                                btrfs_drop_extent_cache(inode, cur_offset,
4482                                                        cur_offset +
4483                                                        hole_size - 1, 0);
4484                        }
4485                        free_extent_map(hole_em);
4486next:
4487                        btrfs_update_inode(trans, root, inode);
4488                        btrfs_end_transaction(trans, root);
4489                }
4490                free_extent_map(em);
4491                em = NULL;
4492                cur_offset = last_byte;
4493                if (cur_offset >= block_end)
4494                        break;
4495        }
4496
4497        free_extent_map(em);
4498        unlock_extent_cached(io_tree, hole_start, block_end - 1, &cached_state,
4499                             GFP_NOFS);
4500        return err;
4501}
4502
4503static int btrfs_setsize(struct inode *inode, struct iattr *attr)
4504{
4505        struct btrfs_root *root = BTRFS_I(inode)->root;
4506        struct btrfs_trans_handle *trans;
4507        loff_t oldsize = i_size_read(inode);
4508        loff_t newsize = attr->ia_size;
4509        int mask = attr->ia_valid;
4510        int ret;
4511
4512        if (newsize == oldsize)
4513                return 0;
4514
4515        /*
4516         * The regular truncate() case without ATTR_CTIME and ATTR_MTIME is a
4517         * special case where we need to update the times despite not having
4518         * these flags set.  For all other operations the VFS set these flags
4519         * explicitly if it wants a timestamp update.
4520         */
4521        if (newsize != oldsize && (!(mask & (ATTR_CTIME | ATTR_MTIME))))
4522                inode->i_ctime = inode->i_mtime = current_fs_time(inode->i_sb);
4523
4524        if (newsize > oldsize) {
4525                truncate_pagecache(inode, oldsize, newsize);
4526                ret = btrfs_cont_expand(inode, oldsize, newsize);
4527                if (ret)
4528                        return ret;
4529
4530                trans = btrfs_start_transaction(root, 1);
4531                if (IS_ERR(trans))
4532                        return PTR_ERR(trans);
4533
4534                i_size_write(inode, newsize);
4535                btrfs_ordered_update_i_size(inode, i_size_read(inode), NULL);
4536                ret = btrfs_update_inode(trans, root, inode);
4537                btrfs_end_transaction(trans, root);
4538        } else {
4539
4540                /*
4541                 * We're truncating a file that used to have good data down to
4542                 * zero. Make sure it gets into the ordered flush list so that
4543                 * any new writes get down to disk quickly.
4544                 */
4545                if (newsize == 0)
4546                        set_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
4547                                &BTRFS_I(inode)->runtime_flags);
4548
4549                /*
4550                 * 1 for the orphan item we're going to add
4551                 * 1 for the orphan item deletion.
4552                 */
4553                trans = btrfs_start_transaction(root, 2);
4554                if (IS_ERR(trans))
4555                        return PTR_ERR(trans);
4556
4557                /*
4558                 * We need to do this in case we fail at _any_ point during the
4559                 * actual truncate.  Once we do the truncate_setsize we could
4560                 * invalidate pages which forces any outstanding ordered io to
4561                 * be instantly completed which will give us extents that need
4562                 * to be truncated.  If we fail to get an orphan inode down we
4563                 * could have left over extents that were never meant to live,
4564                 * so we need to garuntee from this point on that everything
4565                 * will be consistent.
4566                 */
4567                ret = btrfs_orphan_add(trans, inode);
4568                btrfs_end_transaction(trans, root);
4569                if (ret)
4570                        return ret;
4571
4572                /* we don't support swapfiles, so vmtruncate shouldn't fail */
4573                truncate_setsize(inode, newsize);
4574
4575                /* Disable nonlocked read DIO to avoid the end less truncate */
4576                btrfs_inode_block_unlocked_dio(inode);
4577                inode_dio_wait(inode);
4578                btrfs_inode_resume_unlocked_dio(inode);
4579
4580                ret = btrfs_truncate(inode);
4581                if (ret && inode->i_nlink)
4582                        btrfs_orphan_del(NULL, inode);
4583        }
4584
4585        return ret;
4586}
4587
4588static int btrfs_setattr(struct dentry *dentry, struct iattr *attr)
4589{
4590        struct inode *inode = dentry->d_inode;
4591        struct btrfs_root *root = BTRFS_I(inode)->root;
4592        int err;
4593
4594        if (btrfs_root_readonly(root))
4595                return -EROFS;
4596
4597        err = inode_change_ok(inode, attr);
4598        if (err)
4599                return err;
4600
4601        if (S_ISREG(inode->i_mode) && (attr->ia_valid & ATTR_SIZE)) {
4602                err = btrfs_setsize(inode, attr);
4603                if (err)
4604                        return err;
4605        }
4606
4607        if (attr->ia_valid) {
4608                setattr_copy(inode, attr);
4609                inode_inc_iversion(inode);
4610                err = btrfs_dirty_inode(inode);
4611
4612                if (!err && attr->ia_valid & ATTR_MODE)
4613                        err = btrfs_acl_chmod(inode);
4614        }
4615
4616        return err;
4617}
4618
4619void btrfs_evict_inode(struct inode *inode)
4620{
4621        struct btrfs_trans_handle *trans;
4622        struct btrfs_root *root = BTRFS_I(inode)->root;
4623        struct btrfs_block_rsv *rsv, *global_rsv;
4624        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
4625        int ret;
4626
4627        trace_btrfs_inode_evict(inode);
4628
4629        truncate_inode_pages(&inode->i_data, 0);
4630        if (inode->i_nlink && (btrfs_root_refs(&root->root_item) != 0 ||
4631                               btrfs_is_free_space_inode(inode)))
4632                goto no_delete;
4633
4634        if (is_bad_inode(inode)) {
4635                btrfs_orphan_del(NULL, inode);
4636                goto no_delete;
4637        }
4638        /* do we really want it for ->i_nlink > 0 and zero btrfs_root_refs? */
4639        btrfs_wait_ordered_range(inode, 0, (u64)-1);
4640
4641        if (root->fs_info->log_root_recovering) {
4642                BUG_ON(test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
4643                                 &BTRFS_I(inode)->runtime_flags));
4644                goto no_delete;
4645        }
4646
4647        if (inode->i_nlink > 0) {
4648                BUG_ON(btrfs_root_refs(&root->root_item) != 0);
4649                goto no_delete;
4650        }
4651
4652        ret = btrfs_commit_inode_delayed_inode(inode);
4653        if (ret) {
4654                btrfs_orphan_del(NULL, inode);
4655                goto no_delete;
4656        }
4657
4658        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
4659        if (!rsv) {
4660                btrfs_orphan_del(NULL, inode);
4661                goto no_delete;
4662        }
4663        rsv->size = min_size;
4664        rsv->failfast = 1;
4665        global_rsv = &root->fs_info->global_block_rsv;
4666
4667        btrfs_i_size_write(inode, 0);
4668
4669        /*
4670         * This is a bit simpler than btrfs_truncate since we've already
4671         * reserved our space for our orphan item in the unlink, so we just
4672         * need to reserve some slack space in case we add bytes and update
4673         * inode item when doing the truncate.
4674         */
4675        while (1) {
4676                ret = btrfs_block_rsv_refill(root, rsv, min_size,
4677                                             BTRFS_RESERVE_FLUSH_LIMIT);
4678
4679                /*
4680                 * Try and steal from the global reserve since we will
4681                 * likely not use this space anyway, we want to try as
4682                 * hard as possible to get this to work.
4683                 */
4684                if (ret)
4685                        ret = btrfs_block_rsv_migrate(global_rsv, rsv, min_size);
4686
4687                if (ret) {
4688                        btrfs_warn(root->fs_info,
4689                                "Could not get space for a delete, will truncate on mount %d",
4690                                ret);
4691                        btrfs_orphan_del(NULL, inode);
4692                        btrfs_free_block_rsv(root, rsv);
4693                        goto no_delete;
4694                }
4695
4696                trans = btrfs_join_transaction(root);
4697                if (IS_ERR(trans)) {
4698                        btrfs_orphan_del(NULL, inode);
4699                        btrfs_free_block_rsv(root, rsv);
4700                        goto no_delete;
4701                }
4702
4703                trans->block_rsv = rsv;
4704
4705                ret = btrfs_truncate_inode_items(trans, root, inode, 0, 0);
4706                if (ret != -ENOSPC)
4707                        break;
4708
4709                trans->block_rsv = &root->fs_info->trans_block_rsv;
4710                btrfs_end_transaction(trans, root);
4711                trans = NULL;
4712                btrfs_btree_balance_dirty(root);
4713        }
4714
4715        btrfs_free_block_rsv(root, rsv);
4716
4717        if (ret == 0) {
4718                trans->block_rsv = root->orphan_block_rsv;
4719                ret = btrfs_orphan_del(trans, inode);
4720                BUG_ON(ret);
4721        }
4722
4723        trans->block_rsv = &root->fs_info->trans_block_rsv;
4724        if (!(root == root->fs_info->tree_root ||
4725              root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID))
4726                btrfs_return_ino(root, btrfs_ino(inode));
4727
4728        btrfs_end_transaction(trans, root);
4729        btrfs_btree_balance_dirty(root);
4730no_delete:
4731        btrfs_remove_delayed_node(inode);
4732        clear_inode(inode);
4733        return;
4734}
4735
4736/*
4737 * this returns the key found in the dir entry in the location pointer.
4738 * If no dir entries were found, location->objectid is 0.
4739 */
4740static int btrfs_inode_by_name(struct inode *dir, struct dentry *dentry,
4741                               struct btrfs_key *location)
4742{
4743        const char *name = dentry->d_name.name;
4744        int namelen = dentry->d_name.len;
4745        struct btrfs_dir_item *di;
4746        struct btrfs_path *path;
4747        struct btrfs_root *root = BTRFS_I(dir)->root;
4748        int ret = 0;
4749
4750        path = btrfs_alloc_path();
4751        if (!path)
4752                return -ENOMEM;
4753
4754        di = btrfs_lookup_dir_item(NULL, root, path, btrfs_ino(dir), name,
4755                                    namelen, 0);
4756        if (IS_ERR(di))
4757                ret = PTR_ERR(di);
4758
4759        if (IS_ERR_OR_NULL(di))
4760                goto out_err;
4761
4762        btrfs_dir_item_key_to_cpu(path->nodes[0], di, location);
4763out:
4764        btrfs_free_path(path);
4765        return ret;
4766out_err:
4767        location->objectid = 0;
4768        goto out;
4769}
4770
4771/*
4772 * when we hit a tree root in a directory, the btrfs part of the inode
4773 * needs to be changed to reflect the root directory of the tree root.  This
4774 * is kind of like crossing a mount point.
4775 */
4776static int fixup_tree_root_location(struct btrfs_root *root,
4777                                    struct inode *dir,
4778                                    struct dentry *dentry,
4779                                    struct btrfs_key *location,
4780                                    struct btrfs_root **sub_root)
4781{
4782        struct btrfs_path *path;
4783        struct btrfs_root *new_root;
4784        struct btrfs_root_ref *ref;
4785        struct extent_buffer *leaf;
4786        int ret;
4787        int err = 0;
4788
4789        path = btrfs_alloc_path();
4790        if (!path) {
4791                err = -ENOMEM;
4792                goto out;
4793        }
4794
4795        err = -ENOENT;
4796        ret = btrfs_find_root_ref(root->fs_info->tree_root, path,
4797                                  BTRFS_I(dir)->root->root_key.objectid,
4798                                  location->objectid);
4799        if (ret) {
4800                if (ret < 0)
4801                        err = ret;
4802                goto out;
4803        }
4804
4805        leaf = path->nodes[0];
4806        ref = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_root_ref);
4807        if (btrfs_root_ref_dirid(leaf, ref) != btrfs_ino(dir) ||
4808            btrfs_root_ref_name_len(leaf, ref) != dentry->d_name.len)
4809                goto out;
4810
4811        ret = memcmp_extent_buffer(leaf, dentry->d_name.name,
4812                                   (unsigned long)(ref + 1),
4813                                   dentry->d_name.len);
4814        if (ret)
4815                goto out;
4816
4817        btrfs_release_path(path);
4818
4819        new_root = btrfs_read_fs_root_no_name(root->fs_info, location);
4820        if (IS_ERR(new_root)) {
4821                err = PTR_ERR(new_root);
4822                goto out;
4823        }
4824
4825        if (btrfs_root_refs(&new_root->root_item) == 0) {
4826                err = -ENOENT;
4827                goto out;
4828        }
4829
4830        *sub_root = new_root;
4831        location->objectid = btrfs_root_dirid(&new_root->root_item);
4832        location->type = BTRFS_INODE_ITEM_KEY;
4833        location->offset = 0;
4834        err = 0;
4835out:
4836        btrfs_free_path(path);
4837        return err;
4838}
4839
4840static void inode_tree_add(struct inode *inode)
4841{
4842        struct btrfs_root *root = BTRFS_I(inode)->root;
4843        struct btrfs_inode *entry;
4844        struct rb_node **p;
4845        struct rb_node *parent;
4846        u64 ino = btrfs_ino(inode);
4847
4848        if (inode_unhashed(inode))
4849                return;
4850again:
4851        parent = NULL;
4852        spin_lock(&root->inode_lock);
4853        p = &root->inode_tree.rb_node;
4854        while (*p) {
4855                parent = *p;
4856                entry = rb_entry(parent, struct btrfs_inode, rb_node);
4857
4858                if (ino < btrfs_ino(&entry->vfs_inode))
4859                        p = &parent->rb_left;
4860                else if (ino > btrfs_ino(&entry->vfs_inode))
4861                        p = &parent->rb_right;
4862                else {
4863                        WARN_ON(!(entry->vfs_inode.i_state &
4864                                  (I_WILL_FREE | I_FREEING)));
4865                        rb_erase(parent, &root->inode_tree);
4866                        RB_CLEAR_NODE(parent);
4867                        spin_unlock(&root->inode_lock);
4868                        goto again;
4869                }
4870        }
4871        rb_link_node(&BTRFS_I(inode)->rb_node, parent, p);
4872        rb_insert_color(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4873        spin_unlock(&root->inode_lock);
4874}
4875
4876static void inode_tree_del(struct inode *inode)
4877{
4878        struct btrfs_root *root = BTRFS_I(inode)->root;
4879        int empty = 0;
4880
4881        spin_lock(&root->inode_lock);
4882        if (!RB_EMPTY_NODE(&BTRFS_I(inode)->rb_node)) {
4883                rb_erase(&BTRFS_I(inode)->rb_node, &root->inode_tree);
4884                RB_CLEAR_NODE(&BTRFS_I(inode)->rb_node);
4885                empty = RB_EMPTY_ROOT(&root->inode_tree);
4886        }
4887        spin_unlock(&root->inode_lock);
4888
4889        /*
4890         * Free space cache has inodes in the tree root, but the tree root has a
4891         * root_refs of 0, so this could end up dropping the tree root as a
4892         * snapshot, so we need the extra !root->fs_info->tree_root check to
4893         * make sure we don't drop it.
4894         */
4895        if (empty && btrfs_root_refs(&root->root_item) == 0 &&
4896            root != root->fs_info->tree_root) {
4897                synchronize_srcu(&root->fs_info->subvol_srcu);
4898                spin_lock(&root->inode_lock);
4899                empty = RB_EMPTY_ROOT(&root->inode_tree);
4900                spin_unlock(&root->inode_lock);
4901                if (empty)
4902                        btrfs_add_dead_root(root);
4903        }
4904}
4905
4906void btrfs_invalidate_inodes(struct btrfs_root *root)
4907{
4908        struct rb_node *node;
4909        struct rb_node *prev;
4910        struct btrfs_inode *entry;
4911        struct inode *inode;
4912        u64 objectid = 0;
4913
4914        WARN_ON(btrfs_root_refs(&root->root_item) != 0);
4915
4916        spin_lock(&root->inode_lock);
4917again:
4918        node = root->inode_tree.rb_node;
4919        prev = NULL;
4920        while (node) {
4921                prev = node;
4922                entry = rb_entry(node, struct btrfs_inode, rb_node);
4923
4924                if (objectid < btrfs_ino(&entry->vfs_inode))
4925                        node = node->rb_left;
4926                else if (objectid > btrfs_ino(&entry->vfs_inode))
4927                        node = node->rb_right;
4928                else
4929                        break;
4930        }
4931        if (!node) {
4932                while (prev) {
4933                        entry = rb_entry(prev, struct btrfs_inode, rb_node);
4934                        if (objectid <= btrfs_ino(&entry->vfs_inode)) {
4935                                node = prev;
4936                                break;
4937                        }
4938                        prev = rb_next(prev);
4939                }
4940        }
4941        while (node) {
4942                entry = rb_entry(node, struct btrfs_inode, rb_node);
4943                objectid = btrfs_ino(&entry->vfs_inode) + 1;
4944                inode = igrab(&entry->vfs_inode);
4945                if (inode) {
4946                        spin_unlock(&root->inode_lock);
4947                        if (atomic_read(&inode->i_count) > 1)
4948                                d_prune_aliases(inode);
4949                        /*
4950                         * btrfs_drop_inode will have it removed from
4951                         * the inode cache when its usage count
4952                         * hits zero.
4953                         */
4954                        iput(inode);
4955                        cond_resched();
4956                        spin_lock(&root->inode_lock);
4957                        goto again;
4958                }
4959
4960                if (cond_resched_lock(&root->inode_lock))
4961                        goto again;
4962
4963                node = rb_next(node);
4964        }
4965        spin_unlock(&root->inode_lock);
4966}
4967
4968static int btrfs_init_locked_inode(struct inode *inode, void *p)
4969{
4970        struct btrfs_iget_args *args = p;
4971        inode->i_ino = args->ino;
4972        BTRFS_I(inode)->root = args->root;
4973        return 0;
4974}
4975
4976static int btrfs_find_actor(struct inode *inode, void *opaque)
4977{
4978        struct btrfs_iget_args *args = opaque;
4979        return args->ino == btrfs_ino(inode) &&
4980                args->root == BTRFS_I(inode)->root;
4981}
4982
4983static struct inode *btrfs_iget_locked(struct super_block *s,
4984                                       u64 objectid,
4985                                       struct btrfs_root *root)
4986{
4987        struct inode *inode;
4988        struct btrfs_iget_args args;
4989        args.ino = objectid;
4990        args.root = root;
4991
4992        inode = iget5_locked(s, objectid, btrfs_find_actor,
4993                             btrfs_init_locked_inode,
4994                             (void *)&args);
4995        return inode;
4996}
4997
4998/* Get an inode object given its location and corresponding root.
4999 * Returns in *is_new if the inode was read from disk
5000 */
5001struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
5002                         struct btrfs_root *root, int *new)
5003{
5004        struct inode *inode;
5005
5006        inode = btrfs_iget_locked(s, location->objectid, root);
5007        if (!inode)
5008                return ERR_PTR(-ENOMEM);
5009
5010        if (inode->i_state & I_NEW) {
5011                BTRFS_I(inode)->root = root;
5012                memcpy(&BTRFS_I(inode)->location, location, sizeof(*location));
5013                btrfs_read_locked_inode(inode);
5014                if (!is_bad_inode(inode)) {
5015                        inode_tree_add(inode);
5016                        unlock_new_inode(inode);
5017                        if (new)
5018                                *new = 1;
5019                } else {
5020                        unlock_new_inode(inode);
5021                        iput(inode);
5022                        inode = ERR_PTR(-ESTALE);
5023                }
5024        }
5025
5026        return inode;
5027}
5028
5029static struct inode *new_simple_dir(struct super_block *s,
5030                                    struct btrfs_key *key,
5031                                    struct btrfs_root *root)
5032{
5033        struct inode *inode = new_inode(s);
5034
5035        if (!inode)
5036                return ERR_PTR(-ENOMEM);
5037
5038        BTRFS_I(inode)->root = root;
5039        memcpy(&BTRFS_I(inode)->location, key, sizeof(*key));
5040        set_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags);
5041
5042        inode->i_ino = BTRFS_EMPTY_SUBVOL_DIR_OBJECTID;
5043        inode->i_op = &btrfs_dir_ro_inode_operations;
5044        inode->i_fop = &simple_dir_operations;
5045        inode->i_mode = S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO;
5046        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5047
5048        return inode;
5049}
5050
5051struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry)
5052{
5053        struct inode *inode;
5054        struct btrfs_root *root = BTRFS_I(dir)->root;
5055        struct btrfs_root *sub_root = root;
5056        struct btrfs_key location;
5057        int index;
5058        int ret = 0;
5059
5060        if (dentry->d_name.len > BTRFS_NAME_LEN)
5061                return ERR_PTR(-ENAMETOOLONG);
5062
5063        ret = btrfs_inode_by_name(dir, dentry, &location);
5064        if (ret < 0)
5065                return ERR_PTR(ret);
5066
5067        if (location.objectid == 0)
5068                return NULL;
5069
5070        if (location.type == BTRFS_INODE_ITEM_KEY) {
5071                inode = btrfs_iget(dir->i_sb, &location, root, NULL);
5072                return inode;
5073        }
5074
5075        BUG_ON(location.type != BTRFS_ROOT_ITEM_KEY);
5076
5077        index = srcu_read_lock(&root->fs_info->subvol_srcu);
5078        ret = fixup_tree_root_location(root, dir, dentry,
5079                                       &location, &sub_root);
5080        if (ret < 0) {
5081                if (ret != -ENOENT)
5082                        inode = ERR_PTR(ret);
5083                else
5084                        inode = new_simple_dir(dir->i_sb, &location, sub_root);
5085        } else {
5086                inode = btrfs_iget(dir->i_sb, &location, sub_root, NULL);
5087        }
5088        srcu_read_unlock(&root->fs_info->subvol_srcu, index);
5089
5090        if (!IS_ERR(inode) && root != sub_root) {
5091                down_read(&root->fs_info->cleanup_work_sem);
5092                if (!(inode->i_sb->s_flags & MS_RDONLY))
5093                        ret = btrfs_orphan_cleanup(sub_root);
5094                up_read(&root->fs_info->cleanup_work_sem);
5095                if (ret)
5096                        inode = ERR_PTR(ret);
5097        }
5098
5099        return inode;
5100}
5101
5102static int btrfs_dentry_delete(const struct dentry *dentry)
5103{
5104        struct btrfs_root *root;
5105        struct inode *inode = dentry->d_inode;
5106
5107        if (!inode && !IS_ROOT(dentry))
5108                inode = dentry->d_parent->d_inode;
5109
5110        if (inode) {
5111                root = BTRFS_I(inode)->root;
5112                if (btrfs_root_refs(&root->root_item) == 0)
5113                        return 1;
5114
5115                if (btrfs_ino(inode) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
5116                        return 1;
5117        }
5118        return 0;
5119}
5120
5121static void btrfs_dentry_release(struct dentry *dentry)
5122{
5123        if (dentry->d_fsdata)
5124                kfree(dentry->d_fsdata);
5125}
5126
5127static struct dentry *btrfs_lookup(struct inode *dir, struct dentry *dentry,
5128                                   unsigned int flags)
5129{
5130        struct dentry *ret;
5131
5132        ret = d_splice_alias(btrfs_lookup_dentry(dir, dentry), dentry);
5133        return ret;
5134}
5135
5136unsigned char btrfs_filetype_table[] = {
5137        DT_UNKNOWN, DT_REG, DT_DIR, DT_CHR, DT_BLK, DT_FIFO, DT_SOCK, DT_LNK
5138};
5139
5140static int btrfs_real_readdir(struct file *filp, void *dirent,
5141                              filldir_t filldir)
5142{
5143        struct inode *inode = file_inode(filp);
5144        struct btrfs_root *root = BTRFS_I(inode)->root;
5145        struct btrfs_item *item;
5146        struct btrfs_dir_item *di;
5147        struct btrfs_key key;
5148        struct btrfs_key found_key;
5149        struct btrfs_path *path;
5150        struct list_head ins_list;
5151        struct list_head del_list;
5152        int ret;
5153        struct extent_buffer *leaf;
5154        int slot;
5155        unsigned char d_type;
5156        int over = 0;
5157        u32 di_cur;
5158        u32 di_total;
5159        u32 di_len;
5160        int key_type = BTRFS_DIR_INDEX_KEY;
5161        char tmp_name[32];
5162        char *name_ptr;
5163        int name_len;
5164        int is_curr = 0;        /* filp->f_pos points to the current index? */
5165
5166        /* FIXME, use a real flag for deciding about the key type */
5167        if (root->fs_info->tree_root == root)
5168                key_type = BTRFS_DIR_ITEM_KEY;
5169
5170        /* special case for "." */
5171        if (filp->f_pos == 0) {
5172                over = filldir(dirent, ".", 1,
5173                               filp->f_pos, btrfs_ino(inode), DT_DIR);
5174                if (over)
5175                        return 0;
5176                filp->f_pos = 1;
5177        }
5178        /* special case for .., just use the back ref */
5179        if (filp->f_pos == 1) {
5180                u64 pino = parent_ino(filp->f_path.dentry);
5181                over = filldir(dirent, "..", 2,
5182                               filp->f_pos, pino, DT_DIR);
5183                if (over)
5184                        return 0;
5185                filp->f_pos = 2;
5186        }
5187        path = btrfs_alloc_path();
5188        if (!path)
5189                return -ENOMEM;
5190
5191        path->reada = 1;
5192
5193        if (key_type == BTRFS_DIR_INDEX_KEY) {
5194                INIT_LIST_HEAD(&ins_list);
5195                INIT_LIST_HEAD(&del_list);
5196                btrfs_get_delayed_items(inode, &ins_list, &del_list);
5197        }
5198
5199        btrfs_set_key_type(&key, key_type);
5200        key.offset = filp->f_pos;
5201        key.objectid = btrfs_ino(inode);
5202
5203        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5204        if (ret < 0)
5205                goto err;
5206
5207        while (1) {
5208                leaf = path->nodes[0];
5209                slot = path->slots[0];
5210                if (slot >= btrfs_header_nritems(leaf)) {
5211                        ret = btrfs_next_leaf(root, path);
5212                        if (ret < 0)
5213                                goto err;
5214                        else if (ret > 0)
5215                                break;
5216                        continue;
5217                }
5218
5219                item = btrfs_item_nr(leaf, slot);
5220                btrfs_item_key_to_cpu(leaf, &found_key, slot);
5221
5222                if (found_key.objectid != key.objectid)
5223                        break;
5224                if (btrfs_key_type(&found_key) != key_type)
5225                        break;
5226                if (found_key.offset < filp->f_pos)
5227                        goto next;
5228                if (key_type == BTRFS_DIR_INDEX_KEY &&
5229                    btrfs_should_delete_dir_index(&del_list,
5230                                                  found_key.offset))
5231                        goto next;
5232
5233                filp->f_pos = found_key.offset;
5234                is_curr = 1;
5235
5236                di = btrfs_item_ptr(leaf, slot, struct btrfs_dir_item);
5237                di_cur = 0;
5238                di_total = btrfs_item_size(leaf, item);
5239
5240                while (di_cur < di_total) {
5241                        struct btrfs_key location;
5242
5243                        if (verify_dir_item(root, leaf, di))
5244                                break;
5245
5246                        name_len = btrfs_dir_name_len(leaf, di);
5247                        if (name_len <= sizeof(tmp_name)) {
5248                                name_ptr = tmp_name;
5249                        } else {
5250                                name_ptr = kmalloc(name_len, GFP_NOFS);
5251                                if (!name_ptr) {
5252                                        ret = -ENOMEM;
5253                                        goto err;
5254                                }
5255                        }
5256                        read_extent_buffer(leaf, name_ptr,
5257                                           (unsigned long)(di + 1), name_len);
5258
5259                        d_type = btrfs_filetype_table[btrfs_dir_type(leaf, di)];
5260                        btrfs_dir_item_key_to_cpu(leaf, di, &location);
5261
5262
5263                        /* is this a reference to our own snapshot? If so
5264                         * skip it.
5265                         *
5266                         * In contrast to old kernels, we insert the snapshot's
5267                         * dir item and dir index after it has been created, so
5268                         * we won't find a reference to our own snapshot. We
5269                         * still keep the following code for backward
5270                         * compatibility.
5271                         */
5272                        if (location.type == BTRFS_ROOT_ITEM_KEY &&
5273                            location.objectid == root->root_key.objectid) {
5274                                over = 0;
5275                                goto skip;
5276                        }
5277                        over = filldir(dirent, name_ptr, name_len,
5278                                       found_key.offset, location.objectid,
5279                                       d_type);
5280
5281skip:
5282                        if (name_ptr != tmp_name)
5283                                kfree(name_ptr);
5284
5285                        if (over)
5286                                goto nopos;
5287                        di_len = btrfs_dir_name_len(leaf, di) +
5288                                 btrfs_dir_data_len(leaf, di) + sizeof(*di);
5289                        di_cur += di_len;
5290                        di = (struct btrfs_dir_item *)((char *)di + di_len);
5291                }
5292next:
5293                path->slots[0]++;
5294        }
5295
5296        if (key_type == BTRFS_DIR_INDEX_KEY) {
5297                if (is_curr)
5298                        filp->f_pos++;
5299                ret = btrfs_readdir_delayed_dir_index(filp, dirent, filldir,
5300                                                      &ins_list);
5301                if (ret)
5302                        goto nopos;
5303        }
5304
5305        /* Reached end of directory/root. Bump pos past the last item. */
5306        if (key_type == BTRFS_DIR_INDEX_KEY)
5307                /*
5308                 * 32-bit glibc will use getdents64, but then strtol -
5309                 * so the last number we can serve is this.
5310                 */
5311                filp->f_pos = 0x7fffffff;
5312        else
5313                filp->f_pos++;
5314nopos:
5315        ret = 0;
5316err:
5317        if (key_type == BTRFS_DIR_INDEX_KEY)
5318                btrfs_put_delayed_items(&ins_list, &del_list);
5319        btrfs_free_path(path);
5320        return ret;
5321}
5322
5323int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc)
5324{
5325        struct btrfs_root *root = BTRFS_I(inode)->root;
5326        struct btrfs_trans_handle *trans;
5327        int ret = 0;
5328        bool nolock = false;
5329
5330        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5331                return 0;
5332
5333        if (btrfs_fs_closing(root->fs_info) && btrfs_is_free_space_inode(inode))
5334                nolock = true;
5335
5336        if (wbc->sync_mode == WB_SYNC_ALL) {
5337                if (nolock)
5338                        trans = btrfs_join_transaction_nolock(root);
5339                else
5340                        trans = btrfs_join_transaction(root);
5341                if (IS_ERR(trans))
5342                        return PTR_ERR(trans);
5343                ret = btrfs_commit_transaction(trans, root);
5344        }
5345        return ret;
5346}
5347
5348/*
5349 * This is somewhat expensive, updating the tree every time the
5350 * inode changes.  But, it is most likely to find the inode in cache.
5351 * FIXME, needs more benchmarking...there are no reasons other than performance
5352 * to keep or drop this code.
5353 */
5354static int btrfs_dirty_inode(struct inode *inode)
5355{
5356        struct btrfs_root *root = BTRFS_I(inode)->root;
5357        struct btrfs_trans_handle *trans;
5358        int ret;
5359
5360        if (test_bit(BTRFS_INODE_DUMMY, &BTRFS_I(inode)->runtime_flags))
5361                return 0;
5362
5363        trans = btrfs_join_transaction(root);
5364        if (IS_ERR(trans))
5365                return PTR_ERR(trans);
5366
5367        ret = btrfs_update_inode(trans, root, inode);
5368        if (ret && ret == -ENOSPC) {
5369                /* whoops, lets try again with the full transaction */
5370                btrfs_end_transaction(trans, root);
5371                trans = btrfs_start_transaction(root, 1);
5372                if (IS_ERR(trans))
5373                        return PTR_ERR(trans);
5374
5375                ret = btrfs_update_inode(trans, root, inode);
5376        }
5377        btrfs_end_transaction(trans, root);
5378        if (BTRFS_I(inode)->delayed_node)
5379                btrfs_balance_delayed_items(root);
5380
5381        return ret;
5382}
5383
5384/*
5385 * This is a copy of file_update_time.  We need this so we can return error on
5386 * ENOSPC for updating the inode in the case of file write and mmap writes.
5387 */
5388static int btrfs_update_time(struct inode *inode, struct timespec *now,
5389                             int flags)
5390{
5391        struct btrfs_root *root = BTRFS_I(inode)->root;
5392
5393        if (btrfs_root_readonly(root))
5394                return -EROFS;
5395
5396        if (flags & S_VERSION)
5397                inode_inc_iversion(inode);
5398        if (flags & S_CTIME)
5399                inode->i_ctime = *now;
5400        if (flags & S_MTIME)
5401                inode->i_mtime = *now;
5402        if (flags & S_ATIME)
5403                inode->i_atime = *now;
5404        return btrfs_dirty_inode(inode);
5405}
5406
5407/*
5408 * find the highest existing sequence number in a directory
5409 * and then set the in-memory index_cnt variable to reflect
5410 * free sequence numbers
5411 */
5412static int btrfs_set_inode_index_count(struct inode *inode)
5413{
5414        struct btrfs_root *root = BTRFS_I(inode)->root;
5415        struct btrfs_key key, found_key;
5416        struct btrfs_path *path;
5417        struct extent_buffer *leaf;
5418        int ret;
5419
5420        key.objectid = btrfs_ino(inode);
5421        btrfs_set_key_type(&key, BTRFS_DIR_INDEX_KEY);
5422        key.offset = (u64)-1;
5423
5424        path = btrfs_alloc_path();
5425        if (!path)
5426                return -ENOMEM;
5427
5428        ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5429        if (ret < 0)
5430                goto out;
5431        /* FIXME: we should be able to handle this */
5432        if (ret == 0)
5433                goto out;
5434        ret = 0;
5435
5436        /*
5437         * MAGIC NUMBER EXPLANATION:
5438         * since we search a directory based on f_pos we have to start at 2
5439         * since '.' and '..' have f_pos of 0 and 1 respectively, so everybody
5440         * else has to start at 2
5441         */
5442        if (path->slots[0] == 0) {
5443                BTRFS_I(inode)->index_cnt = 2;
5444                goto out;
5445        }
5446
5447        path->slots[0]--;
5448
5449        leaf = path->nodes[0];
5450        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
5451
5452        if (found_key.objectid != btrfs_ino(inode) ||
5453            btrfs_key_type(&found_key) != BTRFS_DIR_INDEX_KEY) {
5454                BTRFS_I(inode)->index_cnt = 2;
5455                goto out;
5456        }
5457
5458        BTRFS_I(inode)->index_cnt = found_key.offset + 1;
5459out:
5460        btrfs_free_path(path);
5461        return ret;
5462}
5463
5464/*
5465 * helper to find a free sequence number in a given directory.  This current
5466 * code is very simple, later versions will do smarter things in the btree
5467 */
5468int btrfs_set_inode_index(struct inode *dir, u64 *index)
5469{
5470        int ret = 0;
5471
5472        if (BTRFS_I(dir)->index_cnt == (u64)-1) {
5473                ret = btrfs_inode_delayed_dir_index_count(dir);
5474                if (ret) {
5475                        ret = btrfs_set_inode_index_count(dir);
5476                        if (ret)
5477                                return ret;
5478                }
5479        }
5480
5481        *index = BTRFS_I(dir)->index_cnt;
5482        BTRFS_I(dir)->index_cnt++;
5483
5484        return ret;
5485}
5486
5487static struct inode *btrfs_new_inode(struct btrfs_trans_handle *trans,
5488                                     struct btrfs_root *root,
5489                                     struct inode *dir,
5490                                     const char *name, int name_len,
5491                                     u64 ref_objectid, u64 objectid,
5492                                     umode_t mode, u64 *index)
5493{
5494        struct inode *inode;
5495        struct btrfs_inode_item *inode_item;
5496        struct btrfs_key *location;
5497        struct btrfs_path *path;
5498        struct btrfs_inode_ref *ref;
5499        struct btrfs_key key[2];
5500        u32 sizes[2];
5501        unsigned long ptr;
5502        int ret;
5503        int owner;
5504
5505        path = btrfs_alloc_path();
5506        if (!path)
5507                return ERR_PTR(-ENOMEM);
5508
5509        inode = new_inode(root->fs_info->sb);
5510        if (!inode) {
5511                btrfs_free_path(path);
5512                return ERR_PTR(-ENOMEM);
5513        }
5514
5515        /*
5516         * we have to initialize this early, so we can reclaim the inode
5517         * number if we fail afterwards in this function.
5518         */
5519        inode->i_ino = objectid;
5520
5521        if (dir) {
5522                trace_btrfs_inode_request(dir);
5523
5524                ret = btrfs_set_inode_index(dir, index);
5525                if (ret) {
5526                        btrfs_free_path(path);
5527                        iput(inode);
5528                        return ERR_PTR(ret);
5529                }
5530        }
5531        /*
5532         * index_cnt is ignored for everything but a dir,
5533         * btrfs_get_inode_index_count has an explanation for the magic
5534         * number
5535         */
5536        BTRFS_I(inode)->index_cnt = 2;
5537        BTRFS_I(inode)->root = root;
5538        BTRFS_I(inode)->generation = trans->transid;
5539        inode->i_generation = BTRFS_I(inode)->generation;
5540
5541        /*
5542         * We could have gotten an inode number from somebody who was fsynced
5543         * and then removed in this same transaction, so let's just set full
5544         * sync since it will be a full sync anyway and this will blow away the
5545         * old info in the log.
5546         */
5547        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
5548
5549        if (S_ISDIR(mode))
5550                owner = 0;
5551        else
5552                owner = 1;
5553
5554        key[0].objectid = objectid;
5555        btrfs_set_key_type(&key[0], BTRFS_INODE_ITEM_KEY);
5556        key[0].offset = 0;
5557
5558        /*
5559         * Start new inodes with an inode_ref. This is slightly more
5560         * efficient for small numbers of hard links since they will
5561         * be packed into one item. Extended refs will kick in if we
5562         * add more hard links than can fit in the ref item.
5563         */
5564        key[1].objectid = objectid;
5565        btrfs_set_key_type(&key[1], BTRFS_INODE_REF_KEY);
5566        key[1].offset = ref_objectid;
5567
5568        sizes[0] = sizeof(struct btrfs_inode_item);
5569        sizes[1] = name_len + sizeof(*ref);
5570
5571        path->leave_spinning = 1;
5572        ret = btrfs_insert_empty_items(trans, root, path, key, sizes, 2);
5573        if (ret != 0)
5574                goto fail;
5575
5576        inode_init_owner(inode, dir, mode);
5577        inode_set_bytes(inode, 0);
5578        inode->i_mtime = inode->i_atime = inode->i_ctime = CURRENT_TIME;
5579        inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
5580                                  struct btrfs_inode_item);
5581        memset_extent_buffer(path->nodes[0], 0, (unsigned long)inode_item,
5582                             sizeof(*inode_item));
5583        fill_inode_item(trans, path->nodes[0], inode_item, inode);
5584
5585        ref = btrfs_item_ptr(path->nodes[0], path->slots[0] + 1,
5586                             struct btrfs_inode_ref);
5587        btrfs_set_inode_ref_name_len(path->nodes[0], ref, name_len);
5588        btrfs_set_inode_ref_index(path->nodes[0], ref, *index);
5589        ptr = (unsigned long)(ref + 1);
5590        write_extent_buffer(path->nodes[0], name, ptr, name_len);
5591
5592        btrfs_mark_buffer_dirty(path->nodes[0]);
5593        btrfs_free_path(path);
5594
5595        location = &BTRFS_I(inode)->location;
5596        location->objectid = objectid;
5597        location->offset = 0;
5598        btrfs_set_key_type(location, BTRFS_INODE_ITEM_KEY);
5599
5600        btrfs_inherit_iflags(inode, dir);
5601
5602        if (S_ISREG(mode)) {
5603                if (btrfs_test_opt(root, NODATASUM))
5604                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
5605                if (btrfs_test_opt(root, NODATACOW))
5606                        BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW |
5607                                BTRFS_INODE_NODATASUM;
5608        }
5609
5610        insert_inode_hash(inode);
5611        inode_tree_add(inode);
5612
5613        trace_btrfs_inode_new(inode);
5614        btrfs_set_inode_last_trans(trans, inode);
5615
5616        btrfs_update_root_times(trans, root);
5617
5618        return inode;
5619fail:
5620        if (dir)
5621                BTRFS_I(dir)->index_cnt--;
5622        btrfs_free_path(path);
5623        iput(inode);
5624        return ERR_PTR(ret);
5625}
5626
5627static inline u8 btrfs_inode_type(struct inode *inode)
5628{
5629        return btrfs_type_by_mode[(inode->i_mode & S_IFMT) >> S_SHIFT];
5630}
5631
5632/*
5633 * utility function to add 'inode' into 'parent_inode' with
5634 * a give name and a given sequence number.
5635 * if 'add_backref' is true, also insert a backref from the
5636 * inode to the parent directory.
5637 */
5638int btrfs_add_link(struct btrfs_trans_handle *trans,
5639                   struct inode *parent_inode, struct inode *inode,
5640                   const char *name, int name_len, int add_backref, u64 index)
5641{
5642        int ret = 0;
5643        struct btrfs_key key;
5644        struct btrfs_root *root = BTRFS_I(parent_inode)->root;
5645        u64 ino = btrfs_ino(inode);
5646        u64 parent_ino = btrfs_ino(parent_inode);
5647
5648        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5649                memcpy(&key, &BTRFS_I(inode)->root->root_key, sizeof(key));
5650        } else {
5651                key.objectid = ino;
5652                btrfs_set_key_type(&key, BTRFS_INODE_ITEM_KEY);
5653                key.offset = 0;
5654        }
5655
5656        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5657                ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
5658                                         key.objectid, root->root_key.objectid,
5659                                         parent_ino, index, name, name_len);
5660        } else if (add_backref) {
5661                ret = btrfs_insert_inode_ref(trans, root, name, name_len, ino,
5662                                             parent_ino, index);
5663        }
5664
5665        /* Nothing to clean up yet */
5666        if (ret)
5667                return ret;
5668
5669        ret = btrfs_insert_dir_item(trans, root, name, name_len,
5670                                    parent_inode, &key,
5671                                    btrfs_inode_type(inode), index);
5672        if (ret == -EEXIST || ret == -EOVERFLOW)
5673                goto fail_dir_item;
5674        else if (ret) {
5675                btrfs_abort_transaction(trans, root, ret);
5676                return ret;
5677        }
5678
5679        btrfs_i_size_write(parent_inode, parent_inode->i_size +
5680                           name_len * 2);
5681        inode_inc_iversion(parent_inode);
5682        parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
5683        ret = btrfs_update_inode(trans, root, parent_inode);
5684        if (ret)
5685                btrfs_abort_transaction(trans, root, ret);
5686        return ret;
5687
5688fail_dir_item:
5689        if (unlikely(ino == BTRFS_FIRST_FREE_OBJECTID)) {
5690                u64 local_index;
5691                int err;
5692                err = btrfs_del_root_ref(trans, root->fs_info->tree_root,
5693                                 key.objectid, root->root_key.objectid,
5694                                 parent_ino, &local_index, name, name_len);
5695
5696        } else if (add_backref) {
5697                u64 local_index;
5698                int err;
5699
5700                err = btrfs_del_inode_ref(trans, root, name, name_len,
5701                                          ino, parent_ino, &local_index);
5702        }
5703        return ret;
5704}
5705
5706static int btrfs_add_nondir(struct btrfs_trans_handle *trans,
5707                            struct inode *dir, struct dentry *dentry,
5708                            struct inode *inode, int backref, u64 index)
5709{
5710        int err = btrfs_add_link(trans, dir, inode,
5711                                 dentry->d_name.name, dentry->d_name.len,
5712                                 backref, index);
5713        if (err > 0)
5714                err = -EEXIST;
5715        return err;
5716}
5717
5718static int btrfs_mknod(struct inode *dir, struct dentry *dentry,
5719                        umode_t mode, dev_t rdev)
5720{
5721        struct btrfs_trans_handle *trans;
5722        struct btrfs_root *root = BTRFS_I(dir)->root;
5723        struct inode *inode = NULL;
5724        int err;
5725        int drop_inode = 0;
5726        u64 objectid;
5727        u64 index = 0;
5728
5729        if (!new_valid_dev(rdev))
5730                return -EINVAL;
5731
5732        /*
5733         * 2 for inode item and ref
5734         * 2 for dir items
5735         * 1 for xattr if selinux is on
5736         */
5737        trans = btrfs_start_transaction(root, 5);
5738        if (IS_ERR(trans))
5739                return PTR_ERR(trans);
5740
5741        err = btrfs_find_free_ino(root, &objectid);
5742        if (err)
5743                goto out_unlock;
5744
5745        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5746                                dentry->d_name.len, btrfs_ino(dir), objectid,
5747                                mode, &index);
5748        if (IS_ERR(inode)) {
5749                err = PTR_ERR(inode);
5750                goto out_unlock;
5751        }
5752
5753        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5754        if (err) {
5755                drop_inode = 1;
5756                goto out_unlock;
5757        }
5758
5759        /*
5760        * If the active LSM wants to access the inode during
5761        * d_instantiate it needs these. Smack checks to see
5762        * if the filesystem supports xattrs by looking at the
5763        * ops vector.
5764        */
5765
5766        inode->i_op = &btrfs_special_inode_operations;
5767        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5768        if (err)
5769                drop_inode = 1;
5770        else {
5771                init_special_inode(inode, inode->i_mode, rdev);
5772                btrfs_update_inode(trans, root, inode);
5773                d_instantiate(dentry, inode);
5774        }
5775out_unlock:
5776        btrfs_end_transaction(trans, root);
5777        btrfs_btree_balance_dirty(root);
5778        if (drop_inode) {
5779                inode_dec_link_count(inode);
5780                iput(inode);
5781        }
5782        return err;
5783}
5784
5785static int btrfs_create(struct inode *dir, struct dentry *dentry,
5786                        umode_t mode, bool excl)
5787{
5788        struct btrfs_trans_handle *trans;
5789        struct btrfs_root *root = BTRFS_I(dir)->root;
5790        struct inode *inode = NULL;
5791        int drop_inode_on_err = 0;
5792        int err;
5793        u64 objectid;
5794        u64 index = 0;
5795
5796        /*
5797         * 2 for inode item and ref
5798         * 2 for dir items
5799         * 1 for xattr if selinux is on
5800         */
5801        trans = btrfs_start_transaction(root, 5);
5802        if (IS_ERR(trans))
5803                return PTR_ERR(trans);
5804
5805        err = btrfs_find_free_ino(root, &objectid);
5806        if (err)
5807                goto out_unlock;
5808
5809        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5810                                dentry->d_name.len, btrfs_ino(dir), objectid,
5811                                mode, &index);
5812        if (IS_ERR(inode)) {
5813                err = PTR_ERR(inode);
5814                goto out_unlock;
5815        }
5816        drop_inode_on_err = 1;
5817
5818        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5819        if (err)
5820                goto out_unlock;
5821
5822        err = btrfs_update_inode(trans, root, inode);
5823        if (err)
5824                goto out_unlock;
5825
5826        /*
5827        * If the active LSM wants to access the inode during
5828        * d_instantiate it needs these. Smack checks to see
5829        * if the filesystem supports xattrs by looking at the
5830        * ops vector.
5831        */
5832        inode->i_fop = &btrfs_file_operations;
5833        inode->i_op = &btrfs_file_inode_operations;
5834
5835        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
5836        if (err)
5837                goto out_unlock;
5838
5839        inode->i_mapping->a_ops = &btrfs_aops;
5840        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
5841        BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
5842        d_instantiate(dentry, inode);
5843
5844out_unlock:
5845        btrfs_end_transaction(trans, root);
5846        if (err && drop_inode_on_err) {
5847                inode_dec_link_count(inode);
5848                iput(inode);
5849        }
5850        btrfs_btree_balance_dirty(root);
5851        return err;
5852}
5853
5854static int btrfs_link(struct dentry *old_dentry, struct inode *dir,
5855                      struct dentry *dentry)
5856{
5857        struct btrfs_trans_handle *trans;
5858        struct btrfs_root *root = BTRFS_I(dir)->root;
5859        struct inode *inode = old_dentry->d_inode;
5860        u64 index;
5861        int err;
5862        int drop_inode = 0;
5863
5864        /* do not allow sys_link's with other subvols of the same device */
5865        if (root->objectid != BTRFS_I(inode)->root->objectid)
5866                return -EXDEV;
5867
5868        if (inode->i_nlink >= BTRFS_LINK_MAX)
5869                return -EMLINK;
5870
5871        err = btrfs_set_inode_index(dir, &index);
5872        if (err)
5873                goto fail;
5874
5875        /*
5876         * 2 items for inode and inode ref
5877         * 2 items for dir items
5878         * 1 item for parent inode
5879         */
5880        trans = btrfs_start_transaction(root, 5);
5881        if (IS_ERR(trans)) {
5882                err = PTR_ERR(trans);
5883                goto fail;
5884        }
5885
5886        btrfs_inc_nlink(inode);
5887        inode_inc_iversion(inode);
5888        inode->i_ctime = CURRENT_TIME;
5889        ihold(inode);
5890        set_bit(BTRFS_INODE_COPY_EVERYTHING, &BTRFS_I(inode)->runtime_flags);
5891
5892        err = btrfs_add_nondir(trans, dir, dentry, inode, 1, index);
5893
5894        if (err) {
5895                drop_inode = 1;
5896        } else {
5897                struct dentry *parent = dentry->d_parent;
5898                err = btrfs_update_inode(trans, root, inode);
5899                if (err)
5900                        goto fail;
5901                d_instantiate(dentry, inode);
5902                btrfs_log_new_name(trans, inode, NULL, parent);
5903        }
5904
5905        btrfs_end_transaction(trans, root);
5906fail:
5907        if (drop_inode) {
5908                inode_dec_link_count(inode);
5909                iput(inode);
5910        }
5911        btrfs_btree_balance_dirty(root);
5912        return err;
5913}
5914
5915static int btrfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
5916{
5917        struct inode *inode = NULL;
5918        struct btrfs_trans_handle *trans;
5919        struct btrfs_root *root = BTRFS_I(dir)->root;
5920        int err = 0;
5921        int drop_on_err = 0;
5922        u64 objectid = 0;
5923        u64 index = 0;
5924
5925        /*
5926         * 2 items for inode and ref
5927         * 2 items for dir items
5928         * 1 for xattr if selinux is on
5929         */
5930        trans = btrfs_start_transaction(root, 5);
5931        if (IS_ERR(trans))
5932                return PTR_ERR(trans);
5933
5934        err = btrfs_find_free_ino(root, &objectid);
5935        if (err)
5936                goto out_fail;
5937
5938        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
5939                                dentry->d_name.len, btrfs_ino(dir), objectid,
5940                                S_IFDIR | mode, &index);
5941        if (IS_ERR(inode)) {
5942                err = PTR_ERR(inode);
5943                goto out_fail;
5944        }
5945
5946        drop_on_err = 1;
5947
5948        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
5949        if (err)
5950                goto out_fail;
5951
5952        inode->i_op = &btrfs_dir_inode_operations;
5953        inode->i_fop = &btrfs_dir_file_operations;
5954
5955        btrfs_i_size_write(inode, 0);
5956        err = btrfs_update_inode(trans, root, inode);
5957        if (err)
5958                goto out_fail;
5959
5960        err = btrfs_add_link(trans, dir, inode, dentry->d_name.name,
5961                             dentry->d_name.len, 0, index);
5962        if (err)
5963                goto out_fail;
5964
5965        d_instantiate(dentry, inode);
5966        drop_on_err = 0;
5967
5968out_fail:
5969        btrfs_end_transaction(trans, root);
5970        if (drop_on_err)
5971                iput(inode);
5972        btrfs_btree_balance_dirty(root);
5973        return err;
5974}
5975
5976/* helper for btfs_get_extent.  Given an existing extent in the tree,
5977 * and an extent that you want to insert, deal with overlap and insert
5978 * the new extent into the tree.
5979 */
5980static int merge_extent_mapping(struct extent_map_tree *em_tree,
5981                                struct extent_map *existing,
5982                                struct extent_map *em,
5983                                u64 map_start, u64 map_len)
5984{
5985        u64 start_diff;
5986
5987        BUG_ON(map_start < em->start || map_start >= extent_map_end(em));
5988        start_diff = map_start - em->start;
5989        em->start = map_start;
5990        em->len = map_len;
5991        if (em->block_start < EXTENT_MAP_LAST_BYTE &&
5992            !test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
5993                em->block_start += start_diff;
5994                em->block_len -= start_diff;
5995        }
5996        return add_extent_mapping(em_tree, em, 0);
5997}
5998
5999static noinline int uncompress_inline(struct btrfs_path *path,
6000                                      struct inode *inode, struct page *page,
6001                                      size_t pg_offset, u64 extent_offset,
6002                                      struct btrfs_file_extent_item *item)
6003{
6004        int ret;
6005        struct extent_buffer *leaf = path->nodes[0];
6006        char *tmp;
6007        size_t max_size;
6008        unsigned long inline_size;
6009        unsigned long ptr;
6010        int compress_type;
6011
6012        WARN_ON(pg_offset != 0);
6013        compress_type = btrfs_file_extent_compression(leaf, item);
6014        max_size = btrfs_file_extent_ram_bytes(leaf, item);
6015        inline_size = btrfs_file_extent_inline_item_len(leaf,
6016                                        btrfs_item_nr(leaf, path->slots[0]));
6017        tmp = kmalloc(inline_size, GFP_NOFS);
6018        if (!tmp)
6019                return -ENOMEM;
6020        ptr = btrfs_file_extent_inline_start(item);
6021
6022        read_extent_buffer(leaf, tmp, ptr, inline_size);
6023
6024        max_size = min_t(unsigned long, PAGE_CACHE_SIZE, max_size);
6025        ret = btrfs_decompress(compress_type, tmp, page,
6026                               extent_offset, inline_size, max_size);
6027        if (ret) {
6028                char *kaddr = kmap_atomic(page);
6029                unsigned long copy_size = min_t(u64,
6030                                  PAGE_CACHE_SIZE - pg_offset,
6031                                  max_size - extent_offset);
6032                memset(kaddr + pg_offset, 0, copy_size);
6033                kunmap_atomic(kaddr);
6034        }
6035        kfree(tmp);
6036        return 0;
6037}
6038
6039/*
6040 * a bit scary, this does extent mapping from logical file offset to the disk.
6041 * the ugly parts come from merging extents from the disk with the in-ram
6042 * representation.  This gets more complex because of the data=ordered code,
6043 * where the in-ram extents might be locked pending data=ordered completion.
6044 *
6045 * This also copies inline extents directly into the page.
6046 */
6047
6048struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
6049                                    size_t pg_offset, u64 start, u64 len,
6050                                    int create)
6051{
6052        int ret;
6053        int err = 0;
6054        u64 bytenr;
6055        u64 extent_start = 0;
6056        u64 extent_end = 0;
6057        u64 objectid = btrfs_ino(inode);
6058        u32 found_type;
6059        struct btrfs_path *path = NULL;
6060        struct btrfs_root *root = BTRFS_I(inode)->root;
6061        struct btrfs_file_extent_item *item;
6062        struct extent_buffer *leaf;
6063        struct btrfs_key found_key;
6064        struct extent_map *em = NULL;
6065        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
6066        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
6067        struct btrfs_trans_handle *trans = NULL;
6068        int compress_type;
6069
6070again:
6071        read_lock(&em_tree->lock);
6072        em = lookup_extent_mapping(em_tree, start, len);
6073        if (em)
6074                em->bdev = root->fs_info->fs_devices->latest_bdev;
6075        read_unlock(&em_tree->lock);
6076
6077        if (em) {
6078                if (em->start > start || em->start + em->len <= start)
6079                        free_extent_map(em);
6080                else if (em->block_start == EXTENT_MAP_INLINE && page)
6081                        free_extent_map(em);
6082                else
6083                        goto out;
6084        }
6085        em = alloc_extent_map();
6086        if (!em) {
6087                err = -ENOMEM;
6088                goto out;
6089        }
6090        em->bdev = root->fs_info->fs_devices->latest_bdev;
6091        em->start = EXTENT_MAP_HOLE;
6092        em->orig_start = EXTENT_MAP_HOLE;
6093        em->len = (u64)-1;
6094        em->block_len = (u64)-1;
6095
6096        if (!path) {
6097                path = btrfs_alloc_path();
6098                if (!path) {
6099                        err = -ENOMEM;
6100                        goto out;
6101                }
6102                /*
6103                 * Chances are we'll be called again, so go ahead and do
6104                 * readahead
6105                 */
6106                path->reada = 1;
6107        }
6108
6109        ret = btrfs_lookup_file_extent(trans, root, path,
6110                                       objectid, start, trans != NULL);
6111        if (ret < 0) {
6112                err = ret;
6113                goto out;
6114        }
6115
6116        if (ret != 0) {
6117                if (path->slots[0] == 0)
6118                        goto not_found;
6119                path->slots[0]--;
6120        }
6121
6122        leaf = path->nodes[0];
6123        item = btrfs_item_ptr(leaf, path->slots[0],
6124                              struct btrfs_file_extent_item);
6125        /* are we inside the extent that was found? */
6126        btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6127        found_type = btrfs_key_type(&found_key);
6128        if (found_key.objectid != objectid ||
6129            found_type != BTRFS_EXTENT_DATA_KEY) {
6130                goto not_found;
6131        }
6132
6133        found_type = btrfs_file_extent_type(leaf, item);
6134        extent_start = found_key.offset;
6135        compress_type = btrfs_file_extent_compression(leaf, item);
6136        if (found_type == BTRFS_FILE_EXTENT_REG ||
6137            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6138                extent_end = extent_start +
6139                       btrfs_file_extent_num_bytes(leaf, item);
6140        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6141                size_t size;
6142                size = btrfs_file_extent_inline_len(leaf, item);
6143                extent_end = ALIGN(extent_start + size, root->sectorsize);
6144        }
6145
6146        if (start >= extent_end) {
6147                path->slots[0]++;
6148                if (path->slots[0] >= btrfs_header_nritems(leaf)) {
6149                        ret = btrfs_next_leaf(root, path);
6150                        if (ret < 0) {
6151                                err = ret;
6152                                goto out;
6153                        }
6154                        if (ret > 0)
6155                                goto not_found;
6156                        leaf = path->nodes[0];
6157                }
6158                btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6159                if (found_key.objectid != objectid ||
6160                    found_key.type != BTRFS_EXTENT_DATA_KEY)
6161                        goto not_found;
6162                if (start + len <= found_key.offset)
6163                        goto not_found;
6164                em->start = start;
6165                em->orig_start = start;
6166                em->len = found_key.offset - start;
6167                goto not_found_em;
6168        }
6169
6170        em->ram_bytes = btrfs_file_extent_ram_bytes(leaf, item);
6171        if (found_type == BTRFS_FILE_EXTENT_REG ||
6172            found_type == BTRFS_FILE_EXTENT_PREALLOC) {
6173                em->start = extent_start;
6174                em->len = extent_end - extent_start;
6175                em->orig_start = extent_start -
6176                                 btrfs_file_extent_offset(leaf, item);
6177                em->orig_block_len = btrfs_file_extent_disk_num_bytes(leaf,
6178                                                                      item);
6179                bytenr = btrfs_file_extent_disk_bytenr(leaf, item);
6180                if (bytenr == 0) {
6181                        em->block_start = EXTENT_MAP_HOLE;
6182                        goto insert;
6183                }
6184                if (compress_type != BTRFS_COMPRESS_NONE) {
6185                        set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6186                        em->compress_type = compress_type;
6187                        em->block_start = bytenr;
6188                        em->block_len = em->orig_block_len;
6189                } else {
6190                        bytenr += btrfs_file_extent_offset(leaf, item);
6191                        em->block_start = bytenr;
6192                        em->block_len = em->len;
6193                        if (found_type == BTRFS_FILE_EXTENT_PREALLOC)
6194                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6195                }
6196                goto insert;
6197        } else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
6198                unsigned long ptr;
6199                char *map;
6200                size_t size;
6201                size_t extent_offset;
6202                size_t copy_size;
6203
6204                em->block_start = EXTENT_MAP_INLINE;
6205                if (!page || create) {
6206                        em->start = extent_start;
6207                        em->len = extent_end - extent_start;
6208                        goto out;
6209                }
6210
6211                size = btrfs_file_extent_inline_len(leaf, item);
6212                extent_offset = page_offset(page) + pg_offset - extent_start;
6213                copy_size = min_t(u64, PAGE_CACHE_SIZE - pg_offset,
6214                                size - extent_offset);
6215                em->start = extent_start + extent_offset;
6216                em->len = ALIGN(copy_size, root->sectorsize);
6217                em->orig_block_len = em->len;
6218                em->orig_start = em->start;
6219                if (compress_type) {
6220                        set_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
6221                        em->compress_type = compress_type;
6222                }
6223                ptr = btrfs_file_extent_inline_start(item) + extent_offset;
6224                if (create == 0 && !PageUptodate(page)) {
6225                        if (btrfs_file_extent_compression(leaf, item) !=
6226                            BTRFS_COMPRESS_NONE) {
6227                                ret = uncompress_inline(path, inode, page,
6228                                                        pg_offset,
6229                                                        extent_offset, item);
6230                                BUG_ON(ret); /* -ENOMEM */
6231                        } else {
6232                                map = kmap(page);
6233                                read_extent_buffer(leaf, map + pg_offset, ptr,
6234                                                   copy_size);
6235                                if (pg_offset + copy_size < PAGE_CACHE_SIZE) {
6236                                        memset(map + pg_offset + copy_size, 0,
6237                                               PAGE_CACHE_SIZE - pg_offset -
6238                                               copy_size);
6239                                }
6240                                kunmap(page);
6241                        }
6242                        flush_dcache_page(page);
6243                } else if (create && PageUptodate(page)) {
6244                        BUG();
6245                        if (!trans) {
6246                                kunmap(page);
6247                                free_extent_map(em);
6248                                em = NULL;
6249
6250                                btrfs_release_path(path);
6251                                trans = btrfs_join_transaction(root);
6252
6253                                if (IS_ERR(trans))
6254                                        return ERR_CAST(trans);
6255                                goto again;
6256                        }
6257                        map = kmap(page);
6258                        write_extent_buffer(leaf, map + pg_offset, ptr,
6259                                            copy_size);
6260                        kunmap(page);
6261                        btrfs_mark_buffer_dirty(leaf);
6262                }
6263                set_extent_uptodate(io_tree, em->start,
6264                                    extent_map_end(em) - 1, NULL, GFP_NOFS);
6265                goto insert;
6266        } else {
6267                WARN(1, KERN_ERR "btrfs unknown found_type %d\n", found_type);
6268        }
6269not_found:
6270        em->start = start;
6271        em->orig_start = start;
6272        em->len = len;
6273not_found_em:
6274        em->block_start = EXTENT_MAP_HOLE;
6275        set_bit(EXTENT_FLAG_VACANCY, &em->flags);
6276insert:
6277        btrfs_release_path(path);
6278        if (em->start > start || extent_map_end(em) <= start) {
6279                btrfs_err(root->fs_info, "bad extent! em: [%llu %llu] passed [%llu %llu]",
6280                        (unsigned long long)em->start,
6281                        (unsigned long long)em->len,
6282                        (unsigned long long)start,
6283                        (unsigned long long)len);
6284                err = -EIO;
6285                goto out;
6286        }
6287
6288        err = 0;
6289        write_lock(&em_tree->lock);
6290        ret = add_extent_mapping(em_tree, em, 0);
6291        /* it is possible that someone inserted the extent into the tree
6292         * while we had the lock dropped.  It is also possible that
6293         * an overlapping map exists in the tree
6294         */
6295        if (ret == -EEXIST) {
6296                struct extent_map *existing;
6297
6298                ret = 0;
6299
6300                existing = lookup_extent_mapping(em_tree, start, len);
6301                if (existing && (existing->start > start ||
6302                    existing->start + existing->len <= start)) {
6303                        free_extent_map(existing);
6304                        existing = NULL;
6305                }
6306                if (!existing) {
6307                        existing = lookup_extent_mapping(em_tree, em->start,
6308                                                         em->len);
6309                        if (existing) {
6310                                err = merge_extent_mapping(em_tree, existing,
6311                                                           em, start,
6312                                                           root->sectorsize);
6313                                free_extent_map(existing);
6314                                if (err) {
6315                                        free_extent_map(em);
6316                                        em = NULL;
6317                                }
6318                        } else {
6319                                err = -EIO;
6320                                free_extent_map(em);
6321                                em = NULL;
6322                        }
6323                } else {
6324                        free_extent_map(em);
6325                        em = existing;
6326                        err = 0;
6327                }
6328        }
6329        write_unlock(&em_tree->lock);
6330out:
6331
6332        if (em)
6333                trace_btrfs_get_extent(root, em);
6334
6335        if (path)
6336                btrfs_free_path(path);
6337        if (trans) {
6338                ret = btrfs_end_transaction(trans, root);
6339                if (!err)
6340                        err = ret;
6341        }
6342        if (err) {
6343                free_extent_map(em);
6344                return ERR_PTR(err);
6345        }
6346        BUG_ON(!em); /* Error is always set */
6347        return em;
6348}
6349
6350struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
6351                                           size_t pg_offset, u64 start, u64 len,
6352                                           int create)
6353{
6354        struct extent_map *em;
6355        struct extent_map *hole_em = NULL;
6356        u64 range_start = start;
6357        u64 end;
6358        u64 found;
6359        u64 found_end;
6360        int err = 0;
6361
6362        em = btrfs_get_extent(inode, page, pg_offset, start, len, create);
6363        if (IS_ERR(em))
6364                return em;
6365        if (em) {
6366                /*
6367                 * if our em maps to
6368                 * -  a hole or
6369                 * -  a pre-alloc extent,
6370                 * there might actually be delalloc bytes behind it.
6371                 */
6372                if (em->block_start != EXTENT_MAP_HOLE &&
6373                    !test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6374                        return em;
6375                else
6376                        hole_em = em;
6377        }
6378
6379        /* check to see if we've wrapped (len == -1 or similar) */
6380        end = start + len;
6381        if (end < start)
6382                end = (u64)-1;
6383        else
6384                end -= 1;
6385
6386        em = NULL;
6387
6388        /* ok, we didn't find anything, lets look for delalloc */
6389        found = count_range_bits(&BTRFS_I(inode)->io_tree, &range_start,
6390                                 end, len, EXTENT_DELALLOC, 1);
6391        found_end = range_start + found;
6392        if (found_end < range_start)
6393                found_end = (u64)-1;
6394
6395        /*
6396         * we didn't find anything useful, return
6397         * the original results from get_extent()
6398         */
6399        if (range_start > end || found_end <= start) {
6400                em = hole_em;
6401                hole_em = NULL;
6402                goto out;
6403        }
6404
6405        /* adjust the range_start to make sure it doesn't
6406         * go backwards from the start they passed in
6407         */
6408        range_start = max(start,range_start);
6409        found = found_end - range_start;
6410
6411        if (found > 0) {
6412                u64 hole_start = start;
6413                u64 hole_len = len;
6414
6415                em = alloc_extent_map();
6416                if (!em) {
6417                        err = -ENOMEM;
6418                        goto out;
6419                }
6420                /*
6421                 * when btrfs_get_extent can't find anything it
6422                 * returns one huge hole
6423                 *
6424                 * make sure what it found really fits our range, and
6425                 * adjust to make sure it is based on the start from
6426                 * the caller
6427                 */
6428                if (hole_em) {
6429                        u64 calc_end = extent_map_end(hole_em);
6430
6431                        if (calc_end <= start || (hole_em->start > end)) {
6432                                free_extent_map(hole_em);
6433                                hole_em = NULL;
6434                        } else {
6435                                hole_start = max(hole_em->start, start);
6436                                hole_len = calc_end - hole_start;
6437                        }
6438                }
6439                em->bdev = NULL;
6440                if (hole_em && range_start > hole_start) {
6441                        /* our hole starts before our delalloc, so we
6442                         * have to return just the parts of the hole
6443                         * that go until  the delalloc starts
6444                         */
6445                        em->len = min(hole_len,
6446                                      range_start - hole_start);
6447                        em->start = hole_start;
6448                        em->orig_start = hole_start;
6449                        /*
6450                         * don't adjust block start at all,
6451                         * it is fixed at EXTENT_MAP_HOLE
6452                         */
6453                        em->block_start = hole_em->block_start;
6454                        em->block_len = hole_len;
6455                        if (test_bit(EXTENT_FLAG_PREALLOC, &hole_em->flags))
6456                                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
6457                } else {
6458                        em->start = range_start;
6459                        em->len = found;
6460                        em->orig_start = range_start;
6461                        em->block_start = EXTENT_MAP_DELALLOC;
6462                        em->block_len = found;
6463                }
6464        } else if (hole_em) {
6465                return hole_em;
6466        }
6467out:
6468
6469        free_extent_map(hole_em);
6470        if (err) {
6471                free_extent_map(em);
6472                return ERR_PTR(err);
6473        }
6474        return em;
6475}
6476
6477static struct extent_map *btrfs_new_extent_direct(struct inode *inode,
6478                                                  u64 start, u64 len)
6479{
6480        struct btrfs_root *root = BTRFS_I(inode)->root;
6481        struct btrfs_trans_handle *trans;
6482        struct extent_map *em;
6483        struct btrfs_key ins;
6484        u64 alloc_hint;
6485        int ret;
6486
6487        trans = btrfs_join_transaction(root);
6488        if (IS_ERR(trans))
6489                return ERR_CAST(trans);
6490
6491        trans->block_rsv = &root->fs_info->delalloc_block_rsv;
6492
6493        alloc_hint = get_extent_allocation_hint(inode, start, len);
6494        ret = btrfs_reserve_extent(trans, root, len, root->sectorsize, 0,
6495                                   alloc_hint, &ins, 1);
6496        if (ret) {
6497                em = ERR_PTR(ret);
6498                goto out;
6499        }
6500
6501        em = create_pinned_em(inode, start, ins.offset, start, ins.objectid,
6502                              ins.offset, ins.offset, ins.offset, 0);
6503        if (IS_ERR(em))
6504                goto out;
6505
6506        ret = btrfs_add_ordered_extent_dio(inode, start, ins.objectid,
6507                                           ins.offset, ins.offset, 0);
6508        if (ret) {
6509                btrfs_free_reserved_extent(root, ins.objectid, ins.offset);
6510                em = ERR_PTR(ret);
6511        }
6512out:
6513        btrfs_end_transaction(trans, root);
6514        return em;
6515}
6516
6517/*
6518 * returns 1 when the nocow is safe, < 1 on error, 0 if the
6519 * block must be cow'd
6520 */
6521static noinline int can_nocow_odirect(struct btrfs_trans_handle *trans,
6522                                      struct inode *inode, u64 offset, u64 *len,
6523                                      u64 *orig_start, u64 *orig_block_len,
6524                                      u64 *ram_bytes)
6525{
6526        struct btrfs_path *path;
6527        int ret;
6528        struct extent_buffer *leaf;
6529        struct btrfs_root *root = BTRFS_I(inode)->root;
6530        struct btrfs_file_extent_item *fi;
6531        struct btrfs_key key;
6532        u64 disk_bytenr;
6533        u64 backref_offset;
6534        u64 extent_end;
6535        u64 num_bytes;
6536        int slot;
6537        int found_type;
6538
6539        path = btrfs_alloc_path();
6540        if (!path)
6541                return -ENOMEM;
6542
6543        ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
6544                                       offset, 0);
6545        if (ret < 0)
6546                goto out;
6547
6548        slot = path->slots[0];
6549        if (ret == 1) {
6550                if (slot == 0) {
6551                        /* can't find the item, must cow */
6552                        ret = 0;
6553                        goto out;
6554                }
6555                slot--;
6556        }
6557        ret = 0;
6558        leaf = path->nodes[0];
6559        btrfs_item_key_to_cpu(leaf, &key, slot);
6560        if (key.objectid != btrfs_ino(inode) ||
6561            key.type != BTRFS_EXTENT_DATA_KEY) {
6562                /* not our file or wrong item type, must cow */
6563                goto out;
6564        }
6565
6566        if (key.offset > offset) {
6567                /* Wrong offset, must cow */
6568                goto out;
6569        }
6570
6571        fi = btrfs_item_ptr(leaf, slot, struct btrfs_file_extent_item);
6572        found_type = btrfs_file_extent_type(leaf, fi);
6573        if (found_type != BTRFS_FILE_EXTENT_REG &&
6574            found_type != BTRFS_FILE_EXTENT_PREALLOC) {
6575                /* not a regular extent, must cow */
6576                goto out;
6577        }
6578        disk_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
6579        backref_offset = btrfs_file_extent_offset(leaf, fi);
6580
6581        *orig_start = key.offset - backref_offset;
6582        *orig_block_len = btrfs_file_extent_disk_num_bytes(leaf, fi);
6583        *ram_bytes = btrfs_file_extent_ram_bytes(leaf, fi);
6584
6585        extent_end = key.offset + btrfs_file_extent_num_bytes(leaf, fi);
6586        if (extent_end < offset + *len) {
6587                /* extent doesn't include our full range, must cow */
6588                goto out;
6589        }
6590
6591        if (btrfs_extent_readonly(root, disk_bytenr))
6592                goto out;
6593
6594        /*
6595         * look for other files referencing this extent, if we
6596         * find any we must cow
6597         */
6598        if (btrfs_cross_ref_exist(trans, root, btrfs_ino(inode),
6599                                  key.offset - backref_offset, disk_bytenr))
6600                goto out;
6601
6602        /*
6603         * adjust disk_bytenr and num_bytes to cover just the bytes
6604         * in this extent we are about to write.  If there
6605         * are any csums in that range we have to cow in order
6606         * to keep the csums correct
6607         */
6608        disk_bytenr += backref_offset;
6609        disk_bytenr += offset - key.offset;
6610        num_bytes = min(offset + *len, extent_end) - offset;
6611        if (csum_exist_in_range(root, disk_bytenr, num_bytes))
6612                                goto out;
6613        /*
6614         * all of the above have passed, it is safe to overwrite this extent
6615         * without cow
6616         */
6617        *len = num_bytes;
6618        ret = 1;
6619out:
6620        btrfs_free_path(path);
6621        return ret;
6622}
6623
6624static int lock_extent_direct(struct inode *inode, u64 lockstart, u64 lockend,
6625                              struct extent_state **cached_state, int writing)
6626{
6627        struct btrfs_ordered_extent *ordered;
6628        int ret = 0;
6629
6630        while (1) {
6631                lock_extent_bits(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6632                                 0, cached_state);
6633                /*
6634                 * We're concerned with the entire range that we're going to be
6635                 * doing DIO to, so we need to make sure theres no ordered
6636                 * extents in this range.
6637                 */
6638                ordered = btrfs_lookup_ordered_range(inode, lockstart,
6639                                                     lockend - lockstart + 1);
6640
6641                /*
6642                 * We need to make sure there are no buffered pages in this
6643                 * range either, we could have raced between the invalidate in
6644                 * generic_file_direct_write and locking the extent.  The
6645                 * invalidate needs to happen so that reads after a write do not
6646                 * get stale data.
6647                 */
6648                if (!ordered && (!writing ||
6649                    !test_range_bit(&BTRFS_I(inode)->io_tree,
6650                                    lockstart, lockend, EXTENT_UPTODATE, 0,
6651                                    *cached_state)))
6652                        break;
6653
6654                unlock_extent_cached(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6655                                     cached_state, GFP_NOFS);
6656
6657                if (ordered) {
6658                        btrfs_start_ordered_extent(inode, ordered, 1);
6659                        btrfs_put_ordered_extent(ordered);
6660                } else {
6661                        /* Screw you mmap */
6662                        ret = filemap_write_and_wait_range(inode->i_mapping,
6663                                                           lockstart,
6664                                                           lockend);
6665                        if (ret)
6666                                break;
6667
6668                        /*
6669                         * If we found a page that couldn't be invalidated just
6670                         * fall back to buffered.
6671                         */
6672                        ret = invalidate_inode_pages2_range(inode->i_mapping,
6673                                        lockstart >> PAGE_CACHE_SHIFT,
6674                                        lockend >> PAGE_CACHE_SHIFT);
6675                        if (ret)
6676                                break;
6677                }
6678
6679                cond_resched();
6680        }
6681
6682        return ret;
6683}
6684
6685static struct extent_map *create_pinned_em(struct inode *inode, u64 start,
6686                                           u64 len, u64 orig_start,
6687                                           u64 block_start, u64 block_len,
6688                                           u64 orig_block_len, u64 ram_bytes,
6689                                           int type)
6690{
6691        struct extent_map_tree *em_tree;
6692        struct extent_map *em;
6693        struct btrfs_root *root = BTRFS_I(inode)->root;
6694        int ret;
6695
6696        em_tree = &BTRFS_I(inode)->extent_tree;
6697        em = alloc_extent_map();
6698        if (!em)
6699                return ERR_PTR(-ENOMEM);
6700
6701        em->start = start;
6702        em->orig_start = orig_start;
6703        em->mod_start = start;
6704        em->mod_len = len;
6705        em->len = len;
6706        em->block_len = block_len;
6707        em->block_start = block_start;
6708        em->bdev = root->fs_info->fs_devices->latest_bdev;
6709        em->orig_block_len = orig_block_len;
6710        em->ram_bytes = ram_bytes;
6711        em->generation = -1;
6712        set_bit(EXTENT_FLAG_PINNED, &em->flags);
6713        if (type == BTRFS_ORDERED_PREALLOC)
6714                set_bit(EXTENT_FLAG_FILLING, &em->flags);
6715
6716        do {
6717                btrfs_drop_extent_cache(inode, em->start,
6718                                em->start + em->len - 1, 0);
6719                write_lock(&em_tree->lock);
6720                ret = add_extent_mapping(em_tree, em, 1);
6721                write_unlock(&em_tree->lock);
6722        } while (ret == -EEXIST);
6723
6724        if (ret) {
6725                free_extent_map(em);
6726                return ERR_PTR(ret);
6727        }
6728
6729        return em;
6730}
6731
6732
6733static int btrfs_get_blocks_direct(struct inode *inode, sector_t iblock,
6734                                   struct buffer_head *bh_result, int create)
6735{
6736        struct extent_map *em;
6737        struct btrfs_root *root = BTRFS_I(inode)->root;
6738        struct extent_state *cached_state = NULL;
6739        u64 start = iblock << inode->i_blkbits;
6740        u64 lockstart, lockend;
6741        u64 len = bh_result->b_size;
6742        struct btrfs_trans_handle *trans;
6743        int unlock_bits = EXTENT_LOCKED;
6744        int ret = 0;
6745
6746        if (create)
6747                unlock_bits |= EXTENT_DELALLOC | EXTENT_DIRTY;
6748        else
6749                len = min_t(u64, len, root->sectorsize);
6750
6751        lockstart = start;
6752        lockend = start + len - 1;
6753
6754        /*
6755         * If this errors out it's because we couldn't invalidate pagecache for
6756         * this range and we need to fallback to buffered.
6757         */
6758        if (lock_extent_direct(inode, lockstart, lockend, &cached_state, create))
6759                return -ENOTBLK;
6760
6761        em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
6762        if (IS_ERR(em)) {
6763                ret = PTR_ERR(em);
6764                goto unlock_err;
6765        }
6766
6767        /*
6768         * Ok for INLINE and COMPRESSED extents we need to fallback on buffered
6769         * io.  INLINE is special, and we could probably kludge it in here, but
6770         * it's still buffered so for safety lets just fall back to the generic
6771         * buffered path.
6772         *
6773         * For COMPRESSED we _have_ to read the entire extent in so we can
6774         * decompress it, so there will be buffering required no matter what we
6775         * do, so go ahead and fallback to buffered.
6776         *
6777         * We return -ENOTBLK because thats what makes DIO go ahead and go back
6778         * to buffered IO.  Don't blame me, this is the price we pay for using
6779         * the generic code.
6780         */
6781        if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags) ||
6782            em->block_start == EXTENT_MAP_INLINE) {
6783                free_extent_map(em);
6784                ret = -ENOTBLK;
6785                goto unlock_err;
6786        }
6787
6788        /* Just a good old fashioned hole, return */
6789        if (!create && (em->block_start == EXTENT_MAP_HOLE ||
6790                        test_bit(EXTENT_FLAG_PREALLOC, &em->flags))) {
6791                free_extent_map(em);
6792                goto unlock_err;
6793        }
6794
6795        /*
6796         * We don't allocate a new extent in the following cases
6797         *
6798         * 1) The inode is marked as NODATACOW.  In this case we'll just use the
6799         * existing extent.
6800         * 2) The extent is marked as PREALLOC.  We're good to go here and can
6801         * just use the extent.
6802         *
6803         */
6804        if (!create) {
6805                len = min(len, em->len - (start - em->start));
6806                lockstart = start + len;
6807                goto unlock;
6808        }
6809
6810        if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
6811            ((BTRFS_I(inode)->flags & BTRFS_INODE_NODATACOW) &&
6812             em->block_start != EXTENT_MAP_HOLE)) {
6813                int type;
6814                int ret;
6815                u64 block_start, orig_start, orig_block_len, ram_bytes;
6816
6817                if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6818                        type = BTRFS_ORDERED_PREALLOC;
6819                else
6820                        type = BTRFS_ORDERED_NOCOW;
6821                len = min(len, em->len - (start - em->start));
6822                block_start = em->block_start + (start - em->start);
6823
6824                /*
6825                 * we're not going to log anything, but we do need
6826                 * to make sure the current transaction stays open
6827                 * while we look for nocow cross refs
6828                 */
6829                trans = btrfs_join_transaction(root);
6830                if (IS_ERR(trans))
6831                        goto must_cow;
6832
6833                if (can_nocow_odirect(trans, inode, start, &len, &orig_start,
6834                                      &orig_block_len, &ram_bytes) == 1) {
6835                        if (type == BTRFS_ORDERED_PREALLOC) {
6836                                free_extent_map(em);
6837                                em = create_pinned_em(inode, start, len,
6838                                                       orig_start,
6839                                                       block_start, len,
6840                                                       orig_block_len,
6841                                                       ram_bytes, type);
6842                                if (IS_ERR(em)) {
6843                                        btrfs_end_transaction(trans, root);
6844                                        goto unlock_err;
6845                                }
6846                        }
6847
6848                        ret = btrfs_add_ordered_extent_dio(inode, start,
6849                                           block_start, len, len, type);
6850                        btrfs_end_transaction(trans, root);
6851                        if (ret) {
6852                                free_extent_map(em);
6853                                goto unlock_err;
6854                        }
6855                        goto unlock;
6856                }
6857                btrfs_end_transaction(trans, root);
6858        }
6859must_cow:
6860        /*
6861         * this will cow the extent, reset the len in case we changed
6862         * it above
6863         */
6864        len = bh_result->b_size;
6865        free_extent_map(em);
6866        em = btrfs_new_extent_direct(inode, start, len);
6867        if (IS_ERR(em)) {
6868                ret = PTR_ERR(em);
6869                goto unlock_err;
6870        }
6871        len = min(len, em->len - (start - em->start));
6872unlock:
6873        bh_result->b_blocknr = (em->block_start + (start - em->start)) >>
6874                inode->i_blkbits;
6875        bh_result->b_size = len;
6876        bh_result->b_bdev = em->bdev;
6877        set_buffer_mapped(bh_result);
6878        if (create) {
6879                if (!test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
6880                        set_buffer_new(bh_result);
6881
6882                /*
6883                 * Need to update the i_size under the extent lock so buffered
6884                 * readers will get the updated i_size when we unlock.
6885                 */
6886                if (start + len > i_size_read(inode))
6887                        i_size_write(inode, start + len);
6888
6889                spin_lock(&BTRFS_I(inode)->lock);
6890                BTRFS_I(inode)->outstanding_extents++;
6891                spin_unlock(&BTRFS_I(inode)->lock);
6892
6893                ret = set_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6894                                     lockstart + len - 1, EXTENT_DELALLOC, NULL,
6895                                     &cached_state, GFP_NOFS);
6896                BUG_ON(ret);
6897        }
6898
6899        /*
6900         * In the case of write we need to clear and unlock the entire range,
6901         * in the case of read we need to unlock only the end area that we
6902         * aren't using if there is any left over space.
6903         */
6904        if (lockstart < lockend) {
6905                clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart,
6906                                 lockend, unlock_bits, 1, 0,
6907                                 &cached_state, GFP_NOFS);
6908        } else {
6909                free_extent_state(cached_state);
6910        }
6911
6912        free_extent_map(em);
6913
6914        return 0;
6915
6916unlock_err:
6917        clear_extent_bit(&BTRFS_I(inode)->io_tree, lockstart, lockend,
6918                         unlock_bits, 1, 0, &cached_state, GFP_NOFS);
6919        return ret;
6920}
6921
6922struct btrfs_dio_private {
6923        struct inode *inode;
6924        u64 logical_offset;
6925        u64 disk_bytenr;
6926        u64 bytes;
6927        void *private;
6928
6929        /* number of bios pending for this dio */
6930        atomic_t pending_bios;
6931
6932        /* IO errors */
6933        int errors;
6934
6935        /* orig_bio is our btrfs_io_bio */
6936        struct bio *orig_bio;
6937
6938        /* dio_bio came from fs/direct-io.c */
6939        struct bio *dio_bio;
6940};
6941
6942static void btrfs_endio_direct_read(struct bio *bio, int err)
6943{
6944        struct btrfs_dio_private *dip = bio->bi_private;
6945        struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1;
6946        struct bio_vec *bvec = bio->bi_io_vec;
6947        struct inode *inode = dip->inode;
6948        struct btrfs_root *root = BTRFS_I(inode)->root;
6949        struct bio *dio_bio;
6950        u64 start;
6951
6952        start = dip->logical_offset;
6953        do {
6954                if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) {
6955                        struct page *page = bvec->bv_page;
6956                        char *kaddr;
6957                        u32 csum = ~(u32)0;
6958                        u64 private = ~(u32)0;
6959                        unsigned long flags;
6960
6961                        if (get_state_private(&BTRFS_I(inode)->io_tree,
6962                                              start, &private))
6963                                goto failed;
6964                        local_irq_save(flags);
6965                        kaddr = kmap_atomic(page);
6966                        csum = btrfs_csum_data(kaddr + bvec->bv_offset,
6967                                               csum, bvec->bv_len);
6968                        btrfs_csum_final(csum, (char *)&csum);
6969                        kunmap_atomic(kaddr);
6970                        local_irq_restore(flags);
6971
6972                        flush_dcache_page(bvec->bv_page);
6973                        if (csum != private) {
6974failed:
6975                                btrfs_err(root->fs_info, "csum failed ino %llu off %llu csum %u private %u",
6976                                        (unsigned long long)btrfs_ino(inode),
6977                                        (unsigned long long)start,
6978                                        csum, (unsigned)private);
6979                                err = -EIO;
6980                        }
6981                }
6982
6983                start += bvec->bv_len;
6984                bvec++;
6985        } while (bvec <= bvec_end);
6986
6987        unlock_extent(&BTRFS_I(inode)->io_tree, dip->logical_offset,
6988                      dip->logical_offset + dip->bytes - 1);
6989        dio_bio = dip->dio_bio;
6990
6991        kfree(dip);
6992
6993        /* If we had a csum failure make sure to clear the uptodate flag */
6994        if (err)
6995                clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
6996        dio_end_io(dio_bio, err);
6997        bio_put(bio);
6998}
6999
7000static void btrfs_endio_direct_write(struct bio *bio, int err)
7001{
7002        struct btrfs_dio_private *dip = bio->bi_private;
7003        struct inode *inode = dip->inode;
7004        struct btrfs_root *root = BTRFS_I(inode)->root;
7005        struct btrfs_ordered_extent *ordered = NULL;
7006        u64 ordered_offset = dip->logical_offset;
7007        u64 ordered_bytes = dip->bytes;
7008        struct bio *dio_bio;
7009        int ret;
7010
7011        if (err)
7012                goto out_done;
7013again:
7014        ret = btrfs_dec_test_first_ordered_pending(inode, &ordered,
7015                                                   &ordered_offset,
7016                                                   ordered_bytes, !err);
7017        if (!ret)
7018                goto out_test;
7019
7020        ordered->work.func = finish_ordered_fn;
7021        ordered->work.flags = 0;
7022        btrfs_queue_worker(&root->fs_info->endio_write_workers,
7023                           &ordered->work);
7024out_test:
7025        /*
7026         * our bio might span multiple ordered extents.  If we haven't
7027         * completed the accounting for the whole dio, go back and try again
7028         */
7029        if (ordered_offset < dip->logical_offset + dip->bytes) {
7030                ordered_bytes = dip->logical_offset + dip->bytes -
7031                        ordered_offset;
7032                ordered = NULL;
7033                goto again;
7034        }
7035out_done:
7036        dio_bio = dip->dio_bio;
7037
7038        kfree(dip);
7039
7040        /* If we had an error make sure to clear the uptodate flag */
7041        if (err)
7042                clear_bit(BIO_UPTODATE, &dio_bio->bi_flags);
7043        dio_end_io(dio_bio, err);
7044        bio_put(bio);
7045}
7046
7047static int __btrfs_submit_bio_start_direct_io(struct inode *inode, int rw,
7048                                    struct bio *bio, int mirror_num,
7049                                    unsigned long bio_flags, u64 offset)
7050{
7051        int ret;
7052        struct btrfs_root *root = BTRFS_I(inode)->root;
7053        ret = btrfs_csum_one_bio(root, inode, bio, offset, 1);
7054        BUG_ON(ret); /* -ENOMEM */
7055        return 0;
7056}
7057
7058static void btrfs_end_dio_bio(struct bio *bio, int err)
7059{
7060        struct btrfs_dio_private *dip = bio->bi_private;
7061
7062        if (err) {
7063                printk(KERN_ERR "btrfs direct IO failed ino %llu rw %lu "
7064                      "sector %#Lx len %u err no %d\n",
7065                      (unsigned long long)btrfs_ino(dip->inode), bio->bi_rw,
7066                      (unsigned long long)bio->bi_sector, bio->bi_size, err);
7067                dip->errors = 1;
7068
7069                /*
7070                 * before atomic variable goto zero, we must make sure
7071                 * dip->errors is perceived to be set.
7072                 */
7073                smp_mb__before_atomic_dec();
7074        }
7075
7076        /* if there are more bios still pending for this dio, just exit */
7077        if (!atomic_dec_and_test(&dip->pending_bios))
7078                goto out;
7079
7080        if (dip->errors) {
7081                bio_io_error(dip->orig_bio);
7082        } else {
7083                set_bit(BIO_UPTODATE, &dip->dio_bio->bi_flags);
7084                bio_endio(dip->orig_bio, 0);
7085        }
7086out:
7087        bio_put(bio);
7088}
7089
7090static struct bio *btrfs_dio_bio_alloc(struct block_device *bdev,
7091                                       u64 first_sector, gfp_t gfp_flags)
7092{
7093        int nr_vecs = bio_get_nr_vecs(bdev);
7094        return btrfs_bio_alloc(bdev, first_sector, nr_vecs, gfp_flags);
7095}
7096
7097static inline int __btrfs_submit_dio_bio(struct bio *bio, struct inode *inode,
7098                                         int rw, u64 file_offset, int skip_sum,
7099                                         int async_submit)
7100{
7101        int write = rw & REQ_WRITE;
7102        struct btrfs_root *root = BTRFS_I(inode)->root;
7103        int ret;
7104
7105        if (async_submit)
7106                async_submit = !atomic_read(&BTRFS_I(inode)->sync_writers);
7107
7108        bio_get(bio);
7109
7110        if (!write) {
7111                ret = btrfs_bio_wq_end_io(root->fs_info, bio, 0);
7112                if (ret)
7113                        goto err;
7114        }
7115
7116        if (skip_sum)
7117                goto map;
7118
7119        if (write && async_submit) {
7120                ret = btrfs_wq_submit_bio(root->fs_info,
7121                                   inode, rw, bio, 0, 0,
7122                                   file_offset,
7123                                   __btrfs_submit_bio_start_direct_io,
7124                                   __btrfs_submit_bio_done);
7125                goto err;
7126        } else if (write) {
7127                /*
7128                 * If we aren't doing async submit, calculate the csum of the
7129                 * bio now.
7130                 */
7131                ret = btrfs_csum_one_bio(root, inode, bio, file_offset, 1);
7132                if (ret)
7133                        goto err;
7134        } else if (!skip_sum) {
7135                ret = btrfs_lookup_bio_sums_dio(root, inode, bio, file_offset);
7136                if (ret)
7137                        goto err;
7138        }
7139
7140map:
7141        ret = btrfs_map_bio(root, rw, bio, 0, async_submit);
7142err:
7143        bio_put(bio);
7144        return ret;
7145}
7146
7147static int btrfs_submit_direct_hook(int rw, struct btrfs_dio_private *dip,
7148                                    int skip_sum)
7149{
7150        struct inode *inode = dip->inode;
7151        struct btrfs_root *root = BTRFS_I(inode)->root;
7152        struct bio *bio;
7153        struct bio *orig_bio = dip->orig_bio;
7154        struct bio_vec *bvec = orig_bio->bi_io_vec;
7155        u64 start_sector = orig_bio->bi_sector;
7156        u64 file_offset = dip->logical_offset;
7157        u64 submit_len = 0;
7158        u64 map_length;
7159        int nr_pages = 0;
7160        int ret = 0;
7161        int async_submit = 0;
7162
7163        map_length = orig_bio->bi_size;
7164        ret = btrfs_map_block(root->fs_info, rw, start_sector << 9,
7165                              &map_length, NULL, 0);
7166        if (ret) {
7167                bio_put(orig_bio);
7168                return -EIO;
7169        }
7170        if (map_length >= orig_bio->bi_size) {
7171                bio = orig_bio;
7172                goto submit;
7173        }
7174
7175        /* async crcs make it difficult to collect full stripe writes. */
7176        if (btrfs_get_alloc_profile(root, 1) &
7177            (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))
7178                async_submit = 0;
7179        else
7180                async_submit = 1;
7181
7182        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev, start_sector, GFP_NOFS);
7183        if (!bio)
7184                return -ENOMEM;
7185        bio->bi_private = dip;
7186        bio->bi_end_io = btrfs_end_dio_bio;
7187        atomic_inc(&dip->pending_bios);
7188
7189        while (bvec <= (orig_bio->bi_io_vec + orig_bio->bi_vcnt - 1)) {
7190                if (unlikely(map_length < submit_len + bvec->bv_len ||
7191                    bio_add_page(bio, bvec->bv_page, bvec->bv_len,
7192                                 bvec->bv_offset) < bvec->bv_len)) {
7193                        /*
7194                         * inc the count before we submit the bio so
7195                         * we know the end IO handler won't happen before
7196                         * we inc the count. Otherwise, the dip might get freed
7197                         * before we're done setting it up
7198                         */
7199                        atomic_inc(&dip->pending_bios);
7200                        ret = __btrfs_submit_dio_bio(bio, inode, rw,
7201                                                     file_offset, skip_sum,
7202                                                     async_submit);
7203                        if (ret) {
7204                                bio_put(bio);
7205                                atomic_dec(&dip->pending_bios);
7206                                goto out_err;
7207                        }
7208
7209                        start_sector += submit_len >> 9;
7210                        file_offset += submit_len;
7211
7212                        submit_len = 0;
7213                        nr_pages = 0;
7214
7215                        bio = btrfs_dio_bio_alloc(orig_bio->bi_bdev,
7216                                                  start_sector, GFP_NOFS);
7217                        if (!bio)
7218                                goto out_err;
7219                        bio->bi_private = dip;
7220                        bio->bi_end_io = btrfs_end_dio_bio;
7221
7222                        map_length = orig_bio->bi_size;
7223                        ret = btrfs_map_block(root->fs_info, rw,
7224                                              start_sector << 9,
7225                                              &map_length, NULL, 0);
7226                        if (ret) {
7227                                bio_put(bio);
7228                                goto out_err;
7229                        }
7230                } else {
7231                        submit_len += bvec->bv_len;
7232                        nr_pages ++;
7233                        bvec++;
7234                }
7235        }
7236
7237submit:
7238        ret = __btrfs_submit_dio_bio(bio, inode, rw, file_offset, skip_sum,
7239                                     async_submit);
7240        if (!ret)
7241                return 0;
7242
7243        bio_put(bio);
7244out_err:
7245        dip->errors = 1;
7246        /*
7247         * before atomic variable goto zero, we must
7248         * make sure dip->errors is perceived to be set.
7249         */
7250        smp_mb__before_atomic_dec();
7251        if (atomic_dec_and_test(&dip->pending_bios))
7252                bio_io_error(dip->orig_bio);
7253
7254        /* bio_end_io() will handle error, so we needn't return it */
7255        return 0;
7256}
7257
7258static void btrfs_submit_direct(int rw, struct bio *dio_bio,
7259                                struct inode *inode, loff_t file_offset)
7260{
7261        struct btrfs_root *root = BTRFS_I(inode)->root;
7262        struct btrfs_dio_private *dip;
7263        struct bio_vec *bvec = dio_bio->bi_io_vec;
7264        struct bio *io_bio;
7265        int skip_sum;
7266        int write = rw & REQ_WRITE;
7267        int ret = 0;
7268
7269        skip_sum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
7270
7271        io_bio = btrfs_bio_clone(dio_bio, GFP_NOFS);
7272
7273        if (!io_bio) {
7274                ret = -ENOMEM;
7275                goto free_ordered;
7276        }
7277
7278        dip = kmalloc(sizeof(*dip), GFP_NOFS);
7279        if (!dip) {
7280                ret = -ENOMEM;
7281                goto free_io_bio;
7282        }
7283
7284        dip->private = dio_bio->bi_private;
7285        io_bio->bi_private = dio_bio->bi_private;
7286        dip->inode = inode;
7287        dip->logical_offset = file_offset;
7288
7289        dip->bytes = 0;
7290        do {
7291                dip->bytes += bvec->bv_len;
7292                bvec++;
7293        } while (bvec <= (dio_bio->bi_io_vec + dio_bio->bi_vcnt - 1));
7294
7295        dip->disk_bytenr = (u64)dio_bio->bi_sector << 9;
7296        io_bio->bi_private = dip;
7297        dip->errors = 0;
7298        dip->orig_bio = io_bio;
7299        dip->dio_bio = dio_bio;
7300        atomic_set(&dip->pending_bios, 0);
7301
7302        if (write)
7303                io_bio->bi_end_io = btrfs_endio_direct_write;
7304        else
7305                io_bio->bi_end_io = btrfs_endio_direct_read;
7306
7307        ret = btrfs_submit_direct_hook(rw, dip, skip_sum);
7308        if (!ret)
7309                return;
7310
7311free_io_bio:
7312        bio_put(io_bio);
7313
7314free_ordered:
7315        /*
7316         * If this is a write, we need to clean up the reserved space and kill
7317         * the ordered extent.
7318         */
7319        if (write) {
7320                struct btrfs_ordered_extent *ordered;
7321                ordered = btrfs_lookup_ordered_extent(inode, file_offset);
7322                if (!test_bit(BTRFS_ORDERED_PREALLOC, &ordered->flags) &&
7323                    !test_bit(BTRFS_ORDERED_NOCOW, &ordered->flags))
7324                        btrfs_free_reserved_extent(root, ordered->start,
7325                                                   ordered->disk_len);
7326                btrfs_put_ordered_extent(ordered);
7327                btrfs_put_ordered_extent(ordered);
7328        }
7329        bio_endio(dio_bio, ret);
7330}
7331
7332static ssize_t check_direct_IO(struct btrfs_root *root, int rw, struct kiocb *iocb,
7333                        const struct iovec *iov, loff_t offset,
7334                        unsigned long nr_segs)
7335{
7336        int seg;
7337        int i;
7338        size_t size;
7339        unsigned long addr;
7340        unsigned blocksize_mask = root->sectorsize - 1;
7341        ssize_t retval = -EINVAL;
7342        loff_t end = offset;
7343
7344        if (offset & blocksize_mask)
7345                goto out;
7346
7347        /* Check the memory alignment.  Blocks cannot straddle pages */
7348        for (seg = 0; seg < nr_segs; seg++) {
7349                addr = (unsigned long)iov[seg].iov_base;
7350                size = iov[seg].iov_len;
7351                end += size;
7352                if ((addr & blocksize_mask) || (size & blocksize_mask))
7353                        goto out;
7354
7355                /* If this is a write we don't need to check anymore */
7356                if (rw & WRITE)
7357                        continue;
7358
7359                /*
7360                 * Check to make sure we don't have duplicate iov_base's in this
7361                 * iovec, if so return EINVAL, otherwise we'll get csum errors
7362                 * when reading back.
7363                 */
7364                for (i = seg + 1; i < nr_segs; i++) {
7365                        if (iov[seg].iov_base == iov[i].iov_base)
7366                                goto out;
7367                }
7368        }
7369        retval = 0;
7370out:
7371        return retval;
7372}
7373
7374static ssize_t btrfs_direct_IO(int rw, struct kiocb *iocb,
7375                        const struct iovec *iov, loff_t offset,
7376                        unsigned long nr_segs)
7377{
7378        struct file *file = iocb->ki_filp;
7379        struct inode *inode = file->f_mapping->host;
7380        size_t count = 0;
7381        int flags = 0;
7382        bool wakeup = true;
7383        bool relock = false;
7384        ssize_t ret;
7385
7386        if (check_direct_IO(BTRFS_I(inode)->root, rw, iocb, iov,
7387                            offset, nr_segs))
7388                return 0;
7389
7390        atomic_inc(&inode->i_dio_count);
7391        smp_mb__after_atomic_inc();
7392
7393        if (rw & WRITE) {
7394                count = iov_length(iov, nr_segs);
7395                /*
7396                 * If the write DIO is beyond the EOF, we need update
7397                 * the isize, but it is protected by i_mutex. So we can
7398                 * not unlock the i_mutex at this case.
7399                 */
7400                if (offset + count <= inode->i_size) {
7401                        mutex_unlock(&inode->i_mutex);
7402                        relock = true;
7403                }
7404                ret = btrfs_delalloc_reserve_space(inode, count);
7405                if (ret)
7406                        goto out;
7407        } else if (unlikely(test_bit(BTRFS_INODE_READDIO_NEED_LOCK,
7408                                     &BTRFS_I(inode)->runtime_flags))) {
7409                inode_dio_done(inode);
7410                flags = DIO_LOCKING | DIO_SKIP_HOLES;
7411                wakeup = false;
7412        }
7413
7414        ret = __blockdev_direct_IO(rw, iocb, inode,
7415                        BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev,
7416                        iov, offset, nr_segs, btrfs_get_blocks_direct, NULL,
7417                        btrfs_submit_direct, flags);
7418        if (rw & WRITE) {
7419                if (ret < 0 && ret != -EIOCBQUEUED)
7420                        btrfs_delalloc_release_space(inode, count);
7421                else if (ret >= 0 && (size_t)ret < count)
7422                        btrfs_delalloc_release_space(inode,
7423                                                     count - (size_t)ret);
7424                else
7425                        btrfs_delalloc_release_metadata(inode, 0);
7426        }
7427out:
7428        if (wakeup)
7429                inode_dio_done(inode);
7430        if (relock)
7431                mutex_lock(&inode->i_mutex);
7432
7433        return ret;
7434}
7435
7436#define BTRFS_FIEMAP_FLAGS      (FIEMAP_FLAG_SYNC)
7437
7438static int btrfs_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
7439                __u64 start, __u64 len)
7440{
7441        int     ret;
7442
7443        ret = fiemap_check_flags(fieinfo, BTRFS_FIEMAP_FLAGS);
7444        if (ret)
7445                return ret;
7446
7447        return extent_fiemap(inode, fieinfo, start, len, btrfs_get_extent_fiemap);
7448}
7449
7450int btrfs_readpage(struct file *file, struct page *page)
7451{
7452        struct extent_io_tree *tree;
7453        tree = &BTRFS_I(page->mapping->host)->io_tree;
7454        return extent_read_full_page(tree, page, btrfs_get_extent, 0);
7455}
7456
7457static int btrfs_writepage(struct page *page, struct writeback_control *wbc)
7458{
7459        struct extent_io_tree *tree;
7460
7461
7462        if (current->flags & PF_MEMALLOC) {
7463                redirty_page_for_writepage(wbc, page);
7464                unlock_page(page);
7465                return 0;
7466        }
7467        tree = &BTRFS_I(page->mapping->host)->io_tree;
7468        return extent_write_full_page(tree, page, btrfs_get_extent, wbc);
7469}
7470
7471static int btrfs_writepages(struct address_space *mapping,
7472                            struct writeback_control *wbc)
7473{
7474        struct extent_io_tree *tree;
7475
7476        tree = &BTRFS_I(mapping->host)->io_tree;
7477        return extent_writepages(tree, mapping, btrfs_get_extent, wbc);
7478}
7479
7480static int
7481btrfs_readpages(struct file *file, struct address_space *mapping,
7482                struct list_head *pages, unsigned nr_pages)
7483{
7484        struct extent_io_tree *tree;
7485        tree = &BTRFS_I(mapping->host)->io_tree;
7486        return extent_readpages(tree, mapping, pages, nr_pages,
7487                                btrfs_get_extent);
7488}
7489static int __btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7490{
7491        struct extent_io_tree *tree;
7492        struct extent_map_tree *map;
7493        int ret;
7494
7495        tree = &BTRFS_I(page->mapping->host)->io_tree;
7496        map = &BTRFS_I(page->mapping->host)->extent_tree;
7497        ret = try_release_extent_mapping(map, tree, page, gfp_flags);
7498        if (ret == 1) {
7499                ClearPagePrivate(page);
7500                set_page_private(page, 0);
7501                page_cache_release(page);
7502        }
7503        return ret;
7504}
7505
7506static int btrfs_releasepage(struct page *page, gfp_t gfp_flags)
7507{
7508        if (PageWriteback(page) || PageDirty(page))
7509                return 0;
7510        return __btrfs_releasepage(page, gfp_flags & GFP_NOFS);
7511}
7512
7513static void btrfs_invalidatepage(struct page *page, unsigned long offset)
7514{
7515        struct inode *inode = page->mapping->host;
7516        struct extent_io_tree *tree;
7517        struct btrfs_ordered_extent *ordered;
7518        struct extent_state *cached_state = NULL;
7519        u64 page_start = page_offset(page);
7520        u64 page_end = page_start + PAGE_CACHE_SIZE - 1;
7521
7522        /*
7523         * we have the page locked, so new writeback can't start,
7524         * and the dirty bit won't be cleared while we are here.
7525         *
7526         * Wait for IO on this page so that we can safely clear
7527         * the PagePrivate2 bit and do ordered accounting
7528         */
7529        wait_on_page_writeback(page);
7530
7531        tree = &BTRFS_I(inode)->io_tree;
7532        if (offset) {
7533                btrfs_releasepage(page, GFP_NOFS);
7534                return;
7535        }
7536        lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7537        ordered = btrfs_lookup_ordered_extent(inode, page_offset(page));
7538        if (ordered) {
7539                /*
7540                 * IO on this page will never be started, so we need
7541                 * to account for any ordered extents now
7542                 */
7543                clear_extent_bit(tree, page_start, page_end,
7544                                 EXTENT_DIRTY | EXTENT_DELALLOC |
7545                                 EXTENT_LOCKED | EXTENT_DO_ACCOUNTING |
7546                                 EXTENT_DEFRAG, 1, 0, &cached_state, GFP_NOFS);
7547                /*
7548                 * whoever cleared the private bit is responsible
7549                 * for the finish_ordered_io
7550                 */
7551                if (TestClearPagePrivate2(page) &&
7552                    btrfs_dec_test_ordered_pending(inode, &ordered, page_start,
7553                                                   PAGE_CACHE_SIZE, 1)) {
7554                        btrfs_finish_ordered_io(ordered);
7555                }
7556                btrfs_put_ordered_extent(ordered);
7557                cached_state = NULL;
7558                lock_extent_bits(tree, page_start, page_end, 0, &cached_state);
7559        }
7560        clear_extent_bit(tree, page_start, page_end,
7561                 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
7562                 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 1, 1,
7563                 &cached_state, GFP_NOFS);
7564        __btrfs_releasepage(page, GFP_NOFS);
7565
7566        ClearPageChecked(page);
7567        if (PagePrivate(page)) {
7568                ClearPagePrivate(page);
7569                set_page_private(page, 0);
7570                page_cache_release(page);
7571        }
7572}
7573
7574/*
7575 * btrfs_page_mkwrite() is not allowed to change the file size as it gets
7576 * called from a page fault handler when a page is first dirtied. Hence we must
7577 * be careful to check for EOF conditions here. We set the page up correctly
7578 * for a written page which means we get ENOSPC checking when writing into
7579 * holes and correct delalloc and unwritten extent mapping on filesystems that
7580 * support these features.
7581 *
7582 * We are not allowed to take the i_mutex here so we have to play games to
7583 * protect against truncate races as the page could now be beyond EOF.  Because
7584 * vmtruncate() writes the inode size before removing pages, once we have the
7585 * page lock we can determine safely if the page is beyond EOF. If it is not
7586 * beyond EOF, then the page is guaranteed safe against truncation until we
7587 * unlock the page.
7588 */
7589int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
7590{
7591        struct page *page = vmf->page;
7592        struct inode *inode = file_inode(vma->vm_file);
7593        struct btrfs_root *root = BTRFS_I(inode)->root;
7594        struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
7595        struct btrfs_ordered_extent *ordered;
7596        struct extent_state *cached_state = NULL;
7597        char *kaddr;
7598        unsigned long zero_start;
7599        loff_t size;
7600        int ret;
7601        int reserved = 0;
7602        u64 page_start;
7603        u64 page_end;
7604
7605        sb_start_pagefault(inode->i_sb);
7606        ret  = btrfs_delalloc_reserve_space(inode, PAGE_CACHE_SIZE);
7607        if (!ret) {
7608                ret = file_update_time(vma->vm_file);
7609                reserved = 1;
7610        }
7611        if (ret) {
7612                if (ret == -ENOMEM)
7613                        ret = VM_FAULT_OOM;
7614                else /* -ENOSPC, -EIO, etc */
7615                        ret = VM_FAULT_SIGBUS;
7616                if (reserved)
7617                        goto out;
7618                goto out_noreserve;
7619        }
7620
7621        ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
7622again:
7623        lock_page(page);
7624        size = i_size_read(inode);
7625        page_start = page_offset(page);
7626        page_end = page_start + PAGE_CACHE_SIZE - 1;
7627
7628        if ((page->mapping != inode->i_mapping) ||
7629            (page_start >= size)) {
7630                /* page got truncated out from underneath us */
7631                goto out_unlock;
7632        }
7633        wait_on_page_writeback(page);
7634
7635        lock_extent_bits(io_tree, page_start, page_end, 0, &cached_state);
7636        set_page_extent_mapped(page);
7637
7638        /*
7639         * we can't set the delalloc bits if there are pending ordered
7640         * extents.  Drop our locks and wait for them to finish
7641         */
7642        ordered = btrfs_lookup_ordered_extent(inode, page_start);
7643        if (ordered) {
7644                unlock_extent_cached(io_tree, page_start, page_end,
7645                                     &cached_state, GFP_NOFS);
7646                unlock_page(page);
7647                btrfs_start_ordered_extent(inode, ordered, 1);
7648                btrfs_put_ordered_extent(ordered);
7649                goto again;
7650        }
7651
7652        /*
7653         * XXX - page_mkwrite gets called every time the page is dirtied, even
7654         * if it was already dirty, so for space accounting reasons we need to
7655         * clear any delalloc bits for the range we are fixing to save.  There
7656         * is probably a better way to do this, but for now keep consistent with
7657         * prepare_pages in the normal write path.
7658         */
7659        clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, page_end,
7660                          EXTENT_DIRTY | EXTENT_DELALLOC |
7661                          EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG,
7662                          0, 0, &cached_state, GFP_NOFS);
7663
7664        ret = btrfs_set_extent_delalloc(inode, page_start, page_end,
7665                                        &cached_state);
7666        if (ret) {
7667                unlock_extent_cached(io_tree, page_start, page_end,
7668                                     &cached_state, GFP_NOFS);
7669                ret = VM_FAULT_SIGBUS;
7670                goto out_unlock;
7671        }
7672        ret = 0;
7673
7674        /* page is wholly or partially inside EOF */
7675        if (page_start + PAGE_CACHE_SIZE > size)
7676                zero_start = size & ~PAGE_CACHE_MASK;
7677        else
7678                zero_start = PAGE_CACHE_SIZE;
7679
7680        if (zero_start != PAGE_CACHE_SIZE) {
7681                kaddr = kmap(page);
7682                memset(kaddr + zero_start, 0, PAGE_CACHE_SIZE - zero_start);
7683                flush_dcache_page(page);
7684                kunmap(page);
7685        }
7686        ClearPageChecked(page);
7687        set_page_dirty(page);
7688        SetPageUptodate(page);
7689
7690        BTRFS_I(inode)->last_trans = root->fs_info->generation;
7691        BTRFS_I(inode)->last_sub_trans = BTRFS_I(inode)->root->log_transid;
7692        BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->root->last_log_commit;
7693
7694        unlock_extent_cached(io_tree, page_start, page_end, &cached_state, GFP_NOFS);
7695
7696out_unlock:
7697        if (!ret) {
7698                sb_end_pagefault(inode->i_sb);
7699                return VM_FAULT_LOCKED;
7700        }
7701        unlock_page(page);
7702out:
7703        btrfs_delalloc_release_space(inode, PAGE_CACHE_SIZE);
7704out_noreserve:
7705        sb_end_pagefault(inode->i_sb);
7706        return ret;
7707}
7708
7709static int btrfs_truncate(struct inode *inode)
7710{
7711        struct btrfs_root *root = BTRFS_I(inode)->root;
7712        struct btrfs_block_rsv *rsv;
7713        int ret;
7714        int err = 0;
7715        struct btrfs_trans_handle *trans;
7716        u64 mask = root->sectorsize - 1;
7717        u64 min_size = btrfs_calc_trunc_metadata_size(root, 1);
7718
7719        ret = btrfs_truncate_page(inode, inode->i_size, 0, 0);
7720        if (ret)
7721                return ret;
7722
7723        btrfs_wait_ordered_range(inode, inode->i_size & (~mask), (u64)-1);
7724        btrfs_ordered_update_i_size(inode, inode->i_size, NULL);
7725
7726        /*
7727         * Yes ladies and gentelment, this is indeed ugly.  The fact is we have
7728         * 3 things going on here
7729         *
7730         * 1) We need to reserve space for our orphan item and the space to
7731         * delete our orphan item.  Lord knows we don't want to have a dangling
7732         * orphan item because we didn't reserve space to remove it.
7733         *
7734         * 2) We need to reserve space to update our inode.
7735         *
7736         * 3) We need to have something to cache all the space that is going to
7737         * be free'd up by the truncate operation, but also have some slack
7738         * space reserved in case it uses space during the truncate (thank you
7739         * very much snapshotting).
7740         *
7741         * And we need these to all be seperate.  The fact is we can use alot of
7742         * space doing the truncate, and we have no earthly idea how much space
7743         * we will use, so we need the truncate reservation to be seperate so it
7744         * doesn't end up using space reserved for updating the inode or
7745         * removing the orphan item.  We also need to be able to stop the
7746         * transaction and start a new one, which means we need to be able to
7747         * update the inode several times, and we have no idea of knowing how
7748         * many times that will be, so we can't just reserve 1 item for the
7749         * entirety of the opration, so that has to be done seperately as well.
7750         * Then there is the orphan item, which does indeed need to be held on
7751         * to for the whole operation, and we need nobody to touch this reserved
7752         * space except the orphan code.
7753         *
7754         * So that leaves us with
7755         *
7756         * 1) root->orphan_block_rsv - for the orphan deletion.
7757         * 2) rsv - for the truncate reservation, which we will steal from the
7758         * transaction reservation.
7759         * 3) fs_info->trans_block_rsv - this will have 1 items worth left for
7760         * updating the inode.
7761         */
7762        rsv = btrfs_alloc_block_rsv(root, BTRFS_BLOCK_RSV_TEMP);
7763        if (!rsv)
7764                return -ENOMEM;
7765        rsv->size = min_size;
7766        rsv->failfast = 1;
7767
7768        /*
7769         * 1 for the truncate slack space
7770         * 1 for updating the inode.
7771         */
7772        trans = btrfs_start_transaction(root, 2);
7773        if (IS_ERR(trans)) {
7774                err = PTR_ERR(trans);
7775                goto out;
7776        }
7777
7778        /* Migrate the slack space for the truncate to our reserve */
7779        ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv, rsv,
7780                                      min_size);
7781        BUG_ON(ret);
7782
7783        /*
7784         * setattr is responsible for setting the ordered_data_close flag,
7785         * but that is only tested during the last file release.  That
7786         * could happen well after the next commit, leaving a great big
7787         * window where new writes may get lost if someone chooses to write
7788         * to this file after truncating to zero
7789         *
7790         * The inode doesn't have any dirty data here, and so if we commit
7791         * this is a noop.  If someone immediately starts writing to the inode
7792         * it is very likely we'll catch some of their writes in this
7793         * transaction, and the commit will find this file on the ordered
7794         * data list with good things to send down.
7795         *
7796         * This is a best effort solution, there is still a window where
7797         * using truncate to replace the contents of the file will
7798         * end up with a zero length file after a crash.
7799         */
7800        if (inode->i_size == 0 && test_bit(BTRFS_INODE_ORDERED_DATA_CLOSE,
7801                                           &BTRFS_I(inode)->runtime_flags))
7802                btrfs_add_ordered_operation(trans, root, inode);
7803
7804        /*
7805         * So if we truncate and then write and fsync we normally would just
7806         * write the extents that changed, which is a problem if we need to
7807         * first truncate that entire inode.  So set this flag so we write out
7808         * all of the extents in the inode to the sync log so we're completely
7809         * safe.
7810         */
7811        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, &BTRFS_I(inode)->runtime_flags);
7812        trans->block_rsv = rsv;
7813
7814        while (1) {
7815                ret = btrfs_truncate_inode_items(trans, root, inode,
7816                                                 inode->i_size,
7817                                                 BTRFS_EXTENT_DATA_KEY);
7818                if (ret != -ENOSPC) {
7819                        err = ret;
7820                        break;
7821                }
7822
7823                trans->block_rsv = &root->fs_info->trans_block_rsv;
7824                ret = btrfs_update_inode(trans, root, inode);
7825                if (ret) {
7826                        err = ret;
7827                        break;
7828                }
7829
7830                btrfs_end_transaction(trans, root);
7831                btrfs_btree_balance_dirty(root);
7832
7833                trans = btrfs_start_transaction(root, 2);
7834                if (IS_ERR(trans)) {
7835                        ret = err = PTR_ERR(trans);
7836                        trans = NULL;
7837                        break;
7838                }
7839
7840                ret = btrfs_block_rsv_migrate(&root->fs_info->trans_block_rsv,
7841                                              rsv, min_size);
7842                BUG_ON(ret);    /* shouldn't happen */
7843                trans->block_rsv = rsv;
7844        }
7845
7846        if (ret == 0 && inode->i_nlink > 0) {
7847                trans->block_rsv = root->orphan_block_rsv;
7848                ret = btrfs_orphan_del(trans, inode);
7849                if (ret)
7850                        err = ret;
7851        }
7852
7853        if (trans) {
7854                trans->block_rsv = &root->fs_info->trans_block_rsv;
7855                ret = btrfs_update_inode(trans, root, inode);
7856                if (ret && !err)
7857                        err = ret;
7858
7859                ret = btrfs_end_transaction(trans, root);
7860                btrfs_btree_balance_dirty(root);
7861        }
7862
7863out:
7864        btrfs_free_block_rsv(root, rsv);
7865
7866        if (ret && !err)
7867                err = ret;
7868
7869        return err;
7870}
7871
7872/*
7873 * create a new subvolume directory/inode (helper for the ioctl).
7874 */
7875int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
7876                             struct btrfs_root *new_root, u64 new_dirid)
7877{
7878        struct inode *inode;
7879        int err;
7880        u64 index = 0;
7881
7882        inode = btrfs_new_inode(trans, new_root, NULL, "..", 2,
7883                                new_dirid, new_dirid,
7884                                S_IFDIR | (~current_umask() & S_IRWXUGO),
7885                                &index);
7886        if (IS_ERR(inode))
7887                return PTR_ERR(inode);
7888        inode->i_op = &btrfs_dir_inode_operations;
7889        inode->i_fop = &btrfs_dir_file_operations;
7890
7891        set_nlink(inode, 1);
7892        btrfs_i_size_write(inode, 0);
7893
7894        err = btrfs_update_inode(trans, new_root, inode);
7895
7896        iput(inode);
7897        return err;
7898}
7899
7900struct inode *btrfs_alloc_inode(struct super_block *sb)
7901{
7902        struct btrfs_inode *ei;
7903        struct inode *inode;
7904
7905        ei = kmem_cache_alloc(btrfs_inode_cachep, GFP_NOFS);
7906        if (!ei)
7907                return NULL;
7908
7909        ei->root = NULL;
7910        ei->generation = 0;
7911        ei->last_trans = 0;
7912        ei->last_sub_trans = 0;
7913        ei->logged_trans = 0;
7914        ei->delalloc_bytes = 0;
7915        ei->disk_i_size = 0;
7916        ei->flags = 0;
7917        ei->csum_bytes = 0;
7918        ei->index_cnt = (u64)-1;
7919        ei->last_unlink_trans = 0;
7920        ei->last_log_commit = 0;
7921
7922        spin_lock_init(&ei->lock);
7923        ei->outstanding_extents = 0;
7924        ei->reserved_extents = 0;
7925
7926        ei->runtime_flags = 0;
7927        ei->force_compress = BTRFS_COMPRESS_NONE;
7928
7929        ei->delayed_node = NULL;
7930
7931        inode = &ei->vfs_inode;
7932        extent_map_tree_init(&ei->extent_tree);
7933        extent_io_tree_init(&ei->io_tree, &inode->i_data);
7934        extent_io_tree_init(&ei->io_failure_tree, &inode->i_data);
7935        ei->io_tree.track_uptodate = 1;
7936        ei->io_failure_tree.track_uptodate = 1;
7937        atomic_set(&ei->sync_writers, 0);
7938        mutex_init(&ei->log_mutex);
7939        mutex_init(&ei->delalloc_mutex);
7940        btrfs_ordered_inode_tree_init(&ei->ordered_tree);
7941        INIT_LIST_HEAD(&ei->delalloc_inodes);
7942        INIT_LIST_HEAD(&ei->ordered_operations);
7943        RB_CLEAR_NODE(&ei->rb_node);
7944
7945        return inode;
7946}
7947
7948static void btrfs_i_callback(struct rcu_head *head)
7949{
7950        struct inode *inode = container_of(head, struct inode, i_rcu);
7951        kmem_cache_free(btrfs_inode_cachep, BTRFS_I(inode));
7952}
7953
7954void btrfs_destroy_inode(struct inode *inode)
7955{
7956        struct btrfs_ordered_extent *ordered;
7957        struct btrfs_root *root = BTRFS_I(inode)->root;
7958
7959        WARN_ON(!hlist_empty(&inode->i_dentry));
7960        WARN_ON(inode->i_data.nrpages);
7961        WARN_ON(BTRFS_I(inode)->outstanding_extents);
7962        WARN_ON(BTRFS_I(inode)->reserved_extents);
7963        WARN_ON(BTRFS_I(inode)->delalloc_bytes);
7964        WARN_ON(BTRFS_I(inode)->csum_bytes);
7965
7966        /*
7967         * This can happen where we create an inode, but somebody else also
7968         * created the same inode and we need to destroy the one we already
7969         * created.
7970         */
7971        if (!root)
7972                goto free;
7973
7974        /*
7975         * Make sure we're properly removed from the ordered operation
7976         * lists.
7977         */
7978        smp_mb();
7979        if (!list_empty(&BTRFS_I(inode)->ordered_operations)) {
7980                spin_lock(&root->fs_info->ordered_extent_lock);
7981                list_del_init(&BTRFS_I(inode)->ordered_operations);
7982                spin_unlock(&root->fs_info->ordered_extent_lock);
7983        }
7984
7985        if (test_bit(BTRFS_INODE_HAS_ORPHAN_ITEM,
7986                     &BTRFS_I(inode)->runtime_flags)) {
7987                btrfs_info(root->fs_info, "inode %llu still on the orphan list",
7988                        (unsigned long long)btrfs_ino(inode));
7989                atomic_dec(&root->orphan_inodes);
7990        }
7991
7992        while (1) {
7993                ordered = btrfs_lookup_first_ordered_extent(inode, (u64)-1);
7994                if (!ordered)
7995                        break;
7996                else {
7997                        btrfs_err(root->fs_info, "found ordered extent %llu %llu on inode cleanup",
7998                                (unsigned long long)ordered->file_offset,
7999                                (unsigned long long)ordered->len);
8000                        btrfs_remove_ordered_extent(inode, ordered);
8001                        btrfs_put_ordered_extent(ordered);
8002                        btrfs_put_ordered_extent(ordered);
8003                }
8004        }
8005        inode_tree_del(inode);
8006        btrfs_drop_extent_cache(inode, 0, (u64)-1, 0);
8007free:
8008        call_rcu(&inode->i_rcu, btrfs_i_callback);
8009}
8010
8011int btrfs_drop_inode(struct inode *inode)
8012{
8013        struct btrfs_root *root = BTRFS_I(inode)->root;
8014
8015        if (root == NULL)
8016                return 1;
8017
8018        /* the snap/subvol tree is on deleting */
8019        if (btrfs_root_refs(&root->root_item) == 0 &&
8020            root != root->fs_info->tree_root)
8021                return 1;
8022        else
8023                return generic_drop_inode(inode);
8024}
8025
8026static void init_once(void *foo)
8027{
8028        struct btrfs_inode *ei = (struct btrfs_inode *) foo;
8029
8030        inode_init_once(&ei->vfs_inode);
8031}
8032
8033void btrfs_destroy_cachep(void)
8034{
8035        /*
8036         * Make sure all delayed rcu free inodes are flushed before we
8037         * destroy cache.
8038         */
8039        rcu_barrier();
8040        if (btrfs_inode_cachep)
8041                kmem_cache_destroy(btrfs_inode_cachep);
8042        if (btrfs_trans_handle_cachep)
8043                kmem_cache_destroy(btrfs_trans_handle_cachep);
8044        if (btrfs_transaction_cachep)
8045                kmem_cache_destroy(btrfs_transaction_cachep);
8046        if (btrfs_path_cachep)
8047                kmem_cache_destroy(btrfs_path_cachep);
8048        if (btrfs_free_space_cachep)
8049                kmem_cache_destroy(btrfs_free_space_cachep);
8050        if (btrfs_delalloc_work_cachep)
8051                kmem_cache_destroy(btrfs_delalloc_work_cachep);
8052}
8053
8054int btrfs_init_cachep(void)
8055{
8056        btrfs_inode_cachep = kmem_cache_create("btrfs_inode",
8057                        sizeof(struct btrfs_inode), 0,
8058                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, init_once);
8059        if (!btrfs_inode_cachep)
8060                goto fail;
8061
8062        btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
8063                        sizeof(struct btrfs_trans_handle), 0,
8064                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8065        if (!btrfs_trans_handle_cachep)
8066                goto fail;
8067
8068        btrfs_transaction_cachep = kmem_cache_create("btrfs_transaction",
8069                        sizeof(struct btrfs_transaction), 0,
8070                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8071        if (!btrfs_transaction_cachep)
8072                goto fail;
8073
8074        btrfs_path_cachep = kmem_cache_create("btrfs_path",
8075                        sizeof(struct btrfs_path), 0,
8076                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8077        if (!btrfs_path_cachep)
8078                goto fail;
8079
8080        btrfs_free_space_cachep = kmem_cache_create("btrfs_free_space",
8081                        sizeof(struct btrfs_free_space), 0,
8082                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
8083        if (!btrfs_free_space_cachep)
8084                goto fail;
8085
8086        btrfs_delalloc_work_cachep = kmem_cache_create("btrfs_delalloc_work",
8087                        sizeof(struct btrfs_delalloc_work), 0,
8088                        SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
8089                        NULL);
8090        if (!btrfs_delalloc_work_cachep)
8091                goto fail;
8092
8093        return 0;
8094fail:
8095        btrfs_destroy_cachep();
8096        return -ENOMEM;
8097}
8098
8099static int btrfs_getattr(struct vfsmount *mnt,
8100                         struct dentry *dentry, struct kstat *stat)
8101{
8102        u64 delalloc_bytes;
8103        struct inode *inode = dentry->d_inode;
8104        u32 blocksize = inode->i_sb->s_blocksize;
8105
8106        generic_fillattr(inode, stat);
8107        stat->dev = BTRFS_I(inode)->root->anon_dev;
8108        stat->blksize = PAGE_CACHE_SIZE;
8109
8110        spin_lock(&BTRFS_I(inode)->lock);
8111        delalloc_bytes = BTRFS_I(inode)->delalloc_bytes;
8112        spin_unlock(&BTRFS_I(inode)->lock);
8113        stat->blocks = (ALIGN(inode_get_bytes(inode), blocksize) +
8114                        ALIGN(delalloc_bytes, blocksize)) >> 9;
8115        return 0;
8116}
8117
8118static int btrfs_rename(struct inode *old_dir, struct dentry *old_dentry,
8119                           struct inode *new_dir, struct dentry *new_dentry)
8120{
8121        struct btrfs_trans_handle *trans;
8122        struct btrfs_root *root = BTRFS_I(old_dir)->root;
8123        struct btrfs_root *dest = BTRFS_I(new_dir)->root;
8124        struct inode *new_inode = new_dentry->d_inode;
8125        struct inode *old_inode = old_dentry->d_inode;
8126        struct timespec ctime = CURRENT_TIME;
8127        u64 index = 0;
8128        u64 root_objectid;
8129        int ret;
8130        u64 old_ino = btrfs_ino(old_inode);
8131
8132        if (btrfs_ino(new_dir) == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)
8133                return -EPERM;
8134
8135        /* we only allow rename subvolume link between subvolumes */
8136        if (old_ino != BTRFS_FIRST_FREE_OBJECTID && root != dest)
8137                return -EXDEV;
8138
8139        if (old_ino == BTRFS_EMPTY_SUBVOL_DIR_OBJECTID ||
8140            (new_inode && btrfs_ino(new_inode) == BTRFS_FIRST_FREE_OBJECTID))
8141                return -ENOTEMPTY;
8142
8143        if (S_ISDIR(old_inode->i_mode) && new_inode &&
8144            new_inode->i_size > BTRFS_EMPTY_DIR_SIZE)
8145                return -ENOTEMPTY;
8146
8147
8148        /* check for collisions, even if the  name isn't there */
8149        ret = btrfs_check_dir_item_collision(root, new_dir->i_ino,
8150                             new_dentry->d_name.name,
8151                             new_dentry->d_name.len);
8152
8153        if (ret) {
8154                if (ret == -EEXIST) {
8155                        /* we shouldn't get
8156                         * eexist without a new_inode */
8157                        if (!new_inode) {
8158                                WARN_ON(1);
8159                                return ret;
8160                        }
8161                } else {
8162                        /* maybe -EOVERFLOW */
8163                        return ret;
8164                }
8165        }
8166        ret = 0;
8167
8168        /*
8169         * we're using rename to replace one file with another.
8170         * and the replacement file is large.  Start IO on it now so
8171         * we don't add too much work to the end of the transaction
8172         */
8173        if (new_inode && S_ISREG(old_inode->i_mode) && new_inode->i_size &&
8174            old_inode->i_size > BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT)
8175                filemap_flush(old_inode->i_mapping);
8176
8177        /* close the racy window with snapshot create/destroy ioctl */
8178        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8179                down_read(&root->fs_info->subvol_sem);
8180        /*
8181         * We want to reserve the absolute worst case amount of items.  So if
8182         * both inodes are subvols and we need to unlink them then that would
8183         * require 4 item modifications, but if they are both normal inodes it
8184         * would require 5 item modifications, so we'll assume their normal
8185         * inodes.  So 5 * 2 is 10, plus 1 for the new link, so 11 total items
8186         * should cover the worst case number of items we'll modify.
8187         */
8188        trans = btrfs_start_transaction(root, 11);
8189        if (IS_ERR(trans)) {
8190                ret = PTR_ERR(trans);
8191                goto out_notrans;
8192        }
8193
8194        if (dest != root)
8195                btrfs_record_root_in_trans(trans, dest);
8196
8197        ret = btrfs_set_inode_index(new_dir, &index);
8198        if (ret)
8199                goto out_fail;
8200
8201        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8202                /* force full log commit if subvolume involved. */
8203                root->fs_info->last_trans_log_full_commit = trans->transid;
8204        } else {
8205                ret = btrfs_insert_inode_ref(trans, dest,
8206                                             new_dentry->d_name.name,
8207                                             new_dentry->d_name.len,
8208                                             old_ino,
8209                                             btrfs_ino(new_dir), index);
8210                if (ret)
8211                        goto out_fail;
8212                /*
8213                 * this is an ugly little race, but the rename is required
8214                 * to make sure that if we crash, the inode is either at the
8215                 * old name or the new one.  pinning the log transaction lets
8216                 * us make sure we don't allow a log commit to come in after
8217                 * we unlink the name but before we add the new name back in.
8218                 */
8219                btrfs_pin_log_trans(root);
8220        }
8221        /*
8222         * make sure the inode gets flushed if it is replacing
8223         * something.
8224         */
8225        if (new_inode && new_inode->i_size && S_ISREG(old_inode->i_mode))
8226                btrfs_add_ordered_operation(trans, root, old_inode);
8227
8228        inode_inc_iversion(old_dir);
8229        inode_inc_iversion(new_dir);
8230        inode_inc_iversion(old_inode);
8231        old_dir->i_ctime = old_dir->i_mtime = ctime;
8232        new_dir->i_ctime = new_dir->i_mtime = ctime;
8233        old_inode->i_ctime = ctime;
8234
8235        if (old_dentry->d_parent != new_dentry->d_parent)
8236                btrfs_record_unlink_dir(trans, old_dir, old_inode, 1);
8237
8238        if (unlikely(old_ino == BTRFS_FIRST_FREE_OBJECTID)) {
8239                root_objectid = BTRFS_I(old_inode)->root->root_key.objectid;
8240                ret = btrfs_unlink_subvol(trans, root, old_dir, root_objectid,
8241                                        old_dentry->d_name.name,
8242                                        old_dentry->d_name.len);
8243        } else {
8244                ret = __btrfs_unlink_inode(trans, root, old_dir,
8245                                        old_dentry->d_inode,
8246                                        old_dentry->d_name.name,
8247                                        old_dentry->d_name.len);
8248                if (!ret)
8249                        ret = btrfs_update_inode(trans, root, old_inode);
8250        }
8251        if (ret) {
8252                btrfs_abort_transaction(trans, root, ret);
8253                goto out_fail;
8254        }
8255
8256        if (new_inode) {
8257                inode_inc_iversion(new_inode);
8258                new_inode->i_ctime = CURRENT_TIME;
8259                if (unlikely(btrfs_ino(new_inode) ==
8260                             BTRFS_EMPTY_SUBVOL_DIR_OBJECTID)) {
8261                        root_objectid = BTRFS_I(new_inode)->location.objectid;
8262                        ret = btrfs_unlink_subvol(trans, dest, new_dir,
8263                                                root_objectid,
8264                                                new_dentry->d_name.name,
8265                                                new_dentry->d_name.len);
8266                        BUG_ON(new_inode->i_nlink == 0);
8267                } else {
8268                        ret = btrfs_unlink_inode(trans, dest, new_dir,
8269                                                 new_dentry->d_inode,
8270                                                 new_dentry->d_name.name,
8271                                                 new_dentry->d_name.len);
8272                }
8273                if (!ret && new_inode->i_nlink == 0) {
8274                        ret = btrfs_orphan_add(trans, new_dentry->d_inode);
8275                        BUG_ON(ret);
8276                }
8277                if (ret) {
8278                        btrfs_abort_transaction(trans, root, ret);
8279                        goto out_fail;
8280                }
8281        }
8282
8283        ret = btrfs_add_link(trans, new_dir, old_inode,
8284                             new_dentry->d_name.name,
8285                             new_dentry->d_name.len, 0, index);
8286        if (ret) {
8287                btrfs_abort_transaction(trans, root, ret);
8288                goto out_fail;
8289        }
8290
8291        if (old_ino != BTRFS_FIRST_FREE_OBJECTID) {
8292                struct dentry *parent = new_dentry->d_parent;
8293                btrfs_log_new_name(trans, old_inode, old_dir, parent);
8294                btrfs_end_log_trans(root);
8295        }
8296out_fail:
8297        btrfs_end_transaction(trans, root);
8298out_notrans:
8299        if (old_ino == BTRFS_FIRST_FREE_OBJECTID)
8300                up_read(&root->fs_info->subvol_sem);
8301
8302        return ret;
8303}
8304
8305static void btrfs_run_delalloc_work(struct btrfs_work *work)
8306{
8307        struct btrfs_delalloc_work *delalloc_work;
8308
8309        delalloc_work = container_of(work, struct btrfs_delalloc_work,
8310                                     work);
8311        if (delalloc_work->wait)
8312                btrfs_wait_ordered_range(delalloc_work->inode, 0, (u64)-1);
8313        else
8314                filemap_flush(delalloc_work->inode->i_mapping);
8315
8316        if (delalloc_work->delay_iput)
8317                btrfs_add_delayed_iput(delalloc_work->inode);
8318        else
8319                iput(delalloc_work->inode);
8320        complete(&delalloc_work->completion);
8321}
8322
8323struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
8324                                                    int wait, int delay_iput)
8325{
8326        struct btrfs_delalloc_work *work;
8327
8328        work = kmem_cache_zalloc(btrfs_delalloc_work_cachep, GFP_NOFS);
8329        if (!work)
8330                return NULL;
8331
8332        init_completion(&work->completion);
8333        INIT_LIST_HEAD(&work->list);
8334        work->inode = inode;
8335        work->wait = wait;
8336        work->delay_iput = delay_iput;
8337        work->work.func = btrfs_run_delalloc_work;
8338
8339        return work;
8340}
8341
8342void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work)
8343{
8344        wait_for_completion(&work->completion);
8345        kmem_cache_free(btrfs_delalloc_work_cachep, work);
8346}
8347
8348/*
8349 * some fairly slow code that needs optimization. This walks the list
8350 * of all the inodes with pending delalloc and forces them to disk.
8351 */
8352int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput)
8353{
8354        struct btrfs_inode *binode;
8355        struct inode *inode;
8356        struct btrfs_delalloc_work *work, *next;
8357        struct list_head works;
8358        struct list_head splice;
8359        int ret = 0;
8360
8361        if (root->fs_info->sb->s_flags & MS_RDONLY)
8362                return -EROFS;
8363
8364        INIT_LIST_HEAD(&works);
8365        INIT_LIST_HEAD(&splice);
8366
8367        spin_lock(&root->fs_info->delalloc_lock);
8368        list_splice_init(&root->fs_info->delalloc_inodes, &splice);
8369        while (!list_empty(&splice)) {
8370                binode = list_entry(splice.next, struct btrfs_inode,
8371                                    delalloc_inodes);
8372
8373                list_del_init(&binode->delalloc_inodes);
8374
8375                inode = igrab(&binode->vfs_inode);
8376                if (!inode) {
8377                        clear_bit(BTRFS_INODE_IN_DELALLOC_LIST,
8378                                  &binode->runtime_flags);
8379                        continue;
8380                }
8381
8382                list_add_tail(&binode->delalloc_inodes,
8383                              &root->fs_info->delalloc_inodes);
8384                spin_unlock(&root->fs_info->delalloc_lock);
8385
8386                work = btrfs_alloc_delalloc_work(inode, 0, delay_iput);
8387                if (unlikely(!work)) {
8388                        ret = -ENOMEM;
8389                        goto out;
8390                }
8391                list_add_tail(&work->list, &works);
8392                btrfs_queue_worker(&root->fs_info->flush_workers,
8393                                   &work->work);
8394
8395                cond_resched();
8396                spin_lock(&root->fs_info->delalloc_lock);
8397        }
8398        spin_unlock(&root->fs_info->delalloc_lock);
8399
8400        list_for_each_entry_safe(work, next, &works, list) {
8401                list_del_init(&work->list);
8402                btrfs_wait_and_free_delalloc_work(work);
8403        }
8404
8405        /* the filemap_flush will queue IO into the worker threads, but
8406         * we have to make sure the IO is actually started and that
8407         * ordered extents get created before we return
8408         */
8409        atomic_inc(&root->fs_info->async_submit_draining);
8410        while (atomic_read(&root->fs_info->nr_async_submits) ||
8411              atomic_read(&root->fs_info->async_delalloc_pages)) {
8412                wait_event(root->fs_info->async_submit_wait,
8413                   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
8414                    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
8415        }
8416        atomic_dec(&root->fs_info->async_submit_draining);
8417        return 0;
8418out:
8419        list_for_each_entry_safe(work, next, &works, list) {
8420                list_del_init(&work->list);
8421                btrfs_wait_and_free_delalloc_work(work);
8422        }
8423
8424        if (!list_empty_careful(&splice)) {
8425                spin_lock(&root->fs_info->delalloc_lock);
8426                list_splice_tail(&splice, &root->fs_info->delalloc_inodes);
8427                spin_unlock(&root->fs_info->delalloc_lock);
8428        }
8429        return ret;
8430}
8431
8432static int btrfs_symlink(struct inode *dir, struct dentry *dentry,
8433                         const char *symname)
8434{
8435        struct btrfs_trans_handle *trans;
8436        struct btrfs_root *root = BTRFS_I(dir)->root;
8437        struct btrfs_path *path;
8438        struct btrfs_key key;
8439        struct inode *inode = NULL;
8440        int err;
8441        int drop_inode = 0;
8442        u64 objectid;
8443        u64 index = 0 ;
8444        int name_len;
8445        int datasize;
8446        unsigned long ptr;
8447        struct btrfs_file_extent_item *ei;
8448        struct extent_buffer *leaf;
8449
8450        name_len = strlen(symname) + 1;
8451        if (name_len > BTRFS_MAX_INLINE_DATA_SIZE(root))
8452                return -ENAMETOOLONG;
8453
8454        /*
8455         * 2 items for inode item and ref
8456         * 2 items for dir items
8457         * 1 item for xattr if selinux is on
8458         */
8459        trans = btrfs_start_transaction(root, 5);
8460        if (IS_ERR(trans))
8461                return PTR_ERR(trans);
8462
8463        err = btrfs_find_free_ino(root, &objectid);
8464        if (err)
8465                goto out_unlock;
8466
8467        inode = btrfs_new_inode(trans, root, dir, dentry->d_name.name,
8468                                dentry->d_name.len, btrfs_ino(dir), objectid,
8469                                S_IFLNK|S_IRWXUGO, &index);
8470        if (IS_ERR(inode)) {
8471                err = PTR_ERR(inode);
8472                goto out_unlock;
8473        }
8474
8475        err = btrfs_init_inode_security(trans, inode, dir, &dentry->d_name);
8476        if (err) {
8477                drop_inode = 1;
8478                goto out_unlock;
8479        }
8480
8481        /*
8482        * If the active LSM wants to access the inode during
8483        * d_instantiate it needs these. Smack checks to see
8484        * if the filesystem supports xattrs by looking at the
8485        * ops vector.
8486        */
8487        inode->i_fop = &btrfs_file_operations;
8488        inode->i_op = &btrfs_file_inode_operations;
8489
8490        err = btrfs_add_nondir(trans, dir, dentry, inode, 0, index);
8491        if (err)
8492                drop_inode = 1;
8493        else {
8494                inode->i_mapping->a_ops = &btrfs_aops;
8495                inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8496                BTRFS_I(inode)->io_tree.ops = &btrfs_extent_io_ops;
8497        }
8498        if (drop_inode)
8499                goto out_unlock;
8500
8501        path = btrfs_alloc_path();
8502        if (!path) {
8503                err = -ENOMEM;
8504                drop_inode = 1;
8505                goto out_unlock;
8506        }
8507        key.objectid = btrfs_ino(inode);
8508        key.offset = 0;
8509        btrfs_set_key_type(&key, BTRFS_EXTENT_DATA_KEY);
8510        datasize = btrfs_file_extent_calc_inline_size(name_len);
8511        err = btrfs_insert_empty_item(trans, root, path, &key,
8512                                      datasize);
8513        if (err) {
8514                drop_inode = 1;
8515                btrfs_free_path(path);
8516                goto out_unlock;
8517        }
8518        leaf = path->nodes[0];
8519        ei = btrfs_item_ptr(leaf, path->slots[0],
8520                            struct btrfs_file_extent_item);
8521        btrfs_set_file_extent_generation(leaf, ei, trans->transid);
8522        btrfs_set_file_extent_type(leaf, ei,
8523                                   BTRFS_FILE_EXTENT_INLINE);
8524        btrfs_set_file_extent_encryption(leaf, ei, 0);
8525        btrfs_set_file_extent_compression(leaf, ei, 0);
8526        btrfs_set_file_extent_other_encoding(leaf, ei, 0);
8527        btrfs_set_file_extent_ram_bytes(leaf, ei, name_len);
8528
8529        ptr = btrfs_file_extent_inline_start(ei);
8530        write_extent_buffer(leaf, symname, ptr, name_len);
8531        btrfs_mark_buffer_dirty(leaf);
8532        btrfs_free_path(path);
8533
8534        inode->i_op = &btrfs_symlink_inode_operations;
8535        inode->i_mapping->a_ops = &btrfs_symlink_aops;
8536        inode->i_mapping->backing_dev_info = &root->fs_info->bdi;
8537        inode_set_bytes(inode, name_len);
8538        btrfs_i_size_write(inode, name_len - 1);
8539        err = btrfs_update_inode(trans, root, inode);
8540        if (err)
8541                drop_inode = 1;
8542
8543out_unlock:
8544        if (!err)
8545                d_instantiate(dentry, inode);
8546        btrfs_end_transaction(trans, root);
8547        if (drop_inode) {
8548                inode_dec_link_count(inode);
8549                iput(inode);
8550        }
8551        btrfs_btree_balance_dirty(root);
8552        return err;
8553}
8554
8555static int __btrfs_prealloc_file_range(struct inode *inode, int mode,
8556                                       u64 start, u64 num_bytes, u64 min_size,
8557                                       loff_t actual_len, u64 *alloc_hint,
8558                                       struct btrfs_trans_handle *trans)
8559{
8560        struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
8561        struct extent_map *em;
8562        struct btrfs_root *root = BTRFS_I(inode)->root;
8563        struct btrfs_key ins;
8564        u64 cur_offset = start;
8565        u64 i_size;
8566        u64 cur_bytes;
8567        int ret = 0;
8568        bool own_trans = true;
8569
8570        if (trans)
8571                own_trans = false;
8572        while (num_bytes > 0) {
8573                if (own_trans) {
8574                        trans = btrfs_start_transaction(root, 3);
8575                        if (IS_ERR(trans)) {
8576                                ret = PTR_ERR(trans);
8577                                break;
8578                        }
8579                }
8580
8581                cur_bytes = min(num_bytes, 256ULL * 1024 * 1024);
8582                cur_bytes = max(cur_bytes, min_size);
8583                ret = btrfs_reserve_extent(trans, root, cur_bytes,
8584                                           min_size, 0, *alloc_hint, &ins, 1);
8585                if (ret) {
8586                        if (own_trans)
8587                                btrfs_end_transaction(trans, root);
8588                        break;
8589                }
8590
8591                ret = insert_reserved_file_extent(trans, inode,
8592                                                  cur_offset, ins.objectid,
8593                                                  ins.offset, ins.offset,
8594                                                  ins.offset, 0, 0, 0,
8595                                                  BTRFS_FILE_EXTENT_PREALLOC);
8596                if (ret) {
8597                        btrfs_abort_transaction(trans, root, ret);
8598                        if (own_trans)
8599                                btrfs_end_transaction(trans, root);
8600                        break;
8601                }
8602                btrfs_drop_extent_cache(inode, cur_offset,
8603                                        cur_offset + ins.offset -1, 0);
8604
8605                em = alloc_extent_map();
8606                if (!em) {
8607                        set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
8608                                &BTRFS_I(inode)->runtime_flags);
8609                        goto next;
8610                }
8611
8612                em->start = cur_offset;
8613                em->orig_start = cur_offset;
8614                em->len = ins.offset;
8615                em->block_start = ins.objectid;
8616                em->block_len = ins.offset;
8617                em->orig_block_len = ins.offset;
8618                em->ram_bytes = ins.offset;
8619                em->bdev = root->fs_info->fs_devices->latest_bdev;
8620                set_bit(EXTENT_FLAG_PREALLOC, &em->flags);
8621                em->generation = trans->transid;
8622
8623                while (1) {
8624                        write_lock(&em_tree->lock);
8625                        ret = add_extent_mapping(em_tree, em, 1);
8626                        write_unlock(&em_tree->lock);
8627                        if (ret != -EEXIST)
8628                                break;
8629                        btrfs_drop_extent_cache(inode, cur_offset,
8630                                                cur_offset + ins.offset - 1,
8631                                                0);
8632                }
8633                free_extent_map(em);
8634next:
8635                num_bytes -= ins.offset;
8636                cur_offset += ins.offset;
8637                *alloc_hint = ins.objectid + ins.offset;
8638
8639                inode_inc_iversion(inode);
8640                inode->i_ctime = CURRENT_TIME;
8641                BTRFS_I(inode)->flags |= BTRFS_INODE_PREALLOC;
8642                if (!(mode & FALLOC_FL_KEEP_SIZE) &&
8643                    (actual_len > inode->i_size) &&
8644                    (cur_offset > inode->i_size)) {
8645                        if (cur_offset > actual_len)
8646                                i_size = actual_len;
8647                        else
8648                                i_size = cur_offset;
8649                        i_size_write(inode, i_size);
8650                        btrfs_ordered_update_i_size(inode, i_size, NULL);
8651                }
8652
8653                ret = btrfs_update_inode(trans, root, inode);
8654
8655                if (ret) {
8656                        btrfs_abort_transaction(trans, root, ret);
8657                        if (own_trans)
8658                                btrfs_end_transaction(trans, root);
8659                        break;
8660                }
8661
8662                if (own_trans)
8663                        btrfs_end_transaction(trans, root);
8664        }
8665        return ret;
8666}
8667
8668int btrfs_prealloc_file_range(struct inode *inode, int mode,
8669                              u64 start, u64 num_bytes, u64 min_size,
8670                              loff_t actual_len, u64 *alloc_hint)
8671{
8672        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8673                                           min_size, actual_len, alloc_hint,
8674                                           NULL);
8675}
8676
8677int btrfs_prealloc_file_range_trans(struct inode *inode,
8678                                    struct btrfs_trans_handle *trans, int mode,
8679                                    u64 start, u64 num_bytes, u64 min_size,
8680                                    loff_t actual_len, u64 *alloc_hint)
8681{
8682        return __btrfs_prealloc_file_range(inode, mode, start, num_bytes,
8683                                           min_size, actual_len, alloc_hint, trans);
8684}
8685
8686static int btrfs_set_page_dirty(struct page *page)
8687{
8688        return __set_page_dirty_nobuffers(page);
8689}
8690
8691static int btrfs_permission(struct inode *inode, int mask)
8692{
8693        struct btrfs_root *root = BTRFS_I(inode)->root;
8694        umode_t mode = inode->i_mode;
8695
8696        if (mask & MAY_WRITE &&
8697            (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode))) {
8698                if (btrfs_root_readonly(root))
8699                        return -EROFS;
8700                if (BTRFS_I(inode)->flags & BTRFS_INODE_READONLY)
8701                        return -EACCES;
8702        }
8703        return generic_permission(inode, mask);
8704}
8705
8706static const struct inode_operations btrfs_dir_inode_operations = {
8707        .getattr        = btrfs_getattr,
8708        .lookup         = btrfs_lookup,
8709        .create         = btrfs_create,
8710        .unlink         = btrfs_unlink,
8711        .link           = btrfs_link,
8712        .mkdir          = btrfs_mkdir,
8713        .rmdir          = btrfs_rmdir,
8714        .rename         = btrfs_rename,
8715        .symlink        = btrfs_symlink,
8716        .setattr        = btrfs_setattr,
8717        .mknod          = btrfs_mknod,
8718        .setxattr       = btrfs_setxattr,
8719        .getxattr       = btrfs_getxattr,
8720        .listxattr      = btrfs_listxattr,
8721        .removexattr    = btrfs_removexattr,
8722        .permission     = btrfs_permission,
8723        .get_acl        = btrfs_get_acl,
8724};
8725static const struct inode_operations btrfs_dir_ro_inode_operations = {
8726        .lookup         = btrfs_lookup,
8727        .permission     = btrfs_permission,
8728        .get_acl        = btrfs_get_acl,
8729};
8730
8731static const struct file_operations btrfs_dir_file_operations = {
8732        .llseek         = generic_file_llseek,
8733        .read           = generic_read_dir,
8734        .readdir        = btrfs_real_readdir,
8735        .unlocked_ioctl = btrfs_ioctl,
8736#ifdef CONFIG_COMPAT
8737        .compat_ioctl   = btrfs_ioctl,
8738#endif
8739        .release        = btrfs_release_file,
8740        .fsync          = btrfs_sync_file,
8741};
8742
8743static struct extent_io_ops btrfs_extent_io_ops = {
8744        .fill_delalloc = run_delalloc_range,
8745        .submit_bio_hook = btrfs_submit_bio_hook,
8746        .merge_bio_hook = btrfs_merge_bio_hook,
8747        .readpage_end_io_hook = btrfs_readpage_end_io_hook,
8748        .writepage_end_io_hook = btrfs_writepage_end_io_hook,
8749        .writepage_start_hook = btrfs_writepage_start_hook,
8750        .set_bit_hook = btrfs_set_bit_hook,
8751        .clear_bit_hook = btrfs_clear_bit_hook,
8752        .merge_extent_hook = btrfs_merge_extent_hook,
8753        .split_extent_hook = btrfs_split_extent_hook,
8754};
8755
8756/*
8757 * btrfs doesn't support the bmap operation because swapfiles
8758 * use bmap to make a mapping of extents in the file.  They assume
8759 * these extents won't change over the life of the file and they
8760 * use the bmap result to do IO directly to the drive.
8761 *
8762 * the btrfs bmap call would return logical addresses that aren't
8763 * suitable for IO and they also will change frequently as COW
8764 * operations happen.  So, swapfile + btrfs == corruption.
8765 *
8766 * For now we're avoiding this by dropping bmap.
8767 */
8768static const struct address_space_operations btrfs_aops = {
8769        .readpage       = btrfs_readpage,
8770        .writepage      = btrfs_writepage,
8771        .writepages     = btrfs_writepages,
8772        .readpages      = btrfs_readpages,
8773        .direct_IO      = btrfs_direct_IO,
8774        .invalidatepage = btrfs_invalidatepage,
8775        .releasepage    = btrfs_releasepage,
8776        .set_page_dirty = btrfs_set_page_dirty,
8777        .error_remove_page = generic_error_remove_page,
8778};
8779
8780static const struct address_space_operations btrfs_symlink_aops = {
8781        .readpage       = btrfs_readpage,
8782        .writepage      = btrfs_writepage,
8783        .invalidatepage = btrfs_invalidatepage,
8784        .releasepage    = btrfs_releasepage,
8785};
8786
8787static const struct inode_operations btrfs_file_inode_operations = {
8788        .getattr        = btrfs_getattr,
8789        .setattr        = btrfs_setattr,
8790        .setxattr       = btrfs_setxattr,
8791        .getxattr       = btrfs_getxattr,
8792        .listxattr      = btrfs_listxattr,
8793        .removexattr    = btrfs_removexattr,
8794        .permission     = btrfs_permission,
8795        .fiemap         = btrfs_fiemap,
8796        .get_acl        = btrfs_get_acl,
8797        .update_time    = btrfs_update_time,
8798};
8799static const struct inode_operations btrfs_special_inode_operations = {
8800        .getattr        = btrfs_getattr,
8801        .setattr        = btrfs_setattr,
8802        .permission     = btrfs_permission,
8803        .setxattr       = btrfs_setxattr,
8804        .getxattr       = btrfs_getxattr,
8805        .listxattr      = btrfs_listxattr,
8806        .removexattr    = btrfs_removexattr,
8807        .get_acl        = btrfs_get_acl,
8808        .update_time    = btrfs_update_time,
8809};
8810static const struct inode_operations btrfs_symlink_inode_operations = {
8811        .readlink       = generic_readlink,
8812        .follow_link    = page_follow_link_light,
8813        .put_link       = page_put_link,
8814        .getattr        = btrfs_getattr,
8815        .setattr        = btrfs_setattr,
8816        .permission     = btrfs_permission,
8817        .setxattr       = btrfs_setxattr,
8818        .getxattr       = btrfs_getxattr,
8819        .listxattr      = btrfs_listxattr,
8820        .removexattr    = btrfs_removexattr,
8821        .get_acl        = btrfs_get_acl,
8822        .update_time    = btrfs_update_time,
8823};
8824
8825const struct dentry_operations btrfs_dentry_operations = {
8826        .d_delete       = btrfs_dentry_delete,
8827        .d_release      = btrfs_dentry_release,
8828};
8829