linux/fs/btrfs/scrub.c
<<
>>
Prefs
   1/*
   2 * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#include <linux/blkdev.h>
  20#include <linux/ratelimit.h>
  21#include "ctree.h"
  22#include "volumes.h"
  23#include "disk-io.h"
  24#include "ordered-data.h"
  25#include "transaction.h"
  26#include "backref.h"
  27#include "extent_io.h"
  28#include "dev-replace.h"
  29#include "check-integrity.h"
  30#include "rcu-string.h"
  31#include "raid56.h"
  32
  33/*
  34 * This is only the first step towards a full-features scrub. It reads all
  35 * extent and super block and verifies the checksums. In case a bad checksum
  36 * is found or the extent cannot be read, good data will be written back if
  37 * any can be found.
  38 *
  39 * Future enhancements:
  40 *  - In case an unrepairable extent is encountered, track which files are
  41 *    affected and report them
  42 *  - track and record media errors, throw out bad devices
  43 *  - add a mode to also read unallocated space
  44 */
  45
  46struct scrub_block;
  47struct scrub_ctx;
  48
  49/*
  50 * the following three values only influence the performance.
  51 * The last one configures the number of parallel and outstanding I/O
  52 * operations. The first two values configure an upper limit for the number
  53 * of (dynamically allocated) pages that are added to a bio.
  54 */
  55#define SCRUB_PAGES_PER_RD_BIO  32      /* 128k per bio */
  56#define SCRUB_PAGES_PER_WR_BIO  32      /* 128k per bio */
  57#define SCRUB_BIOS_PER_SCTX     64      /* 8MB per device in flight */
  58
  59/*
  60 * the following value times PAGE_SIZE needs to be large enough to match the
  61 * largest node/leaf/sector size that shall be supported.
  62 * Values larger than BTRFS_STRIPE_LEN are not supported.
  63 */
  64#define SCRUB_MAX_PAGES_PER_BLOCK       16      /* 64k per node/leaf/sector */
  65
  66struct scrub_page {
  67        struct scrub_block      *sblock;
  68        struct page             *page;
  69        struct btrfs_device     *dev;
  70        u64                     flags;  /* extent flags */
  71        u64                     generation;
  72        u64                     logical;
  73        u64                     physical;
  74        u64                     physical_for_dev_replace;
  75        atomic_t                ref_count;
  76        struct {
  77                unsigned int    mirror_num:8;
  78                unsigned int    have_csum:1;
  79                unsigned int    io_error:1;
  80        };
  81        u8                      csum[BTRFS_CSUM_SIZE];
  82};
  83
  84struct scrub_bio {
  85        int                     index;
  86        struct scrub_ctx        *sctx;
  87        struct btrfs_device     *dev;
  88        struct bio              *bio;
  89        int                     err;
  90        u64                     logical;
  91        u64                     physical;
  92#if SCRUB_PAGES_PER_WR_BIO >= SCRUB_PAGES_PER_RD_BIO
  93        struct scrub_page       *pagev[SCRUB_PAGES_PER_WR_BIO];
  94#else
  95        struct scrub_page       *pagev[SCRUB_PAGES_PER_RD_BIO];
  96#endif
  97        int                     page_count;
  98        int                     next_free;
  99        struct btrfs_work       work;
 100};
 101
 102struct scrub_block {
 103        struct scrub_page       *pagev[SCRUB_MAX_PAGES_PER_BLOCK];
 104        int                     page_count;
 105        atomic_t                outstanding_pages;
 106        atomic_t                ref_count; /* free mem on transition to zero */
 107        struct scrub_ctx        *sctx;
 108        struct {
 109                unsigned int    header_error:1;
 110                unsigned int    checksum_error:1;
 111                unsigned int    no_io_error_seen:1;
 112                unsigned int    generation_error:1; /* also sets header_error */
 113        };
 114};
 115
 116struct scrub_wr_ctx {
 117        struct scrub_bio *wr_curr_bio;
 118        struct btrfs_device *tgtdev;
 119        int pages_per_wr_bio; /* <= SCRUB_PAGES_PER_WR_BIO */
 120        atomic_t flush_all_writes;
 121        struct mutex wr_lock;
 122};
 123
 124struct scrub_ctx {
 125        struct scrub_bio        *bios[SCRUB_BIOS_PER_SCTX];
 126        struct btrfs_root       *dev_root;
 127        int                     first_free;
 128        int                     curr;
 129        atomic_t                bios_in_flight;
 130        atomic_t                workers_pending;
 131        spinlock_t              list_lock;
 132        wait_queue_head_t       list_wait;
 133        u16                     csum_size;
 134        struct list_head        csum_list;
 135        atomic_t                cancel_req;
 136        int                     readonly;
 137        int                     pages_per_rd_bio;
 138        u32                     sectorsize;
 139        u32                     nodesize;
 140        u32                     leafsize;
 141
 142        int                     is_dev_replace;
 143        struct scrub_wr_ctx     wr_ctx;
 144
 145        /*
 146         * statistics
 147         */
 148        struct btrfs_scrub_progress stat;
 149        spinlock_t              stat_lock;
 150};
 151
 152struct scrub_fixup_nodatasum {
 153        struct scrub_ctx        *sctx;
 154        struct btrfs_device     *dev;
 155        u64                     logical;
 156        struct btrfs_root       *root;
 157        struct btrfs_work       work;
 158        int                     mirror_num;
 159};
 160
 161struct scrub_copy_nocow_ctx {
 162        struct scrub_ctx        *sctx;
 163        u64                     logical;
 164        u64                     len;
 165        int                     mirror_num;
 166        u64                     physical_for_dev_replace;
 167        struct btrfs_work       work;
 168};
 169
 170struct scrub_warning {
 171        struct btrfs_path       *path;
 172        u64                     extent_item_size;
 173        char                    *scratch_buf;
 174        char                    *msg_buf;
 175        const char              *errstr;
 176        sector_t                sector;
 177        u64                     logical;
 178        struct btrfs_device     *dev;
 179        int                     msg_bufsize;
 180        int                     scratch_bufsize;
 181};
 182
 183
 184static void scrub_pending_bio_inc(struct scrub_ctx *sctx);
 185static void scrub_pending_bio_dec(struct scrub_ctx *sctx);
 186static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx);
 187static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx);
 188static int scrub_handle_errored_block(struct scrub_block *sblock_to_check);
 189static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
 190                                     struct btrfs_fs_info *fs_info,
 191                                     struct scrub_block *original_sblock,
 192                                     u64 length, u64 logical,
 193                                     struct scrub_block *sblocks_for_recheck);
 194static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
 195                                struct scrub_block *sblock, int is_metadata,
 196                                int have_csum, u8 *csum, u64 generation,
 197                                u16 csum_size);
 198static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
 199                                         struct scrub_block *sblock,
 200                                         int is_metadata, int have_csum,
 201                                         const u8 *csum, u64 generation,
 202                                         u16 csum_size);
 203static void scrub_complete_bio_end_io(struct bio *bio, int err);
 204static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
 205                                             struct scrub_block *sblock_good,
 206                                             int force_write);
 207static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
 208                                            struct scrub_block *sblock_good,
 209                                            int page_num, int force_write);
 210static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
 211static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
 212                                           int page_num);
 213static int scrub_checksum_data(struct scrub_block *sblock);
 214static int scrub_checksum_tree_block(struct scrub_block *sblock);
 215static int scrub_checksum_super(struct scrub_block *sblock);
 216static void scrub_block_get(struct scrub_block *sblock);
 217static void scrub_block_put(struct scrub_block *sblock);
 218static void scrub_page_get(struct scrub_page *spage);
 219static void scrub_page_put(struct scrub_page *spage);
 220static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
 221                                    struct scrub_page *spage);
 222static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 223                       u64 physical, struct btrfs_device *dev, u64 flags,
 224                       u64 gen, int mirror_num, u8 *csum, int force,
 225                       u64 physical_for_dev_replace);
 226static void scrub_bio_end_io(struct bio *bio, int err);
 227static void scrub_bio_end_io_worker(struct btrfs_work *work);
 228static void scrub_block_complete(struct scrub_block *sblock);
 229static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
 230                               u64 extent_logical, u64 extent_len,
 231                               u64 *extent_physical,
 232                               struct btrfs_device **extent_dev,
 233                               int *extent_mirror_num);
 234static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
 235                              struct scrub_wr_ctx *wr_ctx,
 236                              struct btrfs_fs_info *fs_info,
 237                              struct btrfs_device *dev,
 238                              int is_dev_replace);
 239static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx);
 240static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
 241                                    struct scrub_page *spage);
 242static void scrub_wr_submit(struct scrub_ctx *sctx);
 243static void scrub_wr_bio_end_io(struct bio *bio, int err);
 244static void scrub_wr_bio_end_io_worker(struct btrfs_work *work);
 245static int write_page_nocow(struct scrub_ctx *sctx,
 246                            u64 physical_for_dev_replace, struct page *page);
 247static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root,
 248                                      void *ctx);
 249static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
 250                            int mirror_num, u64 physical_for_dev_replace);
 251static void copy_nocow_pages_worker(struct btrfs_work *work);
 252
 253
 254static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
 255{
 256        atomic_inc(&sctx->bios_in_flight);
 257}
 258
 259static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
 260{
 261        atomic_dec(&sctx->bios_in_flight);
 262        wake_up(&sctx->list_wait);
 263}
 264
 265/*
 266 * used for workers that require transaction commits (i.e., for the
 267 * NOCOW case)
 268 */
 269static void scrub_pending_trans_workers_inc(struct scrub_ctx *sctx)
 270{
 271        struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 272
 273        /*
 274         * increment scrubs_running to prevent cancel requests from
 275         * completing as long as a worker is running. we must also
 276         * increment scrubs_paused to prevent deadlocking on pause
 277         * requests used for transactions commits (as the worker uses a
 278         * transaction context). it is safe to regard the worker
 279         * as paused for all matters practical. effectively, we only
 280         * avoid cancellation requests from completing.
 281         */
 282        mutex_lock(&fs_info->scrub_lock);
 283        atomic_inc(&fs_info->scrubs_running);
 284        atomic_inc(&fs_info->scrubs_paused);
 285        mutex_unlock(&fs_info->scrub_lock);
 286        atomic_inc(&sctx->workers_pending);
 287}
 288
 289/* used for workers that require transaction commits */
 290static void scrub_pending_trans_workers_dec(struct scrub_ctx *sctx)
 291{
 292        struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
 293
 294        /*
 295         * see scrub_pending_trans_workers_inc() why we're pretending
 296         * to be paused in the scrub counters
 297         */
 298        mutex_lock(&fs_info->scrub_lock);
 299        atomic_dec(&fs_info->scrubs_running);
 300        atomic_dec(&fs_info->scrubs_paused);
 301        mutex_unlock(&fs_info->scrub_lock);
 302        atomic_dec(&sctx->workers_pending);
 303        wake_up(&fs_info->scrub_pause_wait);
 304        wake_up(&sctx->list_wait);
 305}
 306
 307static void scrub_free_csums(struct scrub_ctx *sctx)
 308{
 309        while (!list_empty(&sctx->csum_list)) {
 310                struct btrfs_ordered_sum *sum;
 311                sum = list_first_entry(&sctx->csum_list,
 312                                       struct btrfs_ordered_sum, list);
 313                list_del(&sum->list);
 314                kfree(sum);
 315        }
 316}
 317
 318static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
 319{
 320        int i;
 321
 322        if (!sctx)
 323                return;
 324
 325        scrub_free_wr_ctx(&sctx->wr_ctx);
 326
 327        /* this can happen when scrub is cancelled */
 328        if (sctx->curr != -1) {
 329                struct scrub_bio *sbio = sctx->bios[sctx->curr];
 330
 331                for (i = 0; i < sbio->page_count; i++) {
 332                        WARN_ON(!sbio->pagev[i]->page);
 333                        scrub_block_put(sbio->pagev[i]->sblock);
 334                }
 335                bio_put(sbio->bio);
 336        }
 337
 338        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 339                struct scrub_bio *sbio = sctx->bios[i];
 340
 341                if (!sbio)
 342                        break;
 343                kfree(sbio);
 344        }
 345
 346        scrub_free_csums(sctx);
 347        kfree(sctx);
 348}
 349
 350static noinline_for_stack
 351struct scrub_ctx *scrub_setup_ctx(struct btrfs_device *dev, int is_dev_replace)
 352{
 353        struct scrub_ctx *sctx;
 354        int             i;
 355        struct btrfs_fs_info *fs_info = dev->dev_root->fs_info;
 356        int pages_per_rd_bio;
 357        int ret;
 358
 359        /*
 360         * the setting of pages_per_rd_bio is correct for scrub but might
 361         * be wrong for the dev_replace code where we might read from
 362         * different devices in the initial huge bios. However, that
 363         * code is able to correctly handle the case when adding a page
 364         * to a bio fails.
 365         */
 366        if (dev->bdev)
 367                pages_per_rd_bio = min_t(int, SCRUB_PAGES_PER_RD_BIO,
 368                                         bio_get_nr_vecs(dev->bdev));
 369        else
 370                pages_per_rd_bio = SCRUB_PAGES_PER_RD_BIO;
 371        sctx = kzalloc(sizeof(*sctx), GFP_NOFS);
 372        if (!sctx)
 373                goto nomem;
 374        sctx->is_dev_replace = is_dev_replace;
 375        sctx->pages_per_rd_bio = pages_per_rd_bio;
 376        sctx->curr = -1;
 377        sctx->dev_root = dev->dev_root;
 378        for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
 379                struct scrub_bio *sbio;
 380
 381                sbio = kzalloc(sizeof(*sbio), GFP_NOFS);
 382                if (!sbio)
 383                        goto nomem;
 384                sctx->bios[i] = sbio;
 385
 386                sbio->index = i;
 387                sbio->sctx = sctx;
 388                sbio->page_count = 0;
 389                sbio->work.func = scrub_bio_end_io_worker;
 390
 391                if (i != SCRUB_BIOS_PER_SCTX - 1)
 392                        sctx->bios[i]->next_free = i + 1;
 393                else
 394                        sctx->bios[i]->next_free = -1;
 395        }
 396        sctx->first_free = 0;
 397        sctx->nodesize = dev->dev_root->nodesize;
 398        sctx->leafsize = dev->dev_root->leafsize;
 399        sctx->sectorsize = dev->dev_root->sectorsize;
 400        atomic_set(&sctx->bios_in_flight, 0);
 401        atomic_set(&sctx->workers_pending, 0);
 402        atomic_set(&sctx->cancel_req, 0);
 403        sctx->csum_size = btrfs_super_csum_size(fs_info->super_copy);
 404        INIT_LIST_HEAD(&sctx->csum_list);
 405
 406        spin_lock_init(&sctx->list_lock);
 407        spin_lock_init(&sctx->stat_lock);
 408        init_waitqueue_head(&sctx->list_wait);
 409
 410        ret = scrub_setup_wr_ctx(sctx, &sctx->wr_ctx, fs_info,
 411                                 fs_info->dev_replace.tgtdev, is_dev_replace);
 412        if (ret) {
 413                scrub_free_ctx(sctx);
 414                return ERR_PTR(ret);
 415        }
 416        return sctx;
 417
 418nomem:
 419        scrub_free_ctx(sctx);
 420        return ERR_PTR(-ENOMEM);
 421}
 422
 423static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
 424                                     void *warn_ctx)
 425{
 426        u64 isize;
 427        u32 nlink;
 428        int ret;
 429        int i;
 430        struct extent_buffer *eb;
 431        struct btrfs_inode_item *inode_item;
 432        struct scrub_warning *swarn = warn_ctx;
 433        struct btrfs_fs_info *fs_info = swarn->dev->dev_root->fs_info;
 434        struct inode_fs_paths *ipath = NULL;
 435        struct btrfs_root *local_root;
 436        struct btrfs_key root_key;
 437
 438        root_key.objectid = root;
 439        root_key.type = BTRFS_ROOT_ITEM_KEY;
 440        root_key.offset = (u64)-1;
 441        local_root = btrfs_read_fs_root_no_name(fs_info, &root_key);
 442        if (IS_ERR(local_root)) {
 443                ret = PTR_ERR(local_root);
 444                goto err;
 445        }
 446
 447        ret = inode_item_info(inum, 0, local_root, swarn->path);
 448        if (ret) {
 449                btrfs_release_path(swarn->path);
 450                goto err;
 451        }
 452
 453        eb = swarn->path->nodes[0];
 454        inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
 455                                        struct btrfs_inode_item);
 456        isize = btrfs_inode_size(eb, inode_item);
 457        nlink = btrfs_inode_nlink(eb, inode_item);
 458        btrfs_release_path(swarn->path);
 459
 460        ipath = init_ipath(4096, local_root, swarn->path);
 461        if (IS_ERR(ipath)) {
 462                ret = PTR_ERR(ipath);
 463                ipath = NULL;
 464                goto err;
 465        }
 466        ret = paths_from_inode(inum, ipath);
 467
 468        if (ret < 0)
 469                goto err;
 470
 471        /*
 472         * we deliberately ignore the bit ipath might have been too small to
 473         * hold all of the paths here
 474         */
 475        for (i = 0; i < ipath->fspath->elem_cnt; ++i)
 476                printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
 477                        "%s, sector %llu, root %llu, inode %llu, offset %llu, "
 478                        "length %llu, links %u (path: %s)\n", swarn->errstr,
 479                        swarn->logical, rcu_str_deref(swarn->dev->name),
 480                        (unsigned long long)swarn->sector, root, inum, offset,
 481                        min(isize - offset, (u64)PAGE_SIZE), nlink,
 482                        (char *)(unsigned long)ipath->fspath->val[i]);
 483
 484        free_ipath(ipath);
 485        return 0;
 486
 487err:
 488        printk_in_rcu(KERN_WARNING "btrfs: %s at logical %llu on dev "
 489                "%s, sector %llu, root %llu, inode %llu, offset %llu: path "
 490                "resolving failed with ret=%d\n", swarn->errstr,
 491                swarn->logical, rcu_str_deref(swarn->dev->name),
 492                (unsigned long long)swarn->sector, root, inum, offset, ret);
 493
 494        free_ipath(ipath);
 495        return 0;
 496}
 497
 498static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
 499{
 500        struct btrfs_device *dev;
 501        struct btrfs_fs_info *fs_info;
 502        struct btrfs_path *path;
 503        struct btrfs_key found_key;
 504        struct extent_buffer *eb;
 505        struct btrfs_extent_item *ei;
 506        struct scrub_warning swarn;
 507        unsigned long ptr = 0;
 508        u64 extent_item_pos;
 509        u64 flags = 0;
 510        u64 ref_root;
 511        u32 item_size;
 512        u8 ref_level;
 513        const int bufsize = 4096;
 514        int ret;
 515
 516        WARN_ON(sblock->page_count < 1);
 517        dev = sblock->pagev[0]->dev;
 518        fs_info = sblock->sctx->dev_root->fs_info;
 519
 520        path = btrfs_alloc_path();
 521
 522        swarn.scratch_buf = kmalloc(bufsize, GFP_NOFS);
 523        swarn.msg_buf = kmalloc(bufsize, GFP_NOFS);
 524        swarn.sector = (sblock->pagev[0]->physical) >> 9;
 525        swarn.logical = sblock->pagev[0]->logical;
 526        swarn.errstr = errstr;
 527        swarn.dev = NULL;
 528        swarn.msg_bufsize = bufsize;
 529        swarn.scratch_bufsize = bufsize;
 530
 531        if (!path || !swarn.scratch_buf || !swarn.msg_buf)
 532                goto out;
 533
 534        ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
 535                                  &flags);
 536        if (ret < 0)
 537                goto out;
 538
 539        extent_item_pos = swarn.logical - found_key.objectid;
 540        swarn.extent_item_size = found_key.offset;
 541
 542        eb = path->nodes[0];
 543        ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
 544        item_size = btrfs_item_size_nr(eb, path->slots[0]);
 545
 546        if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
 547                do {
 548                        ret = tree_backref_for_extent(&ptr, eb, ei, item_size,
 549                                                        &ref_root, &ref_level);
 550                        printk_in_rcu(KERN_WARNING
 551                                "btrfs: %s at logical %llu on dev %s, "
 552                                "sector %llu: metadata %s (level %d) in tree "
 553                                "%llu\n", errstr, swarn.logical,
 554                                rcu_str_deref(dev->name),
 555                                (unsigned long long)swarn.sector,
 556                                ref_level ? "node" : "leaf",
 557                                ret < 0 ? -1 : ref_level,
 558                                ret < 0 ? -1 : ref_root);
 559                } while (ret != 1);
 560                btrfs_release_path(path);
 561        } else {
 562                btrfs_release_path(path);
 563                swarn.path = path;
 564                swarn.dev = dev;
 565                iterate_extent_inodes(fs_info, found_key.objectid,
 566                                        extent_item_pos, 1,
 567                                        scrub_print_warning_inode, &swarn);
 568        }
 569
 570out:
 571        btrfs_free_path(path);
 572        kfree(swarn.scratch_buf);
 573        kfree(swarn.msg_buf);
 574}
 575
 576static int scrub_fixup_readpage(u64 inum, u64 offset, u64 root, void *fixup_ctx)
 577{
 578        struct page *page = NULL;
 579        unsigned long index;
 580        struct scrub_fixup_nodatasum *fixup = fixup_ctx;
 581        int ret;
 582        int corrected = 0;
 583        struct btrfs_key key;
 584        struct inode *inode = NULL;
 585        struct btrfs_fs_info *fs_info;
 586        u64 end = offset + PAGE_SIZE - 1;
 587        struct btrfs_root *local_root;
 588        int srcu_index;
 589
 590        key.objectid = root;
 591        key.type = BTRFS_ROOT_ITEM_KEY;
 592        key.offset = (u64)-1;
 593
 594        fs_info = fixup->root->fs_info;
 595        srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
 596
 597        local_root = btrfs_read_fs_root_no_name(fs_info, &key);
 598        if (IS_ERR(local_root)) {
 599                srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 600                return PTR_ERR(local_root);
 601        }
 602
 603        key.type = BTRFS_INODE_ITEM_KEY;
 604        key.objectid = inum;
 605        key.offset = 0;
 606        inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
 607        srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
 608        if (IS_ERR(inode))
 609                return PTR_ERR(inode);
 610
 611        index = offset >> PAGE_CACHE_SHIFT;
 612
 613        page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
 614        if (!page) {
 615                ret = -ENOMEM;
 616                goto out;
 617        }
 618
 619        if (PageUptodate(page)) {
 620                if (PageDirty(page)) {
 621                        /*
 622                         * we need to write the data to the defect sector. the
 623                         * data that was in that sector is not in memory,
 624                         * because the page was modified. we must not write the
 625                         * modified page to that sector.
 626                         *
 627                         * TODO: what could be done here: wait for the delalloc
 628                         *       runner to write out that page (might involve
 629                         *       COW) and see whether the sector is still
 630                         *       referenced afterwards.
 631                         *
 632                         * For the meantime, we'll treat this error
 633                         * incorrectable, although there is a chance that a
 634                         * later scrub will find the bad sector again and that
 635                         * there's no dirty page in memory, then.
 636                         */
 637                        ret = -EIO;
 638                        goto out;
 639                }
 640                fs_info = BTRFS_I(inode)->root->fs_info;
 641                ret = repair_io_failure(fs_info, offset, PAGE_SIZE,
 642                                        fixup->logical, page,
 643                                        fixup->mirror_num);
 644                unlock_page(page);
 645                corrected = !ret;
 646        } else {
 647                /*
 648                 * we need to get good data first. the general readpage path
 649                 * will call repair_io_failure for us, we just have to make
 650                 * sure we read the bad mirror.
 651                 */
 652                ret = set_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 653                                        EXTENT_DAMAGED, GFP_NOFS);
 654                if (ret) {
 655                        /* set_extent_bits should give proper error */
 656                        WARN_ON(ret > 0);
 657                        if (ret > 0)
 658                                ret = -EFAULT;
 659                        goto out;
 660                }
 661
 662                ret = extent_read_full_page(&BTRFS_I(inode)->io_tree, page,
 663                                                btrfs_get_extent,
 664                                                fixup->mirror_num);
 665                wait_on_page_locked(page);
 666
 667                corrected = !test_range_bit(&BTRFS_I(inode)->io_tree, offset,
 668                                                end, EXTENT_DAMAGED, 0, NULL);
 669                if (!corrected)
 670                        clear_extent_bits(&BTRFS_I(inode)->io_tree, offset, end,
 671                                                EXTENT_DAMAGED, GFP_NOFS);
 672        }
 673
 674out:
 675        if (page)
 676                put_page(page);
 677        if (inode)
 678                iput(inode);
 679
 680        if (ret < 0)
 681                return ret;
 682
 683        if (ret == 0 && corrected) {
 684                /*
 685                 * we only need to call readpage for one of the inodes belonging
 686                 * to this extent. so make iterate_extent_inodes stop
 687                 */
 688                return 1;
 689        }
 690
 691        return -EIO;
 692}
 693
 694static void scrub_fixup_nodatasum(struct btrfs_work *work)
 695{
 696        int ret;
 697        struct scrub_fixup_nodatasum *fixup;
 698        struct scrub_ctx *sctx;
 699        struct btrfs_trans_handle *trans = NULL;
 700        struct btrfs_fs_info *fs_info;
 701        struct btrfs_path *path;
 702        int uncorrectable = 0;
 703
 704        fixup = container_of(work, struct scrub_fixup_nodatasum, work);
 705        sctx = fixup->sctx;
 706        fs_info = fixup->root->fs_info;
 707
 708        path = btrfs_alloc_path();
 709        if (!path) {
 710                spin_lock(&sctx->stat_lock);
 711                ++sctx->stat.malloc_errors;
 712                spin_unlock(&sctx->stat_lock);
 713                uncorrectable = 1;
 714                goto out;
 715        }
 716
 717        trans = btrfs_join_transaction(fixup->root);
 718        if (IS_ERR(trans)) {
 719                uncorrectable = 1;
 720                goto out;
 721        }
 722
 723        /*
 724         * the idea is to trigger a regular read through the standard path. we
 725         * read a page from the (failed) logical address by specifying the
 726         * corresponding copynum of the failed sector. thus, that readpage is
 727         * expected to fail.
 728         * that is the point where on-the-fly error correction will kick in
 729         * (once it's finished) and rewrite the failed sector if a good copy
 730         * can be found.
 731         */
 732        ret = iterate_inodes_from_logical(fixup->logical, fixup->root->fs_info,
 733                                                path, scrub_fixup_readpage,
 734                                                fixup);
 735        if (ret < 0) {
 736                uncorrectable = 1;
 737                goto out;
 738        }
 739        WARN_ON(ret != 1);
 740
 741        spin_lock(&sctx->stat_lock);
 742        ++sctx->stat.corrected_errors;
 743        spin_unlock(&sctx->stat_lock);
 744
 745out:
 746        if (trans && !IS_ERR(trans))
 747                btrfs_end_transaction(trans, fixup->root);
 748        if (uncorrectable) {
 749                spin_lock(&sctx->stat_lock);
 750                ++sctx->stat.uncorrectable_errors;
 751                spin_unlock(&sctx->stat_lock);
 752                btrfs_dev_replace_stats_inc(
 753                        &sctx->dev_root->fs_info->dev_replace.
 754                        num_uncorrectable_read_errors);
 755                printk_ratelimited_in_rcu(KERN_ERR
 756                        "btrfs: unable to fixup (nodatasum) error at logical %llu on dev %s\n",
 757                        (unsigned long long)fixup->logical,
 758                        rcu_str_deref(fixup->dev->name));
 759        }
 760
 761        btrfs_free_path(path);
 762        kfree(fixup);
 763
 764        scrub_pending_trans_workers_dec(sctx);
 765}
 766
 767/*
 768 * scrub_handle_errored_block gets called when either verification of the
 769 * pages failed or the bio failed to read, e.g. with EIO. In the latter
 770 * case, this function handles all pages in the bio, even though only one
 771 * may be bad.
 772 * The goal of this function is to repair the errored block by using the
 773 * contents of one of the mirrors.
 774 */
 775static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
 776{
 777        struct scrub_ctx *sctx = sblock_to_check->sctx;
 778        struct btrfs_device *dev;
 779        struct btrfs_fs_info *fs_info;
 780        u64 length;
 781        u64 logical;
 782        u64 generation;
 783        unsigned int failed_mirror_index;
 784        unsigned int is_metadata;
 785        unsigned int have_csum;
 786        u8 *csum;
 787        struct scrub_block *sblocks_for_recheck; /* holds one for each mirror */
 788        struct scrub_block *sblock_bad;
 789        int ret;
 790        int mirror_index;
 791        int page_num;
 792        int success;
 793        static DEFINE_RATELIMIT_STATE(_rs, DEFAULT_RATELIMIT_INTERVAL,
 794                                      DEFAULT_RATELIMIT_BURST);
 795
 796        BUG_ON(sblock_to_check->page_count < 1);
 797        fs_info = sctx->dev_root->fs_info;
 798        if (sblock_to_check->pagev[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
 799                /*
 800                 * if we find an error in a super block, we just report it.
 801                 * They will get written with the next transaction commit
 802                 * anyway
 803                 */
 804                spin_lock(&sctx->stat_lock);
 805                ++sctx->stat.super_errors;
 806                spin_unlock(&sctx->stat_lock);
 807                return 0;
 808        }
 809        length = sblock_to_check->page_count * PAGE_SIZE;
 810        logical = sblock_to_check->pagev[0]->logical;
 811        generation = sblock_to_check->pagev[0]->generation;
 812        BUG_ON(sblock_to_check->pagev[0]->mirror_num < 1);
 813        failed_mirror_index = sblock_to_check->pagev[0]->mirror_num - 1;
 814        is_metadata = !(sblock_to_check->pagev[0]->flags &
 815                        BTRFS_EXTENT_FLAG_DATA);
 816        have_csum = sblock_to_check->pagev[0]->have_csum;
 817        csum = sblock_to_check->pagev[0]->csum;
 818        dev = sblock_to_check->pagev[0]->dev;
 819
 820        if (sctx->is_dev_replace && !is_metadata && !have_csum) {
 821                sblocks_for_recheck = NULL;
 822                goto nodatasum_case;
 823        }
 824
 825        /*
 826         * read all mirrors one after the other. This includes to
 827         * re-read the extent or metadata block that failed (that was
 828         * the cause that this fixup code is called) another time,
 829         * page by page this time in order to know which pages
 830         * caused I/O errors and which ones are good (for all mirrors).
 831         * It is the goal to handle the situation when more than one
 832         * mirror contains I/O errors, but the errors do not
 833         * overlap, i.e. the data can be repaired by selecting the
 834         * pages from those mirrors without I/O error on the
 835         * particular pages. One example (with blocks >= 2 * PAGE_SIZE)
 836         * would be that mirror #1 has an I/O error on the first page,
 837         * the second page is good, and mirror #2 has an I/O error on
 838         * the second page, but the first page is good.
 839         * Then the first page of the first mirror can be repaired by
 840         * taking the first page of the second mirror, and the
 841         * second page of the second mirror can be repaired by
 842         * copying the contents of the 2nd page of the 1st mirror.
 843         * One more note: if the pages of one mirror contain I/O
 844         * errors, the checksum cannot be verified. In order to get
 845         * the best data for repairing, the first attempt is to find
 846         * a mirror without I/O errors and with a validated checksum.
 847         * Only if this is not possible, the pages are picked from
 848         * mirrors with I/O errors without considering the checksum.
 849         * If the latter is the case, at the end, the checksum of the
 850         * repaired area is verified in order to correctly maintain
 851         * the statistics.
 852         */
 853
 854        sblocks_for_recheck = kzalloc(BTRFS_MAX_MIRRORS *
 855                                     sizeof(*sblocks_for_recheck),
 856                                     GFP_NOFS);
 857        if (!sblocks_for_recheck) {
 858                spin_lock(&sctx->stat_lock);
 859                sctx->stat.malloc_errors++;
 860                sctx->stat.read_errors++;
 861                sctx->stat.uncorrectable_errors++;
 862                spin_unlock(&sctx->stat_lock);
 863                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 864                goto out;
 865        }
 866
 867        /* setup the context, map the logical blocks and alloc the pages */
 868        ret = scrub_setup_recheck_block(sctx, fs_info, sblock_to_check, length,
 869                                        logical, sblocks_for_recheck);
 870        if (ret) {
 871                spin_lock(&sctx->stat_lock);
 872                sctx->stat.read_errors++;
 873                sctx->stat.uncorrectable_errors++;
 874                spin_unlock(&sctx->stat_lock);
 875                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 876                goto out;
 877        }
 878        BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
 879        sblock_bad = sblocks_for_recheck + failed_mirror_index;
 880
 881        /* build and submit the bios for the failed mirror, check checksums */
 882        scrub_recheck_block(fs_info, sblock_bad, is_metadata, have_csum,
 883                            csum, generation, sctx->csum_size);
 884
 885        if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
 886            sblock_bad->no_io_error_seen) {
 887                /*
 888                 * the error disappeared after reading page by page, or
 889                 * the area was part of a huge bio and other parts of the
 890                 * bio caused I/O errors, or the block layer merged several
 891                 * read requests into one and the error is caused by a
 892                 * different bio (usually one of the two latter cases is
 893                 * the cause)
 894                 */
 895                spin_lock(&sctx->stat_lock);
 896                sctx->stat.unverified_errors++;
 897                spin_unlock(&sctx->stat_lock);
 898
 899                if (sctx->is_dev_replace)
 900                        scrub_write_block_to_dev_replace(sblock_bad);
 901                goto out;
 902        }
 903
 904        if (!sblock_bad->no_io_error_seen) {
 905                spin_lock(&sctx->stat_lock);
 906                sctx->stat.read_errors++;
 907                spin_unlock(&sctx->stat_lock);
 908                if (__ratelimit(&_rs))
 909                        scrub_print_warning("i/o error", sblock_to_check);
 910                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
 911        } else if (sblock_bad->checksum_error) {
 912                spin_lock(&sctx->stat_lock);
 913                sctx->stat.csum_errors++;
 914                spin_unlock(&sctx->stat_lock);
 915                if (__ratelimit(&_rs))
 916                        scrub_print_warning("checksum error", sblock_to_check);
 917                btrfs_dev_stat_inc_and_print(dev,
 918                                             BTRFS_DEV_STAT_CORRUPTION_ERRS);
 919        } else if (sblock_bad->header_error) {
 920                spin_lock(&sctx->stat_lock);
 921                sctx->stat.verify_errors++;
 922                spin_unlock(&sctx->stat_lock);
 923                if (__ratelimit(&_rs))
 924                        scrub_print_warning("checksum/header error",
 925                                            sblock_to_check);
 926                if (sblock_bad->generation_error)
 927                        btrfs_dev_stat_inc_and_print(dev,
 928                                BTRFS_DEV_STAT_GENERATION_ERRS);
 929                else
 930                        btrfs_dev_stat_inc_and_print(dev,
 931                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
 932        }
 933
 934        if (sctx->readonly && !sctx->is_dev_replace)
 935                goto did_not_correct_error;
 936
 937        if (!is_metadata && !have_csum) {
 938                struct scrub_fixup_nodatasum *fixup_nodatasum;
 939
 940nodatasum_case:
 941                WARN_ON(sctx->is_dev_replace);
 942
 943                /*
 944                 * !is_metadata and !have_csum, this means that the data
 945                 * might not be COW'ed, that it might be modified
 946                 * concurrently. The general strategy to work on the
 947                 * commit root does not help in the case when COW is not
 948                 * used.
 949                 */
 950                fixup_nodatasum = kzalloc(sizeof(*fixup_nodatasum), GFP_NOFS);
 951                if (!fixup_nodatasum)
 952                        goto did_not_correct_error;
 953                fixup_nodatasum->sctx = sctx;
 954                fixup_nodatasum->dev = dev;
 955                fixup_nodatasum->logical = logical;
 956                fixup_nodatasum->root = fs_info->extent_root;
 957                fixup_nodatasum->mirror_num = failed_mirror_index + 1;
 958                scrub_pending_trans_workers_inc(sctx);
 959                fixup_nodatasum->work.func = scrub_fixup_nodatasum;
 960                btrfs_queue_worker(&fs_info->scrub_workers,
 961                                   &fixup_nodatasum->work);
 962                goto out;
 963        }
 964
 965        /*
 966         * now build and submit the bios for the other mirrors, check
 967         * checksums.
 968         * First try to pick the mirror which is completely without I/O
 969         * errors and also does not have a checksum error.
 970         * If one is found, and if a checksum is present, the full block
 971         * that is known to contain an error is rewritten. Afterwards
 972         * the block is known to be corrected.
 973         * If a mirror is found which is completely correct, and no
 974         * checksum is present, only those pages are rewritten that had
 975         * an I/O error in the block to be repaired, since it cannot be
 976         * determined, which copy of the other pages is better (and it
 977         * could happen otherwise that a correct page would be
 978         * overwritten by a bad one).
 979         */
 980        for (mirror_index = 0;
 981             mirror_index < BTRFS_MAX_MIRRORS &&
 982             sblocks_for_recheck[mirror_index].page_count > 0;
 983             mirror_index++) {
 984                struct scrub_block *sblock_other;
 985
 986                if (mirror_index == failed_mirror_index)
 987                        continue;
 988                sblock_other = sblocks_for_recheck + mirror_index;
 989
 990                /* build and submit the bios, check checksums */
 991                scrub_recheck_block(fs_info, sblock_other, is_metadata,
 992                                    have_csum, csum, generation,
 993                                    sctx->csum_size);
 994
 995                if (!sblock_other->header_error &&
 996                    !sblock_other->checksum_error &&
 997                    sblock_other->no_io_error_seen) {
 998                        if (sctx->is_dev_replace) {
 999                                scrub_write_block_to_dev_replace(sblock_other);
1000                        } else {
1001                                int force_write = is_metadata || have_csum;
1002
1003                                ret = scrub_repair_block_from_good_copy(
1004                                                sblock_bad, sblock_other,
1005                                                force_write);
1006                        }
1007                        if (0 == ret)
1008                                goto corrected_error;
1009                }
1010        }
1011
1012        /*
1013         * for dev_replace, pick good pages and write to the target device.
1014         */
1015        if (sctx->is_dev_replace) {
1016                success = 1;
1017                for (page_num = 0; page_num < sblock_bad->page_count;
1018                     page_num++) {
1019                        int sub_success;
1020
1021                        sub_success = 0;
1022                        for (mirror_index = 0;
1023                             mirror_index < BTRFS_MAX_MIRRORS &&
1024                             sblocks_for_recheck[mirror_index].page_count > 0;
1025                             mirror_index++) {
1026                                struct scrub_block *sblock_other =
1027                                        sblocks_for_recheck + mirror_index;
1028                                struct scrub_page *page_other =
1029                                        sblock_other->pagev[page_num];
1030
1031                                if (!page_other->io_error) {
1032                                        ret = scrub_write_page_to_dev_replace(
1033                                                        sblock_other, page_num);
1034                                        if (ret == 0) {
1035                                                /* succeeded for this page */
1036                                                sub_success = 1;
1037                                                break;
1038                                        } else {
1039                                                btrfs_dev_replace_stats_inc(
1040                                                        &sctx->dev_root->
1041                                                        fs_info->dev_replace.
1042                                                        num_write_errors);
1043                                        }
1044                                }
1045                        }
1046
1047                        if (!sub_success) {
1048                                /*
1049                                 * did not find a mirror to fetch the page
1050                                 * from. scrub_write_page_to_dev_replace()
1051                                 * handles this case (page->io_error), by
1052                                 * filling the block with zeros before
1053                                 * submitting the write request
1054                                 */
1055                                success = 0;
1056                                ret = scrub_write_page_to_dev_replace(
1057                                                sblock_bad, page_num);
1058                                if (ret)
1059                                        btrfs_dev_replace_stats_inc(
1060                                                &sctx->dev_root->fs_info->
1061                                                dev_replace.num_write_errors);
1062                        }
1063                }
1064
1065                goto out;
1066        }
1067
1068        /*
1069         * for regular scrub, repair those pages that are errored.
1070         * In case of I/O errors in the area that is supposed to be
1071         * repaired, continue by picking good copies of those pages.
1072         * Select the good pages from mirrors to rewrite bad pages from
1073         * the area to fix. Afterwards verify the checksum of the block
1074         * that is supposed to be repaired. This verification step is
1075         * only done for the purpose of statistic counting and for the
1076         * final scrub report, whether errors remain.
1077         * A perfect algorithm could make use of the checksum and try
1078         * all possible combinations of pages from the different mirrors
1079         * until the checksum verification succeeds. For example, when
1080         * the 2nd page of mirror #1 faces I/O errors, and the 2nd page
1081         * of mirror #2 is readable but the final checksum test fails,
1082         * then the 2nd page of mirror #3 could be tried, whether now
1083         * the final checksum succeedes. But this would be a rare
1084         * exception and is therefore not implemented. At least it is
1085         * avoided that the good copy is overwritten.
1086         * A more useful improvement would be to pick the sectors
1087         * without I/O error based on sector sizes (512 bytes on legacy
1088         * disks) instead of on PAGE_SIZE. Then maybe 512 byte of one
1089         * mirror could be repaired by taking 512 byte of a different
1090         * mirror, even if other 512 byte sectors in the same PAGE_SIZE
1091         * area are unreadable.
1092         */
1093
1094        /* can only fix I/O errors from here on */
1095        if (sblock_bad->no_io_error_seen)
1096                goto did_not_correct_error;
1097
1098        success = 1;
1099        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1100                struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1101
1102                if (!page_bad->io_error)
1103                        continue;
1104
1105                for (mirror_index = 0;
1106                     mirror_index < BTRFS_MAX_MIRRORS &&
1107                     sblocks_for_recheck[mirror_index].page_count > 0;
1108                     mirror_index++) {
1109                        struct scrub_block *sblock_other = sblocks_for_recheck +
1110                                                           mirror_index;
1111                        struct scrub_page *page_other = sblock_other->pagev[
1112                                                        page_num];
1113
1114                        if (!page_other->io_error) {
1115                                ret = scrub_repair_page_from_good_copy(
1116                                        sblock_bad, sblock_other, page_num, 0);
1117                                if (0 == ret) {
1118                                        page_bad->io_error = 0;
1119                                        break; /* succeeded for this page */
1120                                }
1121                        }
1122                }
1123
1124                if (page_bad->io_error) {
1125                        /* did not find a mirror to copy the page from */
1126                        success = 0;
1127                }
1128        }
1129
1130        if (success) {
1131                if (is_metadata || have_csum) {
1132                        /*
1133                         * need to verify the checksum now that all
1134                         * sectors on disk are repaired (the write
1135                         * request for data to be repaired is on its way).
1136                         * Just be lazy and use scrub_recheck_block()
1137                         * which re-reads the data before the checksum
1138                         * is verified, but most likely the data comes out
1139                         * of the page cache.
1140                         */
1141                        scrub_recheck_block(fs_info, sblock_bad,
1142                                            is_metadata, have_csum, csum,
1143                                            generation, sctx->csum_size);
1144                        if (!sblock_bad->header_error &&
1145                            !sblock_bad->checksum_error &&
1146                            sblock_bad->no_io_error_seen)
1147                                goto corrected_error;
1148                        else
1149                                goto did_not_correct_error;
1150                } else {
1151corrected_error:
1152                        spin_lock(&sctx->stat_lock);
1153                        sctx->stat.corrected_errors++;
1154                        spin_unlock(&sctx->stat_lock);
1155                        printk_ratelimited_in_rcu(KERN_ERR
1156                                "btrfs: fixed up error at logical %llu on dev %s\n",
1157                                (unsigned long long)logical,
1158                                rcu_str_deref(dev->name));
1159                }
1160        } else {
1161did_not_correct_error:
1162                spin_lock(&sctx->stat_lock);
1163                sctx->stat.uncorrectable_errors++;
1164                spin_unlock(&sctx->stat_lock);
1165                printk_ratelimited_in_rcu(KERN_ERR
1166                        "btrfs: unable to fixup (regular) error at logical %llu on dev %s\n",
1167                        (unsigned long long)logical,
1168                        rcu_str_deref(dev->name));
1169        }
1170
1171out:
1172        if (sblocks_for_recheck) {
1173                for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS;
1174                     mirror_index++) {
1175                        struct scrub_block *sblock = sblocks_for_recheck +
1176                                                     mirror_index;
1177                        int page_index;
1178
1179                        for (page_index = 0; page_index < sblock->page_count;
1180                             page_index++) {
1181                                sblock->pagev[page_index]->sblock = NULL;
1182                                scrub_page_put(sblock->pagev[page_index]);
1183                        }
1184                }
1185                kfree(sblocks_for_recheck);
1186        }
1187
1188        return 0;
1189}
1190
1191static int scrub_setup_recheck_block(struct scrub_ctx *sctx,
1192                                     struct btrfs_fs_info *fs_info,
1193                                     struct scrub_block *original_sblock,
1194                                     u64 length, u64 logical,
1195                                     struct scrub_block *sblocks_for_recheck)
1196{
1197        int page_index;
1198        int mirror_index;
1199        int ret;
1200
1201        /*
1202         * note: the two members ref_count and outstanding_pages
1203         * are not used (and not set) in the blocks that are used for
1204         * the recheck procedure
1205         */
1206
1207        page_index = 0;
1208        while (length > 0) {
1209                u64 sublen = min_t(u64, length, PAGE_SIZE);
1210                u64 mapped_length = sublen;
1211                struct btrfs_bio *bbio = NULL;
1212
1213                /*
1214                 * with a length of PAGE_SIZE, each returned stripe
1215                 * represents one mirror
1216                 */
1217                ret = btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, logical,
1218                                      &mapped_length, &bbio, 0);
1219                if (ret || !bbio || mapped_length < sublen) {
1220                        kfree(bbio);
1221                        return -EIO;
1222                }
1223
1224                BUG_ON(page_index >= SCRUB_PAGES_PER_RD_BIO);
1225                for (mirror_index = 0; mirror_index < (int)bbio->num_stripes;
1226                     mirror_index++) {
1227                        struct scrub_block *sblock;
1228                        struct scrub_page *page;
1229
1230                        if (mirror_index >= BTRFS_MAX_MIRRORS)
1231                                continue;
1232
1233                        sblock = sblocks_for_recheck + mirror_index;
1234                        sblock->sctx = sctx;
1235                        page = kzalloc(sizeof(*page), GFP_NOFS);
1236                        if (!page) {
1237leave_nomem:
1238                                spin_lock(&sctx->stat_lock);
1239                                sctx->stat.malloc_errors++;
1240                                spin_unlock(&sctx->stat_lock);
1241                                kfree(bbio);
1242                                return -ENOMEM;
1243                        }
1244                        scrub_page_get(page);
1245                        sblock->pagev[page_index] = page;
1246                        page->logical = logical;
1247                        page->physical = bbio->stripes[mirror_index].physical;
1248                        BUG_ON(page_index >= original_sblock->page_count);
1249                        page->physical_for_dev_replace =
1250                                original_sblock->pagev[page_index]->
1251                                physical_for_dev_replace;
1252                        /* for missing devices, dev->bdev is NULL */
1253                        page->dev = bbio->stripes[mirror_index].dev;
1254                        page->mirror_num = mirror_index + 1;
1255                        sblock->page_count++;
1256                        page->page = alloc_page(GFP_NOFS);
1257                        if (!page->page)
1258                                goto leave_nomem;
1259                }
1260                kfree(bbio);
1261                length -= sublen;
1262                logical += sublen;
1263                page_index++;
1264        }
1265
1266        return 0;
1267}
1268
1269/*
1270 * this function will check the on disk data for checksum errors, header
1271 * errors and read I/O errors. If any I/O errors happen, the exact pages
1272 * which are errored are marked as being bad. The goal is to enable scrub
1273 * to take those pages that are not errored from all the mirrors so that
1274 * the pages that are errored in the just handled mirror can be repaired.
1275 */
1276static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1277                                struct scrub_block *sblock, int is_metadata,
1278                                int have_csum, u8 *csum, u64 generation,
1279                                u16 csum_size)
1280{
1281        int page_num;
1282
1283        sblock->no_io_error_seen = 1;
1284        sblock->header_error = 0;
1285        sblock->checksum_error = 0;
1286
1287        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1288                struct bio *bio;
1289                struct scrub_page *page = sblock->pagev[page_num];
1290                DECLARE_COMPLETION_ONSTACK(complete);
1291
1292                if (page->dev->bdev == NULL) {
1293                        page->io_error = 1;
1294                        sblock->no_io_error_seen = 0;
1295                        continue;
1296                }
1297
1298                WARN_ON(!page->page);
1299                bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1300                if (!bio) {
1301                        page->io_error = 1;
1302                        sblock->no_io_error_seen = 0;
1303                        continue;
1304                }
1305                bio->bi_bdev = page->dev->bdev;
1306                bio->bi_sector = page->physical >> 9;
1307                bio->bi_end_io = scrub_complete_bio_end_io;
1308                bio->bi_private = &complete;
1309
1310                bio_add_page(bio, page->page, PAGE_SIZE, 0);
1311                btrfsic_submit_bio(READ, bio);
1312
1313                /* this will also unplug the queue */
1314                wait_for_completion(&complete);
1315
1316                page->io_error = !test_bit(BIO_UPTODATE, &bio->bi_flags);
1317                if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
1318                        sblock->no_io_error_seen = 0;
1319                bio_put(bio);
1320        }
1321
1322        if (sblock->no_io_error_seen)
1323                scrub_recheck_block_checksum(fs_info, sblock, is_metadata,
1324                                             have_csum, csum, generation,
1325                                             csum_size);
1326
1327        return;
1328}
1329
1330static void scrub_recheck_block_checksum(struct btrfs_fs_info *fs_info,
1331                                         struct scrub_block *sblock,
1332                                         int is_metadata, int have_csum,
1333                                         const u8 *csum, u64 generation,
1334                                         u16 csum_size)
1335{
1336        int page_num;
1337        u8 calculated_csum[BTRFS_CSUM_SIZE];
1338        u32 crc = ~(u32)0;
1339        void *mapped_buffer;
1340
1341        WARN_ON(!sblock->pagev[0]->page);
1342        if (is_metadata) {
1343                struct btrfs_header *h;
1344
1345                mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1346                h = (struct btrfs_header *)mapped_buffer;
1347
1348                if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr) ||
1349                    memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE) ||
1350                    memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1351                           BTRFS_UUID_SIZE)) {
1352                        sblock->header_error = 1;
1353                } else if (generation != le64_to_cpu(h->generation)) {
1354                        sblock->header_error = 1;
1355                        sblock->generation_error = 1;
1356                }
1357                csum = h->csum;
1358        } else {
1359                if (!have_csum)
1360                        return;
1361
1362                mapped_buffer = kmap_atomic(sblock->pagev[0]->page);
1363        }
1364
1365        for (page_num = 0;;) {
1366                if (page_num == 0 && is_metadata)
1367                        crc = btrfs_csum_data(
1368                                ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE,
1369                                crc, PAGE_SIZE - BTRFS_CSUM_SIZE);
1370                else
1371                        crc = btrfs_csum_data(mapped_buffer, crc, PAGE_SIZE);
1372
1373                kunmap_atomic(mapped_buffer);
1374                page_num++;
1375                if (page_num >= sblock->page_count)
1376                        break;
1377                WARN_ON(!sblock->pagev[page_num]->page);
1378
1379                mapped_buffer = kmap_atomic(sblock->pagev[page_num]->page);
1380        }
1381
1382        btrfs_csum_final(crc, calculated_csum);
1383        if (memcmp(calculated_csum, csum, csum_size))
1384                sblock->checksum_error = 1;
1385}
1386
1387static void scrub_complete_bio_end_io(struct bio *bio, int err)
1388{
1389        complete((struct completion *)bio->bi_private);
1390}
1391
1392static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1393                                             struct scrub_block *sblock_good,
1394                                             int force_write)
1395{
1396        int page_num;
1397        int ret = 0;
1398
1399        for (page_num = 0; page_num < sblock_bad->page_count; page_num++) {
1400                int ret_sub;
1401
1402                ret_sub = scrub_repair_page_from_good_copy(sblock_bad,
1403                                                           sblock_good,
1404                                                           page_num,
1405                                                           force_write);
1406                if (ret_sub)
1407                        ret = ret_sub;
1408        }
1409
1410        return ret;
1411}
1412
1413static int scrub_repair_page_from_good_copy(struct scrub_block *sblock_bad,
1414                                            struct scrub_block *sblock_good,
1415                                            int page_num, int force_write)
1416{
1417        struct scrub_page *page_bad = sblock_bad->pagev[page_num];
1418        struct scrub_page *page_good = sblock_good->pagev[page_num];
1419
1420        BUG_ON(page_bad->page == NULL);
1421        BUG_ON(page_good->page == NULL);
1422        if (force_write || sblock_bad->header_error ||
1423            sblock_bad->checksum_error || page_bad->io_error) {
1424                struct bio *bio;
1425                int ret;
1426                DECLARE_COMPLETION_ONSTACK(complete);
1427
1428                if (!page_bad->dev->bdev) {
1429                        printk_ratelimited(KERN_WARNING
1430                                "btrfs: scrub_repair_page_from_good_copy(bdev == NULL) is unexpected!\n");
1431                        return -EIO;
1432                }
1433
1434                bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
1435                if (!bio)
1436                        return -EIO;
1437                bio->bi_bdev = page_bad->dev->bdev;
1438                bio->bi_sector = page_bad->physical >> 9;
1439                bio->bi_end_io = scrub_complete_bio_end_io;
1440                bio->bi_private = &complete;
1441
1442                ret = bio_add_page(bio, page_good->page, PAGE_SIZE, 0);
1443                if (PAGE_SIZE != ret) {
1444                        bio_put(bio);
1445                        return -EIO;
1446                }
1447                btrfsic_submit_bio(WRITE, bio);
1448
1449                /* this will also unplug the queue */
1450                wait_for_completion(&complete);
1451                if (!bio_flagged(bio, BIO_UPTODATE)) {
1452                        btrfs_dev_stat_inc_and_print(page_bad->dev,
1453                                BTRFS_DEV_STAT_WRITE_ERRS);
1454                        btrfs_dev_replace_stats_inc(
1455                                &sblock_bad->sctx->dev_root->fs_info->
1456                                dev_replace.num_write_errors);
1457                        bio_put(bio);
1458                        return -EIO;
1459                }
1460                bio_put(bio);
1461        }
1462
1463        return 0;
1464}
1465
1466static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1467{
1468        int page_num;
1469
1470        for (page_num = 0; page_num < sblock->page_count; page_num++) {
1471                int ret;
1472
1473                ret = scrub_write_page_to_dev_replace(sblock, page_num);
1474                if (ret)
1475                        btrfs_dev_replace_stats_inc(
1476                                &sblock->sctx->dev_root->fs_info->dev_replace.
1477                                num_write_errors);
1478        }
1479}
1480
1481static int scrub_write_page_to_dev_replace(struct scrub_block *sblock,
1482                                           int page_num)
1483{
1484        struct scrub_page *spage = sblock->pagev[page_num];
1485
1486        BUG_ON(spage->page == NULL);
1487        if (spage->io_error) {
1488                void *mapped_buffer = kmap_atomic(spage->page);
1489
1490                memset(mapped_buffer, 0, PAGE_CACHE_SIZE);
1491                flush_dcache_page(spage->page);
1492                kunmap_atomic(mapped_buffer);
1493        }
1494        return scrub_add_page_to_wr_bio(sblock->sctx, spage);
1495}
1496
1497static int scrub_add_page_to_wr_bio(struct scrub_ctx *sctx,
1498                                    struct scrub_page *spage)
1499{
1500        struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1501        struct scrub_bio *sbio;
1502        int ret;
1503
1504        mutex_lock(&wr_ctx->wr_lock);
1505again:
1506        if (!wr_ctx->wr_curr_bio) {
1507                wr_ctx->wr_curr_bio = kzalloc(sizeof(*wr_ctx->wr_curr_bio),
1508                                              GFP_NOFS);
1509                if (!wr_ctx->wr_curr_bio) {
1510                        mutex_unlock(&wr_ctx->wr_lock);
1511                        return -ENOMEM;
1512                }
1513                wr_ctx->wr_curr_bio->sctx = sctx;
1514                wr_ctx->wr_curr_bio->page_count = 0;
1515        }
1516        sbio = wr_ctx->wr_curr_bio;
1517        if (sbio->page_count == 0) {
1518                struct bio *bio;
1519
1520                sbio->physical = spage->physical_for_dev_replace;
1521                sbio->logical = spage->logical;
1522                sbio->dev = wr_ctx->tgtdev;
1523                bio = sbio->bio;
1524                if (!bio) {
1525                        bio = btrfs_io_bio_alloc(GFP_NOFS, wr_ctx->pages_per_wr_bio);
1526                        if (!bio) {
1527                                mutex_unlock(&wr_ctx->wr_lock);
1528                                return -ENOMEM;
1529                        }
1530                        sbio->bio = bio;
1531                }
1532
1533                bio->bi_private = sbio;
1534                bio->bi_end_io = scrub_wr_bio_end_io;
1535                bio->bi_bdev = sbio->dev->bdev;
1536                bio->bi_sector = sbio->physical >> 9;
1537                sbio->err = 0;
1538        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1539                   spage->physical_for_dev_replace ||
1540                   sbio->logical + sbio->page_count * PAGE_SIZE !=
1541                   spage->logical) {
1542                scrub_wr_submit(sctx);
1543                goto again;
1544        }
1545
1546        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1547        if (ret != PAGE_SIZE) {
1548                if (sbio->page_count < 1) {
1549                        bio_put(sbio->bio);
1550                        sbio->bio = NULL;
1551                        mutex_unlock(&wr_ctx->wr_lock);
1552                        return -EIO;
1553                }
1554                scrub_wr_submit(sctx);
1555                goto again;
1556        }
1557
1558        sbio->pagev[sbio->page_count] = spage;
1559        scrub_page_get(spage);
1560        sbio->page_count++;
1561        if (sbio->page_count == wr_ctx->pages_per_wr_bio)
1562                scrub_wr_submit(sctx);
1563        mutex_unlock(&wr_ctx->wr_lock);
1564
1565        return 0;
1566}
1567
1568static void scrub_wr_submit(struct scrub_ctx *sctx)
1569{
1570        struct scrub_wr_ctx *wr_ctx = &sctx->wr_ctx;
1571        struct scrub_bio *sbio;
1572
1573        if (!wr_ctx->wr_curr_bio)
1574                return;
1575
1576        sbio = wr_ctx->wr_curr_bio;
1577        wr_ctx->wr_curr_bio = NULL;
1578        WARN_ON(!sbio->bio->bi_bdev);
1579        scrub_pending_bio_inc(sctx);
1580        /* process all writes in a single worker thread. Then the block layer
1581         * orders the requests before sending them to the driver which
1582         * doubled the write performance on spinning disks when measured
1583         * with Linux 3.5 */
1584        btrfsic_submit_bio(WRITE, sbio->bio);
1585}
1586
1587static void scrub_wr_bio_end_io(struct bio *bio, int err)
1588{
1589        struct scrub_bio *sbio = bio->bi_private;
1590        struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
1591
1592        sbio->err = err;
1593        sbio->bio = bio;
1594
1595        sbio->work.func = scrub_wr_bio_end_io_worker;
1596        btrfs_queue_worker(&fs_info->scrub_wr_completion_workers, &sbio->work);
1597}
1598
1599static void scrub_wr_bio_end_io_worker(struct btrfs_work *work)
1600{
1601        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1602        struct scrub_ctx *sctx = sbio->sctx;
1603        int i;
1604
1605        WARN_ON(sbio->page_count > SCRUB_PAGES_PER_WR_BIO);
1606        if (sbio->err) {
1607                struct btrfs_dev_replace *dev_replace =
1608                        &sbio->sctx->dev_root->fs_info->dev_replace;
1609
1610                for (i = 0; i < sbio->page_count; i++) {
1611                        struct scrub_page *spage = sbio->pagev[i];
1612
1613                        spage->io_error = 1;
1614                        btrfs_dev_replace_stats_inc(&dev_replace->
1615                                                    num_write_errors);
1616                }
1617        }
1618
1619        for (i = 0; i < sbio->page_count; i++)
1620                scrub_page_put(sbio->pagev[i]);
1621
1622        bio_put(sbio->bio);
1623        kfree(sbio);
1624        scrub_pending_bio_dec(sctx);
1625}
1626
1627static int scrub_checksum(struct scrub_block *sblock)
1628{
1629        u64 flags;
1630        int ret;
1631
1632        WARN_ON(sblock->page_count < 1);
1633        flags = sblock->pagev[0]->flags;
1634        ret = 0;
1635        if (flags & BTRFS_EXTENT_FLAG_DATA)
1636                ret = scrub_checksum_data(sblock);
1637        else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1638                ret = scrub_checksum_tree_block(sblock);
1639        else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1640                (void)scrub_checksum_super(sblock);
1641        else
1642                WARN_ON(1);
1643        if (ret)
1644                scrub_handle_errored_block(sblock);
1645
1646        return ret;
1647}
1648
1649static int scrub_checksum_data(struct scrub_block *sblock)
1650{
1651        struct scrub_ctx *sctx = sblock->sctx;
1652        u8 csum[BTRFS_CSUM_SIZE];
1653        u8 *on_disk_csum;
1654        struct page *page;
1655        void *buffer;
1656        u32 crc = ~(u32)0;
1657        int fail = 0;
1658        u64 len;
1659        int index;
1660
1661        BUG_ON(sblock->page_count < 1);
1662        if (!sblock->pagev[0]->have_csum)
1663                return 0;
1664
1665        on_disk_csum = sblock->pagev[0]->csum;
1666        page = sblock->pagev[0]->page;
1667        buffer = kmap_atomic(page);
1668
1669        len = sctx->sectorsize;
1670        index = 0;
1671        for (;;) {
1672                u64 l = min_t(u64, len, PAGE_SIZE);
1673
1674                crc = btrfs_csum_data(buffer, crc, l);
1675                kunmap_atomic(buffer);
1676                len -= l;
1677                if (len == 0)
1678                        break;
1679                index++;
1680                BUG_ON(index >= sblock->page_count);
1681                BUG_ON(!sblock->pagev[index]->page);
1682                page = sblock->pagev[index]->page;
1683                buffer = kmap_atomic(page);
1684        }
1685
1686        btrfs_csum_final(crc, csum);
1687        if (memcmp(csum, on_disk_csum, sctx->csum_size))
1688                fail = 1;
1689
1690        return fail;
1691}
1692
1693static int scrub_checksum_tree_block(struct scrub_block *sblock)
1694{
1695        struct scrub_ctx *sctx = sblock->sctx;
1696        struct btrfs_header *h;
1697        struct btrfs_root *root = sctx->dev_root;
1698        struct btrfs_fs_info *fs_info = root->fs_info;
1699        u8 calculated_csum[BTRFS_CSUM_SIZE];
1700        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1701        struct page *page;
1702        void *mapped_buffer;
1703        u64 mapped_size;
1704        void *p;
1705        u32 crc = ~(u32)0;
1706        int fail = 0;
1707        int crc_fail = 0;
1708        u64 len;
1709        int index;
1710
1711        BUG_ON(sblock->page_count < 1);
1712        page = sblock->pagev[0]->page;
1713        mapped_buffer = kmap_atomic(page);
1714        h = (struct btrfs_header *)mapped_buffer;
1715        memcpy(on_disk_csum, h->csum, sctx->csum_size);
1716
1717        /*
1718         * we don't use the getter functions here, as we
1719         * a) don't have an extent buffer and
1720         * b) the page is already kmapped
1721         */
1722
1723        if (sblock->pagev[0]->logical != le64_to_cpu(h->bytenr))
1724                ++fail;
1725
1726        if (sblock->pagev[0]->generation != le64_to_cpu(h->generation))
1727                ++fail;
1728
1729        if (memcmp(h->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1730                ++fail;
1731
1732        if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
1733                   BTRFS_UUID_SIZE))
1734                ++fail;
1735
1736        WARN_ON(sctx->nodesize != sctx->leafsize);
1737        len = sctx->nodesize - BTRFS_CSUM_SIZE;
1738        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1739        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1740        index = 0;
1741        for (;;) {
1742                u64 l = min_t(u64, len, mapped_size);
1743
1744                crc = btrfs_csum_data(p, crc, l);
1745                kunmap_atomic(mapped_buffer);
1746                len -= l;
1747                if (len == 0)
1748                        break;
1749                index++;
1750                BUG_ON(index >= sblock->page_count);
1751                BUG_ON(!sblock->pagev[index]->page);
1752                page = sblock->pagev[index]->page;
1753                mapped_buffer = kmap_atomic(page);
1754                mapped_size = PAGE_SIZE;
1755                p = mapped_buffer;
1756        }
1757
1758        btrfs_csum_final(crc, calculated_csum);
1759        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1760                ++crc_fail;
1761
1762        return fail || crc_fail;
1763}
1764
1765static int scrub_checksum_super(struct scrub_block *sblock)
1766{
1767        struct btrfs_super_block *s;
1768        struct scrub_ctx *sctx = sblock->sctx;
1769        struct btrfs_root *root = sctx->dev_root;
1770        struct btrfs_fs_info *fs_info = root->fs_info;
1771        u8 calculated_csum[BTRFS_CSUM_SIZE];
1772        u8 on_disk_csum[BTRFS_CSUM_SIZE];
1773        struct page *page;
1774        void *mapped_buffer;
1775        u64 mapped_size;
1776        void *p;
1777        u32 crc = ~(u32)0;
1778        int fail_gen = 0;
1779        int fail_cor = 0;
1780        u64 len;
1781        int index;
1782
1783        BUG_ON(sblock->page_count < 1);
1784        page = sblock->pagev[0]->page;
1785        mapped_buffer = kmap_atomic(page);
1786        s = (struct btrfs_super_block *)mapped_buffer;
1787        memcpy(on_disk_csum, s->csum, sctx->csum_size);
1788
1789        if (sblock->pagev[0]->logical != le64_to_cpu(s->bytenr))
1790                ++fail_cor;
1791
1792        if (sblock->pagev[0]->generation != le64_to_cpu(s->generation))
1793                ++fail_gen;
1794
1795        if (memcmp(s->fsid, fs_info->fsid, BTRFS_UUID_SIZE))
1796                ++fail_cor;
1797
1798        len = BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE;
1799        mapped_size = PAGE_SIZE - BTRFS_CSUM_SIZE;
1800        p = ((u8 *)mapped_buffer) + BTRFS_CSUM_SIZE;
1801        index = 0;
1802        for (;;) {
1803                u64 l = min_t(u64, len, mapped_size);
1804
1805                crc = btrfs_csum_data(p, crc, l);
1806                kunmap_atomic(mapped_buffer);
1807                len -= l;
1808                if (len == 0)
1809                        break;
1810                index++;
1811                BUG_ON(index >= sblock->page_count);
1812                BUG_ON(!sblock->pagev[index]->page);
1813                page = sblock->pagev[index]->page;
1814                mapped_buffer = kmap_atomic(page);
1815                mapped_size = PAGE_SIZE;
1816                p = mapped_buffer;
1817        }
1818
1819        btrfs_csum_final(crc, calculated_csum);
1820        if (memcmp(calculated_csum, on_disk_csum, sctx->csum_size))
1821                ++fail_cor;
1822
1823        if (fail_cor + fail_gen) {
1824                /*
1825                 * if we find an error in a super block, we just report it.
1826                 * They will get written with the next transaction commit
1827                 * anyway
1828                 */
1829                spin_lock(&sctx->stat_lock);
1830                ++sctx->stat.super_errors;
1831                spin_unlock(&sctx->stat_lock);
1832                if (fail_cor)
1833                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1834                                BTRFS_DEV_STAT_CORRUPTION_ERRS);
1835                else
1836                        btrfs_dev_stat_inc_and_print(sblock->pagev[0]->dev,
1837                                BTRFS_DEV_STAT_GENERATION_ERRS);
1838        }
1839
1840        return fail_cor + fail_gen;
1841}
1842
1843static void scrub_block_get(struct scrub_block *sblock)
1844{
1845        atomic_inc(&sblock->ref_count);
1846}
1847
1848static void scrub_block_put(struct scrub_block *sblock)
1849{
1850        if (atomic_dec_and_test(&sblock->ref_count)) {
1851                int i;
1852
1853                for (i = 0; i < sblock->page_count; i++)
1854                        scrub_page_put(sblock->pagev[i]);
1855                kfree(sblock);
1856        }
1857}
1858
1859static void scrub_page_get(struct scrub_page *spage)
1860{
1861        atomic_inc(&spage->ref_count);
1862}
1863
1864static void scrub_page_put(struct scrub_page *spage)
1865{
1866        if (atomic_dec_and_test(&spage->ref_count)) {
1867                if (spage->page)
1868                        __free_page(spage->page);
1869                kfree(spage);
1870        }
1871}
1872
1873static void scrub_submit(struct scrub_ctx *sctx)
1874{
1875        struct scrub_bio *sbio;
1876
1877        if (sctx->curr == -1)
1878                return;
1879
1880        sbio = sctx->bios[sctx->curr];
1881        sctx->curr = -1;
1882        scrub_pending_bio_inc(sctx);
1883
1884        if (!sbio->bio->bi_bdev) {
1885                /*
1886                 * this case should not happen. If btrfs_map_block() is
1887                 * wrong, it could happen for dev-replace operations on
1888                 * missing devices when no mirrors are available, but in
1889                 * this case it should already fail the mount.
1890                 * This case is handled correctly (but _very_ slowly).
1891                 */
1892                printk_ratelimited(KERN_WARNING
1893                        "btrfs: scrub_submit(bio bdev == NULL) is unexpected!\n");
1894                bio_endio(sbio->bio, -EIO);
1895        } else {
1896                btrfsic_submit_bio(READ, sbio->bio);
1897        }
1898}
1899
1900static int scrub_add_page_to_rd_bio(struct scrub_ctx *sctx,
1901                                    struct scrub_page *spage)
1902{
1903        struct scrub_block *sblock = spage->sblock;
1904        struct scrub_bio *sbio;
1905        int ret;
1906
1907again:
1908        /*
1909         * grab a fresh bio or wait for one to become available
1910         */
1911        while (sctx->curr == -1) {
1912                spin_lock(&sctx->list_lock);
1913                sctx->curr = sctx->first_free;
1914                if (sctx->curr != -1) {
1915                        sctx->first_free = sctx->bios[sctx->curr]->next_free;
1916                        sctx->bios[sctx->curr]->next_free = -1;
1917                        sctx->bios[sctx->curr]->page_count = 0;
1918                        spin_unlock(&sctx->list_lock);
1919                } else {
1920                        spin_unlock(&sctx->list_lock);
1921                        wait_event(sctx->list_wait, sctx->first_free != -1);
1922                }
1923        }
1924        sbio = sctx->bios[sctx->curr];
1925        if (sbio->page_count == 0) {
1926                struct bio *bio;
1927
1928                sbio->physical = spage->physical;
1929                sbio->logical = spage->logical;
1930                sbio->dev = spage->dev;
1931                bio = sbio->bio;
1932                if (!bio) {
1933                        bio = btrfs_io_bio_alloc(GFP_NOFS, sctx->pages_per_rd_bio);
1934                        if (!bio)
1935                                return -ENOMEM;
1936                        sbio->bio = bio;
1937                }
1938
1939                bio->bi_private = sbio;
1940                bio->bi_end_io = scrub_bio_end_io;
1941                bio->bi_bdev = sbio->dev->bdev;
1942                bio->bi_sector = sbio->physical >> 9;
1943                sbio->err = 0;
1944        } else if (sbio->physical + sbio->page_count * PAGE_SIZE !=
1945                   spage->physical ||
1946                   sbio->logical + sbio->page_count * PAGE_SIZE !=
1947                   spage->logical ||
1948                   sbio->dev != spage->dev) {
1949                scrub_submit(sctx);
1950                goto again;
1951        }
1952
1953        sbio->pagev[sbio->page_count] = spage;
1954        ret = bio_add_page(sbio->bio, spage->page, PAGE_SIZE, 0);
1955        if (ret != PAGE_SIZE) {
1956                if (sbio->page_count < 1) {
1957                        bio_put(sbio->bio);
1958                        sbio->bio = NULL;
1959                        return -EIO;
1960                }
1961                scrub_submit(sctx);
1962                goto again;
1963        }
1964
1965        scrub_block_get(sblock); /* one for the page added to the bio */
1966        atomic_inc(&sblock->outstanding_pages);
1967        sbio->page_count++;
1968        if (sbio->page_count == sctx->pages_per_rd_bio)
1969                scrub_submit(sctx);
1970
1971        return 0;
1972}
1973
1974static int scrub_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
1975                       u64 physical, struct btrfs_device *dev, u64 flags,
1976                       u64 gen, int mirror_num, u8 *csum, int force,
1977                       u64 physical_for_dev_replace)
1978{
1979        struct scrub_block *sblock;
1980        int index;
1981
1982        sblock = kzalloc(sizeof(*sblock), GFP_NOFS);
1983        if (!sblock) {
1984                spin_lock(&sctx->stat_lock);
1985                sctx->stat.malloc_errors++;
1986                spin_unlock(&sctx->stat_lock);
1987                return -ENOMEM;
1988        }
1989
1990        /* one ref inside this function, plus one for each page added to
1991         * a bio later on */
1992        atomic_set(&sblock->ref_count, 1);
1993        sblock->sctx = sctx;
1994        sblock->no_io_error_seen = 1;
1995
1996        for (index = 0; len > 0; index++) {
1997                struct scrub_page *spage;
1998                u64 l = min_t(u64, len, PAGE_SIZE);
1999
2000                spage = kzalloc(sizeof(*spage), GFP_NOFS);
2001                if (!spage) {
2002leave_nomem:
2003                        spin_lock(&sctx->stat_lock);
2004                        sctx->stat.malloc_errors++;
2005                        spin_unlock(&sctx->stat_lock);
2006                        scrub_block_put(sblock);
2007                        return -ENOMEM;
2008                }
2009                BUG_ON(index >= SCRUB_MAX_PAGES_PER_BLOCK);
2010                scrub_page_get(spage);
2011                sblock->pagev[index] = spage;
2012                spage->sblock = sblock;
2013                spage->dev = dev;
2014                spage->flags = flags;
2015                spage->generation = gen;
2016                spage->logical = logical;
2017                spage->physical = physical;
2018                spage->physical_for_dev_replace = physical_for_dev_replace;
2019                spage->mirror_num = mirror_num;
2020                if (csum) {
2021                        spage->have_csum = 1;
2022                        memcpy(spage->csum, csum, sctx->csum_size);
2023                } else {
2024                        spage->have_csum = 0;
2025                }
2026                sblock->page_count++;
2027                spage->page = alloc_page(GFP_NOFS);
2028                if (!spage->page)
2029                        goto leave_nomem;
2030                len -= l;
2031                logical += l;
2032                physical += l;
2033                physical_for_dev_replace += l;
2034        }
2035
2036        WARN_ON(sblock->page_count == 0);
2037        for (index = 0; index < sblock->page_count; index++) {
2038                struct scrub_page *spage = sblock->pagev[index];
2039                int ret;
2040
2041                ret = scrub_add_page_to_rd_bio(sctx, spage);
2042                if (ret) {
2043                        scrub_block_put(sblock);
2044                        return ret;
2045                }
2046        }
2047
2048        if (force)
2049                scrub_submit(sctx);
2050
2051        /* last one frees, either here or in bio completion for last page */
2052        scrub_block_put(sblock);
2053        return 0;
2054}
2055
2056static void scrub_bio_end_io(struct bio *bio, int err)
2057{
2058        struct scrub_bio *sbio = bio->bi_private;
2059        struct btrfs_fs_info *fs_info = sbio->dev->dev_root->fs_info;
2060
2061        sbio->err = err;
2062        sbio->bio = bio;
2063
2064        btrfs_queue_worker(&fs_info->scrub_workers, &sbio->work);
2065}
2066
2067static void scrub_bio_end_io_worker(struct btrfs_work *work)
2068{
2069        struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2070        struct scrub_ctx *sctx = sbio->sctx;
2071        int i;
2072
2073        BUG_ON(sbio->page_count > SCRUB_PAGES_PER_RD_BIO);
2074        if (sbio->err) {
2075                for (i = 0; i < sbio->page_count; i++) {
2076                        struct scrub_page *spage = sbio->pagev[i];
2077
2078                        spage->io_error = 1;
2079                        spage->sblock->no_io_error_seen = 0;
2080                }
2081        }
2082
2083        /* now complete the scrub_block items that have all pages completed */
2084        for (i = 0; i < sbio->page_count; i++) {
2085                struct scrub_page *spage = sbio->pagev[i];
2086                struct scrub_block *sblock = spage->sblock;
2087
2088                if (atomic_dec_and_test(&sblock->outstanding_pages))
2089                        scrub_block_complete(sblock);
2090                scrub_block_put(sblock);
2091        }
2092
2093        bio_put(sbio->bio);
2094        sbio->bio = NULL;
2095        spin_lock(&sctx->list_lock);
2096        sbio->next_free = sctx->first_free;
2097        sctx->first_free = sbio->index;
2098        spin_unlock(&sctx->list_lock);
2099
2100        if (sctx->is_dev_replace &&
2101            atomic_read(&sctx->wr_ctx.flush_all_writes)) {
2102                mutex_lock(&sctx->wr_ctx.wr_lock);
2103                scrub_wr_submit(sctx);
2104                mutex_unlock(&sctx->wr_ctx.wr_lock);
2105        }
2106
2107        scrub_pending_bio_dec(sctx);
2108}
2109
2110static void scrub_block_complete(struct scrub_block *sblock)
2111{
2112        if (!sblock->no_io_error_seen) {
2113                scrub_handle_errored_block(sblock);
2114        } else {
2115                /*
2116                 * if has checksum error, write via repair mechanism in
2117                 * dev replace case, otherwise write here in dev replace
2118                 * case.
2119                 */
2120                if (!scrub_checksum(sblock) && sblock->sctx->is_dev_replace)
2121                        scrub_write_block_to_dev_replace(sblock);
2122        }
2123}
2124
2125static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u64 len,
2126                           u8 *csum)
2127{
2128        struct btrfs_ordered_sum *sum = NULL;
2129        int ret = 0;
2130        unsigned long i;
2131        unsigned long num_sectors;
2132
2133        while (!list_empty(&sctx->csum_list)) {
2134                sum = list_first_entry(&sctx->csum_list,
2135                                       struct btrfs_ordered_sum, list);
2136                if (sum->bytenr > logical)
2137                        return 0;
2138                if (sum->bytenr + sum->len > logical)
2139                        break;
2140
2141                ++sctx->stat.csum_discards;
2142                list_del(&sum->list);
2143                kfree(sum);
2144                sum = NULL;
2145        }
2146        if (!sum)
2147                return 0;
2148
2149        num_sectors = sum->len / sctx->sectorsize;
2150        for (i = 0; i < num_sectors; ++i) {
2151                if (sum->sums[i].bytenr == logical) {
2152                        memcpy(csum, &sum->sums[i].sum, sctx->csum_size);
2153                        ret = 1;
2154                        break;
2155                }
2156        }
2157        if (ret && i == num_sectors - 1) {
2158                list_del(&sum->list);
2159                kfree(sum);
2160        }
2161        return ret;
2162}
2163
2164/* scrub extent tries to collect up to 64 kB for each bio */
2165static int scrub_extent(struct scrub_ctx *sctx, u64 logical, u64 len,
2166                        u64 physical, struct btrfs_device *dev, u64 flags,
2167                        u64 gen, int mirror_num, u64 physical_for_dev_replace)
2168{
2169        int ret;
2170        u8 csum[BTRFS_CSUM_SIZE];
2171        u32 blocksize;
2172
2173        if (flags & BTRFS_EXTENT_FLAG_DATA) {
2174                blocksize = sctx->sectorsize;
2175                spin_lock(&sctx->stat_lock);
2176                sctx->stat.data_extents_scrubbed++;
2177                sctx->stat.data_bytes_scrubbed += len;
2178                spin_unlock(&sctx->stat_lock);
2179        } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2180                WARN_ON(sctx->nodesize != sctx->leafsize);
2181                blocksize = sctx->nodesize;
2182                spin_lock(&sctx->stat_lock);
2183                sctx->stat.tree_extents_scrubbed++;
2184                sctx->stat.tree_bytes_scrubbed += len;
2185                spin_unlock(&sctx->stat_lock);
2186        } else {
2187                blocksize = sctx->sectorsize;
2188                WARN_ON(1);
2189        }
2190
2191        while (len) {
2192                u64 l = min_t(u64, len, blocksize);
2193                int have_csum = 0;
2194
2195                if (flags & BTRFS_EXTENT_FLAG_DATA) {
2196                        /* push csums to sbio */
2197                        have_csum = scrub_find_csum(sctx, logical, l, csum);
2198                        if (have_csum == 0)
2199                                ++sctx->stat.no_csum;
2200                        if (sctx->is_dev_replace && !have_csum) {
2201                                ret = copy_nocow_pages(sctx, logical, l,
2202                                                       mirror_num,
2203                                                      physical_for_dev_replace);
2204                                goto behind_scrub_pages;
2205                        }
2206                }
2207                ret = scrub_pages(sctx, logical, l, physical, dev, flags, gen,
2208                                  mirror_num, have_csum ? csum : NULL, 0,
2209                                  physical_for_dev_replace);
2210behind_scrub_pages:
2211                if (ret)
2212                        return ret;
2213                len -= l;
2214                logical += l;
2215                physical += l;
2216                physical_for_dev_replace += l;
2217        }
2218        return 0;
2219}
2220
2221static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
2222                                           struct map_lookup *map,
2223                                           struct btrfs_device *scrub_dev,
2224                                           int num, u64 base, u64 length,
2225                                           int is_dev_replace)
2226{
2227        struct btrfs_path *path;
2228        struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
2229        struct btrfs_root *root = fs_info->extent_root;
2230        struct btrfs_root *csum_root = fs_info->csum_root;
2231        struct btrfs_extent_item *extent;
2232        struct blk_plug plug;
2233        u64 flags;
2234        int ret;
2235        int slot;
2236        u64 nstripes;
2237        struct extent_buffer *l;
2238        struct btrfs_key key;
2239        u64 physical;
2240        u64 logical;
2241        u64 logic_end;
2242        u64 generation;
2243        int mirror_num;
2244        struct reada_control *reada1;
2245        struct reada_control *reada2;
2246        struct btrfs_key key_start;
2247        struct btrfs_key key_end;
2248        u64 increment = map->stripe_len;
2249        u64 offset;
2250        u64 extent_logical;
2251        u64 extent_physical;
2252        u64 extent_len;
2253        struct btrfs_device *extent_dev;
2254        int extent_mirror_num;
2255        int stop_loop;
2256
2257        if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
2258                         BTRFS_BLOCK_GROUP_RAID6)) {
2259                if (num >= nr_data_stripes(map)) {
2260                        return 0;
2261                }
2262        }
2263
2264        nstripes = length;
2265        offset = 0;
2266        do_div(nstripes, map->stripe_len);
2267        if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2268                offset = map->stripe_len * num;
2269                increment = map->stripe_len * map->num_stripes;
2270                mirror_num = 1;
2271        } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2272                int factor = map->num_stripes / map->sub_stripes;
2273                offset = map->stripe_len * (num / map->sub_stripes);
2274                increment = map->stripe_len * factor;
2275                mirror_num = num % map->sub_stripes + 1;
2276        } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2277                increment = map->stripe_len;
2278                mirror_num = num % map->num_stripes + 1;
2279        } else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2280                increment = map->stripe_len;
2281                mirror_num = num % map->num_stripes + 1;
2282        } else {
2283                increment = map->stripe_len;
2284                mirror_num = 1;
2285        }
2286
2287        path = btrfs_alloc_path();
2288        if (!path)
2289                return -ENOMEM;
2290
2291        /*
2292         * work on commit root. The related disk blocks are static as
2293         * long as COW is applied. This means, it is save to rewrite
2294         * them to repair disk errors without any race conditions
2295         */
2296        path->search_commit_root = 1;
2297        path->skip_locking = 1;
2298
2299        /*
2300         * trigger the readahead for extent tree csum tree and wait for
2301         * completion. During readahead, the scrub is officially paused
2302         * to not hold off transaction commits
2303         */
2304        logical = base + offset;
2305
2306        wait_event(sctx->list_wait,
2307                   atomic_read(&sctx->bios_in_flight) == 0);
2308        atomic_inc(&fs_info->scrubs_paused);
2309        wake_up(&fs_info->scrub_pause_wait);
2310
2311        /* FIXME it might be better to start readahead at commit root */
2312        key_start.objectid = logical;
2313        key_start.type = BTRFS_EXTENT_ITEM_KEY;
2314        key_start.offset = (u64)0;
2315        key_end.objectid = base + offset + nstripes * increment;
2316        key_end.type = BTRFS_METADATA_ITEM_KEY;
2317        key_end.offset = (u64)-1;
2318        reada1 = btrfs_reada_add(root, &key_start, &key_end);
2319
2320        key_start.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2321        key_start.type = BTRFS_EXTENT_CSUM_KEY;
2322        key_start.offset = logical;
2323        key_end.objectid = BTRFS_EXTENT_CSUM_OBJECTID;
2324        key_end.type = BTRFS_EXTENT_CSUM_KEY;
2325        key_end.offset = base + offset + nstripes * increment;
2326        reada2 = btrfs_reada_add(csum_root, &key_start, &key_end);
2327
2328        if (!IS_ERR(reada1))
2329                btrfs_reada_wait(reada1);
2330        if (!IS_ERR(reada2))
2331                btrfs_reada_wait(reada2);
2332
2333        mutex_lock(&fs_info->scrub_lock);
2334        while (atomic_read(&fs_info->scrub_pause_req)) {
2335                mutex_unlock(&fs_info->scrub_lock);
2336                wait_event(fs_info->scrub_pause_wait,
2337                   atomic_read(&fs_info->scrub_pause_req) == 0);
2338                mutex_lock(&fs_info->scrub_lock);
2339        }
2340        atomic_dec(&fs_info->scrubs_paused);
2341        mutex_unlock(&fs_info->scrub_lock);
2342        wake_up(&fs_info->scrub_pause_wait);
2343
2344        /*
2345         * collect all data csums for the stripe to avoid seeking during
2346         * the scrub. This might currently (crc32) end up to be about 1MB
2347         */
2348        blk_start_plug(&plug);
2349
2350        /*
2351         * now find all extents for each stripe and scrub them
2352         */
2353        logical = base + offset;
2354        physical = map->stripes[num].physical;
2355        logic_end = logical + increment * nstripes;
2356        ret = 0;
2357        while (logical < logic_end) {
2358                /*
2359                 * canceled?
2360                 */
2361                if (atomic_read(&fs_info->scrub_cancel_req) ||
2362                    atomic_read(&sctx->cancel_req)) {
2363                        ret = -ECANCELED;
2364                        goto out;
2365                }
2366                /*
2367                 * check to see if we have to pause
2368                 */
2369                if (atomic_read(&fs_info->scrub_pause_req)) {
2370                        /* push queued extents */
2371                        atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2372                        scrub_submit(sctx);
2373                        mutex_lock(&sctx->wr_ctx.wr_lock);
2374                        scrub_wr_submit(sctx);
2375                        mutex_unlock(&sctx->wr_ctx.wr_lock);
2376                        wait_event(sctx->list_wait,
2377                                   atomic_read(&sctx->bios_in_flight) == 0);
2378                        atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2379                        atomic_inc(&fs_info->scrubs_paused);
2380                        wake_up(&fs_info->scrub_pause_wait);
2381                        mutex_lock(&fs_info->scrub_lock);
2382                        while (atomic_read(&fs_info->scrub_pause_req)) {
2383                                mutex_unlock(&fs_info->scrub_lock);
2384                                wait_event(fs_info->scrub_pause_wait,
2385                                   atomic_read(&fs_info->scrub_pause_req) == 0);
2386                                mutex_lock(&fs_info->scrub_lock);
2387                        }
2388                        atomic_dec(&fs_info->scrubs_paused);
2389                        mutex_unlock(&fs_info->scrub_lock);
2390                        wake_up(&fs_info->scrub_pause_wait);
2391                }
2392
2393                key.objectid = logical;
2394                key.type = BTRFS_EXTENT_ITEM_KEY;
2395                key.offset = (u64)-1;
2396
2397                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2398                if (ret < 0)
2399                        goto out;
2400
2401                if (ret > 0) {
2402                        ret = btrfs_previous_item(root, path, 0,
2403                                                  BTRFS_EXTENT_ITEM_KEY);
2404                        if (ret < 0)
2405                                goto out;
2406                        if (ret > 0) {
2407                                /* there's no smaller item, so stick with the
2408                                 * larger one */
2409                                btrfs_release_path(path);
2410                                ret = btrfs_search_slot(NULL, root, &key,
2411                                                        path, 0, 0);
2412                                if (ret < 0)
2413                                        goto out;
2414                        }
2415                }
2416
2417                stop_loop = 0;
2418                while (1) {
2419                        u64 bytes;
2420
2421                        l = path->nodes[0];
2422                        slot = path->slots[0];
2423                        if (slot >= btrfs_header_nritems(l)) {
2424                                ret = btrfs_next_leaf(root, path);
2425                                if (ret == 0)
2426                                        continue;
2427                                if (ret < 0)
2428                                        goto out;
2429
2430                                stop_loop = 1;
2431                                break;
2432                        }
2433                        btrfs_item_key_to_cpu(l, &key, slot);
2434
2435                        if (key.type == BTRFS_METADATA_ITEM_KEY)
2436                                bytes = root->leafsize;
2437                        else
2438                                bytes = key.offset;
2439
2440                        if (key.objectid + bytes <= logical)
2441                                goto next;
2442
2443                        if (key.type != BTRFS_EXTENT_ITEM_KEY &&
2444                            key.type != BTRFS_METADATA_ITEM_KEY)
2445                                goto next;
2446
2447                        if (key.objectid >= logical + map->stripe_len) {
2448                                /* out of this device extent */
2449                                if (key.objectid >= logic_end)
2450                                        stop_loop = 1;
2451                                break;
2452                        }
2453
2454                        extent = btrfs_item_ptr(l, slot,
2455                                                struct btrfs_extent_item);
2456                        flags = btrfs_extent_flags(l, extent);
2457                        generation = btrfs_extent_generation(l, extent);
2458
2459                        if (key.objectid < logical &&
2460                            (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) {
2461                                printk(KERN_ERR
2462                                       "btrfs scrub: tree block %llu spanning "
2463                                       "stripes, ignored. logical=%llu\n",
2464                                       (unsigned long long)key.objectid,
2465                                       (unsigned long long)logical);
2466                                goto next;
2467                        }
2468
2469again:
2470                        extent_logical = key.objectid;
2471                        extent_len = bytes;
2472
2473                        /*
2474                         * trim extent to this stripe
2475                         */
2476                        if (extent_logical < logical) {
2477                                extent_len -= logical - extent_logical;
2478                                extent_logical = logical;
2479                        }
2480                        if (extent_logical + extent_len >
2481                            logical + map->stripe_len) {
2482                                extent_len = logical + map->stripe_len -
2483                                             extent_logical;
2484                        }
2485
2486                        extent_physical = extent_logical - logical + physical;
2487                        extent_dev = scrub_dev;
2488                        extent_mirror_num = mirror_num;
2489                        if (is_dev_replace)
2490                                scrub_remap_extent(fs_info, extent_logical,
2491                                                   extent_len, &extent_physical,
2492                                                   &extent_dev,
2493                                                   &extent_mirror_num);
2494
2495                        ret = btrfs_lookup_csums_range(csum_root, logical,
2496                                                logical + map->stripe_len - 1,
2497                                                &sctx->csum_list, 1);
2498                        if (ret)
2499                                goto out;
2500
2501                        ret = scrub_extent(sctx, extent_logical, extent_len,
2502                                           extent_physical, extent_dev, flags,
2503                                           generation, extent_mirror_num,
2504                                           extent_physical);
2505                        if (ret)
2506                                goto out;
2507
2508                        if (extent_logical + extent_len <
2509                            key.objectid + bytes) {
2510                                logical += increment;
2511                                physical += map->stripe_len;
2512
2513                                if (logical < key.objectid + bytes) {
2514                                        cond_resched();
2515                                        goto again;
2516                                }
2517
2518                                if (logical >= logic_end) {
2519                                        stop_loop = 1;
2520                                        break;
2521                                }
2522                        }
2523next:
2524                        path->slots[0]++;
2525                }
2526                btrfs_release_path(path);
2527                logical += increment;
2528                physical += map->stripe_len;
2529                spin_lock(&sctx->stat_lock);
2530                if (stop_loop)
2531                        sctx->stat.last_physical = map->stripes[num].physical +
2532                                                   length;
2533                else
2534                        sctx->stat.last_physical = physical;
2535                spin_unlock(&sctx->stat_lock);
2536                if (stop_loop)
2537                        break;
2538        }
2539out:
2540        /* push queued extents */
2541        scrub_submit(sctx);
2542        mutex_lock(&sctx->wr_ctx.wr_lock);
2543        scrub_wr_submit(sctx);
2544        mutex_unlock(&sctx->wr_ctx.wr_lock);
2545
2546        blk_finish_plug(&plug);
2547        btrfs_free_path(path);
2548        return ret < 0 ? ret : 0;
2549}
2550
2551static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
2552                                          struct btrfs_device *scrub_dev,
2553                                          u64 chunk_tree, u64 chunk_objectid,
2554                                          u64 chunk_offset, u64 length,
2555                                          u64 dev_offset, int is_dev_replace)
2556{
2557        struct btrfs_mapping_tree *map_tree =
2558                &sctx->dev_root->fs_info->mapping_tree;
2559        struct map_lookup *map;
2560        struct extent_map *em;
2561        int i;
2562        int ret = 0;
2563
2564        read_lock(&map_tree->map_tree.lock);
2565        em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2566        read_unlock(&map_tree->map_tree.lock);
2567
2568        if (!em)
2569                return -EINVAL;
2570
2571        map = (struct map_lookup *)em->bdev;
2572        if (em->start != chunk_offset)
2573                goto out;
2574
2575        if (em->len < length)
2576                goto out;
2577
2578        for (i = 0; i < map->num_stripes; ++i) {
2579                if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
2580                    map->stripes[i].physical == dev_offset) {
2581                        ret = scrub_stripe(sctx, map, scrub_dev, i,
2582                                           chunk_offset, length,
2583                                           is_dev_replace);
2584                        if (ret)
2585                                goto out;
2586                }
2587        }
2588out:
2589        free_extent_map(em);
2590
2591        return ret;
2592}
2593
2594static noinline_for_stack
2595int scrub_enumerate_chunks(struct scrub_ctx *sctx,
2596                           struct btrfs_device *scrub_dev, u64 start, u64 end,
2597                           int is_dev_replace)
2598{
2599        struct btrfs_dev_extent *dev_extent = NULL;
2600        struct btrfs_path *path;
2601        struct btrfs_root *root = sctx->dev_root;
2602        struct btrfs_fs_info *fs_info = root->fs_info;
2603        u64 length;
2604        u64 chunk_tree;
2605        u64 chunk_objectid;
2606        u64 chunk_offset;
2607        int ret;
2608        int slot;
2609        struct extent_buffer *l;
2610        struct btrfs_key key;
2611        struct btrfs_key found_key;
2612        struct btrfs_block_group_cache *cache;
2613        struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
2614
2615        path = btrfs_alloc_path();
2616        if (!path)
2617                return -ENOMEM;
2618
2619        path->reada = 2;
2620        path->search_commit_root = 1;
2621        path->skip_locking = 1;
2622
2623        key.objectid = scrub_dev->devid;
2624        key.offset = 0ull;
2625        key.type = BTRFS_DEV_EXTENT_KEY;
2626
2627        while (1) {
2628                ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2629                if (ret < 0)
2630                        break;
2631                if (ret > 0) {
2632                        if (path->slots[0] >=
2633                            btrfs_header_nritems(path->nodes[0])) {
2634                                ret = btrfs_next_leaf(root, path);
2635                                if (ret)
2636                                        break;
2637                        }
2638                }
2639
2640                l = path->nodes[0];
2641                slot = path->slots[0];
2642
2643                btrfs_item_key_to_cpu(l, &found_key, slot);
2644
2645                if (found_key.objectid != scrub_dev->devid)
2646                        break;
2647
2648                if (btrfs_key_type(&found_key) != BTRFS_DEV_EXTENT_KEY)
2649                        break;
2650
2651                if (found_key.offset >= end)
2652                        break;
2653
2654                if (found_key.offset < key.offset)
2655                        break;
2656
2657                dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2658                length = btrfs_dev_extent_length(l, dev_extent);
2659
2660                if (found_key.offset + length <= start) {
2661                        key.offset = found_key.offset + length;
2662                        btrfs_release_path(path);
2663                        continue;
2664                }
2665
2666                chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2667                chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2668                chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2669
2670                /*
2671                 * get a reference on the corresponding block group to prevent
2672                 * the chunk from going away while we scrub it
2673                 */
2674                cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2675                if (!cache) {
2676                        ret = -ENOENT;
2677                        break;
2678                }
2679                dev_replace->cursor_right = found_key.offset + length;
2680                dev_replace->cursor_left = found_key.offset;
2681                dev_replace->item_needs_writeback = 1;
2682                ret = scrub_chunk(sctx, scrub_dev, chunk_tree, chunk_objectid,
2683                                  chunk_offset, length, found_key.offset,
2684                                  is_dev_replace);
2685
2686                /*
2687                 * flush, submit all pending read and write bios, afterwards
2688                 * wait for them.
2689                 * Note that in the dev replace case, a read request causes
2690                 * write requests that are submitted in the read completion
2691                 * worker. Therefore in the current situation, it is required
2692                 * that all write requests are flushed, so that all read and
2693                 * write requests are really completed when bios_in_flight
2694                 * changes to 0.
2695                 */
2696                atomic_set(&sctx->wr_ctx.flush_all_writes, 1);
2697                scrub_submit(sctx);
2698                mutex_lock(&sctx->wr_ctx.wr_lock);
2699                scrub_wr_submit(sctx);
2700                mutex_unlock(&sctx->wr_ctx.wr_lock);
2701
2702                wait_event(sctx->list_wait,
2703                           atomic_read(&sctx->bios_in_flight) == 0);
2704                atomic_set(&sctx->wr_ctx.flush_all_writes, 0);
2705                atomic_inc(&fs_info->scrubs_paused);
2706                wake_up(&fs_info->scrub_pause_wait);
2707                wait_event(sctx->list_wait,
2708                           atomic_read(&sctx->workers_pending) == 0);
2709
2710                mutex_lock(&fs_info->scrub_lock);
2711                while (atomic_read(&fs_info->scrub_pause_req)) {
2712                        mutex_unlock(&fs_info->scrub_lock);
2713                        wait_event(fs_info->scrub_pause_wait,
2714                           atomic_read(&fs_info->scrub_pause_req) == 0);
2715                        mutex_lock(&fs_info->scrub_lock);
2716                }
2717                atomic_dec(&fs_info->scrubs_paused);
2718                mutex_unlock(&fs_info->scrub_lock);
2719                wake_up(&fs_info->scrub_pause_wait);
2720
2721                dev_replace->cursor_left = dev_replace->cursor_right;
2722                dev_replace->item_needs_writeback = 1;
2723                btrfs_put_block_group(cache);
2724                if (ret)
2725                        break;
2726                if (is_dev_replace &&
2727                    atomic64_read(&dev_replace->num_write_errors) > 0) {
2728                        ret = -EIO;
2729                        break;
2730                }
2731                if (sctx->stat.malloc_errors > 0) {
2732                        ret = -ENOMEM;
2733                        break;
2734                }
2735
2736                key.offset = found_key.offset + length;
2737                btrfs_release_path(path);
2738        }
2739
2740        btrfs_free_path(path);
2741
2742        /*
2743         * ret can still be 1 from search_slot or next_leaf,
2744         * that's not an error
2745         */
2746        return ret < 0 ? ret : 0;
2747}
2748
2749static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
2750                                           struct btrfs_device *scrub_dev)
2751{
2752        int     i;
2753        u64     bytenr;
2754        u64     gen;
2755        int     ret;
2756        struct btrfs_root *root = sctx->dev_root;
2757
2758        if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
2759                return -EIO;
2760
2761        gen = root->fs_info->last_trans_committed;
2762
2763        for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
2764                bytenr = btrfs_sb_offset(i);
2765                if (bytenr + BTRFS_SUPER_INFO_SIZE > scrub_dev->total_bytes)
2766                        break;
2767
2768                ret = scrub_pages(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
2769                                  scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
2770                                  NULL, 1, bytenr);
2771                if (ret)
2772                        return ret;
2773        }
2774        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2775
2776        return 0;
2777}
2778
2779/*
2780 * get a reference count on fs_info->scrub_workers. start worker if necessary
2781 */
2782static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
2783                                                int is_dev_replace)
2784{
2785        int ret = 0;
2786
2787        mutex_lock(&fs_info->scrub_lock);
2788        if (fs_info->scrub_workers_refcnt == 0) {
2789                if (is_dev_replace)
2790                        btrfs_init_workers(&fs_info->scrub_workers, "scrub", 1,
2791                                        &fs_info->generic_worker);
2792                else
2793                        btrfs_init_workers(&fs_info->scrub_workers, "scrub",
2794                                        fs_info->thread_pool_size,
2795                                        &fs_info->generic_worker);
2796                fs_info->scrub_workers.idle_thresh = 4;
2797                ret = btrfs_start_workers(&fs_info->scrub_workers);
2798                if (ret)
2799                        goto out;
2800                btrfs_init_workers(&fs_info->scrub_wr_completion_workers,
2801                                   "scrubwrc",
2802                                   fs_info->thread_pool_size,
2803                                   &fs_info->generic_worker);
2804                fs_info->scrub_wr_completion_workers.idle_thresh = 2;
2805                ret = btrfs_start_workers(
2806                                &fs_info->scrub_wr_completion_workers);
2807                if (ret)
2808                        goto out;
2809                btrfs_init_workers(&fs_info->scrub_nocow_workers, "scrubnc", 1,
2810                                   &fs_info->generic_worker);
2811                ret = btrfs_start_workers(&fs_info->scrub_nocow_workers);
2812                if (ret)
2813                        goto out;
2814        }
2815        ++fs_info->scrub_workers_refcnt;
2816out:
2817        mutex_unlock(&fs_info->scrub_lock);
2818
2819        return ret;
2820}
2821
2822static noinline_for_stack void scrub_workers_put(struct btrfs_fs_info *fs_info)
2823{
2824        mutex_lock(&fs_info->scrub_lock);
2825        if (--fs_info->scrub_workers_refcnt == 0) {
2826                btrfs_stop_workers(&fs_info->scrub_workers);
2827                btrfs_stop_workers(&fs_info->scrub_wr_completion_workers);
2828                btrfs_stop_workers(&fs_info->scrub_nocow_workers);
2829        }
2830        WARN_ON(fs_info->scrub_workers_refcnt < 0);
2831        mutex_unlock(&fs_info->scrub_lock);
2832}
2833
2834int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
2835                    u64 end, struct btrfs_scrub_progress *progress,
2836                    int readonly, int is_dev_replace)
2837{
2838        struct scrub_ctx *sctx;
2839        int ret;
2840        struct btrfs_device *dev;
2841
2842        if (btrfs_fs_closing(fs_info))
2843                return -EINVAL;
2844
2845        /*
2846         * check some assumptions
2847         */
2848        if (fs_info->chunk_root->nodesize != fs_info->chunk_root->leafsize) {
2849                printk(KERN_ERR
2850                       "btrfs_scrub: size assumption nodesize == leafsize (%d == %d) fails\n",
2851                       fs_info->chunk_root->nodesize,
2852                       fs_info->chunk_root->leafsize);
2853                return -EINVAL;
2854        }
2855
2856        if (fs_info->chunk_root->nodesize > BTRFS_STRIPE_LEN) {
2857                /*
2858                 * in this case scrub is unable to calculate the checksum
2859                 * the way scrub is implemented. Do not handle this
2860                 * situation at all because it won't ever happen.
2861                 */
2862                printk(KERN_ERR
2863                       "btrfs_scrub: size assumption nodesize <= BTRFS_STRIPE_LEN (%d <= %d) fails\n",
2864                       fs_info->chunk_root->nodesize, BTRFS_STRIPE_LEN);
2865                return -EINVAL;
2866        }
2867
2868        if (fs_info->chunk_root->sectorsize != PAGE_SIZE) {
2869                /* not supported for data w/o checksums */
2870                printk(KERN_ERR
2871                       "btrfs_scrub: size assumption sectorsize != PAGE_SIZE (%d != %lld) fails\n",
2872                       fs_info->chunk_root->sectorsize,
2873                       (unsigned long long)PAGE_SIZE);
2874                return -EINVAL;
2875        }
2876
2877        if (fs_info->chunk_root->nodesize >
2878            PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK ||
2879            fs_info->chunk_root->sectorsize >
2880            PAGE_SIZE * SCRUB_MAX_PAGES_PER_BLOCK) {
2881                /*
2882                 * would exhaust the array bounds of pagev member in
2883                 * struct scrub_block
2884                 */
2885                pr_err("btrfs_scrub: size assumption nodesize and sectorsize <= SCRUB_MAX_PAGES_PER_BLOCK (%d <= %d && %d <= %d) fails\n",
2886                       fs_info->chunk_root->nodesize,
2887                       SCRUB_MAX_PAGES_PER_BLOCK,
2888                       fs_info->chunk_root->sectorsize,
2889                       SCRUB_MAX_PAGES_PER_BLOCK);
2890                return -EINVAL;
2891        }
2892
2893        ret = scrub_workers_get(fs_info, is_dev_replace);
2894        if (ret)
2895                return ret;
2896
2897        mutex_lock(&fs_info->fs_devices->device_list_mutex);
2898        dev = btrfs_find_device(fs_info, devid, NULL, NULL);
2899        if (!dev || (dev->missing && !is_dev_replace)) {
2900                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2901                scrub_workers_put(fs_info);
2902                return -ENODEV;
2903        }
2904        mutex_lock(&fs_info->scrub_lock);
2905
2906        if (!dev->in_fs_metadata || dev->is_tgtdev_for_dev_replace) {
2907                mutex_unlock(&fs_info->scrub_lock);
2908                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2909                scrub_workers_put(fs_info);
2910                return -EIO;
2911        }
2912
2913        btrfs_dev_replace_lock(&fs_info->dev_replace);
2914        if (dev->scrub_device ||
2915            (!is_dev_replace &&
2916             btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
2917                btrfs_dev_replace_unlock(&fs_info->dev_replace);
2918                mutex_unlock(&fs_info->scrub_lock);
2919                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2920                scrub_workers_put(fs_info);
2921                return -EINPROGRESS;
2922        }
2923        btrfs_dev_replace_unlock(&fs_info->dev_replace);
2924        sctx = scrub_setup_ctx(dev, is_dev_replace);
2925        if (IS_ERR(sctx)) {
2926                mutex_unlock(&fs_info->scrub_lock);
2927                mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2928                scrub_workers_put(fs_info);
2929                return PTR_ERR(sctx);
2930        }
2931        sctx->readonly = readonly;
2932        dev->scrub_device = sctx;
2933
2934        atomic_inc(&fs_info->scrubs_running);
2935        mutex_unlock(&fs_info->scrub_lock);
2936        mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2937
2938        if (!is_dev_replace) {
2939                down_read(&fs_info->scrub_super_lock);
2940                ret = scrub_supers(sctx, dev);
2941                up_read(&fs_info->scrub_super_lock);
2942        }
2943
2944        if (!ret)
2945                ret = scrub_enumerate_chunks(sctx, dev, start, end,
2946                                             is_dev_replace);
2947
2948        wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
2949        atomic_dec(&fs_info->scrubs_running);
2950        wake_up(&fs_info->scrub_pause_wait);
2951
2952        wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
2953
2954        if (progress)
2955                memcpy(progress, &sctx->stat, sizeof(*progress));
2956
2957        mutex_lock(&fs_info->scrub_lock);
2958        dev->scrub_device = NULL;
2959        mutex_unlock(&fs_info->scrub_lock);
2960
2961        scrub_free_ctx(sctx);
2962        scrub_workers_put(fs_info);
2963
2964        return ret;
2965}
2966
2967void btrfs_scrub_pause(struct btrfs_root *root)
2968{
2969        struct btrfs_fs_info *fs_info = root->fs_info;
2970
2971        mutex_lock(&fs_info->scrub_lock);
2972        atomic_inc(&fs_info->scrub_pause_req);
2973        while (atomic_read(&fs_info->scrubs_paused) !=
2974               atomic_read(&fs_info->scrubs_running)) {
2975                mutex_unlock(&fs_info->scrub_lock);
2976                wait_event(fs_info->scrub_pause_wait,
2977                           atomic_read(&fs_info->scrubs_paused) ==
2978                           atomic_read(&fs_info->scrubs_running));
2979                mutex_lock(&fs_info->scrub_lock);
2980        }
2981        mutex_unlock(&fs_info->scrub_lock);
2982}
2983
2984void btrfs_scrub_continue(struct btrfs_root *root)
2985{
2986        struct btrfs_fs_info *fs_info = root->fs_info;
2987
2988        atomic_dec(&fs_info->scrub_pause_req);
2989        wake_up(&fs_info->scrub_pause_wait);
2990}
2991
2992void btrfs_scrub_pause_super(struct btrfs_root *root)
2993{
2994        down_write(&root->fs_info->scrub_super_lock);
2995}
2996
2997void btrfs_scrub_continue_super(struct btrfs_root *root)
2998{
2999        up_write(&root->fs_info->scrub_super_lock);
3000}
3001
3002int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
3003{
3004        mutex_lock(&fs_info->scrub_lock);
3005        if (!atomic_read(&fs_info->scrubs_running)) {
3006                mutex_unlock(&fs_info->scrub_lock);
3007                return -ENOTCONN;
3008        }
3009
3010        atomic_inc(&fs_info->scrub_cancel_req);
3011        while (atomic_read(&fs_info->scrubs_running)) {
3012                mutex_unlock(&fs_info->scrub_lock);
3013                wait_event(fs_info->scrub_pause_wait,
3014                           atomic_read(&fs_info->scrubs_running) == 0);
3015                mutex_lock(&fs_info->scrub_lock);
3016        }
3017        atomic_dec(&fs_info->scrub_cancel_req);
3018        mutex_unlock(&fs_info->scrub_lock);
3019
3020        return 0;
3021}
3022
3023int btrfs_scrub_cancel_dev(struct btrfs_fs_info *fs_info,
3024                           struct btrfs_device *dev)
3025{
3026        struct scrub_ctx *sctx;
3027
3028        mutex_lock(&fs_info->scrub_lock);
3029        sctx = dev->scrub_device;
3030        if (!sctx) {
3031                mutex_unlock(&fs_info->scrub_lock);
3032                return -ENOTCONN;
3033        }
3034        atomic_inc(&sctx->cancel_req);
3035        while (dev->scrub_device) {
3036                mutex_unlock(&fs_info->scrub_lock);
3037                wait_event(fs_info->scrub_pause_wait,
3038                           dev->scrub_device == NULL);
3039                mutex_lock(&fs_info->scrub_lock);
3040        }
3041        mutex_unlock(&fs_info->scrub_lock);
3042
3043        return 0;
3044}
3045
3046int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3047                         struct btrfs_scrub_progress *progress)
3048{
3049        struct btrfs_device *dev;
3050        struct scrub_ctx *sctx = NULL;
3051
3052        mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
3053        dev = btrfs_find_device(root->fs_info, devid, NULL, NULL);
3054        if (dev)
3055                sctx = dev->scrub_device;
3056        if (sctx)
3057                memcpy(progress, &sctx->stat, sizeof(*progress));
3058        mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
3059
3060        return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
3061}
3062
3063static void scrub_remap_extent(struct btrfs_fs_info *fs_info,
3064                               u64 extent_logical, u64 extent_len,
3065                               u64 *extent_physical,
3066                               struct btrfs_device **extent_dev,
3067                               int *extent_mirror_num)
3068{
3069        u64 mapped_length;
3070        struct btrfs_bio *bbio = NULL;
3071        int ret;
3072
3073        mapped_length = extent_len;
3074        ret = btrfs_map_block(fs_info, READ, extent_logical,
3075                              &mapped_length, &bbio, 0);
3076        if (ret || !bbio || mapped_length < extent_len ||
3077            !bbio->stripes[0].dev->bdev) {
3078                kfree(bbio);
3079                return;
3080        }
3081
3082        *extent_physical = bbio->stripes[0].physical;
3083        *extent_mirror_num = bbio->mirror_num;
3084        *extent_dev = bbio->stripes[0].dev;
3085        kfree(bbio);
3086}
3087
3088static int scrub_setup_wr_ctx(struct scrub_ctx *sctx,
3089                              struct scrub_wr_ctx *wr_ctx,
3090                              struct btrfs_fs_info *fs_info,
3091                              struct btrfs_device *dev,
3092                              int is_dev_replace)
3093{
3094        WARN_ON(wr_ctx->wr_curr_bio != NULL);
3095
3096        mutex_init(&wr_ctx->wr_lock);
3097        wr_ctx->wr_curr_bio = NULL;
3098        if (!is_dev_replace)
3099                return 0;
3100
3101        WARN_ON(!dev->bdev);
3102        wr_ctx->pages_per_wr_bio = min_t(int, SCRUB_PAGES_PER_WR_BIO,
3103                                         bio_get_nr_vecs(dev->bdev));
3104        wr_ctx->tgtdev = dev;
3105        atomic_set(&wr_ctx->flush_all_writes, 0);
3106        return 0;
3107}
3108
3109static void scrub_free_wr_ctx(struct scrub_wr_ctx *wr_ctx)
3110{
3111        mutex_lock(&wr_ctx->wr_lock);
3112        kfree(wr_ctx->wr_curr_bio);
3113        wr_ctx->wr_curr_bio = NULL;
3114        mutex_unlock(&wr_ctx->wr_lock);
3115}
3116
3117static int copy_nocow_pages(struct scrub_ctx *sctx, u64 logical, u64 len,
3118                            int mirror_num, u64 physical_for_dev_replace)
3119{
3120        struct scrub_copy_nocow_ctx *nocow_ctx;
3121        struct btrfs_fs_info *fs_info = sctx->dev_root->fs_info;
3122
3123        nocow_ctx = kzalloc(sizeof(*nocow_ctx), GFP_NOFS);
3124        if (!nocow_ctx) {
3125                spin_lock(&sctx->stat_lock);
3126                sctx->stat.malloc_errors++;
3127                spin_unlock(&sctx->stat_lock);
3128                return -ENOMEM;
3129        }
3130
3131        scrub_pending_trans_workers_inc(sctx);
3132
3133        nocow_ctx->sctx = sctx;
3134        nocow_ctx->logical = logical;
3135        nocow_ctx->len = len;
3136        nocow_ctx->mirror_num = mirror_num;
3137        nocow_ctx->physical_for_dev_replace = physical_for_dev_replace;
3138        nocow_ctx->work.func = copy_nocow_pages_worker;
3139        btrfs_queue_worker(&fs_info->scrub_nocow_workers,
3140                           &nocow_ctx->work);
3141
3142        return 0;
3143}
3144
3145static void copy_nocow_pages_worker(struct btrfs_work *work)
3146{
3147        struct scrub_copy_nocow_ctx *nocow_ctx =
3148                container_of(work, struct scrub_copy_nocow_ctx, work);
3149        struct scrub_ctx *sctx = nocow_ctx->sctx;
3150        u64 logical = nocow_ctx->logical;
3151        u64 len = nocow_ctx->len;
3152        int mirror_num = nocow_ctx->mirror_num;
3153        u64 physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3154        int ret;
3155        struct btrfs_trans_handle *trans = NULL;
3156        struct btrfs_fs_info *fs_info;
3157        struct btrfs_path *path;
3158        struct btrfs_root *root;
3159        int not_written = 0;
3160
3161        fs_info = sctx->dev_root->fs_info;
3162        root = fs_info->extent_root;
3163
3164        path = btrfs_alloc_path();
3165        if (!path) {
3166                spin_lock(&sctx->stat_lock);
3167                sctx->stat.malloc_errors++;
3168                spin_unlock(&sctx->stat_lock);
3169                not_written = 1;
3170                goto out;
3171        }
3172
3173        trans = btrfs_join_transaction(root);
3174        if (IS_ERR(trans)) {
3175                not_written = 1;
3176                goto out;
3177        }
3178
3179        ret = iterate_inodes_from_logical(logical, fs_info, path,
3180                                          copy_nocow_pages_for_inode,
3181                                          nocow_ctx);
3182        if (ret != 0 && ret != -ENOENT) {
3183                pr_warn("iterate_inodes_from_logical() failed: log %llu, phys %llu, len %llu, mir %llu, ret %d\n",
3184                        (unsigned long long)logical,
3185                        (unsigned long long)physical_for_dev_replace,
3186                        (unsigned long long)len,
3187                        (unsigned long long)mirror_num, ret);
3188                not_written = 1;
3189                goto out;
3190        }
3191
3192out:
3193        if (trans && !IS_ERR(trans))
3194                btrfs_end_transaction(trans, root);
3195        if (not_written)
3196                btrfs_dev_replace_stats_inc(&fs_info->dev_replace.
3197                                            num_uncorrectable_read_errors);
3198
3199        btrfs_free_path(path);
3200        kfree(nocow_ctx);
3201
3202        scrub_pending_trans_workers_dec(sctx);
3203}
3204
3205static int copy_nocow_pages_for_inode(u64 inum, u64 offset, u64 root, void *ctx)
3206{
3207        unsigned long index;
3208        struct scrub_copy_nocow_ctx *nocow_ctx = ctx;
3209        int ret = 0;
3210        struct btrfs_key key;
3211        struct inode *inode = NULL;
3212        struct btrfs_root *local_root;
3213        u64 physical_for_dev_replace;
3214        u64 len;
3215        struct btrfs_fs_info *fs_info = nocow_ctx->sctx->dev_root->fs_info;
3216        int srcu_index;
3217
3218        key.objectid = root;
3219        key.type = BTRFS_ROOT_ITEM_KEY;
3220        key.offset = (u64)-1;
3221
3222        srcu_index = srcu_read_lock(&fs_info->subvol_srcu);
3223
3224        local_root = btrfs_read_fs_root_no_name(fs_info, &key);
3225        if (IS_ERR(local_root)) {
3226                srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3227                return PTR_ERR(local_root);
3228        }
3229
3230        key.type = BTRFS_INODE_ITEM_KEY;
3231        key.objectid = inum;
3232        key.offset = 0;
3233        inode = btrfs_iget(fs_info->sb, &key, local_root, NULL);
3234        srcu_read_unlock(&fs_info->subvol_srcu, srcu_index);
3235        if (IS_ERR(inode))
3236                return PTR_ERR(inode);
3237
3238        physical_for_dev_replace = nocow_ctx->physical_for_dev_replace;
3239        len = nocow_ctx->len;
3240        while (len >= PAGE_CACHE_SIZE) {
3241                struct page *page = NULL;
3242                int ret_sub;
3243
3244                index = offset >> PAGE_CACHE_SHIFT;
3245
3246                page = find_or_create_page(inode->i_mapping, index, GFP_NOFS);
3247                if (!page) {
3248                        pr_err("find_or_create_page() failed\n");
3249                        ret = -ENOMEM;
3250                        goto next_page;
3251                }
3252
3253                if (PageUptodate(page)) {
3254                        if (PageDirty(page))
3255                                goto next_page;
3256                } else {
3257                        ClearPageError(page);
3258                        ret_sub = extent_read_full_page(&BTRFS_I(inode)->
3259                                                         io_tree,
3260                                                        page, btrfs_get_extent,
3261                                                        nocow_ctx->mirror_num);
3262                        if (ret_sub) {
3263                                ret = ret_sub;
3264                                goto next_page;
3265                        }
3266                        wait_on_page_locked(page);
3267                        if (!PageUptodate(page)) {
3268                                ret = -EIO;
3269                                goto next_page;
3270                        }
3271                }
3272                ret_sub = write_page_nocow(nocow_ctx->sctx,
3273                                           physical_for_dev_replace, page);
3274                if (ret_sub) {
3275                        ret = ret_sub;
3276                        goto next_page;
3277                }
3278
3279next_page:
3280                if (page) {
3281                        unlock_page(page);
3282                        put_page(page);
3283                }
3284                offset += PAGE_CACHE_SIZE;
3285                physical_for_dev_replace += PAGE_CACHE_SIZE;
3286                len -= PAGE_CACHE_SIZE;
3287        }
3288
3289        if (inode)
3290                iput(inode);
3291        return ret;
3292}
3293
3294static int write_page_nocow(struct scrub_ctx *sctx,
3295                            u64 physical_for_dev_replace, struct page *page)
3296{
3297        struct bio *bio;
3298        struct btrfs_device *dev;
3299        int ret;
3300        DECLARE_COMPLETION_ONSTACK(compl);
3301
3302        dev = sctx->wr_ctx.tgtdev;
3303        if (!dev)
3304                return -EIO;
3305        if (!dev->bdev) {
3306                printk_ratelimited(KERN_WARNING
3307                        "btrfs: scrub write_page_nocow(bdev == NULL) is unexpected!\n");
3308                return -EIO;
3309        }
3310        bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
3311        if (!bio) {
3312                spin_lock(&sctx->stat_lock);
3313                sctx->stat.malloc_errors++;
3314                spin_unlock(&sctx->stat_lock);
3315                return -ENOMEM;
3316        }
3317        bio->bi_private = &compl;
3318        bio->bi_end_io = scrub_complete_bio_end_io;
3319        bio->bi_size = 0;
3320        bio->bi_sector = physical_for_dev_replace >> 9;
3321        bio->bi_bdev = dev->bdev;
3322        ret = bio_add_page(bio, page, PAGE_CACHE_SIZE, 0);
3323        if (ret != PAGE_CACHE_SIZE) {
3324leave_with_eio:
3325                bio_put(bio);
3326                btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
3327                return -EIO;
3328        }
3329        btrfsic_submit_bio(WRITE_SYNC, bio);
3330        wait_for_completion(&compl);
3331
3332        if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
3333                goto leave_with_eio;
3334
3335        bio_put(bio);
3336        return 0;
3337}
3338